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SUMMARY

Recent whole-genome mapping approaches for the chromatin interactome have offered new insights
into 3D genome organization. However, our knowledge of the evolutionary patterns of 3D genome in
mammals remains limited. In particular, there are no existing phylogenetic-model based methods to
analyze chromatin interactions as continuous features. Here we develop phylogenetic hidden Markov
random field (Phylo-HMRF) to identify evolutionary patterns of 3D genome based on multi-species
Hi-C data by jointly utilizing spatial constraints among genomic loci and continuous-trait evolutionary
models. We used Phylo-HMRF to uncover cross-species 3D genome patterns based on Hi-C data from
the same cell type in four primate species (human, chimpanzee, bonobo, and gorilla). The identified
evolutionary patterns of 3D genome correlate with features of genome structure and function. This work
provides a new framework that analyzes multi-species continuous genomic features with generalized
spatial constraints and has the potential to reveal the evolutionary principles of 3D genome organization.
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INTRODUCTION

In humans and other higher eukaryotes, chromosomes are folded and organized in three-dimensional
(3D) space and different chromosomal loci interact with each other (Bonev and Cavalli, 2016; Rowley
and Corces, 2018). Recent developments in whole-genome mapping approaches for the chromatin in-
teractome such as Hi-C (Lieberman-Aiden et al., 2009; Rao et al., 2014) and ChIA-PET (Tang et al.,
2015) have facilitated the identification of genome-wide chromatin organizations comprehensively, re-
vealing important 3D genome features such as loops (Rao et al., 2014; Tang et al., 2015), topologically-
associating domains (TADs) (Dixon et al., 2012; Nora et al., 2012), and A/B compartments (Lieberman-
Aiden et al., 2009). A limited number of attempts have been made to analyze these 3D genome features
across different species. An earlier study using Hi-C showed that the positions of TADs were largely
conserved between human and mouse within syntenic genomic regions (Dixon et al., 2012). Another
study demonstrated that evolutionary changes in TAD structure correspond with the creation or elimina-
tion of CTCF binding sites using relatively low-resolution Hi-C data from rhesus macaque, dog, rabbit,
and mouse (Rudan et al., 2015). More recently, TADs have been shown to have strong conservation
in mammalian evolution with the TAD boundaries under potential negative selections against genome
rearrangements (Lazar et al., 2018; Fudenberg and Pollard, 2019). These previous analyses pointed to
the conservation and changes of 3D genome structure across different species, although a more compre-
hensive characterization of the detailed evolutionary patterns of 3D genome structure remains unclear.
Additionally, as most of the initial comparative analysis of 3D genomes focused primarily on distantly re-
lated organisms, there is limited understanding of how 3D genome features may have evolved in closely
related mammalian species, especially in recent primate evolution which is of particular interest to un-
derstand human-specific and great ape-specific gene regulations.

On the algorithmic side, existing computational approaches for comparing 3D genome organiza-
tion across multiple species have surprisingly limited capability. Importantly, multi-species functional
genomic data from various high-throughput epigenomic assays (e.g., Hi-C, ChIP-seq, Repli-seq) are
continuous traits in nature. However, such continuous signals are often converted to discrete values to
identify distinctive feature patterns (e.g., presence or absence of TADs) for subsequent comparisons,
which may cause a dramatic loss of information of more subtle differences across species from the orig-
inal data. Although methods have been developed to quantitatively analyze the strengths of chromatin
interactions from Hi-C data, to the best of our knowledge, there are no existing phylogenetic-model based
methods available to analyze Hi-C data as continuous signals across different species in a genome-wide
manner to uncover evolutionary patterns of 3D genome organization.

We previously developed a method called phylogenetic hidden Markov Gaussian processes (Phylo-
HMGP) (Yang et al., 2018) to estimate evolutionary patterns given continuous functional genomic data
(e.g., Repli-seq) along the genome from multiple species. Phylo-HMGP considers evolutionary affinities
among species in a hidden Markov model (HMM), utilizing evolutionary constraints and also spatial
dependencies along one-dimensional (1D) genome coordinates. However, the HMM, as used by Phylo-
HMGP, is based on 1D Markov chains, which cannot be simply used to model generalized spatial depen-
dencies (such as those reflected in Hi-C data) to consider the interactions between nodes in an arbitrary
graph. Therefore, HMM-based methods cannot be directly applied to discovering patterns of higher-
order chromatin interactions from Hi-C contact matrices, which consist of continuous measurements of
contact frequencies between each pair of genomic loci.

Here, we develop a new probabilistic model, phylogenetic hidden Markov random field (Phylo-
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HMRF), which integrates the continuous-trait evolutionary constraints with the hidden Markov random
field (HMRF) model, to capture evolutionary patterns of continuous genomic features across species by
utilizing generalized spatial constraints. We demonstrated the advantage of Phylo-HMRF using simu-
lation data. In addition, we applied Phylo-HMRF to a new Hi-C dataset from the same cell type (lym-
phoblastoid cells) in four primate species (human, chimpanzee, bonobo, and gorilla). Phylo-HMRF
identified different evolutionary patterns of Hi-C contacts across the four species, including both con-
served patterns and lineage-specific patterns. These patterns show strong correlations with other features
of genome structure and function, such as TADs, A/B compartments, histone modifications, DNA repli-
cation timing, as well as sequence properties. Phylo-HMRF offers an effective model to potentially help
reveal important evolutionary principles of 3D genome organization. The source code of Phylo-HMRF
can be accessed at: https://github.com/ma-compbio/Phylo-HMRF.
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PRIMER

Comprehensive characterization of the detailed evolutionary patterns of 3D genome structure remains
unclear. Existing computational approaches for comparing 3D genome organization across multiple
species have limited capability without explicitly considering continuous nature of the strengths of chro-
matin interactions. Here we develop a new probabilistic model, phylogenetic hidden Markov random
field (Phylo-HMRF), which integrates the continuous-trait evolutionary model with the hidden Markov
random field (HMRF), to capture evolutionary patterns of chromatin interactions based on Hi-C across
multiple species. Phylo-HMRF is a phylogenetic-model based method to analyze Hi-C data as contin-
uous signals across different species in a genome-wide manner to uncover evolutionary patterns of 3D
genome organization. By applying Phylo-HMRF to Hi-C data from the same cell type (lymphoblas-
toid cells) in four primate species (human, chimpanzee, bonobo, and gorilla), we identified different
evolutionary patterns of Hi-C contacts across the four species, including both conserved patterns and
lineage-specific patterns. These patterns show strong correlations with other features of genome struc-
ture and function, such as TADs, A/B compartments, histone modifications, DNA replication timing, as
well as sequence properties. Phylo-HMRF offers an effective model to potentially help reveal important
evolutionary principles of 3D genome organization.
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GLOSSARY

Markov random field (MRF): MRF is a set of random variables that have Markov property described
by an undirected graph.

Markov property: A stochastic process has the Markov property if the conditional probability of future
states of the process conditional on both the past and the present states depends only on the present state,
not on the states that preceded the present state. In MRF, the Markov property is extended to random
variables defined on a graph. For local Markov property, a variable is conditionally independent of all
the other variables given its neighbors.

Hidden Markov random field (HMRF): The HMRF model is characterized by the hidden random field,
the observable random field, and the conditional independence assumption. The hidden random field is
a Markov random field with a finite state space.

Gaussian process: Gaussian process is a stochastic process, of which every finite collection of the
random variables in the stochastic process has a multivariate Gaussian distribution, i.e., every finite
linear combination of the random variables has Gaussian distribution.

Standard Brownian motion: A standard Brownian motion is a stochastic process X = {Xt : t ∈
[0,∞)} that has the following properties: (i) X0 = 0 with probability 1; (ii) The increment of Xt is
independent of the past values; (iii) The increment of Xt is normally distributed with mean 0 and the
time interval of the increment as variance; (iv) X has continuous paths.

Ornstein-Uhlenbeck process: The Ornstein-Uhlenbeck (OU) process is a Gaussian process that consists
of two parts and models the Brownian motion under the effect of selection. The first part models the
tendency towards the equilibrium around an optimal value. The second part is the Brownian motion.
The parameters include the selection strength, the optimal value and the Brownian motion intensity.

Expectation-Maximization (EM) algorithm: The EM algorithm uses iterative alternating Expectation-
step (E-step) and Maximization-step (M-step) to find maximum likelihood or maximum a posterior es-
timates of parameters of models with unobserved latent variables. The E-step computes the distribution
of the latent variables and forms a function of the expectation of the log likelihood given current model
parameter estimates. The M-step performs parameter estimation by maximizing the expectation of the
log likelihood.
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RESULTS

Overview of the Phylo-HMRF model

The overview of the Phylo-HMRF method is shown in Figure 1. Our goal is to identify different evolu-
tionary patterns of chromatin conformation from multi-species Hi-C data. The input contains the Hi-C
contact frequency data from each species. We first align the Hi-C sequencing reads of each species to
the corresponding genome, and then map Hi-C contacts in each species to the reference genome (hu-
man genome). We obtain a combined multi-species Hi-C contact map based on the reference genome
as shown in Figure 1A, where each node in the map corresponds to multi-species contact frequencies
between the corresponding pair of genomic loci (STAR Methods). We also assume that each node has a
hidden state that represents the evolutionary pattern of Hi-C contacts between the corresponding paired
genomic loci. Phylo-HMRF estimates the hidden state of each node by considering both spatial depen-
dencies among nodes encoded by an HMRF and the evolutionary dependencies between species in the
phylogeny. The continuous-trait evolutionary models are embedded into the HMRF. Therefore, each
hidden state corresponds to an evolutionary model that is represented by a parameterized phylogenetic
tree. The output of Phylo-HMRF contains the partition of the combined multi-species Hi-C contact
map, where adjacent nodes with the same hidden state are in the same partition. These partitions reflect
the distribution of different evolutionary patterns of Hi-C contact frequencies. As shown in Figure 1B,
Phylo-HMRF uses the Ornstein-Uhlenbeck (OU) process (Hansen, 1997; Butler and King, 2004; Hansen
et al., 2008) as the continuous-trait evolutionary model. Figure 1C is an illustration of the possible Hi-C
evolutionary patterns that Phylo-HMRF aims to uncover across four primate species in this work.

Note that an evolutionary pattern identified by Phylo-HMRF is associated with the conservation or
variation of the feature of interest across different species. For example, in this study, we may observe
conserved high Hi-C contacts in all four species between specific paired genomic loci. We may also
observe that strong Hi-C contacts only exist in some of the species between specific paired genomic
loci. These different types of feature distributions across species are representative of the evolutionary
patterns that we seek to identify as states. In addition, Phylo-HMRF provides a framework to utilize
both general types of spatial dependencies among genomic loci and evolutionary relationships among
species to identify evolutionary patterns from multi-species continuous-trait features. The general types
of spatial dependencies refer to any dependencies that can be represented by the edges in a graph.

Performance evaluation of Phylo-HMRF using simulation

We evaluated the performance of Phylo-HMRF using simulations to demonstrate improvement in identi-
fying 2D evolutionary feature patterns. We applied Phylo-HMRF to 16 simulated datasets in two sets of
simulations, each of which contains 8 datasets. Suppose the samples in simulated datasets correspond to
nodes in a graph G. The samples thus represent features of node in G. Similar to a Hi-C contact map, G
has a 2D lattice structure of size n× n, where each node is associated with a sample. The samples thus
represent features of nodes in G. For example, a sample can represent the interaction intensities between
the i-th locus and the j-th locus out of n genomic loci in multiple species (1 ≤ i, j ≤ n). We also
assume that each sample has a class label or hidden state. Each hidden state is associated with an emis-
sion probability function and determines the observed feature of the sample with this state. The hidden
states of the samples are assumed to be from a Markov random field (MRF). Thus, the hidden state of a
sample is spatially dependent on the hidden states of its neighbors in G. We simulated the multi-species
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observations from multivariate Gaussian distributions with OU model parameters embedded. The details
of the data simulation are in (see STAR Methods).

