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Abstract
We present a simplified version of the threshold dynamics algorithm given in Esedoḡlu
and Otto (Commun Pure Appl Math 68(5):808–864, 2015). The new version still allows
specifying

(N
2

)
possibly distinct surface tensions and

(N
2

)
possibly distinct mobilities for a

network with N phases, but achieves this level of generality without the use of retardation
functions. Instead, it employs linear combinations of Gaussians in the convolution step of the
algorithm. Convolutions with only two distinct Gaussians is enough for the entire network,
maintaining the efficiency of the original thresholding scheme. We discuss stability and
convergence of the new algorithm, including some counterexamples in which convergence
fails. The apparently convergent cases include unequal surface tensions given by the Read
and Shockley model and its three dimensional extensions, along with equal mobilities, that
are a very common choice in computational materials science.

Keywords Threshold dynamics · MBO algorithm · Multi-phase flow · Γ -convergence ·
Stability

Mathematics Subject Classification 65M12 · 35K93

1 Introduction

Threshold dynamics—also known as diffusion or convolution generated motion—is a very
efficient algorithm originally proposed byMerriman, Bence and Osher (MBO) in [18,19] for
simulating the motion by mean curvature flow of an interface. It is based on the observation
that the level-set of a distance function or characteristic function evolved under the heat
equation moves in the normal direction with velocity equal to the mean curvature of the
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level-set surface. The method alternately diffuses (through convolution with a kernel) and
sharpens characteristic functions of regions (by pointwise thresholding). In its simplest form
(for isotropic, two-phase mean curvature flow), it is given as follows:

Algorithm 1 (in [18])

Given the initial condition Σ0 and time step size δt , to obtain the approximate solution Σk+1 at time t =
(δt)(k + 1) from Σk at time t = (δt)k, alternate the following steps:

1. Convolution step:

ψk = 1

(δt)
d
2

K

( ·√
δt

)
∗ 1

Σk .

2. Thresholding set:

Σk+1 =
{
x : ψk (x) ≥ 1

2

∫

Rd
K (x) dx

}
.

The convolution kernel K : R
d → R was chosen in [19] to be the Gaussian

G(x) = 1

(4π)
d
2

exp

(
−|x |2

4

)
, (1)

but the possibility of choosing other kernels is also mentioned in [18]. For this particular
choice of kernel, the boundary of the set ∂Σk can be shown to evolve, to leading order, by
mean curvature motion; see e.g. [25] for a truncation error analysis, and e.g [9,14] for proofs
of convergence. In particular in [14], positivity of the kernel is essential since it guarantees that
both steps of Algorithm 1 are monotone, thereby allowing the scheme to enjoy a comparison
principle which is a key tool in the convergence proof.

Among the benefits of the MBO algorithm are (i) implicit representation of the interface
as in the phase field or level set methods, allowing for graceful handling of topological
changes, (ii) unconditional stability, where the time step size is restricted only by accuracy
considerations, and (iii) very low per time step cost when implemented on uniform grids.

Motion by mean curvature arises as L2 gradient descent for perimeter of sets. Perimeter
of sets, in turn, are key to variational models for interfaces in a great variety of applications,
ranging from image processing and computer vision (e.g. the Mumford–Shah model [22] for
image segmentation) tomaterials science (e.g.Mullins’model [21] for grain boundarymotion
in polycrystals). More recently, such variational models and their minimization via gradient
descent have also been applied in the context of machine learning and artificial intelligence
(e.g. graph partitioning models for supervised clustering of data [10]). The MBO scheme,
its variants, and its extensions have attracted sustained interest in the context of each one of
these applications.

2 Preliminaries and Notation

We will be concerned with isotropic interfacial energies defined on partitions of a domain D
into a maximum prescribed number N ∈ N sets. Let

IN = {(i, j) ∈ {1, . . . , N } × {1, . . . , N } : i �= j}
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denote pairs of distinct indices. D will typically be the d-dimensional annulus, i.e., a cube
in R

d with periodic boundary conditions. By a partition of D, we mean N closed sets
Σ1, . . . , ΣN ⊆ D, called phases, that may intersect only through their boundaries:

D =
N⋃

i=1

Σi and Σi ∩ Σ j = (∂Σi ) ∩ (∂Σi ) for (i, j) ∈ IN .

We denote by Γi, j the interface separating Σi and Σ j which is given by

Γi, j = (∂Σi ) ∩ (∂Σi ) .

LetdHs denote the s-dimensional surface area element.Variationalmodels formicrostruc-
ture evolution proposed by Mullins [21] take the form of the following penalty on partitions
of D:

E(Σ, σ ) =
∑

(i, j)∈IN

∫

Γi, j

σi, j (ni, j (x)) dH
d−1(x) (2)

where we write Σ = (Σ1, . . . , ΣN ) and ni, j (x) denotes the unit normal on Γi, j pointing
into Σ j . The functions σi, j : S

d−1 → R
+ are known as surface tensions associated with the

interfaces Γi, j . They are continuous, even functions that need to satisfy further properties to
ensure well posedness of the model.

In this paper we focus on the special isotropic case of (2) where the surface tensions σi, j
are constant but possibly distinct. The multiphase energy then reduces to

E(Σ, σ ) =
∑

(i, j)∈IN

σi, j H
d−1(Γi, j ). (3)

It is convenient to set σi,i = 0 and think of σ as a symmetric matrix with 0 along the diagonal
and positive entries throughout:

SN =
{
σ ∈ R

N×N : σi,i = 0 and σi, j = σ j,i > 0 for (i, j) ∈ IN
}

.

It turns out that the following triangle inequality is necessary and sufficient for the model (3)
to be well-posed [3]:

σi, j + σ j,k ≥ σi,k for any i, j and k. (4)

We will therefore work mostly with the triangle-inequality-satisfying class of surface ten-
sions:

TN = {
σ ∈ SN : σi, j + σ j,k ≥ σi,k for any i, j and k

}
.

