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Mid-dimensional (A, B, A) and (B, B, B)-branes in the moduli space of flat GC-connections
appearing from finite group actions on compact Riemann surfaces are studied. The geom-
etry and topology of these spaces are then described via the corresponding Higgs bundles
and Hitchin fibrations.
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1. Introduction — mid-dimensional (B,B,B) − branes

This paper is dedicated to the study of mid-dimensional subspaces of the neutral connected component of the moduli
space of flat GC-connections on a compact Riemann surfaceΣ of genus g ≥ 2, for GC a complex Lie group, associated to finite
group actions onΣ . As shown in [1,2], considering suitable stability conditions, a Higgs bundle defines a solution of equations
for a G-connection A known as the Hitchin equations, where G is the maximal compact subgroup of GC. In particular, for
G = U(n) these are FA + [Φ,Φ∗

] = 0 and the vanishing of the antiholomorphic part of the covariant derivative ofΦ , this is,
d′′

AΦ = 0. In such case, the connection ∇A +Φ +Φ∗ is flat, with holonomy in GL(n,C). We shall denote byMGC the moduli
space of GC-Higgs bundles on a compact Riemann surfaceΣ , the space of solutions to the Hitchin equations on the surface
modulo gauge equivalence.

The space of solutions to Hitchin’s equations is a hyper-Kähler manifold, and thus there is a family of complex structures
from which we shall fix I, J, K obeying quaternionic equations; along the paper we shall fix those structures following
the notation of [1,3,4]. With this convention, the smooth locus of MGC corresponds to the space of solutions to Hitchin’s
equations together with the complex structure I . Throughout this work we shall adopt the physicists’ language in which a
Lagrangian submanifold supporting a flat connection is called an A-brane, and a complex submanifold supporting a complex
sheaf is a B-brane. By considering the support of branes, one may say that a submanifold of a hyper-Kähler manifold is of
type A or Bwith respect to each of the structures, and hence one may speak of branes of type (B, B, B), (B, A, A), (A, B, A) and
(A, A, B). Since understanding the support of branes is already a difficult endeavour, throughout the paper we shall consider
only the support of branes and study their appearance within the moduli space of Higgs bundles. With a mild abuse of
notation, we shall refer to the support of branes as branes themselves.

The construction and study of branes in the moduli space of GC-Higgs bundles through actions on the group GC or on
the surface Σ only began a few years ago — see, for example, [5] for a first appearance of branes through actions on the
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surface, and [3] for actions on groups. Whilst one may describe those branes inside the Hitchin fibration of MGC (obtaining
for instance a nonabelian fibration of (B, A, A) as described in [6], or a real integrable system through (A, B, A)-branes as
in [5]) not muchmore is known about the geometry of those branes constructed, or how other interesting subspaces appear
through group actions.

The construction of hyperholomorphic branes, or (B, B, B)-branes, is of particular interest, as not many nontrivial
examples have been found— onemay construct (B, B, B)-branes by considering themoduli space ofHC-Higgs bundles inside
themoduli space of GC-Higgs bundles, for HC a complex subgroup of GC, but how else may one define (B, B, B)-branes? After
overviewing finite group actions on flat connections, in Section 2.2 new (B, B, B)-branes are constructed:

Theorem8. LetΣ be a compact Riemann surface of genus g ≥ 2 andΓ a finite group acting onΣ by holomorphic automorphisms.
The connected components of the space of gauge equivalence classes of irreducible Γ -equivariant flat GC-connections are hyper-
Kähler submanifolds of the moduli space of flat irreducible GC-connections on Σ , and hence give (B, B, B)-branes in the moduli
space of GC-Higgs bundles.

Since mid-dimensional spaces may be A-branes or B-branes with respect to each of the structures, it is particularly inter-
esting to seek finite group actions giving mid-dimensional hyper-Kähler submanifolds. In Section 3 we give a classification
of actions leading to mid-dimensional branes in the moduli space Mg

dR of flat SL(2,C)-connections on a compact Riemann
surface of genus g .

Theorem 11. Let Σ be a compact Riemann surface of genus g ≥ 2 and Γ be a finite group acting on Σ by holomorphic
automorphisms such that a component of themoduli space of Γ -equivariant flat SL(2,C)-connections onΣ has half the dimension
of the moduli space Mg

dR. Then one of the following holds:

(I) Γ = Z2 acts by a fixed points free involution onΣ , or
(II) Σ is hyperelliptic of genus 3 and Γ = Z2 × Z2.

In case (II), one of theZ2-factors corresponds to the hyperelliptic involution, whilst the other Z2-factor corresponds to an involution
with 4 fixed points.

Although we highlight results which hold for generic groups, most of the work in the remaining sections is done for
GC = SL(2,C). In order to understand the geometry of these branes, we consider them inside the moduli space of Higgs
bundles and look at their intersection with smooth fibres of the Hitchin fibration. After overviewing the SL(2,C)-Hitchin
fibration in Section 4, in Section 5 we obtain the following geometric description of the intersection of the (B, B, B)-brane of
Theorem 11(I) with the regular fibres of the Hitchin fibration:

Theorem 14. Let τ be a fixed point free involution. Then, the τ -equivariant (B, B, B)-brane intersects a generic fibre of the Hitchin
fibration over a point defining the spectral curve S in the abelian variety Prym(S/τ ,Σ/τ )/Z2.

In order to study the equivariant (B, B, B)-branes of Theorem 11(II), it is shown in Section 6 that it suffices to consider
Higgs bundles over hyperelliptic surfaces of genus 3 with fixed point free actions. In such case, we describe the intersection
of the brane with the regular fibres of the Hitchin fibration in Theorem 25. Finally, from [4, Section 12], the equivariant
and anti-equivariant spaces considered in this short paper have dual branes in the moduli spaces of Higgs bundles for the
Langlands dual group.

We conclude the work in Section 7 with comments on Langlands duality for the branes constructed in this paper, and
noting it is interesting to compare the spaces in Theorem 8 with spaces appearing in other papers - e.g. the real integrable
systems given by (A, B, A)-branes in [5, Theorem 17] and the (B, A, A)-branes of [3].

Since the work of the present paper was first announced at the Simons Center of Geometry and Physics in June 2016 (at
the conference ‘‘New perspectives on Higgs bundles, branes and quantization’’), actions of finite groups on the moduli space
of Higgs bundles and of flat connections have received increasing attention — an interested reader in the subject might
want to look among other papers at the work of Schaffhauser [7] for actions on moduli spaces of vector bundles, and of
Hoskins–Schaffhauser [8] for interesting branes arising from group actions on quiver varieties.

2. Equivariant flat connections

ConsiderΣ a compact (connected) Riemann surface of genus g ≥ 2 and a finite group action Γ ×Σ → Σ . These actions
have been studied by many researchers and in the case of surfaces of genus 2 and 3, a complete classification of all finite
group actions is given in [9, Tables 4, 5]. Moreover, in the case of actions induced on rank 2 bundles through automorphisms
ofΣ , a very concrete description of the fixed points in terms of parabolic structures is given in [10].

In order to understand flat equivariant GC-connections onΣ, one needs to first fix a C∞ trivializationCn
= Σ×Cn

→ Σ

of the underlying vector bundle. In what follows we shall restrict our attention to the groups GC = GL(n,C), SL(n,C), and
thus in the case of SL(n,C) require the trivialization to preserve the determinant.
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Definition 1. A Γ -equivariant flat connection onΣ is a flat connection ∇ onCn
→ Σ such that for everyψ ∈ Γ there exist

a GL(n,C)-gauge transformation gψ : Σ → GL(n,C) for which

ψ∗
∇ = ∇ · gψ ,

and where ψ ↦→ gψ is a generalized group homomorphism, i.e., satisfies gid = id and g(ψ◦τ )(p) = gτ (p) ◦ gψ (τ (p)).

Remark 2. One should note that Definition 1 differs from the definition of an equivariant flat connection in [11], but is rather
in the spirit of the definition of equivariant bundles with equivariant determinants of [10, Definition 2.2]. We have decided
not to fix the gauge transformations gψ beforehand by giving a lift of the action ofG to the bundle. In this sense, the definition
is closer to the usual meaning of equivariance. On the other hand, Definition 1 would seem more natural when shifting the
focus to the moduli spaces of flat connections.