Based on the simulated datasets, we compared Phylo-HMRF with several other methods, including
the Gaussian-HMRF method (Zhang et al., 2001), the Gaussian mixture model (GMM), and the K-means
clustering, to infer hidden states of the samples. Each method was run repeatedly for 10 times on each
simulated dataset with different random initializations, given the number of hidden states M = 10.
Additionally, we also included two image segmentation methods SLIC (Simple Linear Iterative Cluster-
ing) (Achanta et al., 2012) and Quick Shift (Vedaldi and Soatto, 2008) for comparison (STAR Methods).
The two image segmentation methods were also run repeatedly for 10 times each. The average perfor-
mance of the 10 results for each method was reported as the final performance with respect to different
types of evaluation metrics. We evaluated the performance of each method by comparing the predicted
states and ground truth hidden states, using metrics Normalized Mutual Information (NMI), Adjusted
Mutual Information (AMI), Adjusted Rand Index (ARI), Precision, Recall, and F1 score (Manning et al.,
2008; Vinh et al., 2010) (STAR Methods).

The evaluation results are shown in Figure 2 and Table S1. We found that Phylo-HMRF outperforms
all the other methods on different types of evaluation metrics in each simulated dataset in simulation
study I. Phylo-HMRF consistently outperforms Gaussian-HMRF, demonstrating that encoding the evo-
lution information can improve accuracy. Even though all the multi-species observations are simulated
from Gaussian distributions, using Gaussian distributions alone in inference may not reveal the possible
evolutionary dependencies between the species. In addition, both Phylo-HMRF and Gaussian-HMRF
show advantages over GMM and K-means clustering, suggesting that encoding the spatial constraints
is also crucial. Moreover, Phylo-HMRF outperforms the two image segmentation methods SLIC and
Quick Shift in different simulated datasets. The image segmentation methods segment the image repre-
sentation of the cross-species data based on feature similarity and spatial proximity. Regions that belong
to the same evolutionary pattern (e.g., conserved high in Hi-C contacts across species) can be assigned
different labels if they are distant from each other in spatial location, which affects the accuracy and
interpretability of hidden state estimation. We further performed simulation study II to assess if the ad-
vantage of Phylo-HMRF is consistent over varied simulation parameter settings (STAR Methods). The
eight sets of simulated hidden states were shared between simulation studies I and II, while the obser-
vations were simulated with different parameter settings. We then applied Phylo-HMRF and the other
methods to the datasets in simulation study II and evaluated performance using the same procedure as we
used in simulation study I. The evaluation results are in Figure S1. Again we found that Phylo-HMRF
consistently outperforms the other methods across all the datasets. Taken together, our simulation eval-
uation demonstrated that Phylo-HMRF is able to achieve improved accuracy consistently in estimating
evolutionary patterns of Hi-C contacts in multiple species.

Phylo-HMRF identifies different Hi-C contact patterns across multiple primate species

We applied Phylo-HMRF to a Hi-C dataset from four primate species. We used the Hi-C data in
GM12878 in human from Rao et al. (2014). We generated Hi-C data from the lymphoblastoid cells
of three other primate species, including chimpanzee, bonobo, and gorilla (STAR Methods). There are
290M, 270M, 240M, and 290M mapped read pairs for the four primate species, respectively. We ran
Phylo-HMRF on all the syntenic regions on the autosomes using the human genome as the reference.
We first identified 92 synteny blocks in 50kb resolution (i.e., ignoring rearrangements smaller than 50kb
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among the four species) using the method inferCARs (Ma et al., 2006), covering 92.64% of the se-
quenced regions in the human genome (Figure S2, STAR Methods). For example, we identified 9 major
synteny blocks on human chromosome 1 among the four species, covering 92.50% of human chromo-
some 1 (Figure 3B). We then applied Phylo-HMRF to elucidating genome-wide evolutionary patterns
over the multiple synteny blocks across different chromosomes jointly, with each synteny block repre-
sented as a subgraph of G. The number of states is set to be 30 based on estimation from the results
of K-means clustering using the Elbow method (Thorndike, 1953; Goutte et al., 1999) (STAR Methods,
Figure S3). Specifically, we observed how the Sum of Squared Errors (SSE) of each clustering result
changed with respect to different choices of K, and chose the number of states in a range where the
contribution of a larger K to a smaller SSE experienced relatively sharp decrease and tended to be small.

Phylo-HMRF identified both conserved and lineage-specific evolutionary patterns of Hi-C contact
frequencies across the four primate species. For the convenience of presentation of the analysis results,
we further categorized the 30 estimated hidden states into 13 groups which show higher-level distinctive-
ness of heterogeneous evolutionary patterns (STAR Methods). Four of the groups represent conserved
or weakly conserved cross-species patterns in Hi-C contact frequency, which are conserved high in Hi-C
contact frequency (C-high), conserved middle-level (C-mid), conserved low (C-low), and weakly con-
served middle-level (WC). The four groups cover 51.14% of all the nodes in the cross-species Hi-C
maps of the synteny blocks. In the conserved states the four species have consistently high or low or
middle-level Hi-C contact frequency signals. Nine of the groups correspond to non-conserved evolution-
ary patterns in Hi-C contacts, where eight exhibit lineage-specific patterns. Specifically, the nine groups
are human-specific high in Hi-C contact frequency (NC-hom high), human-specific low (NC-hom low),
chimpanzee-specific high (NC-pan high), chimpanzee-specific low (NC-pan low), bonobo-specific high
(NC-pyg high), bonobo-specific low (NC-pyg low), gorilla-specific high (NC-gor high), gorilla-specific
low (NC-gor low), and non-conserved (NC). Representative estimated states from each of the 13 groups
are shown in Figure 3A. Hi-C contact frequency distributions of multiple species in all the 30 estimated
states are shown in Figure S4.

In Figure 3B-C, as examples we show the estimated states in synteny block 8 on chromosome 1
and in synteny block 3 on chromosome 2, along with the input Hi-C contact maps of the four species.
The rotated upper triangular matrix as illustrated in the second panel of Figure 3B-C represents the
estimated hidden states of the graph G of the HMRF in Hi-C data comparison in the corresponding
synteny block. Each node in G corresponds to a pair of genomic loci in the Hi-C contact map. The
hidden state configuration is visualized as an image, where different colors represent different estimated
hidden states. Adjacent nodes that are assigned to the same hidden state form a contiguous 2D segment
in the image. Therefore, based on the estimated states, G is partitioned, reflecting different cross-species
Hi-C contact patterns. In Figure 3B, we found that there are two gorilla-specific low Hi-C contact
patterns near the diagonal area, which are colored in purple. These two regions correspond to the gorilla-
specific low Hi-C states that appear in the state-distance plots of synteny block 8 on chromosome 1 in
Figure S5. In Figure 3C, we observed that there is a bonobo-specific low Hi-C contact frequency pattern
detected near the diagonal area, which is colored in green. By comparing the estimated hidden states to
the corresponding Hi-C contact maps of the four species, we found that the estimated states accurately
reflect what can be observed in Hi-C contact maps in different species.

Next, we compared the distributions of evolutionary patterns of Hi-C contacts over changing dis-
tance between a pair of genomic loci in each synteny block. We consider that Hi-C contacts over short
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genomic loci distances are local Hi-C contacts (genomic loci distance <3Mb), and Hi-C contacts over
large distances represent longer-range contacts. Short genomic loci distances correspond to areas near
the diagonal of the Hi-C contact map. The state-distance plots across the synteny blocks on all the au-
tosomes are shown in Figure 4A. We observed that C-high, C-mid, and WC states are the predominant
states for the short-range contacts (black arrow in Figure 4A). This suggests that the majority of the local
Hi-C contact patterns and the associated genome structures are likely to be conserved across different
species. At larger genomic loci distances, which correspond to the off-diagonal areas in the Hi-C contact
map, the C-low and non-conserved states have much higher percentages as expected. We also found
that the distribution over genomic loci distance varies across different lineage-specific states. For single
synteny blocks, the state-distance plots of the major synteny blocks on chromosome 1 and chromosome
2 are shown in Figure S5 and Figure S6 as examples. Overall, we found that there are similar enrich-
ment patterns of states within a short distance range across the synteny blocks, while different blocks
also exhibit varied trends of how evolutionary patterns are distributed at different genomic loci distances.
We observed that the lineage-specific states are distributed unevenly among the synteny blocks, showing
occurrences either in local Hi-C contacts or long-range Hi-C contacts.

Together, these results demonstrate the effectiveness of Phylo-HMRF to identify genome-wide evo-
lutionary patterns of Hi-C contacts across different species in a phylogeny.

Hi-C evolutionary patterns correlate with replication timing and histone modifications

We next compared the predicted states from Phylo-HMRF with other features of genome structure and
function. Earlier studies have shown that DNA replication timing (RT) is closely correlated with genome
organization (Rhind and Gilbert, 2013; Pope et al., 2014). We previously reported evolutionary patterns
of DNA replication timing using Repli-seq data of multiple primate species (Yang et al., 2018). We
identified 5 groups of RT evolutionary states, which are conserved early in RT (E), weakly conserved
early (WE), conserved late (L), weakly conserved late (WL), and non-conserved (NC). For each pair
of genomic loci with estimated Hi-C states, we examined the RT evolutionary state composition of the
corresponding two genomic loci. If the paired genomic loci share similar conserved RT states, i.e., both
are E/WE or both are L/WL, we annotated this pair as conserved in RT (C). Otherwise, we annotated it
as non-conserved in RT. We then computed the percentage of contact loci that have the conserved RT
states in the C-high, C-mid, WC, C-low, and NC Hi-C states identified by Phylo-HMRF over a range of
different distances (0-10Mb). The results are shown in Figure 4B. Notably, it is clear that C-high, C-mid,
and WC Hi-C contact patterns have higher enrichment of genome contacts with conserved RT patterns
than the NC states over most of the distance range. The percentage is particularly high in the C-high
state for genomic loci that are less than 4Mb apart. This suggests that the conserved high Hi-C contact
states are strongly correlated with those genomic loci pairs where both loci have consistent conserved RT
patterns across species. We further explored potential connections between the features and the curves
observed in Figure 4B with known chromatin structure patterns such as TADs. We considered the TADs
in GM12878 in human called using the Arrowhead method (Rao et al., 2014) and the Directionality
Index (DI) method (Dixon et al., 2012) (named Arrowhead TADs and DI TADs, respectively). The
average sizes of Arrowhead TADs and DI TADs are around 1Mb and 0.6Mb, respectively. As shown in
Figure 4B, there is a changing point around 1Mb on the distance axis on the matched-RT state fraction
curve for both the C-high state and C-mid state, which approximately matches the average size of TADs.
To further assess if the shapes and differences of the curves occur by chance, we randomly shuffled the RT
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evolutionary states along the genome and plot the matched-RT state fraction curves for different groups
of estimated Hi-C contact states based on the shuffled RT states using the same procedure as described
above (STAR Methods). Specifically, the RT evolutionary states were estimated at the resolution of
6Kb (Yang et al., 2018). We merged adjacent genomic bins with the same RT evolutionary states into
segments and performed random shuffle of the segments. The curves based on the shuffled RT states
are shown in Figure S7. We found that the fractions of conserved-in-RT paired genomic loci in different
Hi-C contact states based on the shuffled RT states are similar to each other over most of the genomic
loci distance range, not exhibiting the characteristics and diversities of curves for different Hi-C contact
states found in Figure 4B. These observations suggest that the identified evolutionary patterns of local
high Hi-C contacts and the evolutionary patterns of RT states may be constrained by the TAD structures.

Next, we examined the histone modification composition of paired genomic loci using the ChIP-seq
data for 11 histone modifications in GM12878 from the ENCODE project (ENCODE Project Consor-
tium, 2012). We hypothesize that paired genomic loci assigned to conserved Hi-C states inferred by
Phylo-HMRF may have more similar histone modification signals than those in non-conserved Hi-C
states. To test this, we computed the percentage of paired genomic loci that have more similar histone
modification signal strength than expected in the C-high, C-mid, WC, C-low, and NC Hi-C states es-
timated by Phylo-HMRF over a range of different distances (0-10Mb). Specifically, for each type of
histone modification, we calculated the absolute differences of quantiles derived from the signal strength
(reads per million mapped reads) at paired genomic loci from a specific estimated state. We then com-
pared the observed changes of quantiles in each state with respect to the background distribution calcu-
lated based on paired genomic loci randomly chosen from the entire synteny blocks (STAR Methods).
Interestingly, even in the same range of 1D genome distance, signals from paired genomic loci for all the
11 histone modifications exhibit stronger similarities if those paired loci are annotated as conserved states
than non-conserved states as shown in Figure S8 and Figure 4C. Additionally, the percentage of similar
signals between paired loci is particularly high in the C-high state for genomic loci that are less than
4Mb apart, which is similar to the observations in the comparison between estimated Hi-C evolutionary
states and estimated evolutionary RT states. Overall, these results suggest that the conserved high Hi-C
contact states are strongly correlated with genomic loci pairs that have similar histone modifications.

