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Abstract Wegive a geometric characterisation of the topological invariants associated
to SO(p+1, p)-Higgs bundles throughKO-theory and the Langlands correspondence
between orthogonal and symplectic Hitchin systems. By defining the split orthogonal
spectral data, we obtain geometric description of the intersection of themoduli space of
those Higgs bundles with the SO(2p+1,C)-Hitchin fibration in terms of a collection
of compact abelian varieties, and provide a natural stratification of the moduli space
of SO(p+1, p)-Higgs bundles.
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1 Introduction

Higgs bundles were first studied by Nigel Hitchin in 1987, and appeared as solutions
of Yang–Mills self-duality equations on a Riemann surface [12].
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A geometric approach to orthogonal Higgs bundles 1391

Definition 1.1 A Higgs bundle on a compact Riemann surface � of genus g � 2
is a pair (E,�) where E is a holomorphic vector bundle on �, and the Higgs field
� : E → E⊗K is an endomorphism-valued holomorphic 1-form, for K ..= T ∗�.

Higgs bundles can also be defined for complex semisimple groups GC and their real
forms, and through stability conditions one can construct their moduli spaces MGC

(e.g. see [13]).
A natural way of studying the moduli space of Higgs bundles is through theHitchin

fibration, sending the class of a Higgs bundle (E,�) to the coefficients of the charac-
teristic polynomial det(ηI −�). The generic fibre is an abelian variety which can be
seen through line bundles on an algebraic curve S, the spectral curve associated to the
Higgs field as introduced in [13]. The spectral data is then given by the line bundle
on S satisfying certain conditions.

Example 1.2 In the case of classical Higgs bundles, the smooth fibres are (non-
canonically isomorphic to) Jacobian varieties of S [13].

The Hitchin fibration was defined for classical complex Lie groups in [13, Section 5],
and following [14, Section 7] onemay considerHiggs bundleswith real structure group
G as fixed point sets in the moduli space of Higgs bundles for the complexified group
GC, therefore obtaining G-Higgs bundles as real points inside the Hitchin fibration
(e.g. see [8,14,20] and references therein).

We dedicate this paper to the study of the geometry of the moduli space of
SO(p+1, p)-Higgs bundles inside MSO(2p+1,C). Recall from [13] the following.

Definition 1.3 An SO(2p+1,C)-Higgs bundle is a pair (E,�) for E a holomorphic
vector bundle of rank 2p + 1 with a nondegenerate symmetric bilinear form (v,w),
and � ∈ H0(�,End0(E)⊗K ) the Higgs field which satisfies (�v,w) = −(v,�w).

In particular, whilst in this case there is no Toledo invariant when m �= 1, 3 (see [16,
Section 6]), one can consider the Langlands dual set-up of Sp(2p,C)-Higgs bundles
andHiggs bundles for its split real form to understand the role of the symplectic Toledo
invariant from the orthogonal perspective, as well as to construct the spectral data.

Definition 1.4 An Sp(2p,C)-Higgs bundle is a pair (E,�) where E is a rank 2p
vector bundle with a symplectic form ω( ·, ·), and the Higgs field � is a section
H0(�,End(E)⊗K ) satisfying ω(�v,w) = −ω(v,�w).

By considering real Higgs bundles as fixed points of an involution (e.g. see [20,
Section 3.3.1]), we see the moduli space of SO(p+1, p)-Higgs bundles inside the
SO(2p+1,C)-Hitchin fibration.

Definition 1.5 An SO(p+1, p)-Higgs bundle inside the moduli spaceMSO(2p+1,C)

is an SO(2p+1,C)-Higgs bundle (E,�) where E decomposes into two orthogonal
bundles E = V−⊕V+ and the Higgs field � : E → E⊗K is given by

� =
(

0 β

γ 0

)
for γ = βT,

where βT is the orthogonal transpose of β, obtained using the orthogonal structures
on V+, V−.
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1392 L.P. Schaposnik

Definition 1.6 Thecoefficientsai of the characteristic polynomial of anSO(p+1, p)-
Higgs field define a spectral curveπ : S → � in the total space of the canonical bundle
K whose equation is

η2p + a1η
2p−2 + · · · + ap−1η

2 + ap = 0, (1)

for η the tautological section of π∗K and ai ∈ H0(�, K 2i ).

Given an Sp(2p,C)-Higgs bundle (E,�), the pair is an Sp(2p,R)-Higgs bundle
whenever E decomposes into E = V ⊕V ∗ for V a rank p holomorphic vector bundle,
and� = ( 0 β

γ 0

)
forγ andβ symmetric. Thus one can see that Sp(2p,R)-Higgs bundles

also define a curve as in Definition 1.6.
The curve S in Definition 1.6 is a 2p-fold covering of the Riemann surface, gener-

ically smooth and ramified over 4p(g − 1) distinct points, the zeros of ap. In order
to understand the topological invariants associated to SO(p+1, p)-Higgs bundles,
one has to consider a subdivisor D of the ramification divisor, over which a natural
involution σ : η �→ −η acts as −1, and whose degree we denote by M following
the notation of [19]. The value of M is closely related to the Toledo invariant, and in
particular one can deduce the following:

Proposition 3.3 For each even invariant 0 < M � 4p(g−1) there is a component of
the moduli space of Sp(2p,R)-Higgs bundles which intersects the nonsingular fibres
of the Hitchin fibration for Sp(2p,C)-Higgs bundles. The component has a Zariski
open set given by a fibration of a Z2-vector space over a Zariski open set in the total
space of a vector bundle on the symmetric product SM�.