We will study approximations for L2 gradient flow of energies (3) with special interest in
the two-dimensional and three-dimensional cases. The normal speed under this flow is given
by

v⊥(x) = μi, jσi, jκi, j (x), (5)

where κi, j denotes themean curvature ofΓi, j . The constantsμi, j are themobilities associated
with the interfaces Γi, j . They are positive but otherwise can be chosen arbitrarily. In addition,
a condition known as the Herring angle condition [12] holds along triple junctions. At a
junction formed by the meeting of the three phases Σi , Σ j and Σk , this condition reads

σi, j ni, j + σ j,kn j,k + σk,i nk,i = 0. (6)
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Also known as Young’s law in the isotropic setting considered here, this condition determines
the opening angles θi , θ j and θk of the three phases Σi , Σ j and Σk , respectively, in terms of
the surface tensions:

sin(θi )

σ j,k
= sin(θ j )

σi,k
= sin(θk)

σi, j
. (7)

3 PreviousWork

In [8], a variational formulation for the original MBO scheme (Algorithm 1) was given.
In particular, it was shown that the following functional defined on sets, with kernel K
chosen to be the Gaussian G, which had previously been established [1,20] to be a non-
local approximation to (isotropic) perimeter, is dissipated by the MBO scheme at every step,
regardless of time step size:

E√
δt

(
Σ, K√

δt

)
= 1√

δt

∫

Σc
K√

δt ∗ 1Σ dx, (8)

where for convenience we write

Kε(x) = 1

εd
K

( x
ε

)
. (9)

Thus, (8) is a Lyapunov functional for Algorithm 1, establishing its unconditional gra-
dient stability. The next proposition from [8] illustrates this fact while also underlining the
significance of K̂ :

Proposition 1 (from [8]) Let K satisfy

K (x) ∈ L1
(
R
d
)

, xK (x) ∈ L1
(
R
d
)

, and K (x) = K (−x), (10)

together with
∫

Rd
K (x) dx > 0. (11)

If K̂ ≥ 0, Algorithm 1 is unconditionally stable: each time step dissipates the energy (8),
regardless of the time step size.

Moreover, in [8] the following, minimizing movements [2,17] interpretation involving (8)
for Algorithm 1 was given:

Σk+1 = argminΣ E√
δt

(
Σ, K√

δt

)
+ 1√

δt

∫ (
1Σ − 1Σk

)
K√

δt ∗ (
1Σ − 1Σk

)
dx, (12)

where the kernel K was again taken to be G. This variational formulation is then extended to
the multiphase energy (3) where the surface tensions σi, j are constant but possibly distinct.
In this case the Lyapunov functional becomes

E√
δt

(
Σ, K√

δt

)
= 1√

δt

∑

(i, j)∈IN

σi, j

∫

Σ j

K√
δt ∗ 1Σi dx . (13)

We also consider a relaxation of (13)

E√
δt

(
u, K√

δt

)
= 1√

δt

∑

(i, j)∈IN

σi, j

∫

D
u j K√

δt ∗ ui dx (14)
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over the following convex set of functions satisfying a box constraint:

K =
{

u ∈ L1
(
D, [0, 1]N

)
:

N∑

i=1

ui (x) = 1 a.e. x ∈ D

}

. (15)

There is a corresponding minimizing movements scheme that can be derived from (14) that
leads to the extension of threshold dynamics to the constant but possibly unequal surface
tension multiphase energy (3) given in Algorithm 2.

Algorithm 2 (in [8])

Given the initial partition Σ0
1 , . . . , Σ0

N , to obtain the partition Σk+1
1 , . . . , Σk+1

N at time step t = (δt)(k + 1)

from the partition Σk
1 , . . . , Σk

N at time t = (δt)k:

1. Convolution step:

φk
i = K√

δt ∗
⎛

⎝
N∑

j=1

σi, j1ΣK
j

⎞

⎠ i = 1, . . . , N ,

where K is the Gaussian (1).
2. Thresholding step:

Σk+1
i =

{
x : φk

i (x) < min
j �=i

φk
j (x)

}
.

This algorithm is however restricted to very specific mobilities: μi, j = 1
σi, j

. In [8], a
modified algorithm (see Algorithm 3) is proposed which allows for general mobilities by
introducing retardation terms. Both algorithms are shown to be unconditionally gradient
stable when the surface tension matrix σ is conditionally negative semi-definite:

⎧
⎨

⎩
σ ∈ SN :

N∑

i, j=1

σi, jξiξ j ≤ 0 whenever
N∑

i=1

ξi = 0

⎫
⎬

⎭
.

This corresponds to the matrices that are negative semi-definite as quadratic forms on
(1, . . . , 1)⊥.

Proposition 2 (from [8]) Let the surface tension matrix σ ∈ SN be conditionally negative
semi-definite. Then Algorithms 2 and 3 are unconditionally stable: each time step dissipates
energies (13) and (14).

Unconditional gradient stability is a desirable property in threshold dynamic algorithms.
Given their minimizing movements formulation, requiring the Γ -convergence of the asso-
ciated energies (14) also appears to be of fundamental importance. We will highlight this
point in Sect. 5 where we exhibit a counter example. We recall the result from [8] that estab-
lishes the Γ -convergence of Algorithm 2. In [8] the result is presented for general positive
convolution kernels but here we focus on the case where K is taken to be G. Let

BVB = {u ∈ K : ui (x) ∈ {0, 1} and ui ∈ BV (D) for i ∈ {1, 2, . . . , N }} ,
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Algorithm 3 (in [8])

Given the initial partitionΣ0
1 , . . . , Σ0

N withΣ0
i =

{
x : ψ0

i (x) > 0
}
, to obtain the partitionΣk+1

1 , . . . , Σk+1
N

at time step t = (δt)(k + 1) from the partition Σk
1 , . . . , Σk

N at time t = (δt)k:

1. Form the convolutions:

φk
i = K√

δt ∗
⎛

⎝
N∑

j=1

σi, j1ΣK
j

⎞

⎠ i = 1, . . . , N ,

where K is the Gaussian (1).
2. Form the retardation functions:

Rk
i = max

l �=i

√
δt

2
(1 − μi, jσi, j )ψ

k
j .