Hi-C evolutionary patterns show correlation with A/B compartments and TADs

From Hi-C data, it has been revealed that at megabase resolution chromatin is segregated into two com-
partments, A and B (Lieberman-Aiden et al., 2009). Compartment A regions contain largely open and
active chromatin and compartment B regions are typically transcriptionally more repressed. We com-
pared the Hi-C evolutionary patterns in three different types of interactions between compartments: A-A
interaction, B-B interaction, and A-B interaction. We calculated the percentage of conserved states in
the interacting area of pairwise genomic bins in the multi-species Hi-C contact map for each type of
compartment interactions. We specifically considered two cases: (i) a pair of 50kb genomic bins that
are in the same TAD; (ii) a pair of 50kb genomic bins that are in different TADs. We observed that for
pairwise bins in two different TADs, the interactions of genomic loci coming from the same type of com-
partments have a higher percentage of conserved states than those from different types of compartments
over varied distance between paired genome loci. Notably, pairwise bins both from B compartment (i.e.,
B-B interactions) have the highest fraction of conserved states (Figure 4D, Figure S9). A recent study
based on imaging has shown that the contact frequencies of paired genomic loci in the B compartment
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are higher than the A-B and A-A pairs (Finn et al., 2019). Our results provide the evolutionary context
to support this observation for interacting loci within and across A/B compartments.

TADs are important higher-order genome organization features revealed by Hi-C (Dixon et al., 2012).
We next focus on the diagonal of the Hi-C contact maps that reflect local Hi-C contact patterns across
species. For segments of estimated Hi-C states along the diagonal, we used squares with varied sizes that
match the segments to detect the block patterns (STAR Methods). We identified 2,793 block patterns on
the diagonals of the Hi-C contact maps of all the synteny blocks on all autosomes. We compared the
boundaries of the diagonal blocks detected from the states predicted by Phylo-HMRF with TADs bound-
aries called using Arrowhead and DI, respectively. For each boundary of every identified diagonal block,
we calculated the distance between the block boundary and the nearest TAD boundary, and calculated
the percentages of the distances in five ranges (Figure 4E, STAR Methods).

We observed that the distance between the boundaries of the identified diagonal blocks and the near-
est TADs are significantly more enriched in the distance intervals that represent relatively small distance
(e.g., [0,50Kb] and (50Kb,100Kb]) than expected (Figure 4E). Specifically, 55.60% of the identified di-
agonal block boundaries are matched by an Arrowhead TAD boundary with the distance less than 2 bins,
which is significantly higher than the expected percentage 36.08% observed from the empirical distance
distribution (empirical p-value<2e-03, STAR Methods). Similarly, the percentages of the identified di-
agonal block boundaries that are matched by a DI TAD boundary within 1 bin or 2 bins are significantly
higher than the expected percentages (empirical p-value<1e-03). In contrast, the percentage of the di-
agonal block boundaries with distance to a nearest TAD boundary larger than 4 bins are significantly
smaller than expected (empirical p-value<1e-03).

For example, we identified 34 blocks along the diagonal of the Hi-C map of synteny block 8 on
human chromosome 1 from the Hi-C evolutionary states estimated by Phylo-HMRF. We observed that
the block boundaries show high consistency with the TAD boundaries (Figure 4F). Specifically, 70.77%
of the block boundaries match an Arrowhead TAD boundary or a DI TAD boundary within 2 bins. The
capability of Phylo-HMRF in detecting TAD boundaries without using a TAD calling algorithm implies
that TADs are an important type of units of genome organization evolution. The result also reflects the
accuracy of Phylo-HMRF in estimating Hi-C evolutionary patterns. In addition, we found C-mid and
WC states in off-diagonal area of the Hi-C contact map, which potentially correspond to the long-range
interactions between two TADs that are conserved across species. Examples of the potentially conserved
long-range TAD interactions are shown in Figure 4F (highlighted in yellow borders).

Furthermore, we sought to explore whether there are connections between DNA sequence features
and the Hi-C contact evolutionary patterns identified by Phylo-HMRF. We analyzed the enrichment of
different TE families in each estimated Hi-C contact state across species (e.g., PIF-Harbinger, hAT-
Tag1) (STAR Methods, Figure S10). We then specifically assessed the potential correlations between the
evolutionary patterns on TADs and sequence properties, in particular, transposable elements (TEs) and
transcription factor binding sites (TFBSs), by characterizing TADs into two groups based on whether
a TAD is involved in conserved long-range TAD-TAD interactions (STAR Methods). We detected TE
families and TF motifs that show distinct enrichment patterns in the different groups of TADs (STAR
Methods, Figure S11). This analysis suggests that the evolutionary patterns identified by Phylo-HMRF
have the potential to reveal patterns of sequence properties in forming Hi-C contacts and long-range
TAD interactions, although additional work is needed to delineate the roles of such sequence features in
specific loci and their functional significance.
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Taken together, our results suggest that A/B compartments and TADs are important 3D genome
organization features in genome evolution in primate species. In addition, the evolutionary changes of
intra-TAD interactions (i.e., local contacts) and inter-TAD interactions (i.e., long-range contacts) can be
uncovered effectively by Phylo-HMRF. Such evolutionary patterns also pave the way for the next stage
in identifying potential sequence determinants for the formation of 3D genome structures.
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DISCUSSION

In this work, we developed Phylo-HMRF, a continuous-trait probabilistic model that provides a new
framework to utilize spatial dependencies among genomic loci in 3D space to identify evolutionary pat-
terns of Hi-C contacts across different species in a phylogeny. We applied Phylo-HMRF to the analysis
of Hi-C data from the lymphoblastoid cells in four primate species (human, chimpanzee, bonobo, and
gorilla). Phylo-HMRF is able to identify different genome-wide cross-species Hi-C contact patterns,
including conserved and lineage-specific patterns in both local interactions and long-range interactions.
The identified evolutionary patterns of 3D genome structure have strong correlation with other types of
features for genome structure and function, such as TADs, A/B compartments, DNA replication tim-
ing, and histone modifications. We identified conserved long-range interacting TADs based on the Hi-C
contact evolutionary states estimated by Phylo-HMRF, and discovered TEs and TF motif features that
are correlated with the conserved long-range interacting TADs. From a methodology standpoint, Phylo-
HMRF is a flexible framework that can be applied to other types of multi-species continuous-trait fea-
tures where there are 2D or 3D spatial dependencies for the features among the genomic loci. Overall,
through a proof-of-principle application, we demonstrate that Phylo-HMRF is an effective method to
uncover detailed evolutionary patterns of 3D genome organization based on multi-species Hi-C dataset.

There are several aspects where our method can be improved. First, model selection methods such
as the utilization of the AIC and BIC criteria (Akaike, 1998; Schwarz et al., 1978) may help select
the number of states more efficiently. Second, Phylo-HMRF has only been applied to synteny blocks
across species at the moment and does not explicitly model the chromatin conformation differences due
to large-scale genome rearrangements in evolution. It will be an important next step to model genome
rearrangements and genome organization evolution in an integrative manner. Third, to study a larger
number of more distantly related species, we may face several challenges. As the number of model
parameters and feature dimensions increase linearly with the tree size, both the computation demand
increases and the model is exposed to a higher possibility of local minima and overfitting especially
for a smaller sample size of multi-species feature observations. There will also be more potential mis-
alignments among genomes of distantly related species, resulting in fewer available samples. It will be
useful to incorporate more efficient parameter regularization which is compatible with the evolutionary
models in the optimization part of Phylo-HMRF, and to develop imputation methods for the missing
observations in multi-species genomic data, especially in large-scale phylogenetic trees. Fourth, we
assume that all the phylogenetic trees associated with different hidden states share the same topology
in our current Phylo-HMRF model. Incorporating inference of varied tree topologies (Friedman et al.,
2002) will make Phylo-HMRF even more general. Finally, currently we primarily depend on manual
inspection to assign estimated states into different groups to facilitate analysis. It will therefore be useful
to develop a systematic approach to group the estimated states automatically.

To fully understand 3D genome organization evolution, it will be crucial to explore the underlying
mechanisms of the different evolutionary patterns in 3D genome structure across species, e.g., in concert
with the evolution of particular types of DNA sequence features that play key roles in the formation
and maintenance of genome architecture and function (Sima et al., 2019; Choudhary et al., 2018; Zhang
et al., 2019), which may in turn inform us about the principles of 3D genome organization. For example,
we previously showed that more conserved CTCF motifs in mammalian evolution (considering motif
turnover) are more likely to be involved in CTCF mediated chromatin loops (Zhang et al., 2018). In
this work, we made initial attempt to explore the global correlations between sequence features and the

14



evolutionary patterns of 3D genome organization features. However, our current analysis is still limited
in its scope (only on transposons and TF motifs) and the ability to establish mechanistic characterization.
Nevertheless, although future work is needed to develop integrative models to simultaneously consider
both higher-order genome organization evolution and sequence level changes, our Phylo-HMRF model
developed in this work has the potential to serve as a generic analytic framework to reveal different
evolutionary patterns of chromatin interaction and their connections to the evolution of genome sequence
and function.
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MAIN FIGURE TITLES AND LEGENDS

Figure 1: Overview of Phylo-HMRF. (A) Illustration of the possible evolutionary patterns of chromatin
interaction. The Hi-C space is a combined multi-species Hi-C contact map, which integrates aligned Hi-
C contact maps of each species. Each node represents the multi-species observations of Hi-C contact
frequency between paired genomic loci, with a hidden state assigned. Nodes with the same color have
the same hidden state and are associated with the same type of evolutionary pattern represented by a
parameterized phylogenetic tree ψi. The parameters of ψi include the selection strengths αi, Brownian
motion intensities σi, and the optimal values θi based on the Ornstein-Uhlenback (OU) process assump-
tion. (B) Illustration of the OU process over a phylogenetic tree with four extant species. The X-axis
represents the evolutionary history in time. X(t) on the Y-axis represents the trait at time t. The tra-
jectories reflect the evolution of the continuous-trait features in different lineages, where the time points
t1, t2, t3 represent the speciation events. (C) A cartoon example of the possible evolutionary patterns
(partitioned with different colors). Phylo-HMRF aims to identify evolutionary Hi-C contact patterns
among four primate species in this work. The four Hi-C contact maps represent the observations from
the four species, which are combined into one multi-species Hi-C map as the input to Phylo-HMRF, as
shown in (A). The phylogenetic tree of the four species in this study is on the left. The partitions with
green borders are conserved Hi-C contact patterns. The partitions with red or blue borders represent
lineage-specific Hi-C contact patterns.

Figure 2: Evaluation using simulated datasets. Performance evaluation of K-means clustering, GMM,
SLIC, Quick Shift, Gaussian-HMRF, and Phylo-HMRF on eight simulation datasets in simulation study
I with respect to NMI (Normalized Mutual Information), AMI (Adjusted Mutual Information), ARI
(Adjusted Rand Index), and F1 score. The standard error of the results from 10 runs of each method is
shown as the error bar, respectively. See also Table S1 and Figure S1.

Figure 3: Evolutionary patterns of Hi-C contact frequency estimated by Phylo-HMRF. (A) Rep-
resentative states from the 13 groups of evolutionary patterns. One state from each group is presented.
The box plots show the normalized cross-species Hi-C contact frequency distributions of the four species
in the corresponding states with outliers removed. The violin plot outlines illustrate the kernel proba-
bility density of the data. (B) Cross-species Hi-C contact frequency states identified in synteny block 8
on chromosome 1, in comparison with the Hi-C contact maps of the four primate species. Top panel:
Locations of the nine identified synteny blocks on chromosome 1. Middle panel (Phylo-HMRF states):
Cross-species Hi-C contact frequency states identified by Phylo-HMRF. The black arrows point to two
examples of identified gorilla-specific low Hi-C contact frequency state (NC-gor low, purple color) in
the combined Hi-C contact map. Bottom panel (Hi-C contact matrices): Hi-C contact maps of the four
primate species in this synteny block, with signal scale displayed at the bottom. Darker color in the Hi-C
contact map represents lower contact frequency. The white arrows point to the corresponding locations
of the two examples of identified gorilla-specific low contact state. (C) Cross-species Hi-C contact fre-
quency states identified in synteny block 3 on chromosome 2. Top panel: Locations of the four identified
synteny blocks on chromosome 2. Middle panel: Cross-species Hi-C contact frequency states identified
by Phylo-HMRF. The black arrow points to one example of identified bonobo-specific low Hi-C contact
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state (NC-pyg low, green color) in the combined Hi-C contact map. The white arrow points to the corre-
sponding location of the example of identified bonobo-specific low state in the Hi-C contact maps of the
four species in the bottom panel. See also Figure S2, Figure S3, and Figure S4.