By taking into account the parity of p, one can obtain a geometric description of the
intersection of the moduli space of Sp(2p,R)-Higgs bundles with the generic fibres
of the Sp(2p,C)-Hitchin fibration:

Theorem 3.4 When p is odd, for each fixed invariant M, the intersection of themoduli
spaceMSp(2p,R) with the smooth fibres of the Sp(2p,C)-Hitchin fibration is given by
22g copies of

Prym(S/σ,�)[2].

In the case of orthogonal Higgs bundles, one has the following:

Theorem 4.2 The intersection of the moduli space MSO(p+1,p) with the regular
fibres of the SO(2p+1,C)-Hitchin fibration is given by two copies of the space
Prym(S, S/σ)[2]/ρ∗H1(S,Z2) where the Z2 space H1(S,Z2) is given by

Prym(S/σ,�)[2]⊕H1(�,Z2),

for m odd, and for m even it is given by

H1(�,Z2)⊕
(
Prym(S/σ,�)[2]/π∗H1(�,Z2)

)⊕H1(�,Z2).
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A geometric approach to orthogonal Higgs bundles 1393

Each of the two copies corresponds to whether the orthogonal bundle lifts to a spin
bundle or not. Moreover, there is a decomposition of the torsion two points in the Prym
variety

Prym(S, S/σ)[2] ∼= H1(S/σ,Z2)⊕Z2([ap])ev/b0,
where Z2([ap])ev denotes subdivisors of the effective divisor with simple zeros [ap]
with even number of +1, and b0 ..= (1, . . . , 1). Thus one can make the following
definition.

Definition 1.7 The spectral data of an SO(p+1, p)-Higgs bundle is, up to equiva-
lence, given by

• a line bundle F ∈ H1(S/σ,Z2), and
• a divisor D ∈ Z2([ap])ev/b0 of degree M .

This description allows one to study the intersection of the space of real Higgs bundles
with the complex Hitchin fibration. In particular, in the so-called maximal Toledo
invariant case on the symplectic side, which corresponds to M = 0 in the orthogonal
setting, one has a very neat description of the abelian intersection ofMSO(p+1,p) with
the generic fibres of the SO(2p+1,C)-Hitchin fibration.

Since SO(p+1, p) retracts onto S(O(p)×O(p+1)), an SO(p+1, p)-Higgs bun-
dle (V+⊕V−,�) carries three topological invariants: the Stiefel–Whitney classes
ω1(V+) = det(V+) ∈ H1(�,Z2), and ω2(V±) ∈ H2(�,Z2). Through a K -theoretic
approach elaborating on the methods of [3,16], in Sect. 4 we can further classify these
invariants in terms of their spectral data:

Theorem 4.6 The Stiefel–Whitney classes of an SO(p+1, p)-Higgs bundle (V =
V−⊕V+,�) with spectral data (S/σ,F, D) are given by

ω1(V+) = Nm(F) ∈ H1(�,Z2);
ω2(V+) = ϕS/σ (F) + ϕ�(Nm(F)) ∈ Z2;

ω2(V−) =
{

ϕS/σ (F) + ϕ�(Nm(F)) if ω2(V ) = 0,

ϕS/σ (F) + ϕ�(Nm(F)) + 1 if ω2(V ) = 1;

for ϕ� and ϕS/σ the analytic mod 2 indices of the curves (see Definition 4.1), and
Nm(F) the Norm on �.

By considering F⊗KS as a new spin structure, one can see ω2(V±) purely in terms
of spin structures in Corollary 4.7. Moreover, by analysing spectral data through the
induced 2-fold cover ρ : S → S ..= S/σ , and recalling that the orthogonal vector
bundle V−⊕V+ is recovered as an extension defined through the divisor D (see [15,
Section 4.2]), one obtains the number of points in each of the regular fibres of the
Hitchin fibration for a fixed invariant M .

Proposition 4.8 The number of points in a regular fibre of the SO(2p+1,C)-Hitchin
fibration corresponding to SO(p+1, p)-Higgs bundles with even invariant M is

(
4p(g − 1)

M

)
.

123



1394 L.P. Schaposnik

By considering the parametrisation of the moduli space through spectral data, we
obtain a natural stratification of the smooth loci of the moduli space of SO(p+1, p)-
Higgs bundles leading to a geometric description of Zariski dense open sets in each
component:

Proposition 4.9 For each fixed even invariant 0 < M � 4p(g− 1) there is a compo-
nent of the moduli space of SO(p+1, p)-Higgs bundles which intersects the regular
fibres of the SO(2p+1,C)-Hitchin fibration. The component has a Zariski open set
given by a covering of a Zariski open set in the total space of a vector space over the
symmetric product SM�.

It is important to note that these components will possibly (and often do so) meet
over the discriminant locus of the Hitchin fibration, and thus one needs to do further
analysis to understand the connectivity of themoduli space.Whilst we shall not deepen
into this matter in the current paper, an example of how to see the intersection of the
components through the monodromy of the associated Gauss–Manin connection for
SO(2, 3)-Higgs bundles is discussed in [4, Section 6.3]. A geometric description of
the covering of Proposition 4.9 is given in Sect. 4.5, recovering some of the results
appearing in [7, Section 6.4].

The moduli space of SO(p+1, p)-Higgs bundles considered in this paper is an
example of what is known as (B, A, A)-brane in the moduli space MSO(2p+1,C) of
complex Higgs bundles. As such, these branes have dual (B, B, B)-branes in the dual
moduli space MSp(2p,C) (see [17, Section 12]). In [3, Section 7] it was conjectured
what the support of this dual brane should be the whole moduli space MSp(2p,C) of
symplectic Higgs bundles.

We conclude this note with some further comments on this duality in Sect. 5, as
well as on the relation between the Hitchin components in both split symplectic and
orthogonal (B, A, A)-branes in Langlands dual groups, and some implications of the
geometric description of the spectral data given in this paper.