3. Form the comparison functions

ψk+1
i =

(
min
l �=i

φk
l + 1√

δt
Rk
l

)
− φk

i + 1√
δt

Rk
i .

4. Threshold the comparison functions ψk+1
i :

Σk+1
i =

{
x : ψk

i (x) > 0
}

.

and for u ∈ K define the energy

E(u, σ ) =

⎧
⎪⎨

⎪⎩

1√
π

∑

(i, j)∈IN

σi, j

∫

D
∇ui + ∇u j − ∇(ui + u j ) if u ∈ BVB,

+∞ otherwise,

(16)

which is the formulation of multiphase energy (3) in the setting of functions of bounded
variation.

Theorem 1 (from [8]) Assume that σ ∈ TN . Then, as ε → 0, the Lyapunov functionals
Eε(·,Gε) given in (14) Γ -converge in the L1 topology over K to the energy E(·, σ ) given
in (16). Furthermore, if for some sequence uε we have supε>0 Eε(uε,Gε) < ∞, then uε is
precompact in L1(D) and the set of accumulation points is contained in BVB(D).

Beyond the convergence of energies, recent work of Laux and Otto [15,16] established
conditional convergence of dynamics generated byAlgorithm 2 to e.g. themultiphase version
of a suitable weak formulation of mean curvature motion from [17].

When kernels more general than the Gaussian are used, the minimizing movements for-
mulation (12) allows to easily identify the corresponding possibly normal dependent surface
tension and a normal dependent mobility factor associated with it. In [5], the following
expressions for the surface tension σK and mobility μK associated with a given kernel K in
terms of the Fourier transform K̂ are provided:

σK (n) = − 1

2π

∫

R

K̂ (nξ) − K̂ (0)

ξ2
dξ and μK (n) = π

(∫

R

K̂ (nξ) dξ

)−1

. (17)
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Here, we use the following definition of the Fourier transform on R
d :

f̂ (ξ) =
∫

Rd
f (x)e−i x ·ξ dξ so that f (x) = 1

(2π)d

∫

Rd
f̂ (ξ)eiξ ·x dξ,

e.g. f in Schwartz class. In addition, it is worth recalling the following fact from [5].

Proposition 3 (from [5]) Let Σ be a compact subset of R
d with smooth boundary. Let K :

R
d → R be a kernel satisfying (10). Then

lim
δt→0+ E√

δt (Σ, K√
δt ) =

∫

∂Σ

σK (n(x)) dHd−1(x)

where the surface tension σK : R
d → R

+ is defined as

σK (n) = 1

2

∫

Rd
|n · x |K (x) dx .

Formulas (17) that express the surface tension and mobility of a kernel have been previ-
ously used in [7] to design convolution kernels for a given desired pair of anisotropic surface
tension and mobility. In that setting, the analogue of the Lyapunov functional (13), i.e., the
non-local approximation to (2), is given by

E√
δt

(
Σ, K√

δt

)
= 1√

δt

∑

(i, j)∈IN

∫

Σ j

(
Ki, j

)√
δt ∗ 1Σi dx (18)

where each component Ki, j of the collection of kernels K satisfies

1

2

∫

Rd
|n · x |Ki, j (x) dx = σi, j (n) and

∫

n⊥
Ki, j (x) dH

d−1(x) = μ−1
i, j (n), (19)

while its relaxation given by

E√
δt

(
u, K√

δt

)
= 1√

δt

∑

(i, j)∈IN

∫

Rd
u j

(
Ki, j

)√
δt ∗ ui dx . (20)

In this paper, we use the same formulas (17) in the isotropic setting to give a simpler
version of Algorithm 3 that does not require retardation terms, and which therefore stays
truer to the spirit of the original MBO Algorithm 1. More specifically, the contributions of
the paper can be summarized as follows:

1. Given
(N
2

)
surface tension andmobility pairs (σi, j , μi, j ), we construct

(N
2

)
corresponding

convolution kernels of the form

Ki, j (x) = ai, j G√
α + bi, j G√

β

where ai, j , bi, j > 0 and α �= β are chosen to bake the desired σi, j and μi, j into
Ki, j . An essential novelty is that all required convolutions in the resulting threshold
dynamics scheme can be obtained from convolutions with just two types of kernels,G√

α

and G√
β , which makes for a particularly practical and efficient algorithm. The use of

multiple kernels is also discussed in [26] but only for the two-phase flow as a device to
add anisotropy.

2. The algorithm proposed requires only 2N convolutions which can be quickly obtained
using the acceleration utilized in [6] that groups distinct, well separated phases into fam-
ilies. This way, even with hundreds of thousands of phases, the number of convolutions
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required per time step can be kept very low, depending not on N , but rather on the num-
ber of neighbors a typical phase in the network has. The new algorithm is a special case
of the algorithms from [5,7]. Those references focus on fully anisotropic, multiphase
setting, and require

(N
2

)
possibly distinct convolution kernels, which renders the use of

the acceleration method from [6] highly non-obvious. The novelty here is keeping the
number of convolution kernels to just 2.

3. We discuss conditions on (σi, j , μi, j ), as well as α, β, that ensure Γ -convergence of
the corresponding non-local multiphase energy (20) to the corresponding sharp interface
limit (16), and the unconditional gradient stability of the resulting thresholding scheme.
It turns out that the permissible (σi, j , μi, j ) pairs include Read–Shockley surface tensions
[23] and equal mobilities μi, j = 1 which, unlike the unusual mobilities μi, j = σ−1

i, j of
Algorithm 2, are a very common choice in materials science literature.

4. We exhibit choices of conditionally negative semi-definite σ ∈ TN and μ ≥ 0 that
fall outside our conditions and for which the algorithm fails with the proposed kernel
construction: The dynamics generated appears to converge to an unexpected limit. A
short calculation shows that it is in fact the Γ -convergence of the non-local multiphase
energy (20) to the advertised limit (16) that fails, and in this case, leads to failure of
convergence of the dynamics as well. The significance of this example hinges on the fact
that all convolution kernels in our construction are positive and radially symmetric. This
not only implies Γ -convergence of the two-phase energy (8) for each individual kernel
[8], but also convergence of any of the two-phase flows in the viscosity sense [14].