Figure 4: Comparison between the evolutionary states of Hi-C contacts estimated by Phylo-HMRF
and other features of genome structure and function. (A) Global state-distance plots show the enrich-
ment of different evolutionary patterns at different distances between genomic loci across synteny blocks
on all autosomes. The black arrow points to the distance range around 2.5Mb where C-high and C-mid
are the predominant states. (B) The percentage of pairwise genomic loci that are conserved in RT in five
estimated Hi-C contact evolutionary pattern groups. The top panel shows the distributions of TAD sizes,
aligned with the axis of the genomic loci distance. The first black arrow points to the position of the first
observed changing point on the Matched-RT state fraction curve for the C-high state and for the C-mid
state. The second black arrow points to the position of 2.5Mb, where the trend change is observed in the
state-distance plot as shown in (A). (C) The percentage of pairwise genomic loci that have similar signal
strength of a given type of histone modification in five estimated Hi-C evolutionary pattern groups. The
histone modifications shown are H3K4me3 and H3K9me3. (D) The percentage of conserved states in
the interacting area of pairwise genomic loci in the multi-species Hi-C contact map for each type of A/B
compartment interactions. The first panel shows the percentage of conserved states in the interacting area
from different TADs. The second panel shows the percentage of conserved states in the interacting area
in the same TADs. (E) Distributions of distance between the boundaries of the identified local conserved
high Hi-C contact patterns and the nearest TAD boundaries for both Arrowhead TADs and DI TADs. The
red dots are the percentages of distance between the identified local conserved high Hi-C contact pattern
boundaries and the nearest Arrowhead or DI TAD boundaries in different distance ranges. The density
plots correspond to the empirical distributions of distance between boundaries of local contact patterns
and the nearest TADs, with the identified local contact patterns randomly shuffled (STAR Methods). (F)
Comparison between the boundaries of identified local conserved high Hi-C contact patterns (blocks
with white borders) and the TAD boundaries in synteny block 8 on chromosome 1. Several long-range
conserved TAD interaction patterns are shown with yellow solid lines as borders. See also Figure S5,
Figure S6, Figure S7, Figure S8, Figure S9, Figure S10, and Figure S11.
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STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and algorithms should be directed to and will be fulfilled
by the Lead Contact Jian Ma (jianma@cs.cmu.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The four primate species included in this study are Homo Sapiens (Human), Pan troglodytes (Com-
mon Chimpanzee), Pan Paniscus (Bonobo), and Troglodytes Gorilla (Gorilla). For human we used the
GM12878 cell line, a lymphoblastoid cell line which is established from EBV (Epstein-Barr Virus)-
transformed B-lymphocytes from a female donor. For the three non-human primate species, we used
lymphoblastoid cell lines from the corresponding species. The lymphoblastoid cell lines of Common
Chimpanzee (abbreviated as Chimpanzee), Bonobo, and Gorilla were kindly provided by Dr. Ajit Varki
(University of California at San Diego, La Jolla, CA, USA) and have been used in (Chou et al., 2002).
Each of the cell lines is established from EBV-transformed B cells from one biological individual of the
corresponding species. The cells of Chimpanzee and Bonobo are from male. The cells of Gorilla are
from female. The cells of the three species were grown as suspension cultures in RPMI-1640 media sup-
plemented with 15% fetal bovine serum and Penicillin/Streptomycin at 37°C. We only used autosomes
for analysis for each of the species.

METHOD DETAILS

Overall framework of Phylo-HMRF for cross-species comparison of Hi-C data

We assume that a two-dimensional Hi-C contact map is given in each species, where each entry of the
map represents the contact frequency between the corresponding two genomic loci. We use the human
genome as the reference and align the contact pairs of genomic loci of the other species to the human
genome. As a consequence, Hi-C contact maps of the other species are equivalently aligned to the human
genome to be comparable. In this study, we compare the multi-species Hi-C contact frequencies in the
syntenic regions genome-wide (synteny blocks were identified based on inferCARs (Ma et al., 2006)), in
order to focus on the 3D genome changes that are not resulted from large-scale genome rearrangements.
We then obtain a multi-species contact map I ∈ Rn×n×d, where n is the number of loci in the studied
region on the reference genome, and d is the number of the species. I can be represented by a graph
G = (V ,E), where V and E represent the set of nodes and the set of edges, respectively. Each node
corresponds to a position in I, i.e., the contact between a pair of genomic loci. The number of nodes is
N = n × n. We also denote V as the set of indices of the nodes in G, i.e., V = {1, · · · , N}. The i-th
node is associated with a random variable Xi ∈ Rd representing the multi-species observations on this
node, i ∈ V . The k-th element of Xi (k = 1, · · · , d) is the aligned contact frequency measurement of the
k-th species between the corresponding two genomic loci. If two positions in the multi-species contact
map are adjacent, there is an edge between the corresponding nodes in G.

Using a hidden Markov random field (HMRF) model, we assume that each node in G is also associ-
ated with a random variable Yi ∈ S = {1, · · · ,M}, representing the unknown hidden state of this node,
i ∈ V . S is the set of hidden states. We assume Y = {Yi}i∈V to be an MRF. For each configuration of Y ,
Xi follows a conditional probability distribution p(xi|yi), which is the emission probability distribution,
and X = {Xi}i∈V is the observable random field or emitted random field. The hidden state Yi reflects
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different evolutionary patterns of chromatin contact frequency across species, e.g., some regions in I may
exhibit conserved high (or low) contact frequency across species, while some may have lineage-specific
high or low contact frequency. The spatial information is embedded in the MRF with the constraints on
the hidden states of neighboring nodes. The neighboring nodes are expected to be more likely to have
the same hidden states.

Phylo-HMRF estimates the evolutionary patterns by inferring the hidden states y = {yi}i∈V from
the observations x = {xi}i∈V , using the assumption that there are spatial dependencies between adjacent
nodes in the graph G. In Phylo-HMRF, each hidden state Yi = l is associated with a phylogenetic model
ψl. We therefore define the Phylo-HMRF model as h = (S, ψ, β), where S is the set of states, ψ is the
set of phylogenetic models associated with the states, and β contains the pairwise potential parameters,
respectively. Suppose X(l) = (X

(l)
1 , · · · , X(l)

d ) represent the values of leaf nodes of the phylogenetic tree
associated with the l-th phylogenetic model ψl, l = 1, · · · ,M . The emission probability of each state is
p(X|ψl), which is determined by the phylogenetic model underlying this state. The joint probability of
the graph G is:

p(y,x) = p(x|y)p(y) =
1

Z

∏
i∈V

p(xi|yi)
∏

(i,j)∈E

f(yi, yj;xi, xj), (1)

where Z is the normalization constant, p(xi|yi) is the emission probability function, which measures the
probability that the local observation is generated from a certain hidden state, and f(·) is the compatibility
function which measures the consistency of hidden states between the neighboring nodes. The joint
probability can be transformed into the energy function by taking the negative logarithm of the joint
probability. In this work, given the observations across species, the energy function can be defined as:

E(y|x,Θ) =
∑
i∈V

U(xi, yi,Θ) +
∑
ij∈E

V (yi, yj;xi, xj), (2)

where U(xi, yi) is the unary potential function encoding local compatibility between observations and
hidden states with model parameters Θ, and V (yi, yj) is the pairwise potential function encoding neigh-
borhood information, respectively. We have that f(yi, yj;xi, xj) ∝ exp (−V (yi, yj;xi, xj)). If we take
into consideration the effect of the difference between features of neighboring nodes on the pairwise
potential, V (yi, yj;xi, xj) and the compatibility function f(·) will depend not only on the labels of the
neighboring nodes, but also on their features or observations. We minimize the energy function to esti-
mate the hidden states y. By minimizing the energy function we maximize the joint probability of the
graph equivalently. As the model parameters Θ are unknown, we estimate y and Θ simultaneously. The
objective function is:

{y∗,Θ∗} = arg min
y,Θ

E(y|x,Θ). (3)

Phylo-HMRF model with Ornstein-Uhlenbeck process

Ornstein-Uhlenbeck process assumptions

In Phylo-HMRF, we model the continuous traits with the Ornstein-Uhlenbeck (OU) process. The OU
process is a Gaussian process (MacKay and Mac Kay, 2003) that extends the Brownian motion (Felsen-
stein, 1985; Pagel, 1999; Freckleton, 2012) with the trend towards equilibrium around optimal val-
ues (Hansen, 1997; Butler and King, 2004; Hansen et al., 2008). The OU process has been recently used
to model the evolution of genomic features (Rohlfs et al., 2013; Brawand et al., 2011; Naval-Sánchez
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et al., 2015; Chen et al., 2019; Yang et al., 2018). In our previous work (Yang et al., 2018), we found
that the OU process has clear advantages in performance as compared to the simpler Brownian motion
model. Therefore, we utilize the OU processes to realize the phylogenetic models in Phylo-HMRF.

For the observation of a lineage X̂i, the OU process can be represented as the following (Hansen,
1997; Butler and King, 2004):

d(X̂i(t)) = α[θi(t)− X̂i(t)]dt+ σdBi(t), (4)

where X̂i(t) represents the observation of X̂i at time point t, Bi(t) represents the standard Brownian
motion (Durrett, 2019), and α, θi and σ are parameters that represent the selection strength, the optimal
value and the fluctuation intensity of Brownian motion, respectively.

For multi-species observations, based on the model assumptions of the OU process, the multi-species
observations follow multivariate Gaussian distribution, and the expectation, variance, and covariance of
the observations of species can be computed given the phylogenetic tree. Let Xi, Xj denote the observed
traits of the i-th species (species i) and the j-th species (species j), respectively. Suppose that Xp is the
trait of the ancestor of species i, and Xa is the trait of the most recent common ancestor of species i and
species j. We have (Butler and King, 2004; Rohlfs et al., 2013):

E(Xi) = E(Xp)e
−αitip + θi(1− e−αitip), (5)

Cov(Xi, Xj) = Var(Xa) exp
(
−Σk∈lijαktk − Σk∈ljiαktk

)
, (6)

Var(Xi) =
σ2
i

2αi
(1− e−2αitip) + Var(Xp)e

−2αitip , (7)

where tip, tk represent evolution time along the corresponding branches in the phylogenetic tree, respec-
tively. lij represents the set of the ancestor nodes of species i and i itself after the divergence of species
i with species j. Specifically, tip corresponds to length of the branch from the parent of species i to
species i. For k ∈ lij , tk corresponds to length of the branch from the parent of species k to species k.
In the Phylo-HMRF model h = (S, ψ, β), ψl is defined as ψl = (θl, αl, σl, τl, bl), 1 ≤ l ≤ M , where
θl, αl, σl denote the optimal values, the selection strengths, and the Brownian motion intensities of the
corresponding OU model, respectively, and τl, bl represent the topology of the phylogenetic tree, the
branch lengths, respectively. M is the number of states. We assume that the phylogenetic tree topology
is identical across different states. For the phylogenetic tree of a hidden state, we allow varied selec-
tion strengths and Brownian motion intensities along different branches and varied optimal values at the
interior nodes or leaf nodes. Thus each branch is assigned a selection strength and a Brownian motion
intensity, and each node is assigned an optimal value as parameters. Suppose there are r branches in
the tree. We have θl ∈ Rr+1, αl, σl ∈ Rr

+, where values in αl and σl are non-negative. According to
the actual problem studied, ψl can be specialized to different evolutionary models. We focus on the OU
processes in this work.

