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Abstract—Recently, recurrent neural network (RNN) con-
trol schemes for redundant manipulators have been
extensively studied. These control schemes demonstrate
superior computational efficiency, control precision, and
control robustness. However, they lack planning complete-
ness. This paper explains why RNN control schemes suffer
from the problem. Based on the analysis, this work presents
a new random RNN control scheme, which 1) introduces
randomness into RNN to address the planning complete-
ness problem, 2) improves control precision with a new opti-
mization target, and 3) improves planning efficiency through
learning from exploration. Theoretical analyses are used to
prove the global stability, the planning completeness, and
the computational complexity of the proposed method. Soft-
ware simulation is provided to demonstrate the improved
robustness against noise, the planning completeness and
the improved planning efficiency of the proposed method
over benchmark RNN control schemes. Real-world experi-
ments are presented to demonstrate the application of the
proposed method.

Index Terms—Motion planning, recurrent neural net-
works, redundant manipulator, random neural networks,
robot.

I. INTRODUCTION

R EDUNDANT manipulators demonstrated superior dexter-
ity and are widely applied to intelligent robots. However,

the redundant manipulator motion planning problem remains
challenging. Actually, it has been proven that this problem is
PSPACE-hard, when obstacles exist [1]. The redundant manip-
ulator motion planning problem is to find the optimal path in the
manipulator configuration space that delivers the end-effector
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to the desired target without breaking constraints [2]. The con-
figuration space consists of all feasible arm joint configurations,
q(t) ∈ Rm , where m denotes the degrees of freedom (DoF)
of the arm. Given the manipulator model, each joint configu-
ration corresponds to a uniquely defined end-effector pose as
r(t) = f (q(t)), where f(·) is the kinematic model. Therefore,
the configuration space is mapped to the task space [3]. Corre-
spondingly, the n-dimensional task space contains all feasible
end-effector poses, r(t) ∈ Rn .

Searching for the solution in the configuration space given a
task and the kinematic model is known as the kinematic con-
trol problem [1]. The problem is often solved in the velocity
space because the partial differentiation of the kinematic model
linearizes and simplifies the problem to

ṙt = J q̇t (1)

where J = ∂f/∂q is the n × m Jacobian matrix [2].
For redundant manipulators, an infinite number of solu-

tions satisfy (1), because the redundancy m − n > 0. The re-
dundancy corresponds to the self-motion, which is useful in
obstacle avoidance [3]. Existing algorithms utilizing the redun-
dancy for obstacle avoidance can be generally divided into two
categories. One utilizes “gradient projection” methods to de-
termine the joint velocity vector q̇0 that corresponds the self-
motion of avoiding obstacles [3]. The components of q̇0 that
are in the null space of J can be selected by (I − J †J). By
adding the selected components to the motion that moves the
end-effector (J †ṙ), the optimal joint velocity is uniquely defined
as q̇ = J †ṙ + (I − J †J)q̇0, where J † is the Moore–Penrose
pseudo-inverse defined as J † = JT(JJT)−1 [2], [4]. The sec-
ond family of algorithms treats the obstacle avoidance as con-
straints and converts them into tasks, through which the task
space is augmented to uniquely define the solution [2], [4].
Mathematically, fy (q(t)) ∈ Rs denotes the constraint of obsta-
cle avoidance, where s is the dimension of the constraints, then
the task is augmented as rA (t) = [f (q(t))T , fy (q(t))T]T, and
the solution can be uniquely determined when s = m − n, as

ṙAt = JA q̇t (2a)

JA =
[
JT, JT

y

]T
(2b)

where Jy = ∂fy/∂q.
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From the previous paragraph, we know the problem is math-
ematically well-defined. However, it is still challenging to solve
the problem because the configuration spaces are often con-
cave while obstacles exist. Neural network based methods have
attracted attention recently, and many reported significant im-
provement of robot performance [5]–[18].

Most of these recent studies approach the problem from the
control theory perspective, and focus on improving control sta-
bility [19], [20] or system adaptiveness [21], [22]. In real-world
robotic applications, the solutions from the motion planning
perspective are preferable because of the requirements on ap-
plicability, effectiveness, and efficiency. Among the works that
approach the problem from the motion planning perspective,
some of them assume obstacle-free environments. For exam-
ple, Jin et al. proposed a recurrent neural network (RNN) based
solution to optimize motions for maximizing the manipulabil-
ity of redundant manipulators [23]. Li et al. proposed an RNN
control scheme to address the cooperative control problem for
distributed redundant manipulators [24]. For environments with
obstacles, Zhang and Wang treated the condition of collision
avoidance as an additional constraint and solved the motion
planning in the velocity space [25]. Guo and Zhang extended
the work into the acceleration space, and the proposed scheme
guarantees minimum-acceleration-norm [26]. More discussion
and comparison on neural network based motion planning can
be found in [27]. Although these RNN control schemes have
demonstrated improved control precision and efficiency, they
model the problem as the constrained optimization; therefore,
they suffer from the local minimum problem and lack the plan-
ning completeness.