Denote by Γ (Σ,GC) the space of GC-gauge transformations on the Riemann surfaceΣ . Note that the stabilizer subgroup
of the gauge action for an irreducible flat connection ∇ is contained in the diagonal constants,

Stab∇ ⊆ {g = λ id | λ ∈ C∗
}, (1)

with equality in the case of GC = GL(n,C). In the case of GC = SL(n,C) onemay not always be able to choose the generalized
group homomorphism to be of the form

ψ ∈ Γ ↦→ gψ ∈ Γ (Σ, SL(n,C)). (2)

When (2) holds, the connections are Γ -equivariant flat SL(n,C)-connections on Σ . On the other hand, there are cases in
which the generalized group homomorphism cannot be chosen to take values in the SL(n,C)-gauge group: an example of
this is the so-called hyperelliptic descent of flat SL(2,C)-connections on a genus 2 surface considered in [12, §2]. As can
be seen in such example, the dimensions of the two corresponding components, determined by whether the gauges are
SL(2,C)-valued or not, might be different for the same group action.

2.1. Finite group actions on Riemann surfaces

Along the paper we shall distinguish between finite group actions on Riemann surfaces with or without fixed points. In
either case, Γ -equivariant flat GC-connection can be studied through the quotient surface. Whilst these results might be
classical, some proofs have been included here since sources of reference for them could not be found. We restrict to the
case of GC = SL(n,C),GL(n,C):

Proposition 3. Let Γ × Σ → Σ be a finite group action by holomorphic automorphisms without fixed points. Then, any
Γ -equivariant flat GC-connection is gauge-equivalent to the pull-back of a flat GL(n,C)-connection onΣ/Γ .

Proof. As the group Γ acts without fixed points, the quotient map Σ → Σ/Γ gives an (unbranched) covering map. We
define an equivalence relation on Σ × Cn by (p, v) ≡ (q, w) if and only if there exists ψ ∈ Γ such that ψ(p) = q and
w = gψ (p)(v). Then the quotient

(Σ × Cn)/Γ → Σ/Γ

is a vector bundle equipped with a natural induced flat connection ∇̃ which pulls back to connection which is gauge
equivalent to ∇ on Cn

→ Σ . □

For Γ ×Σ → Σ a finite group action by holomorphic automorphisms with fixed points, denote by B ⊂ Σ/Γ the image
of the fixed points, giving the branch points of the ramified cover

πΓ : Σ → Σ/Γ . (3)

From here, the following proposition follows naturally.

Proposition 4. Let Γ ×Σ → Σ be a group action by holomorphic automorphisms with fixed points, and let B be the image of
the fixed points inΣ/Γ . Then, any Γ -equivariant flat GC-connection is gauge-equivalent to the extension of the pullback of a flat
GL(n,C)-connection onΣ/Γ − B.

Remark 5. If GC = SL(n,C) and the generalized group homomorphism ψ ↦→ gψ takes values in the SL(n,C)-gauge
group, then in Propositions 3–4 the connection on Σ/Γ , resp. on Σ/Γ − B, can be chosen to be a SL(n,C)-connection.
If the generalized group homomorphism ψ ↦→ gψ does not take values in the SL(n,C)-gauge group, then it is more
appropriate (e.g., for counting dimensions of themoduli spaces) to consider the induced PSL(n,C)-connection instead of the
âĂĺGL(n,C)-connection constructed in Propositions 3–4.
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The local monodromy of the equivariant connections around images p ∈ B of branch points can be described by
considering the stabilizer group of p, leading to the following:

Proposition 6. Given a Γ -equivariant GC-connection onΣ , the conjugacy class of the monodromy along a small loop around a
point p ∈ π−1

Γ (B) is given by a root of the identity. Moreover, for sufficiently close (with respect to the supremumnorm) irreducible
flat Γ -equivariant connections, the conjugacy classes of these local monodromies are the same.

Proof. Recall that the stabilizer group Stabp ⊂ Γ of a point p ∈ Σ satisfies Stabp = Zk for some k ≥ 1, and is non-trivial
if and only if p is a branch point of πΓ : Σ → Σ/Γ . The local monodromy around πΓ (p) =: q can then be determined as
follows: given ψ a generator of Stabp, one has that ψk

= id and gψ (p)k = id. Note that if τ (p) = p̃ ̸= p for some τ ∈ Γ ,

then the order of the stabilizer group of p̃ is the same as the one of p, and the conjugacy class of the corresponding gauge
gτ◦ψ◦τ−1 (p̃) as a subset of GL(n,C) is also the same as the conjugacy class of gψ (p). Then, gψ (p) represents the conjugacy class
of the local monodromy around q, and this can be seen as follows. Indeed, consider a singular connection ∇̃ on the punctured
disc. By means of the Deligne extension procedure, the connection ∇̃ is gauge equivalent to

d + A
dz
z

(4)

for some A ∈ gC. Then, near p ∈ Σ the connection ∇ = d + ω is gauge equivalent via a singular (but single valued) gauge
transformation g to the pullback of (4) via the covering map z ↦→ zk, and this gauge transformation is invariant under

z ↦→ e
2π i
k z. On the other hand, the transformation g can be written as g = z−kAh(z) where h is a single valued smooth map

U ⊂ Σ → GC. The conjugacy class of the local monodromy of (4) is given by z−A which proves the claim as g is invariant
and ω = h−1dh.

Finally, in order to see that nearby irreducible flat equivariant connections ∇
1 and ∇

2 give rise to the same local
monodromies on the quotient surface, consider gauges g i

ψ for which ψ∗
∇

i
= ∇

i
· g i

ψ and g i
ψ (p)

k
= id. Note that the

conjugacy class of g i
ψ at a fixed point of ψ as well as the local monodromy around the corresponding branch point are

also determined by the parallel transport of the original connection along a (non-closed) lift of the small loop around the
branch point onΣ/Γ .Of course, we use the background trivializationCn

→ Σ of the underlying bundle with respect to the
trivial connection d to do so. Then, by standard estimates for solutions of linear ODE’s, it follows that equivariant connections
whose connection 1-forms are closewith respect to the supremumnorm give rise the same conjugacy class (as they are roots
of the identity). □

Asmentioned in Section 1, subspaces of the smooth loci of the moduli space of GC-Higgs bundles, or equivalently, GC-flat
connections, may be holomorphic or Lagrangian with respect to some of the fixed complex structures and symplectic forms,
givingwhatwe refer to as B-branes and A-branes in those structures [4]. In the forthcoming sections, we shall study different
settings in which the space of Γ -equivariant flat irreducible GC-connections on a Riemann surfaceΣ form branes.

2.2. Equivariant (B, B, B)-branes

In what follows we shall show that the moduli space of Γ -equivariant flat irreducible GC-connections on a Riemann
surfaceΣ is a well-defined hyper-Kähler submanifold of themoduli space of flat irreducible GC-connections onΣ . From the
previous sections, this space is a complex submanifold of the moduli space of irreducible flat GC-connections on Σ (with
respect to the structure J induced by the complex group GC).

Lemma 7. Let ∇ be aΓ -equivariant flat irreducible GC-connection onΣ , and g : Σ → GC be a gauge transformation. Then,∇ ·g
is Γ -equivariant, and gives rise to the same point as ∇ in the moduli space of flat (possibly singular) GC-connections onΣ/Γ .

The above lemma follows from the definition of Γ -equivariant flat connections, and therefore by Propositions 3, 4 and
6, the connected components of the moduli space of Γ -equivariant flat irreducible GC-connections can be locally identified
with open subsets of the moduli space of flat irreducible connections onΣ/Γ with monodromies in fixed conjugacy classes
determined by the branch order of Σ → Σ/Γ and by the component. One should note that the corresponding moduli
spaces of irreducible flat connections on Σ and Σ/Γ are in general not globally the same, as can be seen in the following
example.

Example 7.1. Consider a Riemann surface Σ of genus 3 which admits a fixed point free involution ψ : Σ → Σ giving a
double covering to a Riemann surfaceM := Σ/Z2 of genus 2. Let∇ be a flat unitary line bundle connection such that∇ is not
self-dual, i.e., ∇∗ is not gauge equivalent to ∇, and such that ψ∗

∇ = ∇
∗. Then, ∇ ⊕ ∇

∗ is a Z2-equivariant flat connection,
whose corresponding flat connection onΣ/Z2 is irreducible. A more extensive analysis of this set up is given in Section 6 to
illustrate the results of the paper.