Model parameter estimation and hidden state inference

We use the Expectation-Maximization (EM) algorithm (Dempster et al., 1977; Zhang et al., 2001) for
parameter estimation in our model. Zhang et al. (2001) developed the HMRF-EM algorithm where EM
is adapted to estimate an HMRF model with several justified assumptions and approximations, including
the pseudo-likelihood assumption (Geman and Graffigne, 1986) and mean-field approximation (Celeux
et al., 2003; Zhang, 1992). The original HMRF-EM algorithm uses the multivariate Gaussian distribution
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as the emission probability function of a hidden state. The main difference is that in our method we use
the OU processes to model the emission probability in the HMRF. Also, we utilize the Graph Cuts
algorithm (Boykov et al., 2001) for hidden state estimation given estimates of model parameters.

Let Θ be the model parameters. Suppose Θg is the current estimate of model parameters. The EM
algorithm aims to maximize the expectation of the complete-data log likelihood, which is defined as the
Q function: Q(Θ,Θg) = E[log p(x,y|Θ)|x,Θg], where x, y represent the observations and the hidden
states, respectively. Using pseudo-likelihood approximation (Geman and Graffigne, 1986) and mean-
field approximation (Celeux et al., 2003; Zhang, 1992), the Q function is derived as (details in later
section):

Q(Θ,Θg) =
M∑
l=1

∑
i∈V

p(yi = l|xi,Θg) log p(xi|yi = l,Θ) +
M∑
l=1

∑
i∈V

p(yi = l|xi,Θg) log p(yi = l|ygNi
,Θ),

(8)
where the two parts of the Q function encode the unary potential and the pairwise potential of the HMRF
of G, respectively. p(yi = l|xi,Θg) is posterior probability of each sample assigned to a hidden state
given the current model parameter estimates. Using the Markov property of HMRF (Zhang et al., 2001),
we have:

p(yi = l|xi,Θg) =
p(xi|yi = l,Θg)p(yi = l|ygNi

)∑M
l=1 p(xi|yi = l,Θg)p(yi = l|ygNi

)
, (9)

where Ni denotes the set of nodes that are neighbors of node i in G. We calculate p(xi|yi,Θg) based on
the OU process assumption (see later section).

Let V (yi, yj) be the pairwise potential on a pair of adjacent nodes (yi, yj). We have:

p(yi = l|ygNi
) =

1

Z
exp

(
−
∑
j∈Ni

V (l, ygj )

)
, (10)

where Z is the normalization constant. We can adopt different definitions of the pairwise potential
V (yi, yj) (see later section). The definition we use takes into consideration the difference between fea-
tures of the adjacent nodes in imposing the penalty on inconsistent states of the neighbors:

V (yi, yj) = β0I(yi 6= yj) exp

(
−β1
‖xi − xj‖2

2

‖xi‖2‖xj‖2

)
, (11)

where β0, β1 are predefined adjustable regularization coefficients. Based on the definition of the pairwise
potential, p(yi = l|ygNi

) does not depend on the OU model parameters.
Let L(Θ(l)) = −

∑
i∈V w

(l)
i log p(xi|yi = l,Θ), w(l)

i = p(yi = l|xi,Θg). We perform parameter
estimation for each of the possible states. In each Maximization-step (M-step), the objective function of
a given state l is derived as (details in later section):

min
Θ(l)

1

N
log |Σ(l)

Θ |
∑
i∈V

w
(l)
i + tr

(
[Σ

(l)
Θ ]−1S̃

(l)
Θ

)
+ λ‖Θ(l)‖2

2, (12)

where S̃(l)
Θ = 1

N

∑
i∈V

w
(l)
i

(
xi − µ(l)

Θ

)(
xi − µ(l)

Θ

)T
, w(l)

i is defined as above, Θ(l) represents the phylo-

genetic model parameters associated with hidden state l, and λ is the regularization coefficient of the
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l2-norm regularization (Hoerl and Kennard, 1970) that is used to reduce overfitting of the model. tr(A)

represents the trace of a matrix A. Σ
(l)
Θ , µ(l)

Θ represent the covariance matrix and the mean vector of the
multivariate Gaussian distribution associated with the phylogenetic model of state l, respectively. Us-
ing OU processes, we have that Θ(l) = {θl, αl, σl}, where θl, αl, σl represent the optimal values, the
selection strengths, and the Brownian motion intensities of the OU model associated with hidden state
l, respectively. As described previously, the OU model of state l is ψl = (θl, αl, σl, τl, bl), 1 ≤ l ≤ M .
We assume that τl is given. If the branch lengths bl are unknown, we perform the transformation that
α̃l,v = αl,vbl,v, σ̃2

l,v = σ2
l,vbl,v to present the combined effect of the branch length and the selection or

Brownian motion parameters along this branch. Here bl,v represents the length of the branch from the
parent of node v to node v in the phylogenetic tree of state l. Then Θ(l) = {θl, α̃l, σ̃l}, where α̃l, σ̃l are
the transformed selection strengths and the transformed Brownian motion intensities, respectively.

In Phylo-HMRF, the overall steps of the OU-model embedded HMRF-EM algorithm are as follows.
1. Initialize the model parameter. We perform K-means clustering on the samples. The clustering

results are used to assign initial hidden states to the samples. For each cluster, we estimate the OU
model parameters using maximum likelihood estimation (MLE) (see later section). The estimated
model parameters are used as initialization of the OU model parameters for each hidden state.

2. Estimate the hidden states given current parameter estimates. We seek an approximate solution to
the optimization problem:

ŷ = arg min
y∈SN

{U(x|y) + U(y)}, (13)

where U(x|y) and U(y) are the total unary potential and total pairwise potential of G, respectively.
3. Calculate posterior probability distribution. In each Expectation-step (E-step), given the current

estimated model parameters Θg and the estimated hidden state configuration in the previous step,
we compute p(yi = l|xi,Θg) using Equations 9,10.

4. Estimate model parameters by solving the optimization problem with OU models embedded. In
each M-step, we solve the optimization problem in Formula 12 to update the parameters {ψl}Ml=1.

5. Repeat step 2-4 until convergence is reached or the maximum number of iterations is reached.
In Phylo-HMRF, given the current estimated model parameters, we use the Graph Cuts algorithm to

estimate the hidden states in step 2 (see later section). Graph Cuts algorithms seek approximate solutions
to an energy minimization problem by solving a max-flow/min-cut problem in a graph (Boykov et al.,
2001; Boykov and Kolmogorov, 2004). Graph Cuts algorithms have been effectively used in image
segmentation applications. Studies have shown that for binary image segmentation, finding a min-cut is
equivalent to finding the maximum of posterior p(y|x) (Boykov et al., 2001). For multiple labels, the
multi-labeling problem can be converted to a sequence of binary-labeling problems and α-expansion or
α-β swap algorithms can be used (Boykov et al., 2001; Veksler, 1999). The solution is an approximate
solution in the multi-labeling problem that has been shown to be strongly probably able to reach a local
minima (Boykov et al., 2001).

Detailed description of Phylo-HMRF with OU process

In Phylo-HMRF, we embed the OU model into the emission probability function of the HMRF model.
Suppose Θ and Θg represent the model parameters and the current model parameter estimates, respec-
tively. We use the EM algorithm to maximize the expectation of the complete-data log likelihood, which
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is the Q function Q(Θ,Θg). We have:

Q(Θ,Θg) = E[log p(x,y|Θ)|x,Θg] =
∑
y∈SN

p(y|x,Θg) log p(x,y|Θ), (14)

where x are the observations, y are the hidden states, and SN is the set of all the possible state configu-
rations of size N . N is the sample size. We have:

Q(Θ,Θg) =
∑
y∈SN

p(y|x,Θg)[log p(x|y,Θ) + log p(y|Θ)], (15)

where p(y|Θ) represents the probability of a hidden state configuration over the whole graph G. Using
pseudo-likelihood approximation (Geman and Graffigne, 1986), we can approximate p(y|Θ) with:

p(y|Θ) =
∏
i∈V

p(yi|yNi
,Θ). (16)

where Ni denote the set of neighboring nodes of the node i. Then we have:

Q(Θ,Θg) =
∑
y∈SN

p(y|x,Θg) [log p(x|y,Θ) + log p(y|Θ)]

=
∑
y∈SN

p(y|x,Θg)

[∑
i∈V

log p(xi|yi,Θ) +
∑
i∈V

log p(yi|yNi
,Θ)

]
=
∑
y∈SN

∑
i∈V

p(y|x,Θg) log p(xi|yi,Θ) +
∑
y∈SN

∑
i∈V

p(y|x,Θg) log p(yi|yNi
)

=
∑
i∈V

M∑
l=1

∑
q−i∈SN−1

p(yi = l, y−i|x,Θg) log p(xi|yi = l,Θ) +
∑
y∈SN

∑
i∈V

p(y|x,Θg) log p(yi|yNi
)

=
M∑
l=1

∑
i∈V

p(yi = l|x,Θg) log p(xi|yi = l,Θ) +
∑
i∈V

∑
y∈SN

p(y|x,Θg) log p(yi|yNi
). (17)

Let xNi
be the neighbors of xi, and yNi

be the state configuration of xNi
.

Calculating
∑

i∈V
∑

y∈SN
p(y|x,Θg) log p(yi|yNi

) requires computing p(y|x,Θg) and log p(yi|yNi
)

over all the possible configurations y ∈ SN , which is computationally intractable. By mean-field approx-
imation (Celeux et al., 2003; Zhang, 1992), we can use estimated hidden states ygNi

from the previous
iteration of the HMRF-EM algorithm to approximate p(yi|yNi

), which can simplify the computation of
the Q function. Then we have:

∑
i∈V

∑
y∈SN

p(y|x,Θg) log p(yi|ygNi
) =

∑
i∈V

M∑
l=1

∑
q−i∈SN−1

p(yi = l, y−i|x,Θg) log p(yi = l|ygNi
)

=
M∑
l=1

∑
i∈V

p(yi = l|xi,Θg) log p(yi = l|ygNi
,Θ). (18)

Therefore, from Equations 17 and 18, we have the Q function in Equation 8. The parameters of the OU
model are embedded in the term p(xi|yi) of Q(Θ,Θg). The second part of the Q function encodes the
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pairwise potentials and does not include the OU model parameters. Therefore, the first and second parts
of the Q function can be estimated separately.

Based on the model of the OU process, we assume the observations of observed species (leaf nodes
in the phylogenetic tree) follow multivariate Gaussian distribution. We have:

p(xi|yi = l,Θ) = p(xi|Θ(l))

=
1

(2π)d/2|Σ(l)
Θ |1/2

exp

{
−1

2

(
xi − µ(l)

Θ

)T
[Σ

(l)
Θ ]−1

(
xi − µ(l)

Θ

)}
, (19)

log p(x|Θ(l)) ∝ −1

2
log |Σ(l)

Θ | −
1

2

(
xi − µ(l)

Θ

)T
[Σ

(l)
Θ ]−1

(
xi − µ(l)

Θ

)
, (20)

where Θ(l) represent the OU model parameters associated with the l-th state and d is the number of
the observed species, l ∈ {1, · · · ,M}. The underlying phylogenetic model ψl is embedded into the
covariance matrix Σ

(l)
Θ and the mean vector µ(l)

Θ according to Equations 5, 6, and 7. We calculate p(xi|yi =

l,Θg) in the same way as shown in Equation 19 by replacing Θ with Θg, where Θg denotes the current
model parameter estimates. Let w(l)

i = p(yi = l|xi,Θg). p(yi = l|xi,Θg) is calculated using Equation 9.
We have:

Q(Θ,Θg) =
M∑
l=1

∑
i∈V

w
(l)
i log p(xi|yi = l,Θ) +

M∑
l=1

∑
i∈V

w
(l)
i log p

(
yi = l|ygNi

)
(21)

=
M∑
l=1

∑
i∈V

w
(l)
i

[
−1

2
log |Σ(l)

Θ | −
1

2

(
xi − µ(l)

Θ

)T
[Σ

(l)
Θ ]−1

(
xi − µ(l)

Θ

)
+ log p

(
yi = l|ygNi

)]
+ C,

(22)

where C is a constant.
We perform parameter estimation for each of the possible states.
Let L(Θ(l)) = −

∑
i∈V w

(l)
i log p(xi|yi = l,Θ). We have:

L(Θ(l)) =
1

2
log |Σ(l)

Θ |
∑
i∈V

w
(l)
i +

1

2

∑
i∈V

(
xi − µ(l)

Θ

)T
[Σ

(l)
Θ ]−1

(
xi − µ(l)

Θ

)
w

(l)
i . (23)

Therefore, the first part of the negative Q function with respect to a given state l can be represented as:

L̃(Θ(l)) =
1

N
log |Σ(l)

Θ |
∑
i∈V

w
(l)
i + tr

(
[Σ

(l)
Θ ]−1S̃

(l)
Θ

)
, (24)

where S̃(l)
Θ = 1

N

∑
i∈V

w
(l)
i

(
xi − µ(l)

Θ

)(
xi − µ(l)

Θ

)T
, and Θ(l) represents the phylogenetic model parame-

ters associated with state l. We assume that the phylogenetic tree topology τl is given. The branch lengths
bl can be combined in effect to αl and σl. As we allow varied selection strengths and Brownian motion
intensities of the OU model along each branch of the phylogenetic tree, and allow varied optimal values
on each tree node, there are many OU model parameters to estimate, which may result in overfitting of
the model if the sample size is not large enough. We apply `2-norm regularization to the parameters Θ(l)

to reduce model overfitting by adding the regularization term λ‖Θ(l)‖2
2. In each M-step, the objective

function of a given state l is defined in Formula 12, where λ is the regularization coefficient. We define
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λ = λ0/
√
N . λ0 can be predefined. We choose λ0 = 4.0 in both the simulation study and real data study.