4 The New Algorithm

In this section, we derive the new, simplified version of Algorithm 3 that dispenses with the
retardation terms and still achieves a wide variety of mobilities, including the very important
case of constant mobilities. We then discuss its unconditional gradient stability, and the
Γ -convergence of its associated non-local energies.

4.1 Construction of the Convolution Kernels

We begin with the simplest setting of two-phases: Given a target surface tension σ∗ and
mobility μ∗, we look for a kernel of the form

K = aG√
α + bG√

β,

where α > β > 0 are fixed, and G√
α denotes the the Gaussian kernel given by

G√
α(x) = 1

4πα
e− |x |2

4α ,

and so Ĝ√
α(x) = e−α|x |2 . Our goal is to choose a, b > 0 so that K has the desired σ∗ and

μ∗ as its surface tension and mobility via formulas (17). Moreover, we would like to ensure
K > 0—a crucial property for the viscosity solutions approach [14] for two-phase flow, and
very convenient for the variational formulation of [8] in establishing Γ -convergence of the
corresponding energies.

We focus on the two-dimensional setting for convenience; the statements, formulas, and
algorithms below adapt easily to arbitrary dimensions.
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Proposition 4 Let α > β > 0. Given σ∗, μ∗ ∈ R
+, the convolution kernel K = aG√

α +
bG√

β , with

a =
√

π
√

α

α − β

(
σ∗ − βμ−1∗

)
and b =

√
π

√
β

α − β

(−σ∗ + αμ−1∗
)

is such that σK = σ∗ and mobility μK = μ∗. Moreover, K is positive if

α ≥ σ∗μ∗ and β ≤ σ∗μ∗.

Proof We start by observing that for any n ∈ S1

σG√
α
(n) =

√
α√
π

and μG√
α
(n) = √

π
√

α.

This follows from the formulas (17) which also allows us to deduce that
{

σK = aσG√
α

+ b∗σG√
β
,

μ−1
K = aμ−1

G√
α

+ bμ−1
G√

β
.

Thus (a, b) is the solution of the linear system
⎧
⎨

⎩
σ∗ = a

√
α√
π

+ b
√

β√
π
,

μ−1∗ = a 1√
π

√
α

+ b 1√
π

√
β
,

and is given by
{
a =

√
π

√
α

α−β

(
σ∗ − βμ−1∗

)
,

b =
√

π
√

β

α−β

(−σ∗ + αμ−1∗
)
.

The kernel K is positive if a, b ≥ 0. Since α > β, we need

σ∗ − βμ−1∗ ≥ 0 ⇐⇒ β ≤ σ∗μ∗ and − σ∗ + αμ−1∗ ≥ 0 ⇐⇒ α ≥ σ∗μ∗
as desired. ��

Of course, in the two-phase setting, the evolution generated by each such radially sym-
metric kernel is simply a constant multiple of mean curvature motion; only the product σ∗μ∗
matters. The individual values of σ∗ andμ∗ become relevant in the multiphase setting, where
surface tensions determine the junction angle conditions (7). We thus now turn to the setting
of N phases, where for each interface Γi, j in the network, we are given a prescribed surface
tension σi, j ∈ R

+ and mobility μi, j ∈ R
+. Using the construction of Proposition 4, we

define the kernel associated with interface Γi, j as Ki, j = ai, j G√
α + bi, j G√

β with

ai, j =
√

π
√

α

α − β

(
σi, j − βμ−1

i, j

)
and bi, j =

√
π

√
β

α − β

(
−σi, j + αμ−1

i, j

)
. (21)

Then, all the kernels Ki, j are positive provided that

α ≥ max σi, jμi, j and β ≤ min σi, jμi, j . (22)

This leads to the following natural algorithm to simulate the dynamics (5) under the constraint
(7).

In [8], it is shown that no wetting occurs when using Algorithms 2 and 3 as long as the
surface tensions σi, j satisfy the strict triangle inequality. By performing a similar analysis,
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Algorithm 4

Given the initial partial Σ0
1 , . . . , Σ0

N with Σ0
i =

{
x : u0i (x) > 0

}
, to obtain the partition Σk+1

1 , . . . , Σk+1
N

at time step t = (δt)(k + 1) from the partition Σk
1 , . . . , Σk

N at time t = (δt)k:

1. Form the convolutions:

φk
1,i = G√

αδt ∗ 1
Σk
i
and φk

2,i = G√
βδt ∗ 1

Σk
i
.

2. Form the comparison functions:

ψk
i =

∑

j �=i

ai, jφ
k
1, j + bi, jφ

k
2, j

where ai, j and bi, j are given by (21).
3. Threshold the comparison functions:

Σk+1
i =

{
x : ψk

i (x) < min
j �=i

ψk
j (x)

}
.

we show a similar result here. Indeed, let p denote a point along one of the smooth surfaces
Γi, j away from any junction. Set uki = 1Σk

i
. Then, by simply Taylor expanding we have,

near p,

G√
δt ∗ uki ≈ G√

δt ∗ ukj ≈ ai, j + bi, j
2

,

whileG√
δt ∗ukl for l /∈ {i, j} is exponentially small in δt near p. Thus, near p, the coefficients

ψk
l given by (2) in Algorithm 4 become

ψk
l ≈

⎧
⎪⎨

⎪⎩

(Kl,i )
√

δt ∗ uki + (Kl, j )
√

δt ∗ ukj if l /∈ {i, j},
(Ki, j )

√
δt ∗ ukj if l = i,

(Ki, j )
√

δt ∗ uki if l = j,

=

⎧
⎪⎨

⎪⎩

al,i+al, j
2 + bl,i+bl, j

2 if l /∈ {i, j},
ai, j+bi, j

2 if l = i,
ai, j+bi, j

2 if l = j,

with an error that is exponentially small in δt . If the coefficients ai, j + bi, j satisfy a strict
triangle inequality, this implies

min
{
ψk
i (x), ψk

j (x)
}

< ψk
l (x) for all l /∈ {i, j}

for x near p. Hence, wetting does not occur: no new phase gets nucleated along Γi, j . Com-
putations show that

ai, j + bi, j =
√

π√
α + √

β
σi, j +

√
α
√

β√
α + √

β
μ−1
i, j

and so if the μ−1
i, j satisfy the triangle inequality, the coefficients ai, j + bi, j satisfy the strict

inequality, as desired. On the other hand, if the μ−1
i, j do not satisfy the triangle inequality,

there exist M, ε > 0 such that

max
i, j,k

μ−1
i, j −

(
μ−1
i,k + μ−1

k, j

)
= M and max

i, j,k
σi, j − (

σi,k + σk, j
) = −ε.