As mentioned previously, by Hitchin’s work [1] and generalizations thereof, the space of irreducible flat GC-connections
is a hyper-Kähler manifold. In this context, one has the following results.
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Theorem 8. Let Σ be a compact Riemann surface of genus g ≥ 2 and Γ be a finite group acting on Σ by holomorphic
automorphisms. Then, the connected components of the space of gauge equivalence classes of irreducible Γ -equivariant flat
GC-connections are hyper-Kähler submanifolds of the moduli space of flat irreducible GC-connections onΣ, for GC a semi-simple
Lie group.

Proof. For GC a semi-simple Lie group, by Lemma 7 any connected component of the space of gauge equivalence classes of
irreducible Γ -equivariant flat GC-connections is locally identified with an open subspace of the moduli space of irreducible
(possibly singular at the branch points) connections on Σ/Γ . This identification is given by taking the pull-back of the
connection and, if necessary, applying a singular gauge transformation which gauges the singularities of the pull-back
connection at the fixed points of Γ away. We call the later gauge transformation a desingularization. We claim that taking
the pull-back and desingularization gives rise to a (complex analytic) immersion from the smooth part of the moduli space
of flat (possibly singular) connections on Σ/Γ to the smooth part of the moduli space of flat connections on the Riemann
surfaceΣ .

Since the complex structure J is respected by the pull-back and desingularization, it remains to prove that the differential
of taking the pull-back and desingularization is injective at every irreducible gauge class which pulls back to an irreducible
gauge class. In order to do so we note that we can work with singular connections ∇ onΣ/Γ which are of a local standard
form d + A dz

z as in (4) at any branch point. Let X ∈ Ω1(Σ/Γ , gC) represent a tangent vector which can be chosen to
vanish in an open neighbourhood of the singular points of ∇. If X is not trivial, then there exists a second tangent vector
Y ∈ Ω1(Σ/Γ , gC) (satisfying d∇Y = 0 as well), which also vanishes in an open neighbourhood of the singular points of ∇ ,
such that for the natural symplectic structureΩ on the moduli space of flat connections with fixed local conjugacy classes
(as defined in [13])

0 ̸= ΩΣ/Γ (X, Y ) =

∫
Σ/Γ

tr(X ∧ Y ),

where tr denotes the Killing form on gC. Let uswriteπ forπΓ , this is, for the coveringπ : Σ → Σ/Γ . Then there is a singular
gauge transformation g such that π∗

∇.g is smooth on Σ . The tangent vectors X and Y are then mapped to the smooth
1-forms g−1π∗Xg and g−1π∗Yg representing the corresponding tangent vectors in the moduli space of flat connections on
Σ .We obtain

ΩΣ (g−1π∗Xg, g−1π∗Yg) =

∫
Σ

tr(g−1π∗Xg ∧ g−1π∗Yg) =

∫
Σ

tr(π∗X ∧ π∗Y ) ̸= 0.

Therefore, g−1π∗Xg does not vanish in the first cohomology of d∇ and represents a non-trivial tangent vector. Hence, pull-
back and desingularization is an immersion and therefore themoduli space of irreducibleΓ -equivariant flat GC-connections
is a complex submanifold with respect to the complex structure J .

In order to show that it is also a complex submanifold with respect to the complex structure I one needs to make use of
the uniqueness of solutions of the self-duality equations. Fixing a trivialization of the underlying C∞ bundle in order to work
on Cn

→ Σ, consider the standard Hermitian metric h on Cn
→ Σ which is invariant under Γ . Consider an irreducible

Γ -equivariant flat GC-connection∇ such that (∇, h) satisfies the self-duality equations, i.e., so that∇ = ∇
u
+Φ+Φ∗ where

∇
u is unitary with respect to h and Φ∗ is the adjoint of the holomorphic Higgs field Φ (with respect to h). Now, for ψ ∈ Γ

one has that ψ∗
∇ = ∇ · gψ decomposes into harmonic parts as ψ∗

∇ = ψ∗
∇

u
+ ψ∗Φ + ψ∗Φ∗, since h is Γ -invariant.

Then, from the uniqueness of solutions of the self-duality equations for stable pairs/irreducible connections (e.g. see [1] in
the case of GC = SL(2,C)), the gauge transformation gψ must already be unitary. Therefore, since ∇ is Γ -equivariant, the
corresponding Higgs pair ((∇u)(0,1),Φ) is also Γ -equivariant (in the same sense as defined for connections), which proves
the theorem. □

Remark 9. From [14, Corollary 3.9], given any orbifold Riemann surface Σ̃ with negative Euler characteristic, there exists
a smooth compact Riemann surface Σ with an action of a finite group Γ , such that Σ̃ = Σ/Γ , and thus the analysis done
in this paper could be translated in terms of Higgs bundles on orbifold Riemann surfaces. Moreover, through [14] one also
knows that the spaces of Theorem 8 are non-empty. See also the work of Anderson and Grove on equivariant bundles under
group actions in [10] for further analysis of equivariant bundles and their correspondence with parabolic bundles, and non-
emptiness of these spaces.

From Remark 9, properties of the (B, B, B)-branes constructed through finite group actions can be deduced from [14].
From Theorem 8 and [14, Section 3D] one can describe the spaces of Γ -equivariant flat GC-connections as (B, B, B)-branes
also in the case of actions with no fixed points. Indeed, consider GC = SL(n,C),GL(n,C): in these cases the spaces of gauge
equivalence classes of irreducible Γ -equivariant flat GC-connections are hyper-Kähler submanifolds of the moduli spaces of
flat irreducible GC-connections onΣ, and are naturally covered by an open dense subset of the hyper-Kähler moduli space
of irreducible flat GC-connections (or possibly PSL(n,C)-connections, as in Remark 5) on the surfaceΣ/Γ .
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2.3. Equivariant (A, B, A)-branes

By considering a real structure f : Σ → Σ on the Riemann surface, it was shown in [3,5] how to construct and study
families of (A, B, A)-branes in the moduli space of GC-Higgs bundles. In particular, for ξ the compact anti-holomorphic
involution of GC, the fixed point set of

i2(∂̄A,Φ) := (f ∗(∂A), f ∗(Φ∗)) = (f ∗(ξ (∂̄A)),−f ∗(ξ (Φ))),

defines an (A, B, A)-brane which lies in the Hitchin fibration for GC-Higgs bundles (∂̄A,Φ) as a real integrable system
[5, Theorem 17]. Moreover, forΣ a hyperelliptic curve of genus 3, from [15, Section 6] and [5, Appendix A] one can deduce
further characteristics of the brane. Therefore, these Riemann surfaces shall be taken as toy models along this paper.

Following Section 2.2, one may consider both an orientation reversing involution with fixed points, and a finite group
action on the Riemann surface Σ . By taking both involutions together, and looking at the induced action on the moduli
space of flat connections, one would obtain the intersection of a (B, B, B)-brane and an (A, B, A)-brane. The compatibility and
classification of these involutions is done in [16], the (B, B, B)-branes would be as described in Section 2.2, and the (A, B, A)-
branes as described in [5]. Therefore, by considering these two actions, one obtains natural mid-dimensional (A, B, A)-branes
inside the (B, B, B)-brane, which shall be referred to as CMC-branes. Finally, in [11, Section 8] the equivariant cohomology
for equivariant bundles is calculated in terms of the action of Γ on the usual cohomology, providing the tools to understand
the cohomology of the CMC-branes.

3. Mid-dimensional equivariant branes

Mid-dimensional submanifolds of the moduli space MGC of GC-Higgs bundles appear to be of particular interest, as
these can be both B-branes and A-branes (see, for example, the families constructed in [3,5]). Thus, in what follows mid-
dimensional hyper-Kähler submanifolds coming from Γ equivariant flat GC-connections shall be described, and a study of
different finite group actions onΣ which lead to mid-dimensional equivariant branes shall be carried through.

