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a b s t r a c t

Large icosahedral virus capsids are composed of symmetrons, organized arrangements of capsomers.
There are three types of symmetrons: disymmetrons, trisymmetrons, and pentasymmetrons, which have
different shapes and are centered on the icosahedral 2-fold, 3-fold and 5-fold axes of symmetry, respec-
tively. Sinkovits and Baker (2010) gave a classification of all possible ways of building an icosahedral
structure solely from trisymmetrons and pentasymmetrons, which requires the triangulation number T
to be odd. In the present paper we incorporate disymmetrons to obtain a geometric classification of large
icosahedral viruses formed by regular penta-,tri-, and disymmetrons, giving all mathematically consis-
tent and theoretically possible solutions. For every class of solutions, we further provide formulas for
symmetron sizes and parity restrictions on h, k, and T numbers. We also present several methods in
which invariants may be used to classify a given configuration.

! 2017 Elsevier Inc. All rights reserved.

1. Introduction

Viruses are known to have two essential components: the
genetic material and the protein capsid, which surrounds
the DNA or RNA. In 1956 Watson and Crick noticed that because
the amount of genomic material in a virus could only encode for
a few capsid proteins much smaller than the overall capsid, the
genetic material needed instead to code for a few smaller proteins,
produced in large numbers and arranged symmetrically (Watson
and Crick, 1956).

The 60 symmetries of the icosahedron would then imply that
there should be 60 proteins forming the capsid, but this is not what
has been observed in most cases. In 1962 Caspar and Klug used the
idea of quasi-equivalence to explain how more than 60 proteins
could come together (Klug and Caspar, 1962). With 60 proteins,
each face of the icosahedron has three proteins, one near each ver-
tex. They proposed that the faces could be further triangulated,
with each smaller triangle still having three proteins. The triangu-
lation can be seen on a triangulated sphere as in Fig. 1(A).

The original icosahedral vertices are at the center of the red
pentagons. The number of smaller triangles per original icosahe-

dral face is known as the triangulation number T. The five or six
proteins around a single vertex come together to form units called
capsomers, which can be modelled as small spheres at the vertices
produced by the triangulation. The total number of capsomers is
related to the triangulation number by the formula (Wrigley,
1969).

Ncap ¼ 12þ 10ðT $ 1Þ: ð1Þ

In Fig. 1(B) one can see the dual of the triangulated sphere, in
which capsomers are represented by the pentagons or hexagons.
Throughout the paper we shall use the triangulated sphere repre-
sentation, as we can convert the 3D surface into a 2D coordinate
system by using any triangulated icosahedral face to tile the 2D
plane. Whilst sometimes in the literature readers may find refer-
ences to crystallography in order to study these lattices, we shall
make the present manuscript self-contained and thus mention
below the main ideas and mathematical properties, some of which
shall be proven in the Appendices for completion. For further refer-
ence in the area, the reader should refer to, e.g., Phillips et al.
(1956).

The triangulation of the icosahedral face provides then the lines
of a lattice of equilateral triangles, and whose axis are denote by h
and k, as can be seen in Fig. 2(A) below.

The triangulation number T can also be expressed in terms of h
and k through the formula (Klug and Caspar, 1962)
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T ¼ h2 þ hkþ k2; ð2Þ

and the h; k parameters can be seen in terms of Fig. 2 by noting that
if one started from one 5-fold axis, proceeded h units along the tri-
angulated sphere’s edges, turned p

3 radians counterclockwise, and
proceeded k units, then a neighboring 5-fold vertex would be
reached (see Fig. 3).

To reverse the process, one simply takes the triangle formed by
three adjacent 6-fold centers of symmetry and map this triangle
onto each face of the icosahedron. Since capsomers are located
on vertices of the grid, they can be described through lattice points
given by coordinates in the h and k-axes. In polar coordinates, the
h-axis is oriented along h ¼ 0 and the k-axis is oriented along h ¼ p

3

(an example is shown in Fig. 2(A) below). Note that pentasym-
metrons become hexagons in two dimensions.

In 1969, Wrigley noticed in Wrigley (1969) that large icosahe-
dral virus capsids tend to dissociate into certain organized collec-

tions of capsomers called symmetrons. These symmetrons have
the shapes of regular pentagons (pentasymmetrons), equilateral tri-
angles (trisymmetrons), and line segments (disymmetrons). Each of
these symmetrons is centered on a corresponding axis of symme-
try of the icosahedron (e.g., a pentasymmetron must be centered
on an icosahedral vertex, through which a 5-fold axis of symmetry
passes) (Wrigley, 1969). Additionally, they must be arranged in a
way that conforms exactly to the symmetry of the icosahedron.
Due to their shapes, symmetrons can be characterized simply by
their edge lengths, which we shall denote by d; t, and p correspond-
ing to di-, tri-, and pentasymmetrons respectively (these lengths
are often denoted by eDS; eTS, and ePS in the literature). Since the
icosahedral vertices are always occupied by a pentasymmetron
capsomer, one necessarily has p > 0. Moreover, the symmetron
shapes also lead to simple formulas for the number of capsomers
per symmetron:

NDS ¼ d; ð3Þ

NTS ¼
tðt þ 1Þ

2
; ð4Þ

NPS ¼ 1þ 5pðp$ 1Þ
2

: ð5Þ

The number of capsomers in each symmetron depends on the
edge length, and the symmetries of the icosahedron determine
how many of each symmetrons there can be. One should note that
icosahedral symmetry does not fully determine the number of
symmetrons of each type since there are often multiple solutions
that do or do not contain disymmetrons, and this can be seen for
instance in Table 3. The above Eqs. (3)–(5) can be combined with
Wrigley’s formula (1) relating the total number of capsomers Ncap

to T to produce the equation

T $ 1 ¼ 3pðp$ 1Þ þ tðt þ 1Þ þ 3d: ð6Þ

Although not all virus capsids are made of symmetrons, tri- and
pentasymmetrons have been found to compose several viruses,
examples of which can be found below in Table 1.

In 2010, Sinkovits and Baker gave a complete classification of all
ways to arrange penta- and trisymmetrons to form the icosahedral
capsid (Sinkovits and Baker, 2010). However, disymmetrons were
not considered, and hence as noted by Wrigley, only accounted
for viruses with odd T numbers (Wrigley, 1969). A different
approach was taken by Grytczuk (2006), who used number theory
to describe a systematic procedure to find all solutions to
T $ 1 ¼ 3pðp$ 1Þ þ tðt þ 1Þ þ 3d, but he did not account for the
physical shape of the symmetrons or the fact that T may be para-
metrized as h2 þ hkþ k2, leading to many solutions not corre-
sponding to physical configurations (Grytczuk, 2006). We
dedicate this paper to classify regular symmetron arrangements
from a geometric perspective, making full use of all geometric
information.