This work aims to address the planning incompleteness prob-
lem of these neural network based control schemes in environ-
ments with obstacles. Being different from these existing works,
this work proposed a novel random RNN control scheme, in-
spired by the recent finding that neural network randomness
correlates with superior learning abilities [28]. Therefore, the
proposed method inherits the robustness, the computational ef-
ficiency, and the effectiveness of neural network-based con-
trol schemes, while it also achieves the probabilistic planning
completeness. Furthermore, through learning in the process of
exploration, the proposed method balances the random explo-
ration of environments with the heuristic search and improves
the planning effectiveness. In summary, the main contributions
of this work are as follows.

1) We propose a novel RNN control scheme to address the
planning incomplete problem. The proposed method in-
herits the advantages of classical RNN control schemes,
including high precision, the high efficiency, and the high
robustness from RNN. Meanwhile, it addressed the local
minimum problem and achieved guaranteed probabilistic
planning completeness.

2) We introduce short-term memory (STM) model into the
proposed method to learn environmental complexity from
exploration. The proposed scheme balances the random
exploration and the heuristic search to improve planning
efficiency.

3) We prove the global stability, the planning completeness,
and show the computational complexity of the proposed
method.

4) We study the control precision, the robustness against
noise and the planning completeness, and the planning
efficiency of the proposed method through comparing it
with other three algorithms.

5) We demonstrate the application of the proposed method
in both software simulation and real-world experiments.

The rest of this paper is organized as follows: Section II
presents the proposed RNN control schemes in detail. Section III
presents the theoretical analyses of the proposed method.
Section IV compares the proposed method with other three
schemes in simulation experiment, and further verifies it in real-
world experiments. The paper concluded with the discussion in
Section V.

II. RANDOM RNN FOR REDUNDANT MANIPULATOR

MOTION PLANNING

A. Solving Kinematic Control in Dual Space With RNN

RNNs refer to networks that have interlayer connections.
RNNs are intrinsically parallel and capable of processing se-
quential or time-varying data [29]. RNNs showed superior ro-
bustness and efficiency on solving the quadratic programming
problem (QP) [30], [31], thus have been used for redundant
manipulator control. The kinematic control of redundant ma-
nipulators can be express in the form of QP as

min
q̇

q̇TW q̇ + cTq̇ (3a)

s.t. ṙd = J q̇ (3b)

q ∈ Ω (3c)

where W and c are two weighting factors that are m × m
real symmetric matrix and a real-valued m-dimensional vec-
tor, respectively, J = ∂f/∂q ∈ Rn×m , ṙd = ∂r(t)/∂t ∈ Rn ,
q̇ = ∂q/∂t, q ∈ Ω, and Ω ⊂ Rm denotes the configuration
space of the redundant manipulator.

To simplify the QP problem, we project it into its dual space,
through designing the Lagrange multiplier, λ ∈ Rn , to corre-
spond to the constraint (3b). The problem described in (3) is
simplified to

L(q̇, λ) = q̇TW q̇ + cTq̇ + λT(ṙd − J q̇). (4)

The Karush–Kuhn–Tucker condition ([32, Ch. 5.5.3]) ensures
that the solution to (4) equals to the solution to the following
equation:

q̇ = PΩ

(
q̇ − ∂L

∂q̇

)

ṙd = J q̇ (5)

where PΩ(x) = argminy∈Ω ||y − x|| is a projection function
from domain Ω′ to Ω, where x ∈ Ω′ and y ∈ Ω.

Equation (5) naturally matches the neural dynamics of a pro-
jected RNN (6), and it can be proved that the equilibrium of the
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network equals to the optimal solution of the system described
in (3) [33], [34]

εq̈ = −q̇ + PΩ

(
q̇ − ∂L

∂q̇

)
(6a)

ελ̇ = ṙd − J q̇ (6b)

where ε > 0 is a scaling factor. These types of projected RNN
has simple architecture as they are a single layer neural network,
in which neurons are fully connected. The output of the neural
network goes to a projection function as explained in (9).