2 The Hitchin fibration

Recall from [13] that an Sp(2p,C)-Higgs bundle is a pair (E,�′) for E a rank
2p vector bundle with a symplectic form ω( ·, ·), and the Higgs field �′ ∈ H0(�,

End(E)⊗K ) satisfying ω(�′v,w) = −ω(v,�′w). Similarly, an SO(2p+1,C)-
Higgs bundle is a pair (V,�) for V a holomorphic vector bundle of rank 2p + 1
with a nondegenerate symmetric bilinear form (v,w), and � a Higgs field in
H0(�,End0(V )⊗K ) which satisfies (�v,w) = −(v,�w).

The spectral curves defined by SO(2p+1,C)-Higgs bundles and Sp(2p,C)-Higgs
bundles have similar equations (e.g. see [15, Sections 3–4]), and are given by a 2p-
fold cover π : S → � in the total space of K whose equation is det(�′ − η Id) =
1
η
det(� − η Id) = η2p + a1η2p−2 + · · · + ap−1η

2 + ap = 0 as in (1).

Definition 2.1 The curve S has an involution σ which acts as σ(η) = −η and thus
we define a quotient curve S ..= S/σ in the total space of K 2 for which ρ : S → S is
a double cover:
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S

2p:1
π

2:1
ρ

S
π

m:1
�.

The covers S and S have, respectively, genus gS = 1 + 4p2(g − 1), and gS =
(2p2 − p)(g − 1) + 1. Moreover, by the adjunction formula, their canonical bundles
can be written, respectively, as KS = π∗K 2p and KS = π ∗K 2p−1. As shown in [13],
the Hitchin fibration for both moduli spacesMSO(2p+1,C) andMSp(2p,C) is given over
A = ⊕p

i=1 H
0(�, K 2i ). From [15, Section 3], the generic fibres for MSp(2p,C) are

given by

Prym(S, S), (2)

and from [15, Section 4], the generic fibres forMSO(2p+1,C) are given by (two copies
of)

Prym(S, S)/ρ∗H1(S,Z2). (3)

In what follows we shall study the components of the moduli space of Higgs bundles
for split real forms by considering, from [20, Theorem 4.12], points of order two in
the generic fibres (2) and (3).

3 Sp(2 p,R)-Higgs bundles

We shall now consider Sp(2p,R)-Higgs bundles, which from [20, Theorem 4.12] can
be seen in the generic fibres of the Hitchin fibration as points of order two in (2), and
are given by Sp(2p,C)-Higgs bundles which decompose as (E = W ⊕W ∗,�′), for

� =
(

0 β ′
γ ′ 0

)
where

{
γ ′ : W → W ∗⊗K and γ = γ t,

β ′ : W ∗ → W ⊗K and β = β t.

Fixing a choice of � characteristic L0
..= K 1/2, it is shown in [15] that the vector

bundle E is recovered as π∗U for U ..= L⊗K (2p−1)/2. Note that the condition L ∈
Prym(S, S)[2] ..= {L ∈ Prym(S, S) : L2 ∼= O} is equivalent to requiring U 2 ∼=
KSπ

∗K ∗. Since points in Prym(S, S)[2] are given by line bundles L on S for which
σ ∗L ∼= L∗ ∼= L , following [19, Theorem 3.5], they are classified by the action of
the involution σ on L over its fixed point set (i.e., the ramification divisor of S). The
involution σ acts as ±1 over some subset of M points of the ramification divisor [ap],
and the number of Higgs bundles appearing in each fibre for a fixed invariant M is
described by Hitchin in [16].

Higgs bundles for the real symplectic group have associated a topological invariant,
the Toledo invariant (e.g. see [8]), defined as

|τ(W ⊕W ∗,�′)| ..= |c1(W )|,
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1396 L.P. Schaposnik

and satisfy a Milnor–Wood type inequality |c1(W )| � p(g− 1). Moreover, from [16,
Section 6] the class can be expressed as

w1(W ) ..= c1(W ) = − M

2
+ p(g − 1),

and its mod 2 value defines the invariant c1(W ) (mod 2). Note that since the invari-
ant M is even, within the moduli space of Sp(2p,R)-Higgs bundles, the value of
c1(W ) (mod 2) differentiates components depending on the values of M (mod 4).

Remark 3.1 For Sp(2p,C)-Higgs bundles, the invariant M appears as n− in [15, Sec-
tion 4]. In the case of Sp(2p,R)-Higgs bundles, it is the invariant l of [16, Section 6].

From [16, Section 6], the number of elements in Prym(S, S)[2] corresponding to M
is

(
4p(g − 1)

M

)
×22gS .

In order to describe the geometry of the components given by these Higgs bundles,
recall from [4, Proposition 4.15] that convenient splittings can be chosen for the short
exact sequence

0 → H1(S,Z2)
ρ∗
−→ Prym(S, S)[2] → Z2([ap])ev/b0 → 0,

where b0 is the divisor in� which has+1 for all zeros of ap, by considering the action
of σ as ±1 on Prym(S, S)[2] over the zeros of [ap] up to switching σ by −σ , which
is encoded by taking the quotient by b0. Then, one can write

Prym(S, S)[2] ∼= H1(S,Z2)⊕Z2([ap])ev/b0. (4)

Hence, over each point in the base A, one has the set of divisors D of degree M over
which the involution acts as−1 (as in [19, Section 3]) given by a point inZ2([ap])ev/b0,
togetherwith theZ2 vector space H1(S,Z2) of dimension 2gS = 2p(p−1)(g−1)+2.