(recall we are assuming the σi, j satisfy the strict triangle inequality). Now, due the definition
of ε and M , computations show that ai, j + bi, j satisfy the strict triangle inequality provided
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we choose α and β such that
√

α
√

βM <
√

πε, (23)

which is always possible by making β sufficiently small. Notice that the choice of β depends
only on the speed at which each the interface moves. Indeed, β remains unchanged upon scal-
ing the surface tensions and mobilities provided σi, jμi, j remains constant (i.e., the interfaces
still move at the same speed).

4.2 Stability and Convergence

We begin by showing that Algorithm 4 is unconditionally gradient stable under some mild
assumptions. Then we focus on the specific case of the Read and Shockley model [23] and
discuss as well the Γ -convergence of associated non-local energies.

Proposition 5 Let the surface tensions matrix σ ∈ TN and the matrix of reciprocal mobilities
1
μ

∈ SN be conditionally negative definite. Choose α and β to satisfy

α ≥ mini=1,...,N−1 si
maxi=1,...,N−1 mi

and β ≤ maxi=1,...,N−1 si
mini=1,...,N−1 mi

, (24)

where si and mi are the nonzero eigenvalues of Jσ J and J 1
μ
J , respectively, with J =

I − 1
N eeT denoting the orthogonal projection to e⊥ = (1, . . . , 1)⊥. Let the kernels Ki, j be

given by Ki, j = ai, j Gα + bi, j Gβ , where ai, j and bi, j are given by (21) and satisfy (22).
Then, Algorithm 4 is unconditionally gradient stable: Each time step dissipates the non-local
energies (18) and (20).

Proof Examining the proof of Proposition 5.3 in [8], it is sufficient to show that both A =
(ai, j ) and B = (ai, j ) are conditionally negative semi-definite, where ai, j and bi, j are given
according to (21). This will follow from showing that

sup
v �=0
v∈e⊥

vT Av

|v|2 < 0 and sup
v �=0
v∈e⊥

vT Bv

|v|2 < 0.

In addition, one can show that

sup
v �=0
v∈e⊥

vT σv

|v|2 = max
i=1,...,N−1

si and inf
v �=0
v∈e⊥

vT σv

|v|2 = min
i=1,...,N−1

si

and similarly for 1
μ
. The proof then follows due to the choice of α and β. ��

We now recall models for surface tensions and mobilities that are very commonly used in
grain boundarymotion simulations in thematerials science literature: Read–Shockley surface
tensions along with equal mobilities. In [23], Read and Shockley describe a model for the
grain boundary formed between two planar grains with square lattices. Their calculation
shows that the surface tension of the boundary is a specific function of the misorientation
angle between the two lattices under the assumption that this angle is small. Each grain is
assigned an orientation angle: when restricted to a plane, the orientation of a square lattice is
uniquely determined by the angle θ of a clockwise rotation about the origin that maps it back
to the standard two-dimensional lattice Z

2. Given the symmetries of the square lattice, we

123



Journal of Scientific Computing (2019) 79:648–669 659

can take θ ∈ [−π
4 , π

4 ] with the two endpoints of the interval identified. The surface tension
σi, j of the interface between two grains with orientations θi and θ j in the Read–Shockley
model for two-dimensional crystallography has the form

σi, j = min
k∈Z f

(∣
∣
∣θi − θ j + k

π

2

∣
∣
∣
)

(25)

where f : R
+ → R satisfies

(H1) f ∈ C([0,∞)) ∩ C2((0,∞)) and limξ→0+ ξ2 f ′(ξ) = 0,
(H2) f (0) = 0 and f (ξ) ≥ 0 for all ξ ,
(H3) f ′(ξ) ≥ 0 for all ξ > 0,
(H4) f ′′(ξ) ≤ 0 for all ξ > 0.

We follow the extension of Read–Shockley model to three-dimensional crystallography
given in [13]. The orientation of a grain with cubic lattice can be described (nonuniquely)
by a matrix g ∈ SO(3) that corresponds to the rotation required to obtain the lattice of the
grain from the standard integer lattice Z

3. In turn, any matrix g ∈ SO(3) can be described
as a rotation by an angle θ ∈ [0, π ] about an axis v ∈ S2. According to [13], the surface
tension σi, j of the interface Γi, j depends only on the misorientation angle (and not on the
axis) between the two grains gi and g j and can be defined as follows. Let O denote the
octahedral group (of symmetries of the cube in the three dimensions). Define the minimal
angle of rotation θO(g) of g ∈ SO(3) as

θO(g) = min
r∈O θ(rg).

The misorientation angle gi and g j is defined to be

θi, j = θO
(
gi g

T
j

)
, (26)

and the corresponding surface tension σi, j is given by

σi, j = f (θi, j ) (27)

where f : R
+ → R is given by

f (θ) =
{

θ
θ∗

(
1 − log

(
θ
θ∗

))
if θ < θ∗,

1 if θ ≥ θ∗
(28)

as in [13,23]. Here θ∗ is a critical misorientation value, known as the Brandon angle, that
denotes the rotation angle beyond which the surface tension saturates. According to [13], it
has been experimentally determined to lie somewhere between 10◦ and 30◦.

Theorem 2 For a network of grains in dimension d ∈ {2, 3} in which each grain has a distinct
orientation, let the surface tensions σi, j of the grain boundaries be given by the Read and
Shockley model (25) for d = 2, or the extension (27) of the same to 3D crystallography with
θ∗ ≤ π

4 = 45◦ for d = 3. Let the mobilities of the boundaries be given by μi, j = 1 and
construct the kernels Ki, j = ai, j Gα + bi, j Gβ , where ai, j and bi, j are given by (21) and
satisfy (22).