B. Improve Control Precision and Robustness by
Closing the Loop of RNN Control Scheme

The control precision and the robustness against noise are crit-
ical in motion planning, because 1) the control precision defines
the minimum safety distance to obstacles, which shrinks the con-
figuration space; and 2) high control precision and robustness
against noise ensure the successful execution of planning results.
Classical RNN control schemes have demonstrated improve-
ment on the control precision, the robustness, and the efficiency
of redundant manipulator control, compared with their Jacobian
inversion based equivalents [35], we identified the problem of
error accumulations in these control schemes and designed a
new RNN control scheme to overcome the error accumulation
problem through introducing a new optimization target. We first
introduced the new design and the proof of the effectiveness
will be presented in Section III-A.

Intuitively, feeding the tracking errors, e = rd − r, back into
the optimization target forces RNN to minimize the errors. Cor-
respondingly, the new optimization target can be designed as

min
q̇

(
q̇Tq̇ + keTe

)
(7)

where k > 0 is a weighting factor and r is the end-effector
position [36]. Equation (7) will direct RNNs to minimize the
magnitude of e, because q̇Tq̇ ≥ 0 and eTe ≥ 0. Control preci-
sion and robustness of RNNs based on (7) are analyzed in theory
in Section III-A, and empirically compared in Section IV-A.

With the new defined optimization function (7), (4) becomes

L(q̇, λ) = q̇Tq̇ + keTe + λT(ṙd − J q̇). (8)

The constraints of joint physical limits can be fulfilled by
designing a proper projection function. A projection function
has the form of

PΩ(x) =

⎧
⎪⎨

⎪⎩

d− for x ≤ d−,

x for d− < x < d+ ,

d+ for d+ ≤ x,

(9)

where we design the boundary conditions as
{

d− = max (−c1(q − q−),w−),

d+ = min (−c2(q − q+),w+).
(10)

Equation (10) ensures that the joint limits are met. This is
because when joints approach the upper (q+ ) and the lower
(q−) bounds of joint limits, the magnitudes of the two terms,
−c1(q − q−) and −c2(q − q+) decrease to zeros, as the speed

is regulated by two positive scaling factors, c1 and c2. These two
scaling factors can be empirically tuned to clamp the joint ac-
celerations, which improves the control precision in mechanics
with non-negligible inertial, for example, cable-driven manip-
ulators. w+ and w− are the upper and the lower bounds of the
joint speed. They can be used to clamp movement speeds, which
improve manipulator performance through regulating motion
patterns [36].

By substituting (8), (9), and (10) into (6), we have a new
RNN control scheme that meets the constraints of joint limits
and joint speeds in obstacle free environments.

C. Obstacle Avoidance and Complete Motion Planning
with RNN

Because of the flexibility of RNN architecture, the obsta-
cle avoidance problem can be addressed by both augmenting
the task space, and converting the obstacle avoidance con-
straints into bounding conditions [25], [26]. The former adopts
the scheme explained in Section II-A. To be more specific, the
Jacobian and the task are augmented by the obstacle avoidance
constraints, as explained in (2). These methods require the di-
mension of the extra tasks, s, to meet the condition s ≤ m − n.
The latter does not have such limitation. In order to explain it,
we first introduce the concept of “critical points,” as indicated
by green points in Fig. 2. The critical points are the points on the
manipulator, whose distances to obstacles equal or are smaller
than the safety threshold. Let us denote the critical points as ro,i ,
and denote the nearest points on the obstacle by oo,i , where i
indicates the ith critical point. Then, the algorithms in the latter
category avoid a collision through exerting “escaping velocity”
on the critical points.

The escaping velocity denotes the velocity that moves the
critical points away from the obstacles

ṙo = a(ro − oo) (11)

where a is a semipositive scaling factor. Any critical point veloc-
ity between zero and the escaping velocity will avoid a collision.
It is obvious that this method converts the constraints of obstacle
avoidance, ṙo,i = a(ro,i − oo,i), into a closed set in the config-
uration space, and in the RNN control scheme, this set bounds
neuron activities

{[
d−

i , 0
]
, for ṙo,i < 0,

[
0,d+

i

]
, otherwise.

(12)

Because in this scheme, the obstacle avoidance does not explic-
itly “consumed” the manipulator redundancy, algorithms based
on this scheme can deal with the infinite number of constraints
and are more flexible.