2. Towards a classification of icosahedral viruses

In what follows we shall give a description of how icosahedral
viruses can be classified by analysing the disymmetrons contained
in the capsid, leading to six different classes of viruses. In the
absence of disymmetron, i.e. when d ¼ 0, one recovers the results
of Sinkovits and Baker (2010), which we shall refer to as Class 1.
In order to classify viruses for which d > 0, we shall begin with def-
initions for bordering, edge, and interior capsomers.

Definition 1. A lattice point ðx; yÞ is adjacent to another lattice
point, if it is connected to it by exactly one edge in the lattice.

Fig. 1. Icosahedral capsid via the dual triangulated sphere, where 5-fold centers in
red and ðh; kÞ ¼ ð1;3Þ. (A) Triangulated sphere; (B) dual space.

Fig. 2. (A) The triangular lattice with h- and k-axes; (B) Lattice point ðx; yÞ and its 6
adjacent points.

Fig. 3. Triangulation number T ¼ 7 with h ¼ 2 and k ¼ 1. The lines inside the
pentagons and hexagons are from the triangulated sphere, while the polygons
themselves are from the dual representation.
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In the lattice representation a di-, tri-, and penta- symmetron is
a collection of lattice points which form a line, a triangle or
pentagon. From the above definition, the point ðx; yÞ is adjacent
to ðxþ 1; yÞ; ðx; yþ 1Þ; ðx$ 1; yþ 1Þ; ðx$ 1; yÞ; ðx; y$ 1Þ, and ðxþ 1;
y$ 1Þ as seen above in Fig. 2(B).

Definition 2. In a symmetron S, a capsomer is an interior
capsomer if all adjacent lattice points are occupied by capsomers
of S. Otherwise, it is an edge capsomer.

Definition 3. Set the grid so that a disymmetron D lies along the
line k ¼ 0. We say that any k ¼ &1 capsomer adjacent to a
capsomer of D is a bordering capsomer with respect to D.

Definition 4. A symmetron is a bordering symmetron that bor-
ders the disymmetron D if either:

' it has at least two capsomers with the same k coordinate which
are bordering capsomers with respect to D.

' or, all of its capsomers are bordering capsomers with respect
to D.

The k coordinate of the bordering capsomers determines which
side of D the symmetron is bordering. (Figs. 4 and 5)

As can be seen from the above definitions, bordering always
occurs with respect to a disymmetron, so for simplicity we shall
write pentasymmetrons border when referring to pentasymmetrons
bordering disymmetrons. Because of the convex shape of penta-
and trisymmetrons, a bordering penta- or trisymmetron will have
a single string of edge capsomers bordering exactly one side of the
disymmetron. The symmetron shapes also dictate that if a sym-
metron S has bordering capsomers with k ¼ 1, then all of the cap-
somers of S have k P 1. Moreover, 2-fold symmetry about the
disymmetrondictates that another symmetron S0 must be bordering
the disymmetron on the opposite side. From the above, on each side
of the disymmetron there can be at most one bordering di-, at most
one bordering tri-, and at most one bordering pentasymmetron.

By a symmetry of overlapping argument (through which one
applies icosahedral symmetry to find an overlap of symmetrons,
giving a proof by contradiction), a disymmetron centered on an
edge e can only be adjacent to the four disymmetrons centered
on edges belonging to icosahedral faces with edge e, the two
trisymmetrons centered on icosahedral faces with edge e, and
the two pentasymmetrons centered on the endpoints of edge e.
Note that two disymmetrons bordering each other must be paral-
lel, but if they are centered on two edges of a single icosahedral
face F, then this is not possible if d > 1 (3-fold symmetry about
the center of F dictates that they must be at an angle of p

3 to each
other). Therefore disymmetrons can not border each other unless
d ¼ 1. In A, we prove that bordering symmetrons must exist if
disymmetrons exist, i.e., when d > 0.

In what follows we shall use geometric methods to give a clas-
sification of icosahedral viruses based upon what types of sym-
metrons border the disymmetrons leading to six distinct classes.
When only pentasymmetrons border, one has Classes 2 and 5;
when only trisymmetrons border, one has Classes 3 and 6; when
both tri- and pentasymmetrons border, one has Class 4. As stated
before, when d ¼ 0 gives Class 1. We shall now show how these
Classes arise and prove that they are the only possible configura-
tions. Unless stated otherwise, we shall set the coordinate grid so
that, if the disymmetron exists, it occupies the lattice points from
ð1;0Þ to ðd;0Þ. We shall also be applying 2-, 3-, or 6-fold symme-
tries, implicitly referring to the formulas given in B.

2.1. Class 1: No disymmetrons, d ¼ 0

Sinkovits and Baker showed that there are three configurations
for d ¼ 0, and we refer the reader to Sinkovits and Baker (2010) for

Fig. 4. (A) An example of a pentasymmetron with edge capsomers (black)
distinguished from interior capsomers (red); (B) An example of a disymmetron of
length 4 (yellow) and its 5 (black) k ¼ 1 bordering capsomers.

Fig. 5. A disymmetron (yellow) and above it, its bordering pentasymmetron (red)
and trisymmetron (blue). The penta- and trisymmetron below the disymmetron are
not bordering, since neither of the items in the definition apply.

Table 1
Known viruses, their ðh; kÞ characterizations, their T numbers, their symmetrons sizes ðd; t; pÞ, and the method (Met.) of analysis (Klose et al., 2016; Sinkovits and Baker, 2010).
Abbreviations: NS, negatively stained; IIV, Invertebrate iridescent virus; TIV, Tipula iridescent virus; SIV, Sericesthis iridescent virus; CIV, Chilo iridescent virus; FV3, Frog virus 3;
PBCV-1, Paramecium bursaria chlorella virus; PpV01, Phaeocystis pouchetii virus. *The quality of Wrigley’s images allowed for several possible interpretations. For frog virus 3 (FV3),
results are by Yan et al. in unpublished results, (see Sinkovits and Baker, 2010).

Virus ðh; kÞ T ðd; t; pÞ Met. Ref.

SIV (IIV-2)* ð5;8Þ 129 ð0;10;3Þ NS Wrigley (1969)
SIV (IIV-2)* ð4;10Þ 156 ð9;10;3Þ NS Wrigley, 1969
SIV (IIV-2)* ð7;7Þ 147 ð0;10;4Þ NS Wrigley (1969)
TIV (IIV-1) ð7;7Þ 147 ð0;10;4Þ NS Manyakov (1977)
CIV (IIV-6) ð7;7Þ 147 ð0;10;4Þ Cryo Yan et al. (2009)
FV3 ð7;8Þ 169 ð0;11;4Þ Cryo (I)
PBCV-1 ð7;8Þ 169 ð0;11;4Þ Cryo Yan et al. (2005)
PpV01 ð7;10Þ 219 ð0;13;4Þ Cryo Yan et al. (2000)
Faustovirus ð7;12Þ 277 ð0;15;4Þ Cryo Klose et al. (2016)
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the proof that these are all that exist. These authors considered
three different configurations because several different formulas
arise (we will derive them in Section 3) and the distinction was
necessary to conform to their restriction that h 6 k.