The same regularization coefficient was adopted in (Yang et al., 2018) and the value of λ0 = 4.0 was
used. We found that the performance of the model was not sensitive to the choice of λ0 within a range.
We therefore use the same choice of λ0 in Phylo-HMRF.

For the second part of the Q function, we can have different definitions of the pairwise potential
V (yi, yj). We consider two definitions. The first definition is:

V (yi, yj) = β0I(yi 6= yj), (25)

where β0 is a predefined adjustable regularization coefficient, which can also be considered as pairwise
potential parameter. The second definition is shown in Equation 11. In Phylo-HMRF we mainly use the
second definition. The results in the simulation evaluation and in the real data application were obtained
by Phylo-HMRF using the second definition. The pairwise potential coefficients β0 and β1 in Equa-
tion 11 can either be estimated as parameters or predefined. In many applications the pairwise potential
coefficients are often estimated through a number of trials and predefined. The pairwise potential coef-
ficients can be chosen such that the pairwise potential is at the same scale of the unary potential. We
choose β0 ∈ [1, 3] and β1 ∈ [0.1, 0.5] in the simulation evaluation and the real data application based on
empirical observations from a simulation dataset.

Model initialization in Phylo-HMRF

In the OU-model embedded HMRF-EM algorithm, we need to initialize the model parameters. We
follow the similar approaches in Yang et al. (2018) for parameter initialization in the EM algorithm.
For the first approach, we perform K-means clustering on the samples. We assign a hidden state to
the samples in the same cluster. For each cluster, we estimate the OU model parameters by maximum
likelihood estimation (MLE). The objective function of the MLE problem is similar to that defined in
Formula 12. The difference is that we set w(l)

i = 1, and change i ∈ V to the constraint i ∈ Cl, where
Cl represents the set of the nodes that are assigned to state l by the K-means clustering result. The
estimated model parameters are used as initialization of the OU model parameters for each hidden state.
The second approach is to randomly sample the parameter values from predefined uniform distributions.

For the third approach, we use a linear combination of parameters obtained from the first and second
approaches for parameter initialization. The initial parameter values are chosen as Θ0 = w1Θ1 + (1 −
w1)Θ2, where w1 ∈ [0, 1], Θ1 and Θ2 are parameter estimates from the first and second approaches,
respectively. In practice, we used the third approach.

HMRF-EM algoirthm and Graph Cuts algorithm used in Phylo-HMRF

In Phylo-HMRF, given the current estimated model parameters, we use the Graph Cuts algorithm (Boykov
et al., 2001; Boykov and Kolmogorov, 2004) to estimate the hidden states in step 2 of the HMRF-EM
algorithm. In step 2, we seek an approximate solution to the energy minimization problem as defined
in Equation 13. We have also shown that minimizing the energy is equivalent to maximizing the joint
probability.

We find the solution {y∗,Θ∗} = arg maxy,Θ E(y|x,Θ) approximately by alternatively performing

y∗ = arg min
y
E(y|x,Θg), (26)

and
Θ∗ = arg max

Θ
E [log p(x,y|Θ)|x,Θg] , (27)
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where Θg is the current estimates of the model parameters. We use y∗ in computing E[log p(x,y|Θ)|x,Θg]

with the mean-field approximation.
We use the Graph Cuts algorithm for the first stage (Equation 26) and use the EM algorithm for the

second stage (Equation 27). The energy minimization problem for MRF (Equation 26) is known to be
NP-hard (Veksler, 1999). Graph Cuts algorithms can effectively seek approximate solutions to the energy
minimization problem. We define the unary cost and the pairwise cost of the graph G of the HMRF to
utilize the Graph Cuts algorithm. The unary cost corresponds to the unary potential, which is:

U(xi|yi,Θg) ∝ − log(p(xi|yi,Θg). (28)

The pairwise cost corresponds to the pairwise potential. We compute the edge weights in G by calculat-
ing:

w̄ij = exp

(
−β1
‖xi − xj‖2

2

‖xi‖2‖xj‖2

)
, (29)

where β1 is an coefficient, and we use a pairwise state transition cost matrix V̄ ∈ RM×M , where M is
the number of hidden states and V̄ij represents the penalty on yj 6= yi for a directed edge (i ← j). In
our problem, G is an undirected graph, and we simplify V̄ as V̄ij = β0, i, j = 1, · · · ,M . However, in
more complicated problem settings, we can realize V̄ with varied elements V̄ij and estimate the elements
as model parameters. The calculation of the pairwise cost and edge weights is based on the second
definition of the pairwise potential (Equation 11). We use the GCO library to perform the Graph Cuts
algorithm (Boykov and Kolmogorov, 2004; Boykov et al., 2001; Kolmogorov and Zabih, 2004).

Approach to generating the simulated datasets

In the simulation evaluation, we suppose that the samples in simulated dataset correspond to nodes in a
graph G. The graph G has 2D lattice structure of size n×n, where each node is associated with a sample.
Each node can be assigned 2D coordinates based on its position in the graph. Let Ni denote the set of
neighboring nodes of the node i, i.e., the nodes that are connected to node i in G. We use 8-connected
neighborhood system. Suppose the node i has coordinates (ci1 , ci2). Then the nodes with coordinates
(ci1 , ci2 ± 1), (ci1 ± 1, ci2), (ci1 − 1, ci2 ± 1), and (ci1 + 1, ci2 ± 1) are the neighbors of node i.

In simulation study I, for each simulated dataset, we first generate a configuration of the hidden states
of the samples by simulating an MRF through Gibbs sampling (Geman and Geman, 1984). We assume
that the hidden state of each sample is associated with an emission probability function and the hidden
states are from an MRF. We use the Markov property:

p(yi|y−i) = p(yi|yNi
), (30)

where y−i represents the hidden states of all the nodes other than the i-th node, i.e., y−i = {yj, j ∈
V , j 6= i}. yNi

represents the hidden states of the neighbors of node i. We randomly initialize the hidden
state configuration of the N = n × n samples at time step t = 0. The hidden state y(t)

i of sample i
at time step (t + 1) is sampled from the probabilistic distribution p(yi|y(t−1)

Ni
), yi ∈ S = {1, · · · ,M}.

p(yi = l|y(t−1)
Ni

) is calculated using Equation 10, l ∈ S. We use the first definition of pairwise potential
and use β0 = 2 (Equation 25). We repeat this sampling process until the maximum of time steps to take T
is reached. We use y(T ) = {y(T )

i }i∈V as the hidden states of the samples. We then simulate observations
of the samples based on the hidden states using the emission probability functions p(xi|yi, θyi), where
θyi represents parameters of the emission probability function of hidden state yi. We assume that the
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emission probability function of each hidden state is a multivariate Gaussian distribution. Suppose the
observations are xi ∈ Rd, i ∈ V . Let d be the number of species. xi then represents the multi-species
observations. We assume that each of the Gaussian distributions is associated with a different OU model.
For each hidden state, we randomly sample the OU model parameters selection strength and Brownian
motion intensity on each branch from uniform distribution Unif[0, 1], and sample the optimal values
from normal distribution N (0.5, 0.25). We then use OU model parameters to calculate the Gaussian
distribution parameters θl, l ∈ S, and simulate samples based on the hidden states and the corresponding
multivariate Gaussian distributions p(xi|yi, θyi). We use n = 500, N = 250, 000, d = 4, M = 10,
and use the same topology of the phylogenetic tree as we use in real data analysis for the OU models
that are associated with the Gaussian distributions. In simulation study II, we use the same eight sets
of hidden states simulated in simulation study I, but we simulate OU model parameters with different
parameter settings. We randomly sample the OU model parameters selection strength and Brownian
motion intensity on each branch from uniform distribution Unif[0, 1.5] and sample the optimal values
from normal distribution N (1, 0.5). We also use n = 500, N = 250000, d = 4, M = 10.

We assume that the data simulation process is hidden from us. When we applied Phylo-HMRF to
the simulated datasets, we used the second definition of the pairwise potential by considering the feature
difference of adjacent nodes (Equation 11), and used β0 = 1, β1 = 0.1. Therefore, the parameter set-
tings we used to implement HMRF-EM are different from the simulation parameter settings, which can
better evaluate whether the model has robust capability. We also tried varied parameters β0 = 1.5, and
β0 = 2 and tested the performance of Phylo-HMRF. We found that Phylo-HMRF still maintains higher
accuracy than the other methods and the performance is improved by a moderate level, demonstrating
the robustness of Phylo-HMRF. We only report the results obtained with β0 = 1 in the performance
evaluation.

Cell culture and Hi-C data generation

For the species chimpanzee, bonobo and gorilla, the lymphoblastoid cells were grown as suspension
cultures in RPMI-1640 media supplemented with 15% fetal bovine serum and Penicillin/Streptomycin
at 37°C. Cells were fixed in suspension culture at density of 1 million cells/mL with 1% formaldehyde
for 10 minutes at room temperature. Fixation was quenched with glycine, and cells were harvested by
centrifugation, washed with 1X DPBS, and frozen in aliquots of 5 million cells until ready for further
processing.

Hi-C libraries were prepared using the original dilution Hi-C protocol (Lieberman-Aiden et al., 2009)
and using the HindIII restriction enzyme. In brief, nuclei were isolated by performing gentle cell lysis
on ice followed by 10 strokes with a Dounce homogenizer. Nuclei were washed in lysis buffer and
resuspended in NEB Buffer 2, and digested with 400U of HindIII restriction enzyme overnight. On
the following day, the restriction enzyme was heat inactivated and ends were filled in with nucleotides
including a biotin-14-dCTP and blunt end ligated for 4 hours. The samples were then subject to overnight
proteinase K treatment and reverse cross-linking. DNA was purified using phenol:chloroform extraction
and ethanol precipitation. Libraries were prepared using Illumina TruSeq adaptors, and biotin containing
fragments were isolated using streptavidin coated beads. Libraries were amplified using on-bead PCR
amplification and purified using SPRI beads. Paired-end sequencing was performed to generate the Hi-C
data for each species.
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Cross-species Hi-C data processing

We used the Hi-C data from the lymphoblastoid cells in human (GM12878) from Rao et al. (2014)) and
generated Hi-C data in lymphoblastoid cells in chimpanzee, bonobo, and gorilla. The genome assem-
blies used for the four species are hg38, panTro5, panPan2, and gorGor4, respectively. The genome
assemblies were downloaded from the UCSC genome browser. We used Juicer (Durand et al., 2016) to
process the Hi-C sequencing reads of each of the three species to obtain the Hi-C contact pairs based on
the corresponding genome assembly. Each Hi-C contact pair is a pair of reads that are mapped to two ge-
nomic loci based on the corresponding genome assembly, representing chromatin contact between these
two genomic loci. For the human GM12878 data, the Hi-C contacts file resulted from merging and pro-
cessing all replicates has much higher coverage than the data for the other primate species, affecting the
comparability of the Hi-C contact maps between human and the other species. We therefore performed
random sampling of merged and processed data of five technical replicates of the same biological repli-
cate in GM12878 cells to obtain approximately 2.9 × 108 Hi-C contact pairs in human, comparable to
the other species. We obtained approximately 2.9×108, 2.7×108, 2.4×108, and 2.9×108 Hi-C contact
pairs for human, chimpanzee, bonobo, and gorilla, respectively.