Proposition 3.2 For p odd the space H1(S,Z2) is given by

Prym(S, �)[2]⊕π ∗H1(�,Z2),

and for p even it is given by

π ∗H1(�,Z2)⊕
(
Prym(S, �)[2]/π ∗H1(�,Z2)

)⊕π ∗H1(�,Z2).

Proof In order to understand the space H1(S,Z2) one needs to take into account the
parity of p, since S is a p-fold cover of the compact Riemann surface �. Considering
the Norm map
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A geometric approach to orthogonal Higgs bundles 1397

0 → Prym(S, �)[2] → H1(S,Z2)
Nm−−→ H1(�,Z2) → 0, (5)

note that for a line bundle L on � one has that Nm(π ∗L) = pL , and hence when p
is odd the pullback π ∗ gives a splitting of the short exact sequence (5). Therefore, in
this case one has

H1(S,Z2) ∼= Prym(S, �)[2]⊕π ∗H1(�,Z2).

For p even, the image ofπ ∗ : H1(�,Z2) → H1(S,Z2) is contained in Prym(S, �)[2],
thus giving a filtration

H1(�,Z2) ⊂ Prym(S, �)[2] ⊂ H1(S,Z2),

which induces the splitting (via isomorphism theorems for Nm)

H1(S,Z2) ∼= π ∗H1(�,Z2)⊕
(
Prym(S, �)[2]/π ∗H1(�,Z2)

)⊕π ∗H1(�,Z2),

and thus the proposition follows. �

From the above, one has the following description of Zariski open sets in components
of the moduli spaces of Sp(2p,R)-Higgs bundles which intersect the smooth fibres
of the Sp(2p,C)-Hitchin fibration:

Proposition 3.3 For each even invariant 0 < M � 4p(g − 1) there is a component
of the moduli space of Sp(2p,R)-Higgs bundles which intersects the nonsingular
fibres of the Hitchin fibration for Sp(2p,C)-Higgs bundles. The component has a
Zariski open set given by a fibration of a Z2-vector space over a Zariski open set in
the total space of a vector bundle on the symmetric product SM�. When M = 0, the
intersection is given by a 22gS cover of a vector space over a point.

Proof The overall idea of the proof is to follow the proof of [19, Theorem 4.2], taking
into consideration the structure of the intersection ofMSp(2p,R) with the generic fibres
of the Hitchin fibration given in (4) above.

The invariant M gives the degree of a divisor D which corresponds to the choice of
an element in Z2([ap])ev/d0. In particular, whilst over generic points of the Hitchin
base the divisor [ap] is an effective divisor with simple zeros, when considering Higgs
bundles whose corresponding 2p-differential hasmultiple zeros, one can deform those
Higgs bundles to ones with simple zeros.

As in the case of Sp(2,R) analysed in [4, Proposition 10.2], every stable Higgs
bundle is in a component which intersects the regular fibres of the Hitchin fibration.
One should note that although this does not imply that all components intersect the
regular fibres, it is what one needs in order to describe Zariski dense sets in the
components.

Recall that the choice of a spectral curve is given by the choice of differentials ai .
Hence, given a point in SM�, and the choice of the differential ap is then given by
a section in H0(�, K 2p(−D)), or equivalently, a vector bundle V over the sym-
metric product. The remaining differentials are then parametrised by the bundle
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1398 L.P. Schaposnik

⊕p−1
i=1 H0(�, K 2i ) over the total space of V on SM�. We shall denote by W the

parameter space defining spectral curves as described above:
⊕p−1

i=1 H0(�, K 2i ) over
the total space of V on SM�.

When considering only generic spectral curves, one has to restrict to a Zariski
open set inside the total space ofW. Finally, the Higgs bundles in the component are
obtained by the remaining data in the fibre, which is a point in the Z2 vector space
H1(S,Z2).

Finally, from the above one can see that when M = 0, the space is given by a 22gS
cover of a vector space over a point, and it is the monodromy action which needs to
be considered from this perspective in order to deduce connectivity of this cover from
this perspective. �

The following theorem follows from the above analysis.

Theorem 3.4 When p is odd, for each fixed M the intersection of the moduli space
MSp(2p,R) with the smooth fibres of the Sp(2p,C)-Hitchin fibration is given by 22g

copies of Prym(S, �)[2].
Proof Recall that in terms of spectral data, the intersection of MSp(2p,R) with the
smooth fibres of the Sp(2p,C)-Hitchin fibration is given Prym(S, S)[2], and by (4)
this can be seen as

Prym(S, S)[2] ∼= H1(S,Z2)⊕Z2([ap])ev/b0.

Moreover, when p is odd, the pullback π ∗ gives a splitting of the short exact sequence
(5) leading to H1(S,Z2) ∼= Prym(S, �)[2]⊕π ∗H1(�,Z2). Therefore for p odd the
intersection ofMSp(2p,R) with the smooth fibres of the Sp(2p,C)-Hitchin fibration is
given by

Prym(S, S)[2] ∼= Prym(S, �)[2]⊕π ∗H1(�,Z2)⊕Z2([ap])ev/b0.

Then, once the topological invariants M have been fixed (giving a point in
Z2([ap])ev/b0), the intersection with the generic fibres is given by the space
Prym(S, �)[2]⊕π ∗H1(�,Z2). Thus, over such curve, the fibre of the Sp(2p,C)-
Hitchin fibration intersects the moduli space of Sp(2p,R)-Higgs bundles for fixed M
in 22g copies of Prym(S, �)[2]. �

For Sp(4,R) it was shown by Gothen in [8] that M = 0 labels several connected
components, and it is shown in [4, Section 6.3] how these components appear as
orbits of the monodromy action of the corresponding Gauss–Manin connection on the
Sp(4,C)-Hitchin fibration. Further study of monodromy for low rank can be found
in [4,18]. From a Morse theoretic perspective, connectivity has been studied under
different restrictions by several authors—the reader should refer to [10] and references
therein for further information in that direction.