Along this paper, we drop the restriction h 6 k, and thus treat all
three configurations of Sinkovits and Baker (2010) as the same.
Note that handedness can be accounted for with a reflection of
the plane, or a switch between h and k coordinates. What these
configurations have in common is that, after a reflection of the
plane if needed, one can set a coordinate grid so that:

' There is a pentasymmetron P1 with center at ð0;0Þ.
' P1 has an edge from ð1$ p; p$ 1Þ to ð0; p$ 1Þ.
' There is a trisymmetron edge from ð1$ p; pÞ to ðt $ p; pÞ.
' There is a pentasymmetron P2 with an edge from ðt $ pþ 1; pÞ
to ðt; pÞ.

' P2 has its center at ðt $ pþ 1;2p$ 1Þ.

The above information, which we shall refer to as the Grid
Description (GD), combined with the icosahedral symmetries, is
sufficient to fill the plane. Examples can be seen below in Fig. 6.

In what follows we shall describe the five classes for which
d > 0 by giving its GD and showing why this description provides
sufficient information to the determine the class of a virus.

2.2. Class 2: Only pentasymmetrons border I

This Class has the following Grid Description:

' There is a pentasymmetron P1 with center at ð0;0Þ.
' P1 has an edge from ð1$ p; p$ 1Þ to ð0; p$ 1Þ.
' There is a disymmetron from ð1; p$ 1Þ to ðd; p$ dÞ.
' There is a disymmetron from ð1$ p; pÞ to ðd$ p; pÞ.
' There is a trisymmetron from ðd$ pþ 1; pÞ to ð0; pÞ.
' There is a pentasymmetron P2 with an edge from ðdþ 1; p$ dÞ
to ðdþ p; p$ dÞ.

' P2 has its center at

ðdþ 1;2p$ d$ 1Þ ¼ ðp$ t þ 1;pþ t $ 1Þ:

Examples can be seen in Fig. 7. In order to see that the above GD
determines the class, consider a pentasymmetron that has an edge
with k ¼ c for some constant c, and let all of its capsomers have
k P c. Considering the 6-fold symmetry around the pentasym-
metron, one can see that there will be overlapping capsomers if
all of the k ¼ c $ 1 lattice points adjacent to the k ¼ c edge cap-
somers are occupied by a single disymmetron. Now recall that
we have set the grid so that there exists a disymmetron from

ð1;0Þ to ðd;0Þ. Without loss of generality, we may consider the bor-
dering pentasymmetron that has k ¼ 1 capsomers from ðm;1Þ to
ðn;1Þ, with m ( 0 6 n 6 d$ 1. Then the pentasymmetron center
is at ðm;1þ n$mÞ.

Notice that ð1;0Þ gets mapped to ðnþ 1;1$mÞ under a p
3 rota-

tion about the pentasymmetron center. The points from ðnþ 1;1Þ
to ðnþ 1;$mÞ can not be pentasymmetron capsomers by C and
can not be disymmetrons by 6-fold symmetry, so they must be
trisymmetron capsomers. Each of the points are of the form
ðnþ 1; pÞ, with 1 6 p 6 $m. By a $ p

3 rotation about the pentasym-
metron center, they are mapped to ðmþ p;0Þ.

If there are zero such ðnþ 1; pÞ points, then m ¼ 0, and we can
apply 2-fold and 6-fold symmetries to partially fill the grid. Note
that if n < d$ 2, then ðnþ 2;1Þ can not be a penta- or disym-
metron capsomer, so it must be a trisymmetron capsomer. But this
would make both penta- and trisymmetrons border the disym-
metron, which lies outside of this case. The case of n ¼ d$ 1 fixes
t ¼ 0, and there is enough information to see that this arrangement
fits the GD and fills the plane. The case of n ¼ d$ 2 also fixes t ¼ 0,
and there is enough information to fill the plane. However, this
arrangement does not conform to the GD and we shall see in Sec-
tion 2.4 that it gives a degenerate form of Class 4.

We shall now assume that there is at least one point of the form
ðnþ 1; pÞ. These points belong to the same trisymmetron. If there
are at least two such points, the trisymmetron orientation becomes
fixed. If there is only one such point, the same orientation can
occur, but an alternate orientation becomes possible and is covered
in Section 2.5, not here. By 6-fold symmetry, there is another
trisymmetron with edge along ðmþ p;0Þ. By 2-fold symmetry
about the k ¼ 0 disymmetron, the trisymmetron with edge
ðnþ 1; pÞ must also have an edge with k ¼ 0, fixing the size so that
dþ t ¼ p. This is enough information to cover the plane and verify
that this conforms to the GD.

2.3. Class 3: Only trisymmetrons border I

This Class has the following Grid Description:

' There is a pentasymmetron P1 with center at ð0;0Þ.
' P1 has an edge from ð1$ p; p$ 1Þ to ð0; p$ 1Þ.
' There is a disymmetron from ð1; p$ 1Þ to ðd; p$ 1Þ.
' There is a trisymmetron from ð2$ p; pÞ to ðd$ 1; pÞ.
' There is a pentasymmetron P2 with an edge from ðdþ 1; p$ 1Þ
to ðdþ p; p$ 1Þ.

' P2 has its center at ðdþ 1;2p$ 2Þ ¼ ðt $ pþ 3;2p$ 2Þ.

Examples of configurations in this class can be seen in Fig. 8. We
now show how this configuration arises. As in the previous section,
without loss of generality, we consider the trisymmetron having
k ¼ 1 capsomers from ðm;1Þ to ðn;1Þ, with

Fig. 6. Examples of Class 1 viruses with no disymmetrons: (A) corresponding to
d ¼ 0; t ¼ 3, and p ¼ 3 and ðh; kÞ ¼ ð5;1Þ. Different shades of blue are used to
distinguish different trisymmetrons; (B) corresponding to d ¼ 0; t ¼ 2, and p ¼ 2
and ðh; kÞ ¼ ð5;1Þ.

Fig. 7. Examples of viruses in Class 2 where only pentasymmetrons border: (A)
corresponding to d ¼ 1; t ¼ 2, and p ¼ 3 and ðh; kÞ ¼ ð2;4Þ; (B) corresponding to
d ¼ 2; t ¼ 2, and p ¼ 4 and ðh; kÞ ¼ ð2;4Þ.
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m ( 0 6 n: ð7Þ

The third vertex of the trisymmetron is at ðm;1þ n$mÞ, which
makes the center 2mþn

3 ; 3þn$m
3

! "
.