Next, we aligned the Hi-C contact pairs of the non-human species to the human genome. We mapped
the aligned loci of the two ends of a contact pair in the Hi-C data of the non-human species from the orig-
inal genome assembly to the human genome with reciprocal mapping using the tool liftOver (Hinrichs
et al., 2006). With this conversion, the Hi-C contact maps of the four species that are computed from
the aligned Hi-C contacts are all based on the human genome coordinates and therefore can be directly
compared in the synteny blocks across species. The synteny blocks are the genome regions where the
order of genome loci is preserved and there are no chromosome rearrangements greater than a certain
resolution (50 kb in this study).

We used Juicer Tools to extract the Hi-C contact maps of each species at the resolution of 50Kb
from the .hic files of the corresponding species, performing normalization by Knight-Ruiz matrix bal-
ancing (Rao et al., 2014; Durand et al., 2016). For the Hi-C contact map of each species in each synteny
block, we perform two-step filtering to interpolate the missing values and smooth the signals. In the
first step we use the median filter for interpolation of possible missing values. For each node without
signal value in the Hi-C contact map, we use the median of Hi-C contact frequencies of the 8-connected
neighbors as the value assigned to the node. Median filter has the characteristic to preserve edges in
image. In the second step, we apply an anisotropic diffusion filter (Perona and Malik, 1990), which
is an edge-preserving filter, to the whole Hi-C contact map in this synteny block to smooth the signals
while maintaining the edge features, which correspond to more rapid changes of Hi-C contact frequen-
cies. After preprocessing the Hi-C map of each species, we then align the Hi-C contact maps of the four
species in each synteny block to obtain a combined multi-species Hi-C contact map, where each node in
the map corresponds to Hi-C contact frequencies between the corresponding pair of genome loci in the
four species. Hence each node is associated with a multi-dimensional feature vector as the multi-species
observation. As the scales of Hi-C contact frequencies in different species are different, we normalize
the Hi-C contact frequencies of each species to the same scale over all the autosomes using feature scal-
ing. We then perform the x̂ = log(1 + x) transformation to the normalized Hi-C contact signals of each
species.

We focus on the comparison of Hi-C data in synteny blocks across species in this study. Therefore, we
use the Hi-C contact signals within the synteny blocks as input to Phylo-HMRF, which are the subgraphs
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of the combined multi-species Hi-C contact map of each chromosome. The multi-species Hi-C contact
map of each synteny block is symmetric. We therefore only keep the upper triangular part of the Hi-C
contact map, and consider each entry as a sample.

Each sample is a multi-dimensional feature vector, where each dimension represents the Hi-C contact
frequency of the corresponding species between the corresponding paired genomic loci specified by the
coordinates of the entry in the Hi-C contact map. Hence, there are N(N − 1)/2 samples for a synteny
block of sizeN . We originally identified 90 synteny blocks in 50kb resolution on the autosomes based on
inferCARs (Ma et al., 2006). There are two large size synteny blocks on chromosome 3 and chromosome
6, which exceeds 150Mb and 190Mb each. We then divide the two large synteny blocks into two parts
each according to the two chromosome arms, respectively. For each divided synteny block, we still
consider the interactions between the two subregions. Overall, we have 92 synteny blocks (≥2.5Mb in
size each) identified in the autosomes with 30,154,205 samples.

Initial estimation of the number of states for Phylo-HMRF

We estimated the possible number of hidden states using the K-means clustering before applying Phylo-
HMRF to the cross-species Hi-C data. We performed K-means clustering using the scikit-learn li-
brary (Pedregosa et al., 2011) on the cross-species Hi-C data with the cluster number K increased from 2
to 100. We computed the Sum of Squared Errors (SSE) of each clustering result, and observed how SSE
changed with respect to the different choices of K by plotting the SSE-K curve (Figure S3). We found
that the decreasing rate of SSE with respect to the increasing K slows down in the range of 15-30. Small
fluctuation of the number of states around 30 does not result in significant reduction of SSE with respect
to the increase of K. We therefore set the number of hidden states to be 30.

State estimation on the Hi-C data by Phylo-HMRF

The differences of Hi-C contact frequencies across species can be either resulted from genome rear-
rangements or other types of genome evolution. In this work, we specifically focus on changes within
synteny blocks. For all the autosomes in the human genome, we run Phylo-HMRF jointly on the mul-
tiple synteny blocks of the chromosomes and identified possible different evolutionary patterns of the
Hi-C contact frequencies across species in a genome-wide manner. When applying Phylo-HMRF to the
Hi-C data, we use the second definition of the pairwise potential by considering the feature difference of
adjacent nodes, and use β0 = 3, β1 = 0.1.

We applied Phylo-HMRF to the multi-species Hi-C data to predict 30 hidden states. We further
categorize the 30 estimated hidden states into 13 groups, as described in the Results section. Based on
the Hi-C contact frequency distributions in the four species in each estimated state, we identify the states
with distinctively higher or lower Hi-C contact frequency values than other states in all the four species
consistently as the C-high and C-low states, respectively. Specifically, for the C-high or C-low states, the
median of chi-squared distances (Pele and Werman, 2010) between the Hi-C contact frequency signals
of each pair of species is significantly smaller than expected by chance (empirical p-value<5e-04) and
smaller than the non-conserved states. Also, in the C-high states, Hi-C signals of at least 95% of the
samples in each species are consistently larger than the 95% quantile of the Hi-C signal values in the
corresponding species. In the C-low states, Hi-C signals of at least 90% of the samples in each species
are consistently smaller than the 25% quantile of the Hi-C signal values in the corresponding species.
For each species, we categorize the Hi-C signals into n = 20 equally spaced intervals by calculating
the 5%-95% quantiles. For a given state, suppose u = (u1, · · · , un), v = (v1, · · · , vn) represent the
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percentages of samples in each interval for two compared species, respectively. We calculate the chi-
squared distance χ2

d(u, v) = 1
2

∑n
i=1

(ui−vi)2
ui+vi

, which is a measure of similarity between two distributions.
To estimate the empirical distribution, we calculate chi-squared distance between two randomly sampled
distributions û, v̂ each time and repeat the process to calculate 105 distances. For the other states, the
states showing similar feature distributions of Hi-C contact frequency in the four species are annotated
as C-mid and WC. The rest states are annotated as non-conserved (NC) states and we further identify the
lineage-specific states where one species shows divergence in feature distribution from the other species.

After applying Phylo-HMRF to the cross-species Hi-C data for hidden state estimation results, we
obtained segmentation of the cross-species Hi-C contact map in synteny blocks, where each node is
assigned a label that represents the estimated hidden state. Neighboring nodes with the same hidden state
form a local segment. The segmentation results in synteny blocks can be visualized as color images. We
then perform simple post-processing of the segmentation results to obtain more smoothed segmentation
that facilitates downstream analysis.

For the segmentation resulted from state estimation in each synteny block of a chromosome, we
consider it as an image and first find all the connected components in this image. Each connected
component can be considered as a segment of the cross-species Hi-C contact map. Nodes in a connected
component have the same estimated states. If the size of the connected component (i.e., the number of
nodes in the segment) is smaller than a threshold, we query the states of all the external nodes in local
neighborhood to any node in the component and use the most frequent observed state of the external
neighbors to reassign states for this component. We set the threshold to be 10, and use window size
of 5 to define local neighborhood surrounding a node. We applied this post-processing step once and
obtained slightly smoothed segmentation results.

QUANTIFICATION AND STATISTICAL ANALYSIS

Performance metrics in the simulation evaluation

We evaluated the accuracy of Phylo-HMRF in estimating hidden states by comparing the predicted states
with the ground truth states in the simulation evaluation, using evaluation metrics Normalized Mutual
Information (NMI), Adjusted Mutual Information (AMI), Adjusted Rand Index (ARI), Precision, Recall,
and F1 score (Manning et al., 2008; Vinh et al., 2010). These metrics compare two partitions of a set.
Suppose x = {x1, · · · , xN} are the samples. Suppose Ω = {ω1, · · · , ωK} and C = {c1, · · · , cM} are
the predicted partition of the samples and the ground truth partition of the samples, respectively. The
mutual information (MI) between Ω and C is I(Ω;C) =

∑K
k=1

∑M
j=1 P (ωk, cj) log

P (ωk,cj)

P (ωk)P (cj)
. The NMI

between Ω and C is:

NMI(Ω;C) =
I(Ω;C)

[H(Ω) +H(C)]/2
, (31)

where H(Ω) and H(C) are the entropies of Ω and C, respectively. H(Ω) = −
∑K

k=1 P (ωk) logP (ωk),
H(C) = −

∑M
j=1 P (cj) logP (cj). P (ωk) represents the probability that a sample is in partition ωk. The

maximum likelihood estimate of P (ωk) is |ωk|/N , where |ωk| denotes the size of ωk and N is the sample
size.

AMI corrects MI by removing the effect of agreement between two partitions that is due to chance.
AMI is defined as:

AMI(Ω;C) =
I(Ω;C)− E[I(Ω;C)]

max{H(Ω), H(C)} − E[I(Ω;C)]
, (32)
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where E[I(Ω;C)] represents the expectation of I(Ω;C). E(I(Ω;C)) can be estimated based on Ω and
C (Vinh et al., 2010).

The Rand Index (RI) (Manning et al., 2008) also compares two partitions, which is defined as:

RI =
TP + TN

TP + FP + FN + TN
, (33)

where TP (true positive), FP (false positive), FN (false negative), and TN (true negative) represent the
number of sample pairs that are in the same subset in Ω and also in the same subset in C, the number of
sample pairs that are in the same subset in Ω but in different subsets in C, the number of sample pairs
that are in different subsets in Ω but in the same subset in C, and the number of sample pairs that are in
different subsets in Ω and also in different subsets in C, respectively.

ARI corrects RI by removing the effect of agreement between partitions that is due to chance:

ARI =
RI − E[RI]

max{RI} − E[RI]
, (34)

where E[RI] represents the expectation of RI .
Precision, Recall, and F1 score are defined as:

Precision =
TP

TP + FP
, (35)

Recall =
TP

TP + FN
, (36)

F1 =
2Precision×Recall
Precision+Recall

. (37)

Other methods compared in the simulation evaluation

In the simulation evaluation, we compared Phylo-HMRF with the Gaussian-HMRF method (Zhang et al.,
2001), the Gaussian Mixture Model (GMM), the K-means clustering method, and two image segmenta-
tion methods SLIC (Achanta et al., 2012) and Quick Shift (Vedaldi and Soatto, 2008) in state estimation.
To utilize the image segmentation methods, we consider the combined multi-species Hi-C contact map
as an image, and consider the features of each species as one color channel of the image. We nor-
malize the features of each species to be in the range [0,1] accordingly, which is the scale of a color
channel, to prepare the input for SLIC and Quick Shift. For the segmentation results, we consider seg-
ments with the same label as the same state. SLIC performs K-means clustering in the joint space of
color information and spatial coordinates over an image. Quick Shift is approximation of the Mean Shift
algorithm (Comaniciu and Meer, 2002) with kernel methods utilized, performing mode seeking in seg-
menting an image. We use the scikit-learn library (Pedregosa et al., 2011) for implementation of the
GMM method and the K-means clustering. We use the scikit-image library (Van der Walt et al., 2014)
that includes implementation of the SLIC and Quick Shift algorithms. For the methods Gaussian-HMRF,
GMM, and K-means clustering, we set the number of states to be 10, respectively, which is the number
of ground truth states. For the two image segmentation methods implemented by scikit-image, there are
no input arguments to set the exact number of output labels of the segments. We adjust the parameter
configurations of each of the two methods such that the number of output labels is approximately 10 and
comparable to the state estimation results of the other methods. For SLIC, we use an argument to set
the approximate number of labels and adjust the other parameters to have the number of output labels
approximating 10. For Quick Shift, there is no argument to set an exact or approximate number of output
labels. We then tune the input parameters to have the number of output labels approximating 10.
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Alignment between boundaries of identified local-contact block patterns and TADs

For segments of estimated Hi-C evolutionary patterns along the diagonal of the Hi-C contact map of
a synteny block, we use windows (squares) that can match the segments to identify the local-contact
block patterns. A segment is a continuous 2D region with the same estimated state. Specifically, we
use a sliding window with changeable size to find possible matches to the segments on the diagonal.
With a window of the lower bound size located at a starting position along the diagonal, we first find
the dominant estimated state within this window. If there is no dominant state, we move the window to
the next position by one bin. The dominant state is defined as the state with the percentage exceeding
a threshold and with the highest percentage within the window. If there is a dominant state, we then
increase the window size from the lower bound gradually until the percentage of the dominant state
within the window decreases or the dominant state changes or disappears. If a window has the highest
percentage of the dominant state and the percentage reaches the threshold (we use 0.95), we identify
it as a local-contact block. We then reset the window to the lower bound size and move it to the next
position by a stride that is half of the previously identified block size. We repeat these steps until we scan
all the estimated states along the diagonal of the Hi-C contact map. Since the Hi-C contact frequency
was measured at a resolution of 50Kb in this study, the boundaries of the diagonal blocks detected from
the estimated states are all at 50Kb resolution. The distance between a diagonal block boundary and
the nearest TAD boundary is calculated in increments of 50Kb (one bin) accordingly. We compute the
percentages of the distance in five distance intervals, which are 0-50Kb, 50-100Kb, 100-150Kb, 150-
200Kb, and >200Kb, respectively.