Whilst some of the results presented in this paper can be deduced for higher rank groups, the present manuscript shall
focus on the group GC = SL(2,C). We denote by Mg

dR the moduli space of flat SL(2,C)-connections on a compact Riemann
surface of genus g , and for simplicity drop the group label, but maintain the label for the genus since it will become of use
at several stages of our analysis. Recall that the real dimension of this space is dimMg

dR = 6g − 6, and the dimension of the
moduli spaceMγ ,n

dR of flat SL(2,C)-connections on an n-punctured Riemann surface of genus γ with fixed localmonodromies
(with simple eigenvalues) is

dimMγ ,n
dR = 6γ − 6 + 2n, (5)

provided that either γ ≥ 2, or that γ ≥ 1 and n ≥ 1, or finally that γ = 0 and n ≥ 4. Otherwise, the dimension of Mγ ,n
dR

is either 0 or 2. Note that the corresponding moduli spaces of flat PSL(n,C)-connections have the same dimensions as their
SL(n,C) counterparts. In order to study mid-dimensional subspaces of Mg

dR coming from finite group actions, note that the
dimension of the space of Γ -equivariant SL(2,C)-connections and the order of the group Γ are closely related.

Proposition 10. Let Σ be a compact Riemann surface of genus g ≥ 2, and Γ be a finite group of order h acting on Σ by
holomorphic automorphisms. If a component of the moduli space of equivariant flat SL(2,C)-connections on Σ has half the
dimension of the moduli space Mg

dR, then h = 2k for some k ∈ N.

Proof. In order to show that all prime factors of h are 2, note that for each prime factor p of h there exists a subgroup Γp of
Γ such that Γp ∼= Zp. Considering the induced group action Zp ×Σ → Σ, by Riemann–Hurwitz the genera g and γ of the
Riemann surfacesΣ andΣ/Zp, respectively, satisfy

n(p − 1) = 2(g − 1 + p(1 − γ )), (6)

where, as in Proposition 4, n = |B|. Thus since dimMg
dR = 6g − 6 one has that

dimMg
dR = 3n(p − 1) + 6p(γ − 1). (7)

From Section 2, any component of the moduli space of flat Γ -equivariant SL(2,C)-connections onΣ can be identified with
an open subspace of the moduli space of flat SL(2,C) or PSL(2,C)-connections on a n-punctured compact Riemann surface
of genus γ , for n ∈ N satisfying (6), and hence

3n(p − 1) + 6p(γ − 1) ≤ 12(γ − 1) + 4n. (8)

Moreover, the inequality is also valid in the special case of invariant flat connections, where one has to considerMγ

dR instead
of Mγ ,n

dR . One should note that the exceptional cases in (5), i.e. the case of γ = 0 and n ≤ 3, and of γ = 1 and n = 0, are
excluded by dimensional reasons: indeed, in these cases dimMg

dR ≥ 6 > 4 ≥ 2Mγ ,n
dR .
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When the genus is γ > 1, the inequality (8) only holds if p = 2. Similarly, when the genus is γ = 1, Eq. (8) holds only
when p = 2 (since γ = 1 and n = 0 imply that g = 1 which would contradict the assumption that g ≥ 2). Finally, when
γ = 0 the inequality (8) is equivalent to

(3p − 7)n ≤ 6(p − 2), (9)

which holds only when p = 2, since when n = 2 the Riemann surfaceΣ would have genus 0 which would contradict again
the assumption that g ≥ 2. □

Theorem 11. Let Σ be a compact Riemann surface of genus g ≥ 2 and Γ be a finite group acting on Σ by holomorphic
automorphisms such that a component of themoduli space of Γ -equivariant flat SL(2,C)-connections onΣ has half the dimension
of the moduli space Mg

dR. Then one of the following holds:

(I) Γ = Z2 acts by a fixed points free involution τ onΣ , or
(II) Σ is hyperelliptic of genus 3 and Γ = Z2 × Z2.

In the later case (II), one of the Z2-factors corresponds to the hyperelliptic involutionψ , whilst the other Z2-factor corresponds to
an involution ρ with 4 fixed points.

Proof. By Proposition 10, the order of Γ must be 2k for some k ∈ N.When k = 1, equality in (8) implies that the number n
of fixed points is 0 and one recovers the case (I). Consider then k ≥ 2, in which case the finite group Γ contains a subgroup
of order 4 isomorphic to Z4 or Z2 × Z2. Indeed, let us assume that there does not exists any element of order d > 2. Then,
any two different elements a and b of order 2 must commute since the order of their product ab is 2 by assumption. If there
exists an element a of order d > 2, then d = 2l for some l ∈ {2, . . . , k} and a suitable power of a generates a subgroup of
Γ which is isomorphic to Z4. But if Z4 is a subgroup of Γ , similar arguments as in the proof of Proposition 10 apply. In fact,
if we denote by n1 the number of branch values ofΣ ↦→ Σ/Z4 with exactly one preimage and by n2 the number of branch
values with two preimages, we would obtain instead of (8) the inequality

9n1 + 6n2 + 24(γ − 1) ≤ 12(γ − 1) + 4(n1 + n2), (10)

which only leaves the case γ = 0. From Riemann–Hurwitz we get that n1 must be even, and as γ = 0 we have n1 > 0 (as
otherwise the Galois group would not contain an element of order 4). Therefore, (10) shows that only n1 = 2 and n2 = 1 is
possible, which is excluded as it corresponds to g = 1. Hence, the group Γ must contain Z2 × Z2 as a subgroup.

In what follows the two generators of the Z2-actions onΣ shall be denoted by ψ and ρ. Since the stabilizer subgroup of
a point in the Riemann surfaceΣ is cyclic, the fixed points of ψ and ρ must be distinct. Consider then

Σψ := Σ/ψ = Σ/Z2; with gψ := genus ofΣψ ,

and nψ the number of fixed points of ψ . Then, by Riemann–Hurwitz, one has that nψ = 2g + 2 − 4gψ , and therefore the
genus gρ,ψ of the quotientΣψ/Z2 = Σ/(Z2 × Z2) is given by

gρ,ψ =
1
8 (6 + 2g − nρ − nψ ), (11)

where nρ is the number of fixed points of ρ (acting on Σ). Thus, as in Proposition 10, since gρ,ψ ≥ 0 and nρ, nψ ≥ 0, one
must have

6 + 2g ≥ nρ + nψ ≥ 6g − 6. (12)

From Eqs. (11)–(12) one therefore has that 2 ≤ g ≤ 3.Note that by Theorem 8 the real dimension of the moduli space needs
to be divisible by 8, and thus the genus g must be g = 3. In this case, Eqs. (11)–(12) imply that nρ + nψ = 12.Moreover, as
involutions on a surface of genus 3 cannot have 12 fixed points by Riemann–Hurwitz, it follows that either the involutions
have nψ = 8 and nρ = 4 fixed points, or nψ = 4 and nρ = 8. Therefore, Σ must be hyperelliptic and, without loss of
generality, one may consider ψ to be the hyperelliptic involution and ρ an involution with 4 fixed points. Finally, Z2 × Z2
must be equal to Γ since otherwise the dimension of the moduli space of equivariant SL(2,C)-connections would be strictly
less than 6, which is a contradiction. □

Remark 12. The connections on the quotient space of Theorem11(II)must have localmonodromies conjugate to diag(1,−1)
around any of the 6 branch values in CP1, and thus are PSL(2,C)-connections, since otherwise the dimension of the
corresponding moduli space would be strictly less than 6.

One should note that a genus 3 curve Σ is either hyperelliptic or it is a non-singular plane quartic. In the hyperelliptic
caseΣ has exactly 8Weierstrass points which are the ramification points of the canonical mapΣ → CP1, and the action of
Aut(Σ) on the Weierstrass points can be found in [17, Table 3]. More information about these actions can be found in [18]
and references therein. Moreover, #Aut(Σ) ≤ 168, and thus only 2, 3 and 7 can divide the order of Aut(Σ).