By B, under a 2p
3 rotation, ð1;0Þ goes to ðmþ n;2$mÞ. Since

these points can not be tri- or disymmetron capsomers by C and
6-fold symmetry, the points from ðnþ 1;1Þ to ðmþ nþ 1;1$mÞ,
which we shall call the e points, must be pentasymmetron cap-
somers of the same pentasymmetron by C.

Since p > 0, there will always be at least one e point. Note that if
there are at least two e points, then they form an edge that defines
the orientation of the pentasymmetron. This orientation may occur
if there is only one e point, but there is also an alternate orientation
as we discuss in Section 2.6. Rotating the edge between ðnþ 1;1Þ
and ðmþ nþ 1;1$mÞ by 2p

3 clockwise, we see that a different pen-
tasymmetron has a k ¼ 0 edge. By 2-fold symmetry around the
k ¼ 0 disymmetron, the pentasymmetron containing ðnþ 1;1Þ
must also have a k ¼ 0 edge, fixing the pentasymmetron edge size:
dþ p ¼ t þ 2. This is enough information to fill the plane and thus
determines the class.

2.4. Class 4: Both tri- and pentasymmetrons border

This Class has the following Grid Description:

' There is a pentasymmetron P1 with center at ð0;0Þ.
' P1 has an edge from ð1$ p; p$ 1Þ to ð0; p$ 1Þ.
' There is a disymmetron from ð1$ p; pÞ to ðd$ p; pÞ.
' There is a trisymmetron edge from ð1$ p; pþ 1Þ to ðt $ p; pþ 1Þ.
' There is a pentasymmetron P2 with an edge from
ðd$ 2pþ 1; pþ 1Þ to ðd$ p; pþ 1Þ.

' P2 has its center at ðd$ 2pþ 1;2pÞ ¼ ðt $ pþ 2;2pÞ.

Examples can be seen in Fig. 9.
In this case, since both the penta- and trisymmetrons border the

disymmetron, they both have no k ¼ 0 capsomers, so ð0; 0Þ is a
disymmetron capsomer. Suppose that a bordering trisymmetron
is adjacent to ð0;0Þ. It can not also be adjacent to ðdþ 1; 0Þ, since
otherwise the pentasymmetron would not be able to border.
Applying 3-fold symmetry, we see that there will be a disym-
metron capsomer with h < 0 and k ¼ 0, and this capsomer will
be part of a disymmetron parallel to the k-axis. Thus the disym-
metron containing ð0;0Þ must be parallel to hþ k ¼ 0. However,
it will not be bordering either of the trisymmetrons bordering
the k ¼ 0 disymmetron. Hence, the bordering trisymmetron cannot
be adjacent to any non-disymmetron k ¼ 0 capsomers, and each
edge of the trisymmetron is completely bordering a disymmetron.

Consider now all of the k ¼ 1 bordering capsomers. Since one
penta- and one trisymmetron border a given side of the disym-
metron, there will be exactly one string of pentasymmetron cap-

somers and one string of trisymmetron capsomers. A total of four
disymmetrons may be adjacent to but not bordering the k ¼ 0
disymmetron, and two of these disymmetrons may each have at
most one adjacent k ¼ 1 capsomer. Because each edge of the
trisymmetron completely borders a disymmetron, on either side
of the string of the trisymmetron k ¼ 1 bordering capsomers, there
will be a disymmetron capsomer. The only other component of the
k ¼ 1 bordering capsomers is the string of pentasymmetron bor-
dering capsomers, which is immediately before or after the string
of di-tri-disymmetron capsomers.

In view of the analysis above and without loss of generality, we
may assume that a trisymmetron edge goes from ðd$ 1;1Þ to
ðd$ t;1Þ. This means that the third trisymmetron vertex is at
ðd$ t; tÞ, so the trisymmetron center is located at 3d$2t$1

3 ; tþ2
3

! "
. 3-

fold symmetry means a disymmetron must exist from
ðd$ t $ 1;1Þ to ðd$ t $ 1; dÞ. By 2-fold symmetry about the k ¼ 0
disymmetron, there must be a trisymmetron with edge from
ð2;$1Þ to ð1þ t;$1Þ and third vertex at ð1þ t;$tÞ. By 3-fold sym-
metry about this new trisymmetron, there is a disymmetron from
ð1þ t;$1$ tÞ to ð2þ t $ d;$2$ t þ dÞ.

Consider the k ¼ 1 capsomers adjacent to the k ¼ 0 disym-
metron. For a pentasymmetron to border the disymmetron,
d P t þ 3. Therefore the disymmetron from ð1þ t;$1$ tÞ to
ð2þ t $ d;$2$ t þ dÞ passes through ð$1;1Þ. Consider the lattice
points from ð0;1Þ to ðd$ t $ 2;1Þ. These must belong to a single
pentasymmetron, since no two symmetrons of the same type
may be bordering the same side of a disymmetron. This fixes the
pentasymmetron orientation and gives d ¼ t þ pþ 1, thus com-
pleting the plane.

2.5. Class 5: only pentasymmetrons border II

We shall consider here an exceptional case appearing when
only pentasymmetrons border, which lies outside the realm of
Class 2. This Class has the following GD:

' There is a pentasymmetron P1 with center at ð0;0Þ.
' P1 has an edge from ð1$ p; p$ 1Þ to ð0; p$ 1Þ.
' There is a disymmetron from ð0; pÞ to ðp$ 2;2Þ.
' There is a trisymmetron edge from ð$1; pÞ to ð$1; pþ 1Þ.
' There is a pentasymmetron P2 with an edge from ðp$ 2;3Þ to
ð2p$ 3;3Þ.

' P2 has its center at ðp$ 2; pþ 2Þ.

Examples can be seen in Fig. 10.
We now show how this configuration arises. In this case only

pentasymmetrons border and there is only one ðnþ 1; pÞ point. In
addition to the orientation covered in Section 2.2, there is another
orientation in which the trisymmetron has an edge along h ¼ 1.

Fig. 8. Examples of viruses in Class 3 where only trisymmetrons border: (A)
corresponding to d ¼ 3; t ¼ 3; p ¼ 2, and ðh; kÞ ¼ ð2;4Þ; (B) corresponding to
d ¼ 3; t ¼ 5;p ¼ 4, and ðh; kÞ ¼ ð2;4Þ.

Fig. 9. Examples of viruses in Class 4 where both tri- and pentasymmetrons border:
(A) corresponding to d ¼ 4; t ¼ 1; p ¼ 2, and ðh; kÞ ¼ ð1;4Þ, where different shades of
yellow are used to distinguish different disymmetrons; (B) corresponding to
d ¼ 5; t ¼ 2; p ¼ 2, and ðh; kÞ ¼ ð1;4Þ.
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Because there is another trisymmetron with a k ¼ 0 vertex cap-
somer, 2-fold symmetry about the k ¼ 0 disymmetron forces the
trisymmetron containing ðnþ 1;1Þ to have a vertex capsomer with
k ¼ 0. This fixes t ¼ 2, and the point ðnþ 1;0Þ can now only be a
disymmetron, fixing the disymmetron size so that we have
p ¼ dþ 1, and therefore the plane can be canonically filled.