As in the case of U(p, p)-Higgs bundles of [19], the invariant and anti-invariant
sections of L ∈ Prym(S, S)[2] decompose the direct image bundle into a direct sum of
line bundles ρ∗U ..= U+⊕U−. Hence, the symplectic decomposition E = W ⊕W ∗
can be seen as W ..= π∗U+ and W ∗ ..= π∗U−.
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A geometric approach to orthogonal Higgs bundles 1399

Proposition 3.5 Let D ∈ Z2[ap]/b0 be the divisor of degree M on which the involu-
tion σ acts as −1. Then, there exists a line bundle L0 ∈ Prym(S, �) such that

U− = U+⊗O(D)⊗K ∗⊗L0.

Proof The symplectic structure of E is obtained though relative duality (e.g. see [16,
Section 4]), and in particular it implies that π∗U+ ∼= (π∗U−)∗. Hence, as in [19,
Section 5], the line bundlesU± are not independent. Indeed, from [19, Equation (15)]
one has that

Nm(U+) = −Nm(U−) + 2p(p − 1)K .

The above can be also written in terms of the divisor D ∈ Z2[ap]/b0 of degree M on
which the involution σ acts as −1, as D = Nm(U∗+) + Nm(U−) + pK .

Therefore, viewing D as a divisor on S (since it is a subset of the ramification
divisor of the p-fold cover π : S → � given by the divisor of [ap]), one has that the
line bundle U− equals U+⊗O(D)⊗K ∗ up to a line bundle L0 ∈ Prym(S, �), and
thus the result follows. �


From [19, Equations (9)–(10)] one can write the degrees of the line bundles U± in
terms of M . In particular, recalling that U = L⊗K (2p−1)/2 one has that deg(U ) =
p(2p − 1)(g − 1), and therefore the degrees of the invariant and anti-invariant line
bundles on S can be expressed as

deg(U+) = p(2p − 1)(g − 1) − M

2
,

deg(U−) = p(2p − 3)(g − 1) + M

2
.

Equivalently, from [19, Equation (9)] one can write the degree of the rank p bundle
W as

deg(W ) = deg(U )

2
− M

2
− (2p2 − 2p)(g − 1) = − M

2
+ p(g − 1),

recovering the result in [13, Equation (7)]. The case of M = 0 corresponds to the
maximal Toledo invariant setting, for which it is known that within the covering space
one has 22g connected components, the so-called Hitchin components, parametrising
rich geometric structures. Moreover, when m = 2 the Z2 vector space H1(S,Z2) can
be understood in terms of line bundles of order 2 over the Riemann surface �, and we
shall comment on this case in Sect. 5.

4 SO( p+1, p)-Higgs bundles

Recall from Definition 1.5 that an SO(p+1, p)-Higgs bundle is a pair (V,�) where
V = V+⊕V− for V± complex vector spaces with orthogonal structures of dimension
p and m + 1 respectively, and where
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1400 L.P. Schaposnik

� ∈ H0(�, (Hom(V−, V+)⊕Hom(V+, V−))⊗K
)

is given by

� =
(
0 β

γ 0

)
for γ ≡ −βT, (6)

where βT is the orthogonal transpose of β. As mentioned previously, since the
space SO(p+1, p) retracts onto S(O(p)×O(p+1)), the SO(p+1, p)-Higgs bun-
dles (V+⊕V−,�) carry three topological invariants, the Stiefel–Whitney classes
ω1(V+) ∈ H1(�,Z2), and ω2(V±) ∈ H2(�,Z2). Note that the class ω1(V−) =
ω1(V+) since det V− = det V ∗+. By further requiring the Higgs bundle to be in the
connected component of the identity, i.e. taking SO(p+1, p)0-Higgs bundles, one
would obtain pairs with ω1(V±) = O (as considered, for instance, in [1]). In what fol-
lows we shall give a geometric description of these topological invariants, relate them
to the ones for Sp(2p,R)-Higgs bundles obtained in [16, Section 6], and finally use
this description to characterise Zariski dense open sets in each connected component
of the moduli space of SO(p+1, p)-Higgs bundles. On several occasions, it will be
important to distinguish when p is even or odd, and we shall do so within this section.

4.1 KO-theory of �

In order to discuss the topology of orthogonal bundles on the surface � we use KO-
theory. For this, we shall recall some results from [16, Section 6] and [2]. The Stiefel–
Whitney classes of V± can be seen as classes [V±] ∈ KO(�) where

[V±] ∈ KO(�) � Z⊕H1(�,Z2)⊕Z2

V± �→ (rk(V±), ω1(V±), ω2(V±)).

Taking the map given by the total Stiefel–Whitney class ω = 1 + ω1 + ω2 to
the multiplicative group Z⊕H1(�,Z2)⊕Z2, we consider the generators given by
holomorphic line bundles L such that L2 � O , and the class � = Op + O∗

p − 2
where Op is the holomorphic line bundle given by a point p ∈ �. Then, for
α(x) the class of a line bundle x ∈ H1(�,Z2) and (x, y) the intersection form,
α(x + y) = α(x) + α(y) − 1 + (x, y)�. As in [16, Section 5], the isomorphism
between the additive group K̃O(�) and the multiplicative group KO(�) is determined
by the relations

ω1(α(x)) = x, ω1(�) = 0, and

ω2(�) = c1(Op) (mod 2) = [�] ∈ H2(�,Z2).