In the case of Theorem 11(II) the quotientΣ/(Z2 × Z2) is the sphere with 6 marked points: a pair of points corresponds
to the 4 fixed points of ρ while the remaining 4 marked points are the image of the 8 Weierstrass points ofΣ . The space of
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surfaces Σ as in Theorem 11(II) is complex 3-dimensional, and local coordinates are given by 3 pairwise distinct points on
CP1

\ {0, 1,∞}. The space of holomorphic quadratic differentials onΣ which are invariant under Γ = Z2 ×Z2 is (naturally
isomorphic to) the space of meromorphic quadratic differentials on CP1 with at most simple poles at the 6 marked points,
which is also complex 3-dimensional. One should note that Example 7.1 fits in this case, and further study of this setting in
terms of Higgs bundles shall be given in Section 6.

4. Higgs bundles and the Hitchin fibration

In order to understand the geometry and topology of themid-dimensional branes constructed in Section 2.2, these branes
shall be studied through Higgs bundles. Recall that Higgs bundles appeared in N. Hitchin’s work as solutions of Yang–
Mills self-duality equations on a Riemann surface [1]. Classically, a Higgs bundle on a compact Riemann surface Σ of genus
g ≥ 2 is a pair (E,Φ) where E is a holomorphic vector bundle on Σ , and Φ , the Higgs field, is a holomorphic 1-form in
H0(Σ, End0(E)⊗KΣ ), for KΣ the cotangent bundle ofΣ and End0(E) the traceless endomorphisms of E. This definition is for
SL(n,C)-Higgs bundles, and one can further generalize it to define Higgs bundles for arbitrary complex groups GC. Moreover,
through stability conditions, one can construct their moduli spaces MGC .

A natural way of studying the moduli space of Higgs bundles is through the Hitchin fibration, sending the class of a Higgs
bundle (E,Φ) to the coefficients of the characteristic polynomial det(xI − Φ). The generic fibre is an abelian variety, which
can be seen as the Jacobian variety (or subvarieties of the Jacobian) of an algebraic curve S, the spectral curve associated to
the Higgs field [19]. For instance in the case of classical GL(n,C)-Higgs bundles, the Hitchin base is

⨁n
i=1H

0(Σ, K i
Σ ) and the

smooth fibres can be seen through spectral data as Jacobian varieties Jac(S) of S. In the case of SL(n,C)-Higgs bundles the
Hitchin base is

⨁n
i=2H

0(Σ, K i
Σ ) and the generic fibres are given by Prym(S,Σ) ⊂ Jac(S).

One can understand Higgs bundles fixed by involutions by studying the induced action on the Hitchin fibration (see, for
instance [20] for Higgs bundles for split real forms, andmore generally [21] for any real form, and [3,5] for other involutions).
Inwhat follows the induced action of the finite groupΓ fromTheorem8onHiggs bundles shall be considered first, in order to
later describe how the (B, B, B)-branes from Theorem 8 intersect the fibres of the Hitchin fibration. Then, through the duality
of abelian varieties in the fibres of the Hitchin fibration, we shall comment on the dual (B, A, A)-branes in Section 7. Since
the (B, B, B)-branes from Theorem 8 appearing as mid-dimensional spaces in the moduli space of SL(2,C)-Higgs bundles
correspond to Higgs bundleswhose spectral curves are double covers ofΣ , some basic facts about unbranched and branched
double covers of a Riemann surfaceΣ shall be mentioned next.

Unbranched double covers are well-known to be parametrized by H1(Σ,Z2) (e.g. [22]), 2-torsion line bundles P2 on Σ .
Then, for any α ∈ H1(Σ,Z2) there exists a unique (up to gauge equivalence) flat connection ∇ such that its monodromy
m∇ : π1(Σ) → H1(Σ,Z) → C∗, which is abelian, is given by α. The parallel transport along (not necessarily closed) curves
γ from q ∈ Σ to q′

∈ Σ shall be denoted by fγ : (P2)q → (P2)q′ . Fixing a point s0 in the fibre (P2)q0 \ {0}, for some q0 ∈ Σ ,
the double cover corresponding to ∇ is

Sα := {sq ∈ (P2)q | q ∈ Σ; ∃γ from q0 to qwith fγ (s0) = sq} (13)

where the covering map Sα → Σ is defined by sq ↦→ q. Note that in particular α is trivial if and only if Sα is not connected.
Branched double covers can be constructed through holomorphic sections s ∈ H0(Σ, L2), for L a holomorphic line bundle

onΣ . For simplicity, onemay restrict to sectionswhich have simple zeros.1 Then, there is a (unique) double coverπ : S → Σ
branched over the zeros of s such that a square root t ∈ H0(S, π∗L) satisfying t2 = s exists. The cover is then given by

S = {tq ∈ Lq | t2q = sq}. (14)

Two double covers π : S → Σ and π̃ : S̃ → Σ are said to differ by the flat (holomorphic) Z2-bundle P2 if they correspond
to the same holomorphic section s ∈ H0(Σ, L2), but are obtained through the line bundles L and P2 ⊗ L respectively.

5. Equivariant branes and fixed point free actions

As seen in Theorem 11(I), mid dimensional equivariant (B, B, B) branes in the moduli space of Higgs bundles can be
constructed through fixed point free actions on the Riemann surfaceΣ . Thus, in what follows, these induced branes shall be
seen inside the SL(2,C) Hitchin fibration.

5.1. Fixed point free actions and equivariant Higgs bundles

Let Σ be a Riemann surface of genus g = 2γ − 1 with a fixed point free involution τ , and Στ := Σ/τ its quotient,
which has genus γ . Every τ -invariant holomorphic quadratic differentialQ onΣ is the pull-back of a holomorphic quadratic
differential Qτ onΣτ , and as done previously, we shall restrict to those with only simple zeros (i.e., to generic points in the
Hitchin base). Consider S and Sτ , the double covers ofΣ andΣτ defined by Q and Qτ , respectively. The involution τ lifts to a
fixed point free involution on S, denoted by the same symbol, and S/τ = Sτ .Moreover, the involution τ and the involution
σ switching the sheets of the double cover S commute.

1 This condition will become apparent and natural when considering the Hitchin fibration, since the smooth locus is given by sections inH0(Σ, K 2) with
simple zeros, i.e., the locus of points in the base corresponding to smooth spectral curves.
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Remark 13. Recall that for a τ -equivariant SL(2,C)-connection ∇ , the corresponding connection onΣτ is either a SL(2,C)-
connection or a PSL(2,C)-connection. We call connections of the first type invariant, and note that connections of the latter
type cannot be realized by an invariant trace-free connection 1-form. Therefore, the (B, B, B)-brane has two (connected)
components, of which the first one shall be referred to as the τ -invariant (B, B, B)-brane.

Theorem 14. Let τ be a fixed point free involution as in Theorem 11, and q a generic point in the SL(2,C) Hitchin base,
corresponding to a spectral curve S. The intersection of the τ -equivariant (B, B, B)-branewith the generic fibre over q is the abelian
variety

P := {L ∈ Jac(S) | σ ∗L = L∗, τ ∗L = L}.

This space admits an identification with

P = Prym(Sτ ,Στ )/Z2 ⊂ Prym(S,Σ), (15)

where the generator of Z2 is the holomorphic line bundle P2 on Sτ corresponding to the (unbranched) covering S → Sτ .

Proof. From [1], the SL(2,C) Hitchin base is given by H0(Σ, K 2
Σ ), and a generic fibre of the Hitchin fibration over Q ∈

H0(Σ, K 2
Σ ) with simple zeros is given by the Prym variety

{L ∈ Jac(S) | σ ∗L ⊗ L = O}. (16)

If a Higgs pair (E,Φ) is invariant with respect to the automorphism τ , then the corresponding eigenline bundle L must be
symmetric, i.e., τ ∗L = L. In order to show that one can identify P , a subvariety of Jac(S), with the quotient Prym(Sτ ,Στ )/Z2,
note that via pull-back one has a surjective map

Prym(Sτ ,Στ ) → P ⊂ Prym(S,Σ). (17)

Surjectivity of the above map can be seen from looking at the dimensions of the corresponding abelian varieties, which are
the same by construction. It remains to compute the kernel of the map (17). Let L be a holomorphic line bundle of degree
0 on Sτ which pulls back to the trivial holomorphic line bundle on S, and equip the line bundle with its unique compatible
unitary flat connection ∇ . On S, this flat connection is trivial. Thus ∇ has monodromy ±1 along closed curves on Sτ , and −1
is only possible when a lift of a loop to S does not close. Therefore, the line bundle L is either the trivial bundle, or the bundle
P2 corresponding to the covering S → Sτ . □

5.2. Fixed point free actions and anti-equivariant Higgs bundles

Let Σ be a Riemann surface of odd genus g = 2γ − 1 with a fixed point free involution τ as in Theorem 11. Following
Section 3, anti-equivariant Higgs bundles (∂̄,Φ) with respect to the involution τ are given by a τ -equivariant holomorphic
structure ∂̄ and a Higgs fieldΦ which satisfies

τ ∗Φ = −g−1
◦Φ ◦ g,

where g is the gauge transformation such that τ ∗∂̄ = ∂̄ .g and (g ◦ τ )g = id. In this situation, the following analog of
Theorem 8 can be proved:

Proposition 15. The connected components of the moduli space of stable anti-equivariant Higgs bundles are complex submani-
folds of the moduli space of Higgs bundles with respect to I and Lagrangian with respect to the symplectic forms corresponding to
J and K .