2.6. Class 6: only trisymmetrons border II

We shall consider here an exceptional case appearing when
only trisymmetrons border, which lies outside the realm of Class
3. This Class has the following GD:

' There is a pentasymmetron P1 with center at ð0;0Þ.
' P1 has an edge from ð$1;1Þ to ð0;1Þ.
' There is a disymmetron from ð0;2Þ to ð0; dþ 1Þ.
' There is a trisymmetron edge from ð$1;2Þ to ð$1; dþ 2Þ.
' There is a pentasymmetron P2 with an edge from ð0; dþ 2Þ to
ð1; dþ 2Þ.

' P2 has its center at ð0; dþ 3Þ ¼ ð0; t þ 2Þ.

Examples can be seen in Fig. 11.
This is the case in which only trisymmetrons border and there is

only one pentasymmetron capsomer among the e points men-
tioned in Section 2.3, implying m ¼ 0 in (7). In addition to the ori-
entation covered in that section, there is another orientation in
which the pentasymmetron has an edge with k ¼ 1. The disym-
metron containing ðn;2Þ has a pentasymmetron vertex capsomer
at one end, at ðnþ 1;1Þ. Therefore, the k ¼ 0 disymmetron must
have pentasymmetron vertex capsomers at its ends also. Note that
these ends also have k ¼ 0. If the pentasymmetron has a k ¼ 1
edge, then the only way for it to have a k ¼ 0 vertex capsomer is
to have one at ðnþ 1;0Þ. This gives p ¼ 2 and dþ 1 ¼ t, and the
plane can be filled.

3. Formulas and invariants

As in Sinkovits and Baker (2010), we now derive formulas for
d; t, and p based on h and k, and we also provide parity restrictions
on h and k. In our Grid Descriptions, we examined the position of
the center of adjacent pentasymmetrons with respect to a penta-
symmetron centered at ð0;0Þ, which leads to the following table:

Note that the ðh; kÞ characterization of the icosahedral triangu-
lation requires that h; k ) 0, so the coordinates in Table 2 are not
exactly ðh; kÞ, and the signs of these coordinates are relevant. Since
p > 0 and (with the exception of Class 1) d > 0, all k coordinates
are non-negative. Also, for Classes 2, 3, 5, and 6, we can use the
extra equations to see that also h ) 0.

If the coordinate of the adjacent pentasymmetron center has
0 6 h 6 p

3, then the h steps taken in the ðh; kÞ characterisation will

be in the direction of h ¼ 0 (Case A). If the coordinate has
p
3 6 h 6 2p

3 , then the h steps are in the direction of h ¼ p
3 (Case B).

If the coordinate has 2p
3 6 h 6 p, then the h steps are in the direc-

tion of h ¼ 2p
3 (Case C). Since the k coordinates of our adjacent pen-

tasymmetron centers are always non-negative, one does not need
to consider h > p. Finally, when h ) 0, one has Case A. If we do not
have these restrictions on h, we may also have Cases B or C.

We can find formulas of the ðh; kÞ characterisation for the Case A
solely based on the coordinates of the adjacent pentasymmetron
center. In Case B, the coordinates of the adjacent pentasymmetron
center must be rotated clockwise by p

3, i.e. ðx; yÞ ! ðxþ y;$xÞ. In
Case C, the coordinates must be rotated clockwise by 2p

3 , given by
ðx; yÞ ! ðy;$x$ yÞ. Using these transformations and the coordi-
nates listed in Table 2, we can solve for d; t, and p based on ðh; kÞ.
Additionally, we need to reverse h and k in each equation to find
solutions in a flipped orientation. One should also note that d; t,
and p must be integral, giving parity restrictions on h and k, which
in turn give parity restrictions on T (since T ¼ h2 þ hkþ k2), leading
to Table 3. For concision, when referring to parity restrictions on
h; k, and T, we denote equivalence modulo 2 with ‘‘*”. When spec-
ifying equality, we write ‘‘¼”.

Using the above formulas, one may compute all possible solu-
tions of ðd; t; pÞ for some particular values of ðh; kÞ. As an example,
for ðh; kÞ ¼ ð3;4Þ there are only four possible type of configurations,
shown in Fig. 12. Further examples of different solutions for low
values of ðh; kÞ can be seen in Table 4 below.

The following are different methods through which one can dis-
tinguish the class of an icosahedral virus:

' Check whether a configuration conforms to each GD.
' Do a visual classification: look for the existence of disym-
metrons and, for each pair of types of symmetrons, look at
whether these symmetrons’ closest edges are parallel or not.
This is slightly error-prone.

' Substitute the specific values for h and k into Table 3 and see
which Class yields the correct values of d; t, and p.

' Use the numerical test we describe in D.

Fig. 10. Examples of viruses in Class 5 giving exceptional case of when only
pentasymmetrons border: (A) corresponding to d ¼ 2; t ¼ 2; p ¼ 3, and
ðh; kÞ ¼ ð5;1Þ; (B) corresponding to d ¼ 3; t ¼ 2; p ¼ 4, and ðh; kÞ ¼ ð5;1Þ.

Fig. 11. Examples of viruses in Class 6 giving exceptional case of when only
trisymmetrons border: (A) corresponding to d ¼ 3; t ¼ 4; p ¼ 2, and ðh; kÞ ¼ ð0;6Þ;
(B) corresponding to d ¼ 3; t ¼ 4;p ¼ 2, and ðh; kÞ ¼ ð0;6Þ.

Table 2
Coordinates of adjacent pentasymmetron centers with respect to a pentasymmetron
at the origin. Note that the ðh; kÞ characterization of the icosahedral triangulation
requires that h; k ) 0, so the coordinates above are not exactly ðh; kÞ.

Class Coordinates Extra equations

1 ðt $ pþ 1;2p$ 1Þ d ¼ 0
2 ðp$ t þ 1;pþ t $ 1Þ p ¼ dþ t
3 ðt $ pþ 3;2p$ 2Þ t þ 2 ¼ pþ d
4 ðt $ pþ 2;2pÞ t þ pþ 1 ¼ d
5 ðp$ 2;pþ 2Þ t ¼ 2;dþ 1 ¼ p
6 ð0; t þ 2Þ p ¼ 2;dþ 1 ¼ t
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4. Discussion

The authors in Sinkovits and Baker (2010) asked the question of
what combinations of d; t, and p lead to valid configurations of
symmetrons. In this paper we give an answer to their question,
and classify the configurations of admissible icosahedral viruses.
In particular, Table coords lists extra equations which must be ful-
filled, and it is necessary that d > 0 in non-Class 1 configurations,
t ) 0 and p > 0 in all configurations. For example, we can see that
any combination of t and p will be a valid Class 1 configuration,
which is the same conclusion as the one given in Sinkovits and
Baker (2010) but avoids the calculation of limits they had to
perform.