Then:

1. Algorithm4 is unconditionally gradient stable, i.e., each time step dissipates the non-local
energies (18) and (20), provided α and β satisfy (24).
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2. The non-local energy (20) converges to the sharp interface limit (16) in the sense of
Γ -convergence as δt → 0+.

Proof A close examination of Theorem 5.5 and 5.6 from [8] shows that the surface tension
matrix σ is in fact conditionally negative definite, provided that all grains in the network
have distinct orientations. Thus (1) follows by Proposition 5. On the other hand, a close
examination of Proposition A.1 in [8] shows that the proof can be extended to the non-local
energies (20) when the kernels Ki, j are positive and satisfy a pointwise triangle inequality.
That is precisely the case here due to condition (22) which guarantees the positiveness of the
kernels and since both σ, 1

μ
∈ TN . Thus (2) follows as well. ��

Remark 1 The results in Theorem 2 extend to reciprocal mobility matrices in TN that are
conditionally negative definite.

5 Non-convergence of Nonlocal Multiphase Energies

In this section, we discuss whether Algorithm 4 along with the proposed kernel construction
can be used on more general surface tension and mobility pairs than allowed by Theorem 2,
for instance for the larger class of Proposition 2. In particular, we show that even for perfectly
reasonable choices of (σi, j , μi, j ), the algorithm can fail to converge to the correct evolution.
The culprit turns out to be failure of Γ -convergence of the corresponding multiphase non-
local energy to the expected limit (16) where surface tensions are given by the simple formula
(17). More specifically, our example has the following features:

1. The prescribed surface tensions σi, j satisfy the triangle inequality (4), so that multiphase
model (3) is well-posed.

2. The prescribed surface tensions σi, j and reciprocal mobilities μ−1
i, j are conditionally

negative semi-definite, so that Algorithm 4 is unconditionally gradient stable, decreasing
the multiphase non-local energy (18) at every time step.

3. The corresponding kernels Ki, j are positive, so that the non-local two-phase energy (8)
corresponding to each Ki, j converges in the sense of Γ -convergence to

E(Σ, σi, j ) =
∫

∂Σ

σi, j (n(x)) dHd−1(x)

with the desired surface tension σi, j given by formula (17) by construction of Ki, j .
4. However, the Γ -limit of themultiphase non-local energies (20) utilizing the Ki, j as con-

volution kernels is not the desired limit (16) where the surface tensions are the prescribed
σi, j .

5. In general, failure ofΓ -convergence need not imply failure of gradient descent dynamics,
since gradient flow—a local optimization strategy—may never find the dramatically
energy reducing perturbation to the structure of the interface that is responsible for the
failure of Γ -convergence. However, our numerical experiments in Sect. 6 show that
Algorithm 4 in fact finds the perturbation, which then leads to the failure of the dynamics
it generates.

5.1 A Simple Counterexample to 0-Convergence

The example below shows that simply requiring each kernel Ki, j to satisfy sufficient condi-
tions (i.e. Ki, j ≥ 0 and (19) with our construction) for Γ -convergence in the corresponding
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two-phase setting is not sufficient forΓ -convergence of themultiphase energy, evenwhen the
desired surface tensions σi, j satisfy the triangle inequality and hence come from awell-posed
sharp interface variational model. It is described in the 1-dimensional setting for simplicity
(but can of course be extended to any dimensions).

Example 1 LetΩ = R and consider its partition into N = 3 phases, parameterized by ε > 0,
given by

Σ1,ε = {x ∈ Ω : x ≥ ε} , Σ2,ε = {x ∈ Ω : x ≤ −ε} , Σ3,ε = {x ∈ Ω : |x | ≤ ε} .

Set

u1,ε = 1Σ1,ε = 1[ε,∞), u2,ε = 1Σ2,ε = 1(−∞,−ε], u3,ε = 1Σ3,ε = 1[−ε,ε].

Define the kernels as follows:

K1,2 = 1[−1,1] and K1,3 = K2,3 = δ1
(
1[−11,−9] + 1[9,11]

) + δ21[−1,1],

where δ1, δ2 > 0 will be chosen later. Notice that the corresponding surface tensions are
given by

σ1,2 = 1

2

∫

R

|x |K1,2(x) dx = 1

2
and σ1,3 = σ2,3 = 1

2

∫

R

|x |K2,3(x) dx = 20δ1 + δ2

2
.

while the mobilities are given by

μ1,2 = 1

2K1,2(0)
= 1

2
and μ1,3 = μ2,3 = 1

2K2,3(0)
= 1

2δ2
.

Here, the non-local approximate energy is given by

Eε(uε, K ε) = 1

ε

∑

(i, j)∈IN

∫

R

u j,ε(x)
(
Ki, j

)
ε
∗ ui,ε(x) dx = 16δ1 + 2δ2,

which follows from

1

ε

∫

R

u1,ε(x)
(
K1,3

)ε ∗ u3,ε(x) dx

= 1

ε

∫

R

∫

R

1[ε,∞)(x)
(
δ11[9,11](h) + δ21[−1,1](h)

)
1[−ε,ε](x − εh) dh dx

= 4δ1 + δ2

2

(since the double integral in the second equality corresponds to the area of a parallelogram
of base 2ε and height 2 and a triangle of side ε and height 1) and

1

ε

∫

R

u1,ε(x)
(
K1,2

)ε ∗ u2,ε(x) dx

= δ

ε

∫

R

∫

R

1[ε,∞)(x)1[−1,1](h)1(−∞,−ε](x − εh) dh dx = 0.

On the other hand, the limiting energy is given by

E(u0, σ ) = 2 σ1,2 = 1.
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Now, we observe that e.g. the choice δ1 = 1
64 and δ2 = 5/16 guarantees that both the surface

tension matrix σ and reciprocal mobility matrix 1
μ
are conditionally negative semi-definite.