In addition, we estimate the empirical distributions of the distance between boundaries of a possible
diagonal block and the nearest TAD by randomly shuffling the identified diagonal blocks. For each
synteny block, we shuffle the identified local-contact block patterns on the diagonal of the multi-species
Hi-C contact map 1,000 times by randomly relocating them within this synteny block. For each boundary
of each randomly relocated diagonal block in a shuffle, we calculate the distance between the block
boundary and the nearest TAD boundary of a specific type of TAD (i.e., Arrowhead TAD or DI TAD). For
each shuffle, we then compute the percentages of the distances between the diagonal block boundaries
and the corresponding nearest TAD boundaries in the five distance intervals. We merge the percentages
from each shuffle of diagonal block patterns as an empirical distribution for each distance interval.

Analysis of the connection between estimated Hi-C and RT evolutionary patterns

To compare the conservation of Hi-C states with replication timing (RT) conservation, we examined RT
evolutionary states identified in our previous paper (Yang et al., 2018) using Repli-seq datasets from
analogous lymphoblastoid cells across primate species. In that paper, we classified the evolutionary
patterns of RT into five distinct categories reflecting the different levels of conservation, i.e., conserved
early in RT (E), weakly conserved early (WE), conserved late (L), weakly conserved late (WL), and
non-conserved (NC). With this data, we are able to test whether the evolutionary patterns of Hi-C data
are correlated with RT evolutionary patterns. To do that, for each pair of genomic loci, we consider it
has a matched RT state if the pairwise genomic loci present similar RT evolutionary patterns (i.e., both
are E/WE or both are L/WL). The fraction of matched RT states thus indicates the concordance between
conservation of RT and conservation of interactions of pairwise genomic loci. We remove the distance
confounding factors by comparing the fraction of matched RT states across different Hi-C states over a
range of different distances (0-10Mb). To further confirm our observation is not due to the randomness of
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RT evolutionary state calls, we attempt to repeat this analysis by using randomly shuffled RT evolutionary
states. In each chromosome, we first merge adjacent RT evolutionary states (in a resolution of 6kb) into
longer segments. We then randomly shuffle the labels of the RT evolutionary states in each chromosome
so that the global distribution of RT evolutionary patterns remains the same. Finally, we repeat plotting
the distributions of pairwise genomic loci with matched RT states over a range of different distances
(0-10Mb) (Figure S7). We observed that the matched-RT state curves in different Hi-C contact states
based on the shuffled RT states did not exhibit the trends, changing points, and diversities of the curves
for different Hi-C contact states based on the original predicted RT states.

Estimating background distribution of histone modification similarity

To compare the histone modification composition for each pair of genomic loci with estimated Hi-C
states, we computed the percentage of paired genomic loci that have more similar histone modification
signal strength than expected in the C-high, C-mid, WC, C-low, and NC states over a range of different
distances (0-10Mb). In order to get the background distributions of quantile changes between paired
genome loci, we randomly select 1,000 pairwise bins on the genome and calculate the absolute value of
quantile differences of the histone modification signal strengths for each pair. We repeat this process for
20 times and the combined dataset is considered as the background distribution. Finally, we compare
the observed difference of quantiles between pairwise bins with the background distribution. In this
study, we consider that two genomic loci tend to have more similar histone modification signals if the
differences of quantiles are smaller than the median value calculated from the background distribution.

Detecting conserved long-range interacting TADs

In order to study the evolutionary patterns on TADs and related genomic and epigenomic features, we
classified the TADs into two groups based on the whether a TAD is involved in conserved long-range
TAD-TAD interactions. We showed examples of long-range TAD-TAD interactions that are conserved
across species in the synteny block 8 on chromosome 1 of human in Figure 4F. We identified the con-
served long-range TAD-TAD interactions in all the synteny blocks across 22 autosomes in human based
on the Hi-C evolutionary contact states estimated by Phylo-HMRF. We use the DI TAD annotations in
GM12878 cell line. For each pair of DI TADs in the same synteny region on human genome that are
at least 3Mb apart, we calculate the percentages of different estimated Hi-C contact states in the block
of the 2D multi-species Hi-C contact map which corresponds to possible interactions between the two
TADs. The block is a 2D region in the Hi-C contact map, where each node represents the Hi-C contact
frequency between a genome loci in one TAD and a genome loci in another TAD. For each pair of TADs
that are at least 3Mb apart, if the total of percentages of C-high states (S4, S12) and C-middle states with
relatively higher Hi-C contact frequencies (S15, S16) in the block exceeds 50%, and the state with the
highest percentage is one of the four states, we consider it as conserved long-range TAD-TAD interac-
tion. There are 3,541 TADs that are located in the synteny regions of 22 automosomes in human. We
detected 3,365 pairs of TADs that are associated with conserved long-range interactions. We observed
that for 44.46%, 41.84%, and 13.70% of the 3,365 TAD pairs with conserved long-range interactions,
the distance between the paired TADs are in the ranges 3-5Mb, 5-10Mb, and larger than 10Mb, respec-
tively. To define the long-range interacting TADs, we consider the conserved long-range TAD-TAD
interactions between TADs that are more than 10Mb apart in 1D genome distance. We label a TAD as
conserved long-range interacting TAD (hereafter abbreviated as conserved TAD for simplicity in related
discussions) if it is involved in conserved long-range interaction with a TAD that is more than 10Mb

35



away. Otherwise a TAD is labeled as non-conserved long-range interacting TAD (hereafter abbreviated
as non-conserved TAD).

Analysis of sequence features in evolutionary patterns of TADs

We sought to explore the potential connections between transposable elements (TE) with different Hi-
C contact evolutionary states estimated by Phylo-HMRF. Transposable elements (TE) are known to be
associated with genome organization (Rhind and Gilbert, 2013; Yang et al., 2018; Zhang et al., 2019). We
first analyzed the enrichment of different TE families in each estimated Hi-C contact state across species.
We use the RepeatMasker annotations of each of the four species human, chimpanzee, bonobo and gorilla
retrieved from the UCSC Genome Browser (Casper et al., 2017) to compute the TE enrichment in each
species in each estimated state. The positions of TEs on the genome of non-human species are mapped
to the human genome using liftOver. For each state, we calculate the coverage of a TE family in all
the paired genomic loci of the state in each species. We then normalize the TE family coverage by the
total size of all the paired genomic loci of this state for each species, which is denoted as normalized TE
enrichment of the corresponding species in this state. We also calculate the background TE enrichment
for each species by normalizing the total coverage of each TE family of each species in all the paired
genomic loci of all the states with the total size of all the paired genomic loci of all the states. We
compute the fold change of the normalized TE enrichment of each species in each state with respect to
the corresponding background enrichment. We use chi-squared test to assess whether a TE enrichment
is lineage-specific in a lineage-specific state. We identified several TE families that show human-specific
enrichment patterns in the identified human-specific state (Figure S10), including PIF-Harbinger, hAT-
Tag1, and TcMAr. For example, the TE family PIF-Harbinger has significantly higher enrichment in
human while lower enrichment in the other species in the human-specific high state S14 (NC-hom high)
(FDR (False Discovery Rate)<0.01. FDR is calculated by adjusting p-value from the chi-squared test
using Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995)).

Next, we examined the potential connections between TEs and evolutionary patterns in TADs. As
we described, we classify TADs into conserved long-range interacting TADs (abbreviated as conserved
TADs) or non-conserved long-range interacting TADs (abbreviated as non-conserved TADs) according
to whether a TAD is involved in conserved long-range TAD-TAD interactions. For each TE family in
human, we calculate their occurrence frequencies in the two classes of TADs we have defined. For
single TADs, the occurrence frequency of a TE family in each TAD is normalized by the length of
the TAD. For each TAD class, the total occurrence frequency of a TE family in this class of TADs is
normalized by the total length of this class of TADs, which is denoted as normalized TE enrichment
for this TAD class. We calculate the fold change of the normalized TE enrichment in each TAD class
with respect to the background enrichment. The background enrichment is calculated by normalizing
the total occurrence frequency of a TE family in all the TADs with the total length of the TADs. We
then use chi-squared test to assess whether a TE family is enriched in the conserved TADs. We found
that multiple TE families show distinct enrichment patterns in the conserved TADs compared to the
background. 10 TE families are significantly more enriched in the conserved TADs (p-value<0.01),
and 6 TE families are significantly less enriched in the conserved TADs (p-value<0.01), respectively,
as shown in Figure S11A-B. For example, MIR, hAT, and Helitron are among the more enriched TE
families, and ERV1, ERVK, and RTE-BovB are among the less enriched TE families. Zhang et al. (2019)
revealed that HERV-H, which is a subfamily of ERV1, has important roles in forming human-specific
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TADs specifically in human pluripotent stem cells, suggesting that they are likely to be less enriched in
conserved TADs.

Additionally, we sought to explore whether there are connections between TADs with different evo-
lutionary patterns and the transcription factor binding sites (TFBSs). We identify open chromatin regions
in human genome as GM12878 DNase-seq peak regions (downloaded from the ENCODE project (EN-
CODE Project Consortium, 2012)) with +/-250bp extension. We used FIMO (Grant et al., 2011) to
scan motifs based on the 579 PWMs of TF binding motifs from JASPAR (Khan et al., 2017) (with p-
value<1e-04 as cutoff) in the open chromatin regions in human. Here we only retain the motif scanning
results for the 345 TFs that are expressed in GM12878 (with FPKM>0.1; the RNA-seq datasets used for
gene expression analysis are shown in the Key Resources Table). We compute the frequency of each TF
binding motif within the open chromatin area in each TAD. We then normalize the frequency by the open
chromatin area size within this TAD, which is denoted as normalized TF motif enrichment in this TAD.
We also calculate the fold change of the normalized motif enrichment in each TAD class with respect to
the background enrichment. The normalized motif enrichment in each TAD class is calculated by nor-
malizing occurrence frequency of a motif in the open chromatin regions in this class of TADs with the
total length of open chromatin regions in this class of TADs. The background enrichment is calculated by
normalizing the total occurrence frequency of a motif in the open chromatin regions in all the TADs with
the total length of open chromatin regions in all the TADs. We use chi-squared test to assess if a motif is
enriched in the conserved TADs. We identified a set of TF binding motifs that show distinct enrichment
patterns in the conserved TADs compared to the background (Figure S11C-D). We found multiple TF
binding motifs that are significantly more enriched in the conserved TADs (p-value<0.01). For example,
the motifs of ASCL1, NFATC2, FOXD2, and FOXO4 are among the more enriched motifs. We also
found TF binding motifs that are significantly less enriched in the conserved TADs (p-value<0.01), such
as motifs of FOSL1::JUND, MAFF, and CREB1. These results show that there are differences in terms
of TF binding motif enrichment in conserved and non-conserved TADs.

DATA AND SOFTWARE AVAILABILITY

The Hi-C datasets of chimpanzee, bonobo, and gorilla generated from this study are available under Gene
Expression Omnibus (GEO) accession GSE128800. The source code of Phylo-HMRF can be accessed
at: https://github.com/ma-compbio/Phylo-HMRF.

37

https://github.com/ma-compbio/Phylo-HMRF


References

Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P. and Süsstrunk, S. (2012). SLIC superpixels
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