From (12), we know that in classical RNN control schemes,
the target globally “drags” the end-effector to move toward it,
while obstacles “push” the critical points to move away. Intu-
itively, this causes the local minimum problem and the planning
is guaranteed to be complete. This problem is visualized in
Fig. 2. In the figure, RNN schemes failed to drive the manipu-
lator from the position indicated by the solid red circle, to the
target indicated by the dashed red circle, because the obstacle
made the configuration concave and trapped the manipulator.
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The mathematical explanation of this local minimum problem
is in Section III-B.

In order to address this problem, the manipulator needs the
ability to “jump” out of local minimum, and the neural network
randomness can be utilized because a recent study demonstrated
that the randomness correlated with superior learning abilities
has been used to demonstrate human-level concept learning
ability [28].

In order to grant RNNs the randomness, we replace the global
attraction from the target with random attractions. The random
attractions, rrandom ∈ Rn, is designed as

ṙd = g · (rrandom − r) (13)

where g is a nonzero weighting factor that regulates the attrac-
tions.

D. Balancing Random Exploration and Heuristic Search
with STM Model

The local minimum problem was due to the concave con-
figuration space. In sparse environments, the heuristic search
has a high probability of success and is efficient, therefore, is
preferable. In environments with complex obstacles, the heuris-
tic search is easy to fail and the random exploration is the key
to success. However, the full knowledge of the environments is
often not available, and it is known, calculating the configura-
tion space for the environment is computational expensive [2].
In this work, we balance the heuristic search and the random
exploration, through learning the environmental complexity on-
line.

This environmental complexity can be learned by proba-
bilistic methods, such as the classical theory of probability or
Bayesian methods. The classical theory of probability is simple
in concept as it counts the percentage of failed exploration, but
these algorithms prone to bias [37]. For example, in a scenario
that the target is inside a corridor, when the manipulator’s initial
position is unluckily located, the manipulator reaches obstacles
before it reaches the targets. Therefore, the algorithm degener-
ates to pure random exploration because collisions are frequent.
However, we know the configuration space is wide and nicely
connected. Bayesian methods do not suffer from this problem,
because of the existence of the prior. However, the prior depends
on the configuration space and is difficult to achieve [38], [39].

Shunting STM model is a solution to this online learning
problem. STM is a robust and powerful tool that describes how
living creatures adapt to environmental changes and has been
widely used in addressing the system adaptiveness problem [40].
STM was derived from the additive STM model, which is math-
ematically described as [40], [41]:

dxi

dt
= −Aixi +

N∑

j=1

fj (xj )Bjiz
(+)
j i −

N∑

j=1

gj (xj )Cjiz
(−)
j i + Ii

where −Aixi is a passive decay;
∑N

j=1 fj (xj )Bjiz
(+)
j i is the

positive feedback,
∑N

j=1 gj (xj )Cjiz
(−)
j i is the negative feed-

back, and Ii is the input inspiration (see detailed explanation in
[40]).

Fig. 1. Architecture of the proposed random RNN. The proposed
method consists a single layer RNN and a single cell STM. The STM
learns from exploration and controls the RNN to generate precise, effi-
cient, and robust motion planning results for redundant manipulators.

Fig. 2. Explanation to the reason that classical RNN control schemes
suffer from the local minimum problem and lack of planning complete-
ness. In the simple two-dimensional environment, classical RNN control
schemes fail to find a valid pathway to move from the pose indicated
by the solid line to the pose indicated by the dashed line because the
configuration space is concave due to the existence of the obstacle.

The intuition is easy to understand through an analogy of
“pain” from the collision. If a collision was fed into an STM,
the output of the STM can be seen as the memory of “pain.”
In the beginning, the STM has no pain and lean to the heuristic
search. While a collision happens, the neural activity of the
STM increases and it tends to random exploration. The “pain”
decays with time, and it tends to perform the heuristic search
again. In the extreme case that collisions happen very time,
STM is still able to perform the heuristic search as the decay
is continuous and the neuron activities are guaranteed to be
unsaturated. From the description, we know that unlike to some
“windowed” methods, STM does not explicitly have a fixed
term of memory; instead, it nonlinear decays memory and the
old ones will be “flashed” by new ones.