Moreover, the surface tensionmatrix satisfies the triangle inequality.HoweverΓ -convergence
fails since

lim inf
ε→0

Eε(uε, K ε) < E(u0, σ ).

Notice that in this case the reciprocal mobilities μ−1
i, j do not satisfy the triangle inequality.

6 Numerical Evidence

We present a variety of numerical tests for Algorithm 4. We focus on classical numerical
convergence studies for short-time evolution (during which topological changes do not take
place) starting from an initial conditionwith triple junctions formed by themeeting of smooth
curves. It is worth mentioning nonetheless that threshold dynamics methods shine when it
comes to challenging configurations that involve topological changes. For all the examples
considered below, both σ and 1

μ
are conditionally negative definite. We choose α and β as the

smallest and largest constants, respectively that satisfy both (22) and (24). This guarantees
that the kernels are positive and that Algorithm 4 dissipates the non-local energies (18) and
(20) at each time step.

6.1 Comparisons with Exact Solutions

We start by considering two examples for which the exact solutions of the threshold dynamics
(5) and (7) are well-known. These solutions are known as grim-reaper solution [11]: two
of the interfaces are travelling waves moving with constant vertical speed, while the third
remains a line segment.

Example 2 We consider first the following symmetric case where the surface tension and
mobility matrices are given by

σ =
⎛

⎝
0

√
2 1√

2 0 1
1 1 0

⎞

⎠ and μ =
⎛

⎝
0 1 1
1 0 1
1 1 0

⎞

⎠ .

The corresponding angles at the junctions are (135◦, 135◦, 90◦). The two interfaces Γ1,2

and Γ1,3 are then graphs of functions f1,2(x, t) : [
0, 1

4

] → R and f1,3(x, t) : [ 1
4 ,

1
2

] → R

that move by vertical translations:

f1,2(x, t) = 7

8
+ 1

π
log(cos(πx)) − π t and f1,3(x, t) = f1,3

(
1

2
− x, t

)
.

The interfaces satisfy the natural boundary condition of 90◦ intersection with the boundary
of the domain [0, 1

2 ] × [0, 1
2 ] (i.e. ∂x f1,3(0, t) = 0 and ∂x f2,3(0, t) = 0. Numerically, the

initial configuration is extended evenly to [0, 1]×[0, 1] by reflection, which is then computed
with periodic boundary conditions using Algorithm 4. The L∞ error between the computed
and exact f1,3 and f2,3 at time t = 0.1 is shown in the Table 1. Figure 1a shows the initial
solution, the computed solution, and the exact solution in black, blue and red, respectively.
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Table 1 Errors in the L∞ norm
for grim-reaper type examples

# Time steps # Grid points L∞ error Conv. rate

Errors and order, Example 2

50 128 × 128 0.0074 –

100 256 × 256 0.0058 0.35

200 512 × 512 0.0044 0.41

400 1024 × 1024 0.0029 0.61

800 2048 × 2048 0.0020 0.55

1600 4096 × 4096 0.0014 0.52

Errors and order, Example 3

20 128 × 128 0.0239 –

40 256 × 256 0.0183 0.39

80 512 × 512 0.0133 0.46

160 1024 × 1024 0.0094 0.49

320 2048 × 2048 0.0060 0.66

640 4096 × 4096 0.0036 0.74

Example 3 We consider as well an asymmetric grim-reaper solution. In this case, the surface
tension and mobility matrices are given by

σ =

⎛

⎜⎜
⎝

0 1
√
2

1+√
3

1 0 2
1+√

3√
2

1+√
3

2
1+√

3
0

⎞

⎟⎟
⎠ and μ =

⎛

⎜
⎝

0 1
4
√
2

1
1

4
√
2

0 1
4
√
2

1 1
4
√
2

0

⎞

⎟
⎠ .

The corresponding angles at the junctions are (135◦, 150◦, 75◦). The two interfaces Γ1,2 and
Γ1,3 are then graphs of functions f1,2(x, t) : [

0, 3
8

] → R and f1,3(x, t) : [ 3
8 ,

1
2

] → R that
move by vertical translations:

f1,2(x, t) = 3

2π
log

(
cos

(
2π

3
x

))
− 2

√
2π

3(1 + √
3)
t,

f1,3(x, t) = 3

8π
log

(
1

2
cos

(
4π(1 − 2x)

3

))
− 2

√
2π

3(1 + √
3)
t .

Like in the previous example, the initial configuration is extended evenly to [0, 1]×[0, 1]with
periodic boundary conditions and we use Algorithm 4. The L∞ error between the computed
and exact f1,3 and f2,3 at time t = 0.096 is shown in the Table 1. Figure 1a shows the initial
solution, the computed solution, and the exact solution in black, blue and red, respectively.

Given the presence of triple junctions the expected convergence rate isO(
√

δt)which can
be explained with a Taylor expansion argument (see [24] for more details). Intuitively, in a√

δt neighborhood of the triple junction, the kernel feels the presence of the triple junction
in the convolution step and the interface is not evolved with the right motion. Thus, for
Example 2 the results are expected. As for Example 3, the results suggest a slightly better
convergence rate, but we expect it to be closer to 0.5 for finer grids.
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(b)

Fig. 1 Evolution of a three-phase grim-reaper like configuration where the blue curve shows the initial condi-
tion. Final configuration computed using threshold dynamics Algorithm 4 (red), compared to the exact solution
(black) (Color figure online)

6.2 Comparisons with Front Tracking

In the absence of topological changes, and when starting from a smooth initial condition
consisting only of triple junctions, a very appropriate and efficient algorithm for computing
the curvature flow (5) under constraint (7) is front tracking (see e.g. [4]), especially in the
plane.

Example 4 The initial condition in this example is shown in Fig. 2a as the blue curve. It is
evolved under dynamics (5) and (7) with surface tension and mobility matrices are given by

σ =
⎛

⎝
0 1 1
1 0

√
2

1
√
2 0

⎞

⎠ and μ =
⎛

⎝
0 1 1
1 0 1
1 1 0

⎞

⎠ .