With this notation, the classes [V±] satisfy

[V±] = rk(V±) − 1 + α(ω1(V±)) + ω2(V±)�.
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Definition 4.1 Choosing a � characteristic K 1/2, the classes [V±] have associated an
analytic mod 2 index

ϕ�(V±) = dim H0(�, V±⊗K 1/2) (mod 2),

and the characteristic class ω2 is independent of which spin structure K 1/2 is chosen.

It follows from [16, Theorem 1] that the classes ω2(V±) satisfy

ω2(V±) = ϕ�(V±) + ϕ�(det(V±)).

Moreover, ϕ�(�) = 1 and the map can be seen as the map to a point

ϕ� : KO(�) → KO−2(pt) ∼= Z2.

Since we are interested in understanding Higgs bundles through their spectral data, we
note that as in [16, Section 5], the spin structures together with the covers π : S → �

and π : S → � define push forward maps KO(S) → KO(�) and KO(S) → KO(�).

4.2 Spectral data for SO( p+1, p)-Higgs bundles

In order to give a geometric description of characteristic classes, we shall define
here the spectral data associated to the SO(p+1, p)-Higgs bundles. One should note
that since SO(p+1, p)-Higgs bundles lie completely inside the singular fibres of
the SL(2p+1,C)-Hitchin fibration, the analysis done in [16, Section 5] cannot be
directly applied.

Theorem 4.2 The intersection of the moduli space MSO(p+ 1,p) with the regular
fibres of the SO(2p+1,C)-Hitchin fibration is given by two copies of the space
Prym(S, S)[2]/ρ∗H1(S,Z2) where the Z2 space H1(S,Z2) is given by

Prym(S, �)[2]⊕H1(�,Z2), (7)

for m odd, and for m even it is given by

H1(�,Z2)⊕
(
Prym(S, �)[2]/π∗H1(�,Z2)

)⊕H1(�,Z2). (8)

Proof From [20, Theorem 4.12] in this case we consider points of order 2 in the fibres
(3) of the SO(2p+1,C)-Hitchin fibration, which form two copies of the space

Prym(S, S)[2]/ρ∗H1(S,Z2), (9)

a Z2 vector space of dimension 4p(g − 1) − 2. Moreover, the points in ρ∗H1(S,Z2)

are precisely those line bundles in Prym(S, S)[2] with trivial action of σ at all fixed
points, i.e., with invariant M = 0. Together with the structure of ρ∗H1(S,Z2) from
Proposition 3.2, the description of the fibres in the theorem follows. �
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From Theorem 4.2, the spectral data associated to an SO(p+1, p)-Higgs bundle, up
to equivalences by (7)–(8), is given by the intermediate spectral curve S together with
a line bundle F ∈ H1(S,Z2), and a divisor D ∈ Z2([ap])ev/b0 of degree M .

Remark 4.3 It is interesting to note thatwhenm = 2 themiddle term in (8) gives in fact
the spectral data for a K 2-twisted PGL(2,R)-Higgs bundle. Moreover, the component
Prym(S, �)[2] gives the spectral data for K 2-twisted SL(p,R)-Higgs bundles.

In order to recover SO(p+1, p)-Higgs bundles from the above spectral data, we shall
recall the relation between symplectic and orthogonal Higgs bundles as described
in [15, Section 4]. As mentioned in Sect. 3, the line bundle L ∈ Prym(S, S)[2]
defines a symplectic vector bundle as E ..= π∗U , for U = L⊗K 1/2

S ⊗π∗K−1/2.
Then, from [15, Equation (7)] the orthogonal bundle V is recovered as an extension

0 → E⊗K−1/2 → V → K p → 0, (10)

and therefore near the divisor defined by the section ap, the orthogonal bundle V of
the SO(p+1, p)-Higgs pair (V,�) is recovered as V ..= (E⊗K−1/2)⊕K p.

From [15, Section 4.1], the 2p + 1 vector bundle V has trivial determinant and
a nondegenerate symmetric bilinear form g(v,w) for which one has g(�v,w) +
g(v,�w) = 0, related to the symplectic form on E . Indeed, by considering the Higgs
field � on V/K−p, one has a nondegenerate skew form on V/K−p, and by choosing
a square root K 1/2, one obtains a skew form on E = V/K−p⊗K−1/2 which is
generically nondegenerate: ω(v,w) = g(�v,w). Moreover, the extension class in
(10) can be seen as a choice of trivialization of the line bundle L ∈ Prym(S, S) which
depends on the action of the involution σ , this is, on the divisor D ∈ Z2[ap]/b0
(see [15, Section 4.3]).

The orthogonal structure induced on the rank p and p + 1 vector bundles V−⊕V+
obtained through the spectral data in the fibre (9) can be understood in terms of a
decomposition of the symplectic bundle E ..= E−⊕E+, through which locally one
has

V− = E−⊗K−1/2⊕K p, (11)

V+ = E+⊗K−1/2. (12)

One should note that it is not the symplectic decomposition E = W ⊕W ∗ which leads
to the decomposition E = E−⊕E+ on the orthogonal side. This becomes evident,
for instance, by considering the Hitchin components for both groups described in
Sect. 5.1. Furthermore, since V± form part of GL(p,C)- and GL(p+1,C)-Higgs
bundles, from [13] and [6] there is a line bundle on S whose direct image gives V+ on
�. Adopting the notation of [16, Section 5] we define π! and π ! by

π!(L) = π∗(L⊗K 1/2
S ⊗π∗K−1/2), and

π !(L) = π∗(L⊗K 1/2
S

⊗π∗K−1/2),
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for L and L line bundles on S and S. Then, as seen in Sect. 3, the symplectic vector
bundle E is obtained as E ..= π!(L) for L ∈ Prym(S, S). When L2 ∼= O and L2 ∼= O,
the bundlesπ!(L) andπ !(L) acquire orthogonal structures by relative duality, as shown
in [16, Section 4]. Hence, since V+ has an orthogonal structure, following [16, Section
4] and [6] for K 2-twisted Higgs bundles, the vector bundle V+ is obtained, for some
F ∈ H1(S,Z2), as

V+ = π !(F).