A single cell STM is the simplest model that meets our needs,
which can be mathematically described as

dx

dt
= −Ax + (1 − x)

⎛

⎝I +
∑

j=1

w [xj ]
+

⎞

⎠ (14)

where parameters A denotes the passive decay rate; variable x
is the neural activity and x ∈ [0, 1] is guaranteed; the excitatory
inputs (inspirations) to neurons are I +

∑
j=1 w [xj ]

+ , I is the
excitatory input from the exploration, it can simply be 0 for no
collision and 1 for collision; wj denotes weights of the self-
excitatory. The neural activities of STM, RRNNSTM, will be
used to balance the random search with the heuristic search.
The proposed RNN control scheme is explained in Fig. 1 and in
Algorithm 1.

In Algorithm 1, RRNNRNN denotes the control scheme de-
scribed in (8), (9), (10), and (12), and RRNNSTM is mathemati-
cally explained in (14).
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Algorithm 1: Proposed Random RNN Control Scheme.

Input: Target (rT), Manipulator Start Position (r0)
Output: Sequence of Joint States (C)

Init : rs=r0, rd=r0, Ts = {[rs , rd , ∅]}, RRNN†, re‡

1: if
(
Neural activity of RRNNSTM > rand (0, 1)

)
then

2: rd = random point in the task space
3: else
4: rd = rT

5: end if
6: Select the reached goals( rd in Ts), which is closes to

rd , use it as rs

7: RRNNRNN plan motion for given rs and rd , and
produce a sequence of commands cs,d

8: while re>0 do
9: rr = end effector position

10: if (rd = rr ) then
11: if (rd == rT) then
12: Back tracing control sequence C = Σcs,d

13: Break
14: end if
15: else
16: rd = rr

17: end if
18: Feed collision into RRNNSTM

19: Insert [rs , rd , cs,d ] into Ts

20: re = re − 1
21: end while
22: return C

†The architecture of RRNN is explained in Fig. 1, which
consists RRNNRNN and RRNNSTM.
‡A big integer to control the maximum allowed exploration
time.

III. THEORETICAL ANALYSES

A. Precision and Stability

Section II-B states that the proposed RNN control scheme
overcomes the error accumulation and improves the control
precision. The classical RNN control scheme is

λ = λ0 +
1
ε

∫
(ṙd − J q̇) dt,

= λ0 +
1
ε

(
rd − rd0 −

∫
J q̇ dt

)
(15)

where λ0 and ṙd0 denotes the value of λ and ṙd at t = 0, respec-
tively.

By replacing λ in (6) with (15), we have

εq̈ = −q̇ + PΩ

(
JT

(
λ0 +

1
ε

(
rd − rd0 −

∫
J q̇ dt

))

= −q̇ + PΩ

(
JT

(
λ0 +

1
ε

(rd − rd0 − (r − r0))
)

.

(16)

From (16), we know that at any given arbitrary time point
t = 0, the errors accumulates with time as long as errors e0 =
rd0 − r0 �= 0. With the proposed scheme (7), for any time point
t, its initial error accumulation, e0 = rd0 − r0 �= 0, is fed back
into the controller as

εq̈ = −q̇ + PΩ

(
JT

(
1
ε
(rd − r)

))
. (17)

We can see that the accumulated errors are canceled out in (17),
thus the proposed scheme does not suffer from the problem
anymore.

In order to prove the global stability of the proposed method,
we define the Lyapunov function as V = eTe/2, where e =
rd − r denotes the tracking errors [used as feedback in (7)].
Then, from (3a) and (5), we know ṙ = JPΩ( 1

ε J
T(rd − r)).

Because rd is the goal, which is a constant, we have

ė = − JPΩ

(
1
ε
JTe

)
. (18)

By substituting (18) into the defined Lyapunov function, we
have

V̇ = eTė = −eTJPΩ

(
1
ε
JTe

)
. (19)

Because the defined projection function is a saturation function
as PΩ(x) = argminy∈Ω ||y − x||, we have

‖PΩ(x) − x‖2 ≤ ‖y − x‖. (20)

Therefore, by projection 1
ε J

Te to zero, we have
∥
∥
∥
∥−

1
ε
JTe

∥
∥
∥
∥

2

≥
∥
∥
∥
∥PΩ

(
1
ε
JTe

)
− 1

ε
JTe

∥
∥
∥
∥

2

=
∥
∥
∥
∥PΩ

(
1
ε
JTe

)∥
∥
∥
∥

2

+
∥
∥
∥
∥−

1
ε
JTe

∥
∥
∥
∥

2

+ 2

(
−1

ε
JTe

)T

PΩ

(
1
ε
JTe

)
.