More interestingly, we can ask which solutions could be found
when given h and k parameters. They could be multiple solutions
for d; t, and p and are subject to the aforementioned restrictions
as well as the parity conditions on h and k (or the special condi-
tions on h and k for Classes 5 and 6). Thus if ðh; kÞ * ð1;1Þmod2,
we may have solutions from Classes 1, 2, and 4. If
ðh; kÞ * ð0;0Þmod2, we may have solutions from Classes 2, 3, and

4 (and possibly 5 and 6). If ðh; kÞ * ð0;1Þ or ð1;0Þmod2, we may
have solutions from Classes 1, 3, and 4 (and possibly 6). Note that
we can also have multiple solutions from the same Class. Further-
more, we can also use our knowledge of the restrictions and Table 3
to find the exact conditions under which we will have solutions in
any class.

Table 3
Formulas for d; t, and p in terms of h and k, as well as restrictions on h; k, and T.

Class d t p h; k Parity T Parity

1 0 h$1
2 þ k hþ1

2
h * 1 T * 1

1 0 k$1
2 þ h kþ1

2
k * 1 T * 1

1 0 k$h$1
2

hþkþ1
2

h: * k T * 1
1 0 h$k$1

2
hþkþ1

2
h: * k T * 1

2 h$ 1 k$h
2 þ 1 hþk

2
h * k T * h

2 k$ 1 h$k
2 þ 1 hþk

2
h * k T * h

3 h$ 1 hþ k
2 $ 2 k

2 þ 1 k * 0 T * h
3 k$ 1 h

2 þ k$ 2 h
2 þ 1 h * 0 T * k

4 hþ k$ 1 hþ k
2 $ 2 k

2
k * 0 T * h

4 hþ k$ 1 h
2 þ k$ 2 h

2
h * 0 T * k

4 k$ 1 k$h
2 $ 2 hþk

2
h * k T * h

4 h$ 1 h$k
2 $ 2 hþk

2
h * k T * h

5 hþ 1 2 hþ 2 k ¼ hþ 4 T * h
5 kþ 1 2 kþ 2 h ¼ kþ 4 T * h
6 k$ 3 k$ 2 2 h ¼ 0 T * k
6 h$ 3 h$ 2 2 k ¼ 0 T * h

Fig. 12. All possible configurations for ðh; kÞ ¼ ð3;4Þ: (A) with ðd; t; pÞ ¼ ð0;5;2Þ in
Class 1; (B) with ðd; t; pÞ ¼ ð0;0;4Þ in Class 1; (C) with ðd; t;pÞ ¼ ð2;3;3Þ in Class 3;
and (D) with ðd; t;pÞ ¼ ð6;3;2Þ in Class 4.

Table 4
For some (not all) values of h and k with 100 6 T ( 300, all possible solutions of d; t,
and p and the Classes they belong to.

ðh; kÞ Class:ðd; t;pÞ

(0,10) 3: (9,8,1), 4: (9,3,5), 6: (7,8,2)
(0,11) 1: (0,5,6), 3: (10,9,1), 6: (8,9,2)
(0,12) 3: (11,10,1), 4: (11,4,6), 6: (9,10,2)
(1,10) 1: (0,10,1), 1: (0,4,6), 4: (10,4,5)
(1,11) 1: (0,11,1), 1: (0,6,6), 4: (10,3,6)
(1,12) 1: (0,12,1), 1: (0,5,7), 4: (12,5,6)
(2,9) 1: (0,6,5), 1: (0,3,6), 3: (8,8,2), 4: (10,8,1)
(2,10) 2: (1,5,6), 3: (9,9,2), 4: (11,5,5), 4: (9,2,6), 4: (11,9,1)
(2,11) 1: (0,7,6), 1: (0,4,7), 3: (10,10,2), 4: (12,10,1)
(2,12) 2: (1,6,7), 3: (11,11,2), 4: (13,6,6), 4: (11,3,7), 4: (13,11,1)
(3,9) 1: (0,10,2), 1: (0,7,5), 2: (2,4,6), 4: (8,1,6)
(3,10) 1: (0,11,2), 1: (0,3,7), 3: (2,6,6), 4: (12,6,5)
(3,11) 1: (0,12,2), 1: (0,8,6), 2: (2,5,7), 4: (10,2,7)
(3,12) 1: (0,13,2), 1: (0,4,8), 3: (2,7,7), 4: (14,7,6)
(4,8) 2: (3,3,6), 3: (3,6,5), 3: (7,8,3), 4: (11,6,4), 4: (7,0,6), 4: (11,8,2),

5: (5,2,6)
(4,9) 1: (0,8,5), 1: (0,2,7), 3: (8,9,3), 4: (12,9,2)
(4,10) 2: (3,4,7), 3: (3,7,6), 3: (9,10,3), 4: (13,7,5), 4: (9,1,7), 4: (13,10,2)
(4,11) 1: (0,9,6), 1: (0,3,8), 3: (10,11,3), 4: (14,11,2)
(4,12) 2: (3,5,8), 3: (3,8,7), 3: (11,12,3), 4: (15,8,6), 4: (11,2,8), 4: (15,12,2)
(5,7) 1: (0,9,3), 1: (0,8,4), 2: (4,2,6), 2: (6,0,6)
(5,8) 1: (0,10,3), 1: (0,1,7), 3: (4,7,5), 4: (12,7,4)
(5,9) 1: (0,11,3), 1: (0,9,5), 2: (4,3,7), 4: (8,0,7), 5: (6,2,7)
(5,10) 1: (0,12,3), 1: (0,2,8), 3: (4,8,6), 4: (14,8,5)
(5,11) 1: (0,13,3), 1: (0,10,6), 2: (4,4,8), 4: (10,1,8)
(5,12) 1: (0,14,3), 1: (0,3,9), 3: (4,9,7), 4: (16,9,6)
(6,6) 2: (5,1,6), 3: (5,7,4), 4: (11,7,3)
(6,7) 1: (0,9,4), 1: (0,0,7), 3: (6,8,4), 4: (12,8,3)
(6,8) 2: (5,2,7), 2: (7,0,7), 3: (5,8,5), 3: (7,9,4), 4: (13,8,4), 4: (13,9,3)
(6,9) 1: (0,10,5), 1: (0,1,8), 3: (8,10,4), 4: (14,10,3)
(6,10) 2: (5,3,8), 3: (5,9,6), 3: (9,11,4), 4: (15,9,5), 4: (9,0,8), 4: (15,11,3),