Remark 4.4 It is interesting to note that the vector bundles V± form part of K 2-twisted
Higgs bundles obtained by taking the compositions of β and γ in (6). Moreover, one
should note that the spectral curve associated to these compositions is in fact the
quotient curve S. The procedure to construct these Higgs bundles follows directly
from the case of SU(p, p)-Higgs bundles described in [19].

Proposition 4.5 For F ∈ H1(S,Z2), one has det(π !(F)) = Nm(F).

Proof The determinant bundle ofπ !(F) can be obtained through [6, Section 4], leading
to det(π !(F)) = Nm(F⊗K 1/2

S
⊗π ∗K−(2p−1)/2) = Nm(F). �


In order to understand how the other orthogonal bundle V− is reconstructed, we shall
give now a construction of E− via the spectral data F and D modulo (7)–(8) (which in
particular implies modulo Prym(S, �)). Since det(E+)⊗ det(E−) = O, from (11)–
(12) one has that

det(E−) = Nm(F)⊗K−p/2.

Therefore, for some L0 ∈ Prym(S, �) one may write

V− = π∗
(
L0⊗K−1/2

S
⊗F

)⊗K−1/2.

Note that the choice of L0 is equivalent to the one done in Proposition 3.5, and the
divisor D gives the extension class as in the complex case described in [15, Section 4.3].

4.3 Characteristic classes for SO( p+1, p)-Higgs bundles

In what follows we shall see that the three Stiefel–Whitney classes of SO(p+1, p)-
Higgs bundles (V−⊕V+,�) can be described in terms of their spectral data, which
from the previous sections is given modulo (7)–(8) by

(F, D) ∈ H1(S,Z2)⊕Z2([ap])/b0.
Theorem 4.6 The Stiefel–Whitney classes of an SO(p+1, p)-Higgs bundle (V−⊕
V+,�) with spectral data (F, D) ∈ Prym(S, S)[2]/ρ∗H1(S,Z2) are given by

ω1(V+) = Nm(F) ∈ H1(�,Z2);
ω2(V+) = ϕS(F) + ϕ�(Nm(F)) ∈ Z2;
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ω2(V−) =
{

ω2(V+) if ω2(V ) = 0,

ω2(V+) + 1 if ω2(V ) = 1.

Proof Recall that ϕ�(L) = dim H0(�,L⊗K 1/2) (mod 2), and from [16, Theorem
1] that for an even spin structure K 1/2, the orthogonal bundles V± satisfy

ω2(V±) = ϕ�(V±) + ϕ�(det(V±)). (13)

Moreover, since deg(det(V±)) = 0, one has that ϕ�(V−) = ϕ�(V+) (mod 2).
The above can also be seen in terms of the analytic mod 2 indices ϕS and ϕS of the

spectral line bundles producing V+ and V−. The three mod 2 indices can be related by
considering the definition of push forward of sheaves. Indeed, note that forL a torsion
two line bundle on S, by definition of direct image sheaf

ϕS(L) = dim H0(S,L⊗K 1/2
S

)
(mod 2)

= dim H0(�,π∗
(
L⊗K 1/2

S ⊗π∗K−1/2)⊗K 1/2) (mod 2),

and hence ϕS(L) = ϕ�(π!(L)). An equivalent formula follows for S, and therefore

ω1(V+) = Nm(F) ∈ H1(�,Z2).

Moreover, since ϕS(F) = ϕ�(π !(F)) it follows that

ω2(V+) = ϕS(F) + ϕ�(Nm(F)).

In order to understandω2(V−) through (13), we should recall thatω2(V ) = ω2(V+)+
ω2(V−), and thus

ω2(V−) = ϕS(F) + ϕ�(Nm(F)) + ϕ�(V ).

The value ofϕ�(V ) = ω2(V ) has been studied in [15, Section 4] and indicateswhether
V has a lift to a spin bundle or not. In particular, it is shown there that it is the identity
component of the fibre that gives spin bundles, which is ω2(V ) = ϕ�(V ) = 0, and
the theorem follows. �

One should note that when further requiring V+ to have trivial determinant, it becomes
the vector bundle of an SL(p,R)-Higgs pair and our result agrees with the description
of ω2(V+) of [16, Theorem 1] for a fixed even spin structure. When considering
SO(p+1, p)0-Higgs bundles, i.e. Higgs bundles in the component of the identity,
both vector bundles V± satisfy det V± = O, and thus they are obtained by choosing
a point L+⊗π ∗K 3/2 in the Prym variety Prym(S, �), after fixing a choice of spin
structure K 1/2. Moreover, in this case M = 4p(g − 1) and thus L∗ ∈ Prym(S, �)[2]
is the pullback of a line bundle on S, hence determined by L+.