The corresponding junction angles are (θ1, θ2, θ3) = (90◦, 135◦, 135◦). The final configura-
tion at time t = 0.0107, computed using Algorithm 4 on a 4096× 4096 grid, is shown as the
red curve. The same configuration computed via front tracking is shown as the black curve.
Table 2 shows the error as measured in the Hausdorff distance between the boundary ∂Σ1 of
phase Σ1 computed using front tracking versus the proposed algorithm.

Example 5 The same initial condition as in Example 4 (blue curve in Fig. 2b) was used for
testing Algorithm 4 but with different surface tensions:

σ =
⎛

⎝
0 5

4
3
2

5
4 0 1
3
2 1 0

⎞

⎠ .

The corresponding junction angles are (θ1, θ2, θ3) ≈ (138.6◦, 97.18◦, 124.2◦). The table
below shows the error in phaseΣ1, once again asmeasured in theHausdorff distance between
the front tracking and the solution obtained from Algorithm 4.

Given our discussion at the end of the previous sections, the results are expected as we
observe a convergence rate of O(

√
δt).
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Fig. 2 Evolution of a three-phase configuration where the blue curve shows the initial condition for two
different choices of surfaces tensions. Final configuration computed using threshold dynamics Algorithm 4
(red), compared to the benchmark result computed using front tracking (black) (Color figure online)

Table 2 Errors in the Hausdorff
distance for the front tracking
examples

# Time steps # Grid points Hausdorff dist. Conv. rate

Errors and order, Example 4

11 128 × 128 0.0149 –

21 256 × 256 0.0075 0.98

43 512 × 512 0.0059 0.35

86 1024 × 1024 0.0041 0.52

171 2048 × 2048 0.0027 0.58

342 4096 × 4096 0.0021 0.40

Errors and order, Example 5

11 128 × 128 0.0129 –

21 256 × 256 0.0054 1.25

43 512 × 512 0.0059 −0.13

86 1024 × 1024 0.0045 0.39

171 2048 × 2048 0.0028 0.67

342 4096 × 4096 0.0021 0.45

6.3 Failure of the Algorithm

In this section, we present an example, in the spirit of the discussion of Sect. 5, for which the
algorithm fails: wetting occurs when kernels obtained from the proposed construction are
used, even though the desired sharp interface model is well-posed (the given surface tensions
satisfy the triangle inequality). Consequently, angles formed at the triple junction are not the
naively expected ones, and the evolution differs from the intended dynamics.

Example 6 We revisit Example 3. Notice that μ1,2 does not affect the evolution since the
interface Γ1,2 has curvature zero. Consider then Example 6.2 but with μ1,2 = μ2,1 = 1/2
( 1
μ
is still conditionally negative definite). In this case wetting may occur as ai, j +bi, j do not
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Fig. 3 Example of wetting in the multiphase setting even when the surface tensions satisfy the triangle
inequality and the kernels are positive: Left: In the initial condition there is no phase 1 between phases 2 and
3. Right: Algorithm 4 immediately nucleates a thin layer of phase 1 along the Γ2.3 interface present in the
initial condition. That thin wetting layer of phase 1, shown as the darkest region, remains between phases 2
and 3 throughout the evolution

0.25 0.3 0.35 0.4 0.45 0.5

0.1

0.15

0.2

0.25

0.3

0.35

(a)
0.25 0.3 0.35 0.4 0.45

0.2

0.25

0.3

0.35

0.4

(b)

Fig. 4 Zoom in near the triple junction for the wetting example presented in Fig. 3

satisfy the triangle inequality and, in addition, Γ -convergence is not established. Notice how
this example exhibits the same features of Example 1 described in Sect. 5. Indeed, numerical
simulations show that wetting occurs: the algorithm instantaneously nucleates phase 1 along
the interface Γ2,3. This thin layer of phase 1 remains between phases 1 and 2 throughout the
evolution. Its thickness appears to depend on the time step size and scale as

√
δt . See Figs. 3,

4 and 5 and Tables 3 and 4. It is worth mentioning that when α and β are chosen to also
satisfy (23), which guarantees no wetting, convergence is observed.
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Fig. 5 Example of wetting in the multiphase setting even when the surface tensions satisfy the triangle
inequality and the kernels are positive

Table 3 Errors are computed as
the l∞ norm of the l1 error of the
characteristic functions of each
phase for Example 6

# Time steps # Grid points Error Conv. rate

Errors and order, Example 6

100 128 × 128 6.4819 × 10−2 –

200 256 × 256 1.8341 × 10−2 1.82

400 512 × 512 1.4839 × 10−2 0.31

800 1024 × 1024 1.5284 × 10−2 −0.04

1600 2048 × 2048 1.7998 × 10−2 −0.24

3200 4096 × 4096 1.9145 × 10−2 −0.09

6400 8192 × 8192 1.9731 × 10−2 −0.04

7 Conclusions

We presented a simple and efficient algorithm for the mean curvature flow of a general N -
phase network where the

(N
2

)
isotropic surface tensions and

(N
2

)
isotropic mobilities can be

individually specified.We showed that the algorithm is unconditionally gradient stable under
mild conditions on the surface tensions and mobilities, which are satisfied, for instance, in
the Read–Shockley model. The Γ -convergence of the underlying approximate energies to
the desired limit gives confidence that the new algorithm converges to the correct dynamics
for important classes of surface tensions and mobilities that are commonly employed in
simulations by materials scientists. However, we also presented counter examples to the
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Table 4 Area of the thin layer
formed along phases 2 and 3 in
Example 6

# Time steps # Grid points Area Conv. rate

Errors and order, Example 6

100 128 × 128 1.6357 × 10−2 –

200 256 × 256 6.4087 × 10−3 1.35

400 512 × 512 3.7994 × 10−3 0.75

800 1024 × 1024 2.4853 × 10−3 0.61

1600 2048 × 2048 1.7276 × 10−3 0.52

3200 4096 × 4096 1.2108 × 10−3 0.51

6400 8192 × 8192 8.5044 × 10−4 0.51

convergence of the algorithm when kernels obtained from the proposed construction are
used under certain conditions, indicating limitations to our current understanding of this
class of numerical methods.
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