Proof. Over the locus of regularly stable bundles, the full moduli space is the cotangent bundle and the complex structure
decouples. The moduli space of equivariant stable bundles is a complex submanifold of the moduli space of stable bundles,
and anti-equivariant Higgs fields for a τ−equivariant bundle are a complex subvector space of the space of Higgs fields.
Hence, gauge classes of anti-equivariant Higgs bundles give rise to a complex submanifold. To see that the holomorphic
symplectic form vanishes on this submanifold, we just apply the transformation formula for the diffeomorphism τ to the
integral defining the holomorphic symplectic structure.

The dimension of a connected component of the moduli space of stable anti-equivariant Higgs bundles is half of the
dimension of the full moduli space: because the moduli space of equivariant Higgs bundles is a hyper-Kähler submanifold
at its smooth points, the moduli space of equivariant Higgs bundles with zero Higgs field has at its smooth points 1

4 = ( 12 )
2

the dimension of the full moduli space. Moreover, for a given stable equivariant Higgs pair (∂̄, 0) with zero Higgs field, the
dimension of the vector space of equivariant Higgs fields with respect to ∂̄ also equals to 1

4 the dimension of the full moduli
space and must therefore coincide with the dimension of the vector space of anti-equivariant Higgs fields with respect to ∂̄ .
Hence the dimension of the tangent space at the smooth point (∂̄, 0) of the moduli space of anti-equivariant Higgs bundles
sums up to 1

2 of the dimension of the full moduli space. □
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Note that forΦ a Higgs field with spectral line bundle L, the Higgs field −Φ has spectral line bundle σ ∗L. Thus, following
similar steps as in the proof of Theorem 14, one can see that an anti-equivariant Higgs pair is determined (after choosing a
square root of its determinant and after fixing a τ -invariant base point P2 in the Prym variety) by a point in the space

P∨
:= {L ∈ Jac(S) | σ ∗L = L∗, τ ∗L = L∗

} ⊂ Prym(S,Σ). (18)

Remark 16. When considering involutions on the spectral data associated to Higgs bundles for the group SL(2,C), from
[21, Theorem 4.12] one has that line bundles in Prym(S,Σ) of order two induce certain real Higgs bundles, namely SL(2,R)-
Higgs bundles. These are the line bundles which are both invariant and anti-invariant with respect to the involution defining
the double cover S → Σ , and the monodromy of the fibration has an explicit description in terms of spectral data [23,24].

As seen before, the natural involution σ of the spectral curve S and the fixed point free involution τ commute on S. Hence,
τ ◦σ is an involutionwhich is fixed point free and σ descends to an involution of the quotient Riemann surface S̃ := S/(τ ◦σ ).
Moreover, the quotient Riemann surface S̃/σ becomesΣτ in a natural way yielding the following diagram:

S
mod σ

↙↙ ↓↓

mod τ◦σ

↘↘
Σ

mod τ ↘↘

Sτ := S/τ

↓↓

S̃

mod σ↙↙
Στ = (Sτ )/σ

(19)

Proposition 17. The abelian variety P∨ in (18) is given by

P∨
= Prym(S̃,Στ )/Z2,

where the generator of Z2 is the holomorphic 2-torsion line bundle P̃2 on S̃ defining the cover S → S̃.

Proof. Let P̃ be a fixed base point in the affine Prym which is in P . Since σ and τ commute, then P∨
= {L ∈ Jac(S) | σ ∗L =

L∗, (σ ◦ τ )∗L = L} ⊂ Prym(S,Σ), so the proposition follows analogously to the proof of Theorem 14. □

6. Hyperelliptic surfaces of genus 3

As seen in Theorem11, equivariant branes onRiemann surfacesΣ of genus 3 occur eitherwith a fixedpoint free involution
τ (as studied in Section 5), or with a hyperelliptic involution ψ and a second involution ρ which has 4 fixed points. In what
follows both settings for compact Riemann surfaces of genus 3 shall be considered.

6.1. Equivariant branes through ψ and ρ

In order to study the latter case appearing in Theorem 11(II), consider a compact Riemann surface Σ of genus 3 and a
holomorphic quadratic differential Q with simple zeros which is invariant under the involutions ψ and ρ giving a finite
group action of Γ as in Theorem 11(II). In what follows, we shall study the intersection P of the mid-dimensional (B, B, B)
brane of equivariant Higgs bundles in Theorem 11with the generic fibres of the SL(2,C) Hitchin fibration over Q , where Q is
a generic (having simple zeros) element of H0(Σ, K 2

Σ ). The double cover S defined in (14) giving the spectral curve of Higgs
fieldsΦ for which det(Φ) = Q has genus 9 and is defined as

π : S = {ωp ∈ Kp | p ∈ Σ; −ω2
p = Qp} → Σ . (20)

The cover inherits from Tot(K ) a natural involution σ : S → S withπ ◦σ = π, and the involutionsψ and ρ lift to commuting
involutions (denoted by the same symbols) on S. Note that neither of the involutions ψ and ρ on S has fixed points since
the points over the fixed points onΣ are interchanged. As in the case of fixed point free involutions, one may consider the
quotient

S̃ = S/(Z2 × Z2), (21)

which is now a hyperelliptic surface of genus 3, not necessarily the same as Σ . Its hyperelliptic involution is given by the
induced action of σ , and it branches over the 8 points onCP1: six of them are themarked points of the sphere as in Section 3,
while the other two branch points are given by the two zeros of the meromorphic quadratic differential on CP1 which pulls
back to Q .

As mentioned previously, the intersection P ⊂ Prym(S,Σ) of the mid-dimensional (B, B, B) brane of equivariant Higgs
bundles with a generic fibre Prym(S,Σ) of the SL(2,C) Hitchin fibration parametrizes the (ψ- and ρ-) equivariant Higgs
fields with determinant Q . In order to give a geometric description of this variety, note the following:
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Proposition 18. The pullback (along S̃ → S) determines an immersion of Jac(S̃) into Prym(S,Σ) with finite kernel.

Proof. The last part of the proposition is clear once one has the existence of a line bundle M → S satisfying M2
= K ∗

Σ

and which is invariant under ψ and ρ. Such a bundle needs to be the pull-back of O(−1) → CP1 by the fourfold covering
S → CP1 given by factoring out σ and ψ. Given L ∈ Jac(S̃), one has that L ⊗ σ ∗L is invariant under σ , and hence it is the
pull-back of a holomorphic line bundle on CP1

= S̃/σ . Moreover, since the cover is obtained through the abelian group
Z2 × Z2, its monodromy

p : H1(S̃,Z) → S4 (22)

is abelian, where S4 is the 4-symmetric group. Furthermore, the action is of order two: for each γ ∈ H1(S̃,Z) the composition
is p(γ ) ◦ p(γ ) = Id . In order to see when the pull-back of a holomorphic line bundle L ∈ Jac(S̃) becomes trivial on S, equip
Lwith its unique compatible unitary flat connection ∇

L. The bundle L is in the kernel of the pull-back map if and only if the
monodromy representation of the pull-back of ∇

L on S is trivial. This happens if and only if the monodromy of ∇
L along a

closed curve γ is 1 when p(γ ) = Id, and ±1 if p(γ ) ̸= Id, and the set of such line bundles is finite. □

Following the notation from previous sections, consider the two quotientsΣρ := Σ/ρ and Sρ := S/ρ. Then, one has the
following:

Proposition 19. The branched covers S/(ρ ◦ σ ) → Σρ and Sρ → Σρ differ by the Z2-bundle determining the unbranched cover
Σ → Σρ .