5: (7,2,8)
(6,11) 1: (0,11,6), 1: (0,2,9), 3: (10,12,4), 4: (16,12,3)
(6,12) 2: (5,4,9), 3: (5,10,7), 3: (11,13,4), 4: (17,10,6), 4: (11,1,9), 4: (17,13,3)
(7,7) 1: (0,10,4), 2: (6,1,7)
(7,8) 1: (0,11,4), 1: (0,0,8), 3: (6,9,5), 4: (14,9,4)
(7,9) 1: (0,12,4), 1: (0,11,5), 2: (6,2,8), 2: (8,0,8)
(7,10) 1: (0,13,4), 1: (0,1,9), 3: (6,10,6), 4: (16,10,5)
(7,11) 1: (0,14,4), 1: (0,12,6), 2: (6,3,9), 4: (10,0,9), 5: (8,2,9)
(7,12) 1: (0,15,4), 1: (0,2,10), 3: (6,11,7), 4: (18,11,6)
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One of the most simple and useful observations is that, in most
cases, there will be up to our solutions, except in the cases of
ðh; kÞ * ð0;0Þmod2, when there will generally be up to six solu-
tions, and of h ¼ k * 1mod2, when there will be two solutions.
As an example, Table 4 takes some values of h and k and lists all
possible solutions of d; t, and p and the Classes they belong to.

The formulas and parity conditions clearly show that the classes
from Sinkovits and Baker (2010) are not simply degenerate cases of
the ones we have found. Indeed, since we consider d > 0, the
disymmetron always creates an extra line of capsomers separating
the two edges of pentasymmetrons of adjacent vertices. Moreover,
the parity conditions are also consistent with previously known
facts such as that even T numbers are impossible without disym-
metrons, as seen in Sinkovits and Baker (2010) andWrigley (1969).

The solutions presented in this paper suggest the existence of
certain configurations of symmetrons, and as in the case of viruses
with no disymmetrons Sinkovits and Baker (2010), it would be
interesting to consider whether the configurations presented here
physically occur in reality. Moreover, since all the cases are math-
ematically consistent, if those viruses may not exist in Nature, then
further biological rules would need to be governing the behaviour
of the viruses (in the discussion presented in Sinkovits and Baker
(2010), examples of features apparently favoured in Nature are
given).

Finally, whilst the viruses studied in this paper have regular
structure and symmetrons, one may consider relaxing some of
the mathematical constraints imposed, in order to classify non-
regular viruses. This would be necessary in order to understand,
for instance, the appearance of two known viruses P23-77 and
SH1 that have disymmetrons (Happonen, 2012; Jaalinoja, 2007),
and which have the same general structure, as depicted in Fig. 13
(A).

The viruses P23-77 and SH1 have structure invariants
ðh; kÞ ¼ ð2;4Þ. Our theory’s five solutions—Class 2 with edge
lengths ðd; t; pÞ given by ð1;2;3Þ; Class 2 with ð3; 0;3Þ; Class 3 with
ð3;3;2Þ (shown in Fig. 13 (B)); Class 4 with ð5;2;2Þ; or Class 4 with
ð5;3;1Þ—are simply theoretically possible arrangements of regular
symmetrons, but these viruses do not fit into any of our solutions
because of their irregular trisymmetrons, which are not equilateral
triangles. However, it is also possible that P23-77 and SH1 are too
small to possess the higher-level order captured by symmetrons.
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Appendix A. Proof that bordering symmetrons must exist if
disymmetrons exist.

Proposition 1. Bordering symmetrons must exist if disymmetrons
exist.

Proof. We set the coordinate grid so that the disymmetron occu-
pies the lattice points on k ¼ 0. Consider the adjacent k ¼ 1 lattice
points. We will prove the statement by contradiction, so assume
that no symmetrons border the disymmetron. Recalling which
symmetrons may be adjacent to a disymmetron, the lack of border-
ing means that there can be at most one adjacent k ¼ 1 pentasym-
metron capsomer, at most one adjacent k ¼ 1 trisymmetron
capsomer, and at most two adjacent k ¼ 1 disymmetron cap-
somers, for a total of at most four adjacent k ¼ 1 capsomers, imply-
ing that 1 6 d 6 3.

If d ¼ 1: if disymmetrons are adjacent, then the 6-fold symme-
try relating adjacent disymmetrons forces that p ¼ 1 and t ¼ 0, in
which case bordering occurs. If disymmetrons are not adjacent,
then the six points around the disymmetron must be occupied by
capsomers of at most two pentasymmetrons and two trisym-
metrons. By the Pigeonhole Principle, some adjacent symmetron
has at least two adjacent capsomers, in which case bordering
occurs.

If d ¼ 2, there are three adjacent capsomers on each side, and
we can do casework based on what type of capsomer is in the
middle. The middle capsomer can not be a pentasymmetron
capsomer, or else the pentasymmetron would be bordering. If the
middle bordering capsomer is a disymmetron capsomer: without
loss of generality, one may set one disymmetron at ð0;0Þ and ð1;0Þ
and the other at ð0;1Þ and ð0;2Þ. Consider the capsomer at ð1;1Þ.
This is a middle bordering capsomer to the disymmetron at ð0;1Þ
and ð0;2Þ, so it must be a disymmetron capsomer. This fixes t ¼ 0
and p ¼ 1, in which case bordering occurs. Finally, if the middle
bordering capsomer is a trisymmetron capsomer, the disymmetron
is at ð0;0Þ and ð1;0Þ. A trisymmetron has a vertex at ð0;1Þ and has a
fixed orientation to avoid bordering. It has other vertices at ð0; tÞ
and ð1$ t; tÞ. Moreover, 3-fold symmetry means a disymmetron
exists from ð0; t þ 1Þ to ð1; tÞ, and 6-fold symmetry relating
adjacent disymmetrons fixes a pentasymmetron center at
ð1þ t;0Þ. But this means that capsomers with h ¼ 1 and
1 6 k 6 t $ 1 are unoccupied, and they can not be penta-, tri-, or
disymmetrons. This contradiction implies that t $ 1 < 1, meaning
t ¼ 1, which leads to bordering.