The above equation is simplified as

2

(
1
ε
JTe

)T

PΩ

(
1
ε
JTe

)
≥

∥
∥
∥
∥PΩ

(
1
ε
JTe

)∥
∥
∥
∥

2

.

From the definition of the norm, we have

−eTJPΩ

(
1
ε
JTe

)
≤ 0. (21)

Equation (21) can be used in LaSalle’s invariant set princi-
ple to prove that e = 0 is the only solution to V̇ = 0, and the
proposed control scheme globally converges to zero [42].

B. Probability Completeness

We first introduce two lemmas and a definition to facilitate
the analysis.

Remark 3.1: The task space of a manipulator is a bounded
connected open set, as X ⊂ Rn, because of the existence of
obstacles, there is an obstacle space as Xobs ⊂ X , and the sub-
space that is reachable by a manipulator becomes Xreach ⊂ Xfree,
where Xfree is the free space as Xfree = X\Xobs.
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TABLE I
COMPARISONS AMONG RNN BASED CONTROL SCHEME FOR REDUNDANT MANIPULATORS†

†Algorithms closely related to the proposed method are compared here.
‡Probabilistic completeness.

Lemma 3.1: For all points in the reachable space (∀xd ∈
Xreach), there exists a space, Bd for xd, and all points in the
space (∀xj ∈ Bd), a valid path can be found by the control
scheme described in (7).

Proof: Because the point xd is reachable by the manipulator,
for any points (∀xs ∈ Xreach), there exists at least one valid path
δ : [0, t] → xδ , xδ ∈ Xreach, and xδ0 = xs, and xδ0 = xd. How-
ever, because the control scheme defined in (7) is consistently
attracted by the target rd, a subset of the path δ : [t − n, t] → xδ

that corresponds to the nonconcave configuration subspace is
directly reachable by the control scheme in (7). If we define
Bd as ∀xj ∈ Bd and xj ∈ δ : [t − n, t] → xδ , Lemma 3.1 holds
truth. �

Intuitively, Bd can be imagined as a basin to xd. We know
that, for most of the manipulators, if there are no joint limits,
self-collisions and obstacles, Bd = Xreach holds truth for any
xd ∈ Xreach. Those constrains break Xreach into basins, and here
we have Lemma 3.2.

Lemma 3.2: For a given manipulator and a environment,
∪Bd = Xreach.

Proof: Lemma 3.1 proves that ∀xd ∈ Xreach, Bd exists, so
∪Bd ≥ Xreach holds truth. Let us define x ∈ (∪Bd)\Xreach, be-
cause x locates on at least one of the valid path, as proved in
Lemma 3.1, we have x ∈ Xreach, therefore, (∪Bd)\Xreach = ∅,
therefore ∪Bd = Xreach. �

Now it is ready to prove that the proposed method has the
planning probabilistic completeness.

Definition 3.1: For a given target xd ∈ Xreach, if the set of
valid paths, Σδ = {δ : [0, t] → xδ equals to ∅, it is reported in
finite time. If Σδ �= ∅, P (Σδ ∩ Ts = ∅) = 0.

Theorem 3.1: For the proposed method, for Σδ �= ∅, in finite
time, P (Σδ ∩ Ts = ∅) = 0. �

Proof: Lemma 3.1 and Lemma 3.2 show that Bd can be
reached within finite time and Theorem 3.1 is immediate.

In real applications, as described in Algorithm 1, the maxi-
mum allowed exploration time needs be set to ensure the algo-
rithm will not take arbitrarily long to explore. After exceeding
the time, the algorithm will report the nonexistence of a valid
trajectory.

C. Efficiency

If we denote a valid path by the control points as {xs,
xd-k, . . . , xd−1, xd}, where xs ∈ Bd−k and {xd-i ∈ Bd−i+1,∀i ∈
[1, . . . , k]}. Then, we have following theorem.

Theorem 3.2: For the given path, {xs, xd-k, . . . , xd-1, xd}, the
possibility of finding a path grows exponentially in n iterations
as 1 − exp( 2k−np

2 ), where p = min{pi} and pi denotes the prob-
ability of sampling a point in Bi.

Proof: Because of the uniform random sampling is adopted
in the proposed method, given the volume of B, the probability
of sampling a point in B is known as the ratio of the volume of
B with respect to the volume of the reachable space. However,
precisely calculating the volume B is more computationally
expensive than motion planning. Here, we estimate the upper
bound of the efficiency instead.