Proof. In order to prove the proposition, consider the concrete description of 2-fold covers in Section 4. The surface Σ
is given by pairs (q, sq) where q ∈ Σρ and sq is given by parallel transport along some curve (with fixed start point) and
end point q with respect to the unitary flat connection corresponding to the Z2-bundle P2 → Σρ . From that perspective
the spectral curve S is given by triples (q, sq, ωq) where (q, sq) are as above and ωq ∈ (KΣρ )q satisfies −ω2

q = (Qρ)q. This
identification holds as the pull-back of KΣρ toΣ is the canonical bundle KΣ . Then, the involutions σ and ρ act as

σ : (q, sq, ωq) ↦→ (q, sq,−ωq), (23)

ρ : (q, sq, ωq) ↦→ (q,−sq, ωq). (24)

The spectral curve Sρ is thus obtained by identifying (q, sq, ωq) ∼ (q,−sq, ωq), and the curve S/(ρ ◦ σ ) by identifying
(q, sq, ωq) ∼ (q,−sq,−ωq). Taking the tensor product, i.e., (q, sq ⊗ ωq), which is well-defined on S/(ρ ◦ σ ), it follows that
the branched cover S/(ρ ◦ σ ) → Σρ is determined by Qρ ∈ H0(Σρ, K 2

Σρ
) and the holomorphic square root P2 ⊗ KΣρ of K 2

Σρ

as required. □

The setting of Theorem 11(II) can be shown to be equivalent to the one of Theorem 11(I) for Riemann surfaces of genus
3, reducing the study of the mid-dimensional equivariant (B, B, B) branes to fixed point free actions on Riemann surfaces:

Lemma 20. Let Σ be a hyperelliptic Riemann surface of genus 3 with hyperelliptic involution ψ , equipped with an additional
involution ρ with 4 fixed points. Then, τ = ρ ◦ ψ is a fixed point free involution.

Proof. Note that since ρ andψ commute, themap ρ is an involution. Moreover, ρ gives rise to an involution on the quotient
Σ/ψ = CP1, which must have exactly two fixed points by Riemann–Hurwitz. The possible fixed points of ρ on Σ must
map to the fixed points of ρ on CP1. Hence, there are only 4 possible fixed points, but these are already fixed points of ρ by
assumption, and therefore they are interchanged by τ = ψ ◦ ρ. □

6.2. Equivariant branes through a fixed point free involution τ

From the previous analysis, the hyperelliptic involutionψ on a compact Riemann surfaceΣ of genus g = 3 together with
a fixed point free involution τ also induce an involution ρ = ψ ◦ τ which has 4 fixed points. Moreover, one can see that all
genus 3 Riemann surfaces with fixed point free actions must be hyperelliptic:

Proposition 21. Let Σ be a Riemann surface of genus 3 with a fixed point free involution τ . Then,Σ is hyperelliptic.

The proof is analogous to the proof of Lemma 20, and thus a hyperelliptic Riemann surface of genus 3 with an additional
involution with 4 fixed points is the same as Riemann surface of genus 3 with a fixed point free involution. Hence, the
equivariant points in the Hitchin base can be described as follows:

Proposition 22. Let Σ be a hyperelliptic Riemann surface of genus 3 with an additional involution ρ with 4 fixed points. Then,
a holomorphic quadratic differential is invariant under the hyperelliptic involution ψ and invariant under ρ if and only if it is
invariant under τ = ρ ◦ ψ.
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Proof. Without loss of generality, suppose thatΣ is given by the algebraic equation

y2 = (z − z1)(z + z1)(z − z2)(z + z2)(z − z3)(z + z3)(z − z4)(z + z4),

for 8 pairwise disjoint points ±z1, . . . ,±z4 ∈ C \ {0} ⊂ CP1, and that ψ : (y, z) ↦→ (−y, z), ρ(y, z) = (y,−z) and
τ (y, z) = (−y,−z) A basis for H0(Σ, K 2

Σ ) is then { 1
y2
(dz)2, z

y2
(dz)2, z2

y2
(dz)2, z3

y2
(dz)2, z4

y2
(dz)2, 1

y (dz)
2}. Therefore the space

of τ -invariant holomorphic quadratic differentials is spanned by {
1
y2
(dz)2, z2

y2
(dz)2, z4

y2
(dz)2}, and this is exactly the space of

ψ and ρ invariant holomorphic quadratic differentials. □

From the above result, if the gauge class of a flat connection is equivariant with respect to the hyperelliptic involution
ψ and with respect to ρ, it is also equivariant with respect to τ . The converse is true as well for τ -invariant connections
(compare with Remark 13):

Proposition 23. Let ∇ be a flat, irreducible, τ -invariant SL(2,C)-connection on a Riemann surface Σ of genus 3, where τ is a
fixed points free involution. Then, ∇ is equivariant with respect to the hyperelliptic involution.

Proof. As ∇ is invariant with respect to τ it is given by the pull-back of a flat SL(2,C)-connection on the genus 2 surface
Στ = Σ/τ . If ∇ is irreducible, the corresponding connection onΣτ is irreducible as well. Hence, by a result of [12, Theorem
2.1], the connection is equivariant with respect to the hyperelliptic involution on the genus 2 surface, and hence it is also
equivariant with respect to the hyperelliptic involution on the genus 3 surface. □

Looking at the dimension of the various moduli spaces, it becomes clear that τ -invariant irreducible flat connections on
Σ are not invariant but only strictly equivariant with respect to the generators ψ and ρ of Γ .

Remark 24. Let Γ be the group generated by ψ and ρ. The proposition above states that (stable) strictly Γ -equivariant
Higgs bundles are exactly (stable) τ -invariant Higgs bundles. Hence, the intersection of the space of equivalence classes of
Γ -equivariant Higgs bundles with a regular fibre of the Hitchin map is given by Theorem 14, see also Theorem 25.

Note that irreducibility is not a necessary condition to be in the equivariant brane, as there exist flat reducible connections
onΣ which correspond to irreducible connections on the hyperelliptic genus 2 surfaceΣτ . Furthermore, since flat abelian
connections on the quotientΣτ are equivariant with respect to the hyperelliptic involution, a non-trivial class in H1(Στ ,Z2)
is given by the choice of two points (w1, w2) out of the six Weierstrass points ofΣτ . Such a class is represented by a closed
curve on CP1

\ {w1, . . . , w6} with even winding number around w3, . . . , w6 and odd winding number around w1 and w2.
Without loss of generality, suppose that Στ is given by y2 = (z − z1)(z − z2)...(z − z6) and that the class in H1(Στ ,Z2)
labelling the double cover π : Σ → Στ is determined by w1 = z1 and w2 = z2, this is, is dual to the above homology class.
Then, the Riemann surfaceΣ has equation u2

= (z1 − z2)2(z2 − z3)..(z2 − z6)(w2
−

z1−z3
z2−z3

)...(w2
−

z1−z6
z2−z6

), the fixed point free
involution τ is given by (u, w) ↦→ (−u,−w), and the covering map π : Σ → Στ is given by

π : (u, w) ↦→ (y, z) =

(
uw

(w2 − 1)3
,
z2w2

− z1
w2 − 1

)
. (25)

In order to study the SL(2,C) Hitchin fibration on Σ , and the one induced on Στ , consider Q a holomorphic quadratic
differential onΣτ with simple zeros. After aMoebius transformation, and up to constant scaling Q =

z(dz)2

y2
, and its pull-back

to Σ is π∗Q = 4 (z1−z2)2(w2
−1)(z2w2

−z1)(dw)2

u2
. The quadratic differentials Q and π∗Q label SL(2,C)-Higgs bundles, and thus

define spectral curves S and Sτ which are double covers ofΣ andΣτ , respectively. Note that there is a natural unbranched
covering S → S/τ = Sτ . Thus, there is the following natural commutative diagram, where as in previous sections, σ is the
natural involution switching the sheets of the 2-covers:

S
mod τ

→→

mod σ

↓↓

Sτ = S/τ

mod σ

↓↓

mod ψ
→→ Σ̃ := Sτ/ψ

mod σ
↓↓

Σ = S/σ
mod τ

→→ Στ = Σ/τ
mod ψ

→→ CP1

(26)

Note that Σ̃ → CP1 branches over the points 0,∞, z1, . . . , z6 ∈ CP1. Denote the corresponding Weierstrass points of
Σ̃ by the same symbols. Moreover, one can show that the unbranched cover Sτ → Σ̃ corresponds to the pair of Weierstrass
points 0,∞ ∈ Σ̃, and that the unbranched cover Sψ → Σ̃ corresponds to the pair of Weierstrass points z1, z2 ∈ Σ̃ , for
Sψ := S/ψ . This proves the first part of the following theorem:

Theorem 25. The (B, B, B)-brane of Γ -equivariant SL(2,C)-Higgs bundles intersects the generic fibres of the Hitchin fibration in
an abelian variety

P = Jac(Σ̃)/Z2 × Z2, (27)
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where Σ̃ is the hyperelliptic Riemann surface of genus 3 branched over 0,∞, z1, . . . , z6 and Z2 × Z2 is isomorphic to the group
generated by the Z2-bundles L(0 − ∞) ∈ Jac(Σ̃) and L(z1 − z2) ∈ Jac(Σ̃).

Analogously, one has that

P∨
= Jac(E) × Jac(M)/Z2 × Z2, (28)

where E is the elliptic curve which branches over 0,∞, z1, z2 ∈ CP1, M is the hyper-elliptic curve of genus 2 branched over
0,∞, z3, z4, z5, z6 ∈ CP1, and Z2 × Z2 is isomorphic to the group generated by the Z2-bundles L(z1 − z2) ∈ Jac(E) and
L(0 − ∞) ∈ Jac(M).

Proof. In order to describe the points in the regular Hitchin fibres corresponding to τ -anti-equivariant Higgs fields, recall
from Proposition 17 that these are given by the Prym variety of S̃ = S/(τ ◦ σ ) → Στ modulo the Z2-line bundle L0 → S̃
corresponding to the covering S → S̃. In particular, this Z2-bundle is the unique non-trivial line bundle on S̃ which pulls
back to the trivial bundle on S. In what follows we will show that L0 is given by L0 = L(z+

1 + z−

1 − z+

2 − z−

2 ) → S̃, where
z±

1 and z±

2 are the points in S̃ lying over z1, z2 ∈ CP1, respectively, in the commutative diagram (29). Indeed, this can be
deduced from the fact that the maps S̃ → Στ and Sτ → Στ differ by the holomorphic Z2-bundle L(z1 − z2) on Στ , where
L(z1 − z2) ∈ Jac(Στ ) is a holomorphic line bundle whose pull-back to S is trivial.

Consider the Riemann surface of genus 2 defined as

M := Sψ/(τ ◦ σ ).

The natural action of σ on the Riemann surfaceM has 6 fixed points lying over 0,∞, z3, z4, z5, z6 ∈ CP1. Moreover, one can
see that the induced map Sψ → Sψ/(τ ◦ σ ) = M branches over the 4 points lying over z1, z2 ∈ CP1, leading to the following
diagram:

S

mod σ

↙↙

mod τ◦σ

↓↓

mod ψ

↘↘
Σ

mod τ

↘↘

S̃

mod σ

↙↙

mod ψ

↘↘

mod ψ◦σ

↓↓

Sψ

mod τ◦σ

↙↙
Στ

mod ψ

↘↘

E

mod σ

↓↓

M

mod σ

↙↙
CP1

(29)

From the above descriptions, it can be seen that the Riemann surface E := S̃/(ψ ◦ σ ) is of genus 1. Furthermore, the
induced action of σ on E gives a map E → CP1 branched over 0,∞, z1, z2 ∈ CP1. Thus, one obtains a natural map (via
pull-back composed with tensor product) given by

Jac(E) × Jac(M) → Prym(S̃,Στ ). (30)

We will show next that this map is surjective and its kernel is finite. In fact, the first assertion follows from the second. In
order to compute the kernel of (30) consider holomorphic line bundles l1 → E and l2 → M which have the property that
the tensor product of their pull-backs to S̃ is trivial.

Note that all line bundles over S̃ which are contained in the pull-back of Jac(E) areψ-anti-invariant while those contained
in the pull-back of Jac(M) are ψ-invariant. Hence, the intersection of the pull-backs of the two Jacobians is 0-dimensional
and consists of Z2-bundles L1 on S̃. The line bundles l1 → E and l2 → M which pull-back to L1 → S̃ are also Z2-bundles on
E and M. Therefore it follows that either l1 = L(0 − ∞) → E and l2 = L(0 − ∞) → M or both are trivial. Noting that the
Z2-bundle L0 → S̃ is also given as the pull back of L(z1 − z2) → E, the proof of (28) (and of the theorem) follows. □

Remark 26. For Γ the group generated by ψ and ρ, note that Γ -anti-equivariant Higgs fields have not been defined. To
see why this was not done, note that the space {L ∈ Prym(S,Σ) | ψ∗L = L∗, ρ∗L = L∗

} is 0-dimensional, the space
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{L ∈ Prym(S,Σ) | ψ∗L = L∗, ρ∗L = L} is 2 dimensional, and the space {L ∈ Prym(S,Σ) | ψ∗L = L, ρ∗L = L∗
} is

1 dimensional. Hence, the only reasonable way to get a half-dimensional space would be to consider the space of Higgs
bundles for which there exists a g ∈ Γ with respect to which the Higgs field is anti-invariant, and this is the space of
τ -anti-equivariant Higgs bundles.

7. Some remarks on equivariant branes and Langlands duality

Langlands duality can be seen in terms of Higgs bundles as a duality between the fibres of the Hitchin fibrations forMGC
and MLGC , for

LGC the Langlands dual group of GC (as was first seen in [25]). As explained [4, Section 12] under the duality,
specifically homological mirror symmetry, there should be an equivalence of categories of branes onMGC (Σ) andMLGC (Σ)
under which the brane types (B, B, B) ↔ (B, A, A) are exchanged.

Examples of branes and their proposed duals in the moduli spaces of Higgs bundles for low rank groups were presented
in [4], and further studied in [26]. Moreover, in the case of the (B, A, A)-branes coming from real forms G of the complex lie
group GC there is a conjecture of what the (support of) the dual branes should look like [3] (see [27] and [28] for support).
It is thus natural to ask equivalent questions in the setting of the present research, about what the duality between branes
should be in the case of the spaces constructed in this paper. In the case of U(m,m)-Higgs bundles, the duality was studied
in [28] where through the spectral data description of [29] in terms of anti-invariant line bundles, the proposed dual branes
were constructed in terms of invariant ones, which agreed with the conjecture in [3].

In [28] Hitchin proposed a hyper-holomorphic sheaf which together with the hyper-Kähler subspace of the moduli space
of Higgs bundles would give the (B, B, B)-brane. It is interesting to note that given the similarities of the construction of the
subspaces of Higgs bundles in terms of equivariant objects, the hyperholomorphic sheaf constructed in [28] for U(m,m)-
Higgs bundles should give naturally a hyperholomorphic sheaf for the equivariant (B, B, B)-branes of the present paper.

Since from the work of Section 5.1 and the previous propositions, the branes obtained are subspaces of abelian varieties
too, following the lines of thought of the real case onemay think that themirror of the equivariant (B, B, B)-brane is given by
moduli space of Higgs bundles onΣ which areψ-equivariant and anti-equivariant with respect to τ . Here, anti-equivariant
means that the corresponding holomorphic structure ∂̄ is equivariant, this is, τ ∗∂̄ = ∂̄ .g and τ ∗Φ = −g−1Φg for a
suitable gauge transformation g . Note that the determinant of an anti-equivariant Higgs field is an invariant holomorphic
quadratic differential Q . As before, after the choice of a square root of Q , anti-equivariant Higgs fields with determinant Q
are parametrized by the abelian variety P∨ which consists of points in the Prym(S,Σ) which are invariant under ψ and
anti-invariant under τ .
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