If d ¼ 3: since we assume no bordering occurs, among the
adjacent k ¼ 1 capsomers, there must be one adjacent pentasym-
metron capsomer (with p > 1), one adjacent trisymmetron cap-
somer (with t > 1), and two adjacent disymmetron capsomers. We
set the disymmetron from ð1;0Þ to ð3;0Þ. For p > 1 to be true, the
adjacent pentasymmetron capsomer must be at ð0;1Þ or ð3;1Þ.
Without loss of generality, we set it at ð0;1Þ, so 2-fold symmetry
means that another adjacent pentasymmetron capsomer is at
ð4;$1Þ. If there were an adjacent disymmetron capsomer at ð1;1Þ,
then it would need to lie from ð1;1Þ to ð1;3Þ to be properly
positioned with respect to 6-fold symmetry about the pentasym-
metron containing ð0;1Þ. However, by the 6-fold symmetry
relating adjacent disymmetrons, this would force p ¼ 1, which is
a contradiction and leads to bordering. Therefore, the adjacent
disymmetron capsomers must be at ð2;1Þ and ð3;1Þ, and the
trisymmetron bordering capsomer is at ð1;1Þ. Because t > 1, the
trisymmetron also includes ð0;2Þ and ð1;2Þ. This fixes the orien-

Fig. 13. The structure of the two known viruses with disymmetrons, which have
ðh; kÞ ¼ ð2;4Þ. (A) Expected example: Class 3 virus with d ¼ 3; t ¼ 3; p ¼ 2. (B) The
real, irregular virus with irregular trisymmetrons (Jaalinoja, 2007).
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tation of the disymmetron through ð2;1Þ, which must go from
ð2;1Þ to ð2;3Þ. But this disymmetron will border the trisymmetron,
which leads to a contradiction. Thus, bordering must occur if
d > 0. h

Appendix B. On rotations in the h;k grid.

Proposition 2. A point ðx; yÞ rotated p
3 counterclockwise about the

origin is mapped to ð$y; xþ yÞ.

Proof. A point ðx; yÞ can be interpreted as the vector xĥþ yk̂. If we
denote the rotation with the function R acting on some vector ~v ,
then notice that R is a linear function, i.e.
Rð~v1 þ ~v2 þ + + + þ ~vnÞ ¼ Rð~v1Þ þ Rð~v2Þ þ + + + þ Rð~vnÞ and
Rða~vÞ ¼ aRð~vÞ. This means that

Rðxĥþ yk̂Þ ¼ xRðĥÞ þ yRðk̂Þ:

We can see that RðĥÞ ¼ k̂ and Rðk̂Þ ¼ k̂$ ĥ. Therefore,
Rðxĥþ yk̂Þ ¼ xk̂þ yk̂$ yĥ, which is ð$y; xþ yÞ. h

In particular, the above implies the following:

Proposition 3. A point ðx; yÞ rotated 2p
3 counterclockwise about the

origin is mapped to ð$x$ y; xÞ.

By translating the grid so that ðx0; y0Þ becomes the origin, one
takes ðx; yÞ ! ðx$ x0; y$ y0Þ, leading to the following:

Proposition 4. A point ðx; yÞ rotated p
3 counterclockwise about

ðx0; y0Þ is mapped to ð$yþ x0 þ y0; xþ y$ x0Þ.

Proof. Applying the above results, translation followed by p
3 coun-

terclockwise takes

ðx$ x0; y$ y0Þ ! ðy0 $ y; xþ y$ x0 $ y0Þ:

The statement follows by translating the grid back,
ðy0 $ y; xþ y$ x0 $ y0Þ ! ð$yþ x0 þ y0; xþ y$ x0Þ. h

Similarly, since

ðx; yÞ ! ðx$ x0; y$ y0Þ
! ðx0 þ y0 $ x$ y; x$ x0Þ
! ð$x$ yþ 2x0 þ y0; x$ x0 þ y0Þ:

one has the following:

Proposition 5. A point ðx; yÞ rotated 2p
3 counterclockwise about the

point ðx0; y0Þ is mapped to the point ð$x$ yþ 2x0 þ y0; x$ x0 þ y0Þ.

Appendix C. Adjacency of capsomers

Proposition 6. In the presence of disymmetrons, two capsomers from
different pentasymmetrons or two capsomers from different trisym-
metrons cannot be adjacent.

Proof. In the following proof, the word ‘‘symmetron” is used as
shorthand for pentasymmetrons and trisymmetrons. By a symme-
try of overlapping argument, if the two symmetrons have adjacent
capsomers, then they are centered on adjacent vertices/ faces of
the icosahedron. Therefore, one symmetron can be mapped to
the other by 2-fold symmetry about a 2-fold center. Because equi-

lateral triangles and hexagons are convex and cannot contain the
2-fold center, two rays can be drawn from the 2-fold center such
that the region between them, with an angle < p, contains a sym-
metron. If we reverse the direction of these two rays, they must
bound the other symmetron by 2-fold symmetry. Therefore, we
can draw a line l through the 2-fold center that passes through nei-
ther of the bounded regions, so it separates the symmetrons.
Because of the shape of these two symmetrons, we can always
draw l parallel to one of the lines h ¼ 0; k ¼ 0, or hþ k ¼ 0.

The 2-fold center can either be a lattice point or halfway
between two adjacent lattice points. In the first case, line l, which is
along the triangular grid, separates the symmetrons and does not
contain any capsomers of the symmetrons, making adjacency
impossible. In the other case, the 2-fold center is between two
adjacent lattice points. We orient the coordinate system so that the
2-fold center is ð12 ;

1
2Þ. As we saw in the first case, line l can not be a

line along the triangular grid for adjacency to occur, thus without
loss of generality, we may assume that line l has equation k ¼ 1

2.
The disymmetron, which must contain the 2-fold center, must

have capsomers at least at ð1; 0Þ and ð0;1Þ. Consider the sym-
metron with k ) 1. For adjacency to occur, this symmetron must
have capsomers with k ¼ 1 and h < 0 or h > 0, and the opposite
symmetron must have capsomers with k ¼ 0 and h < 0 or h > 0,
respectively. Moreover, 2-fold symmetry dictates that the k ) 1
symmetron has capsomers with k ¼ 1 and h > 0 or h < 0, respec-
tively. So this symmetron has k ¼ 1 capsomers on both sides of
h ¼ 0. But the disymmetron lies at ð0;1Þ. Thus, the convexity of the
symmetrons makes this impossible and the statement follows. h

Appendix D. A pseudo-code test for Classe

Seen as vectors, the distance squared from ð0;0Þ to ðx; yÞ is
x2 þ xyþ y2. We can use the coordinates from Table 2 to find this
edge length squared in terms of p and t. This motivates the follow-
ing pseudo-code test, which takes inputs d; t; p, and T, and outputs
the Class number:

if (d==0) return 1;
else {
if (3p2+t2-2t+1==T) return 2;
if (3p2-6p+t2+4t+7==T && t!=p-1) return 3;
if (3p2+t2+4t+4==T) return 4;
if (3p2+4==T && t==2 && p!=2) return 5;
if (t2+4t+4==T && p==2) return 6;

}

There are a few overlaps in the Classes, and the numerical test
helps find them. The first one is between Classes 2 and 3 when
t ¼ p$ 1. These in fact look the same, but according to our border-
ing definitions, this case ought to belong to Class 2. Similarly, there
is an overlap between Classes 5 and 6 when p ¼ t ¼ 2. Again they
appear to be the same, but bordering definitions dictate that this
configuration belongs to Class 6. In this way, the above numerical
test allows us to identify the unique Class that each configuration
belongs to.
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