If we approximate pi with p, then the probability of sampling
B is independent and identical, and follows Bernoulli distribu-
tion with parameter p. Let L denote the event of achieving the
given path with n samplings. With the approximation of p, the
event L follows a binomial distribution with parameters k and
p, as

L ∼ n!
k!(n − k)!

pk (1 − p)n−k (22a)

μ = E[L] = np. (22b)

σ2 = Var(L) = np(1 − p). (22c)

Therefore, P (L ≤ kμ
np ) < exp(μ

2 (1 − k
np )2) hold truth [45].

We also have

μ

2

(
1 − k

np

)2

=
μ

2

(
1 − 2k

np
+

k2

n2p2

)

= k − np

2
− k2

2np
. (23a)

Because exp(− k 2

2np ) ≥ 0, the probability of missing the path

is less than exp( 2k−np
2 ), and the probability of finding the path

is bigger than 1 − exp( 2k−np
2 ). �

IV. ILLUSTRATIVE EXAMPLES AND DISCUSSION

Table I compares RNN control schemes for redundant ma-
nipulator motion planning. To our best knowledge, the proposed
method is the first RNN control scheme that achieved planning
completeness. Among all those algorithms, three were selected
to compare with the proposed method, based on similarity. The
first algorithm [25] solves the redundant manipulator obsta-
cle avoidance problem in the velocity space. For conciseness,
we refer the work as “Method 1” in this paper. The second
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Fig. 3. Tracking precision comparison. Different levels of process noise have been injected to verify the robustness of the RNN control schemes.
(a) σ = 0.01 - Method 1. (b) σ = 0.01 - Method 2. (c) σ = 0.01 - Method 3. (d) σ = 0.01 - Proposed. (e) σ = 0.05 - Method 1. (f) σ = 0.05 - Method 2.
(g) σ = 0.05 - Method 3. (h) σ = 0.05 - Proposed. (i) σ = 0.25 - Method 1. (j) σ = 0.25 - Method 2. (k) σ = 0.25 - Method 3. (l) σ = 0.25 - Proposed.

algorithm [26] addresses the obstacle avoidance problem in
the acceleration space, and we refer to it as “Method2.” The
third method [44] is not capable of avoiding obstacles, but it
demonstrated the superior control precision and the outstanding
robustness in obstacle-free environments. In order to provide a
benchmark for the proposed method, we included that work in
the comparison and refer to it as “Method 3.”

The three representative algorithms were compared with the
proposed method on the Mitsubishi PA10-7C based simulation.
The PA10 redundant manipulator was chosen because it has
seven DoF and its mechanics are similar to human arms [46].

In the simulation experiments, the parameters of the proposed
method were empirically chosen as k = 100, c1 = c2 = 0.5,
A = 0.9, and w = 0.95. For the other algorithms, we followed
the references to set up the parameters [25], [26], [44].

A. Control Precision and Robustness Against Noise

Because “Method 3” is not capable of obstacle avoidance,
the four algorithms were compared in obstacle-free environ-
ments. Obstacle-free environments can also validate that the pro-
posed method balances the random exploration and the heuris-
tic search, and succeed in planning with one heuristic search
attempt.

In the simulation experiments, the manipulator starts from
a known position and tracks a circular trajectory. White

TABLE II
RMS POSITION TRACKING ERROR WITH RESPECT TO

VARIOUS NOISE LEVEL

Gaussian process noise was injected in order to study the ro-
bustness against noise. The white noise has three different lev-
els of standard deviation: σ = 0.01, σ = 0.05, and σ = 0.25.
End-effector trajectory errors are compared in Fig. 3. From the
results, we can see that with the increase of noise, “Method 3”
and the proposed method showed stronger robustness against
noise, due to their ability against error accumulation. Although
the proposed method and “Method 3” have similar performance,
we know the proposed method is better from Table II.

B. Planning Completeness and Efficiency

Because “Method 3” is not capable of obstacle avoidance,
only “Method 1” and “Method 2” were compared with the pro-
posed method,

Two representative scenarios in redundant manipulator plan-
ning are adopted in the experiments. Scenario 1 is the en-
vironment with a plane-like obstacle and Scenario 2 has a
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Fig. 4. Example planning results in environments with a plane-shaped obstacle or a window-shaped obstacle. The semitransparent planes denote
the obstacle, the red globe denotes the target, and the colored lines indicate the manipulator trajectories. (a) Method 1 in Scenario 1. (b) Method 2
in Scenario 1. (c) Proposed in Scenario 1. (d) Method 1 in Scenario 2. (e) Method 2 in Scenario 2. (f) Proposed in Scenario 2.

TABLE III
PLANNING SUCCESS RATE COMPARISON

window-shaped obstacle. In both scenarios, the three algorithms
command the PA10 manipulator to reach a target behind the ob-
stacles. The manipulator randomly starts from the known initial
positions because both “Method 1” and “Method 2” suffer from
the error accumulation problem. Table III compares the plan-
ning success rates, which is defined as vs/ve, where vs denotes
the total number of successes, and ve = 50 denotes the total
number of experiments.

Example planning results in scenarios 1 and 2 are shown in
Fig. 4(a)–(c) and (d)–(f), respectively. In the figure, the semi-
transparent blue plane denotes the obstacle, the thick colored
lines indicate manipulator initial configurations, and the thin
colored lines denote the trajectory. The goal is denoted by a
red sphere, and the curved red line segments denote the end-
effector trajectories. From Fig. 4 and Table III, it is clear that
the proposed method addresses the local minimum problem and
achieves the planning completeness.

Planning efficiency of the proposed method was demonstrated
by comparing the proposed method with a control scheme de-
scribed in [47]. This control scheme is not capable of learning
from exploration. Table IV compares the efficiency and shows
how many random explorations and heuristic searches have been
conducted in the planning. Fig. 5 shows how RRNNSTM neuron
activities change during the exploration and adapt to different
environments. From Table IV and Fig. 5, it is clear that the pro-
posed method optimizes the exploration per environment and
dramatically increases the planning efficiency.

TABLE IV
PLANNING EFFICIENCY COMPARISON

RE: Random Exploration, HS: Heuristic Search, Total=RE+HS.
The averaged total numbers of explorations in 50 experiments are compared in the
table.

Fig. 5. Example RRNNSTM neuron activity changes in exploration. The
neural network learns from exploration. In simpler environments, it tends
to perform the heuristic search; in complex environments, it leans to the
random exploration. (a) Scenario 1. (b) Scenario 2.

C. Real-World Experiment

The proposed method was applied to a Raven II surgical
robot. Raven II surgical robots are popular in the robotic surgery
community and are deployed at 18 sites worldwide. The chal-
lenges of controlling Raven II, as well as the kinematic model,
can be found in [8]. The experiment simulates the popular en-
doscopic robotic surgeries, in which the robot reaches a tar-
get through a small orifice. Compared to exiting teleoperated
robotic surgeries, the robot starts from an unknown position
and autonomously reaches the goal without collision. Fig. 6(a)
shows the Raven II surgical robot and 6(b) explains the experi-
mental setup. A box with a 4-cm square opening represents the
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Fig. 6. Applying the proposed method to simulate autonomous robotic endoscopic surgery. The Raven II robot automatically reaches the surgical
target under the control of the proposed method. (a) Raven II surgical robot. (b) Experimental setup and the initial manipulator position. The
zoomed-in area shows that the manipulator reaches the goal. (c) Surgical robot trajectory.

surgical environmental obstacle and the target is denoted by a
pin with a red head. The robot trajectory is recorded by a stereo
camera. Fig. 6(c) visualizes the robot trajectory, in which thick
colored lines indicate the manipulator initial configuration and
the thin lines indicate the end-effector trajectory. The obstacle
position is indicated by the semitransparent blue plane and the
goal is denoted by a red dot. From the experimental result, it
is clear that the proposed method achieved success in such a
complex task in robotic surgeries.

V. CONCLUSION

This paper presents a new RNN control scheme for complete
and efficient redundant manipulator motion planning. The pro-
posed scheme addresses the local minimum problem in RNN
control scheme, through introducing randomness. Moreover, it
avoids the low-efficiency of the random explorations, through
online learning from exploration. Rigorous theoretical analy-
ses show the precision, the stability, the planning completeness,
and the planning efficiency of the proposed method. Simula-
tion experiments demonstrate that the proposed method has bet-
ter precision, robustness than other three representative RNN
schemes, and more importantly, it achieves the planning com-
pleteness and improves the planning efficiency. Real-world ex-
periments demonstrate the application of the proposed method in
the endoscopic robotic surgery scenario. The proposed method
shares the efficiency and the robustness with other RNN con-
trol schemes, meanwhile, it achieves higher control precision.
More importantly, the proposed method is the first RNN control
scheme that achieves the planning completeness in environ-
ments with obstacles and shows the much broader applicability
of RNN.
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