Since the characteristic class ω2 is independent of which spin structure K 1/2 is
chosen, we may use this fact to further deduce the following from Theorem 4.6 by
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fixing K 1/2 such that ϕ�(O) = 1, along the lines of [16, Theorem 1] purely in terms
of spin structures:

Corollary 4.7 Let S be a smooth spectral curve in the total space of K 2 → � given
by an equation

ηp + a1η
p−1 + · · · + ap−1η + ap = 0,

and let F be a line bundle on S such that F2 ∼= O. Define V+ ..= π!(F) the image
bundle with the orthogonal structure induced from relative duality. Let K 1/2 be an
even spin structure on �, and for K 1/2

S
= π ∗K p−1/2 the corresponding one on S,

consider the spin structure FS = F⊗K 1/2
S

. Then, the characteristic classes of the
corresponding SO(p+1, p)-Higgs pair are

ω1(V+) = Nm(F) ∈ H1(�,Z2);

ω2(V+) =
{

ϕ�(Nm(F)) if ϕS(FS) = 0,

1 + ϕ�(Nm(F)) if ϕS(FS) = 1;

ω2(V−) =
{

ϕ�(Nm(F)) if ϕS(FS) = ϕ�(V ),

1 + ϕ�(Nm(F)) if ϕS(FS) �= ϕ�(V ).

4.4 The divisor D ∈ Z([ap])/b0
We shall finally consider the geometric implications of the divisor D ∈ Z([ap])/b0
appearing in the spectral data of the Higgs bundles studied in this paper. As mentioned
previously, the extension class giving the orthogonal bundle V is obtained through D.
Moreover, its degree M appears both at the level of complex SO(2p+1,C)-Higgs
bundles (see [15, Remark 2, p. 14]) and real SO(p+1, p)-Higgs bundles.

Proposition 4.8 In each generic fibre of the SO(2p+1,C)-Hitchin fibration there
are

(
4p(g − 1)

M

)

points corresponding to SO(p+1, p)-Higgs bundles with even invariant M.

Proof Recall from Theorem 4.2 that the intersection of the moduli space of
SO(p+1, p)-Higgs bundles with the complex Hitchin fibration is given by two copies
of Prym(S, S)[2]/ρ∗H1(S,Z2), and thus we defined its spectral data, modulo (7)–(8),
by

(F, D) ∈ H1(S,Z2)⊕Z2([ap])/b0.

In order to understand how many points in

Prym(S, S)[2]/ρ∗H1(S,Z2)
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correspond to SO(p+1, p)-Higgs bundles with a fixed invariant M , real from [16,
Section 6] (as recalled in Sect. 3) that the elements in Prym(S, S)[2] can be distin-
guished by their associated invariant M , and in each regular fibre there are

(
4p(g − 1)

M

)
×22gS

points with invariantM , where the genus of S is as before, gS = (2m2−m)·(g−1)+1.
Hence, in order to differentiate the characteristic classes for SO(p+1, p)-Higgs

bundles, one needs to understand the characteristic classes of elements inρ∗H1(S,Z2).
In particular, it should be noted that since the Prym variety Prym(S, S) is defined as
the set of line bundles L ∈ Jac(S) for which σ ∗L ∼= L∗, the pulled-back line bundles in
ρ∗H1(S,Z2) are acted on trivially by the involution σ and thus carry invariant M = 0.

Therefore, recalling that the topological invariant M associated to SO(p+1, p)-
Higgs bundles can be seen from (4) as the degree of the subdivisor of [ap] giving an
element in Z2([ap])ev, the proposition follows. �

Since exchanging σ by −σ exchanges the values of M and 4p(g−1)− M , those two
cases should be identified. Hence, the total number of points in each regular fibre is
half of

(
4p(g − 1)

0

)
+

(
4p(g − 1)

2

)
+ · · · +

(
4p(g − 1)

4p(g − 1) − 2

)
+

(
4p(g − 1)
4p(g − 1)

)
,

which is, as expected, [24p(g−1)−1]/2.

4.5 On the geometry of the moduli space

From the above analysis, one has a natural stratification of themoduli space leading to a
geometric description of Zariski dense open sets in the moduli space of SO(p+1, p)-
Higgs bundles:

Proposition 4.9 For each fixed even invariant 0 < M � 4p(g− 1) there is a compo-
nent of the moduli space of SO(p+1, p)-Higgs bundles which intersects the regular
fibres of the SO(2p+1,C)-Hitchin fibration. The component has a space given by a
covering of a Zariski open set in the total space of a vector space over the symmetric
product SM�. When M = 0 and p is odd the intersection with smooth fibres is given
by 22g copies of Prym(S, �) over a vector space.

Proof Recall from Theorem 4.2 that we defined its spectral data for generic
SO(p+1, p)-Higgs bundles, modulo (7)–(8), by

(F, D) ∈ H1(S,Z2)⊕Z2([ap])/b0.

Over a point in the regular locus of the Hitchin base defining a spectral curve (which
is a point in Z), one has Z2([ap])ev/d0. This is all choices of 4p(g − 1) Z2-uples D
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with an even number of +1, up to the element (1, . . . , 1) and equivalence. From the
construction of spectral data, we know that for each invariant M one has strictly stable
Higgs bundles with that invariant: strictly stable since their characteristic polynomials
are indecomposable and thus there are no�-invariant subbundles that could destabilise
the Higgs bundle.

In order to show that for each M the component of SO(p+1, p)-Higgs bundles
has a space given by a covering of a Zariski open set in the total space of a vector
space over the symmetric product SM�, note that the choice of the divisor D (or
equivalently, a point in Z2([ap])ev/d0) is given by a point in the symmetric product
SM�, for M the degree of D. Then, the choice of the differential ap is given by the
choice of a section s ∈ H0(�, K 2p(−D)), leading to a vector bundle B over SM�

of rank (4p − 1)(g − 1) − M . Finally, the choice of the spectral curve is completed
by considering, as in the symplectic side, the space

2p−2⊕
i=1

H0(�, K 2i ),

where the parametrisation is done up to H1(S,Z2).
As in the proof of Proposition 3.3, in order to consider only the smooth loci

of the Hitchin fibration, one should consider only a Zariski open set Z inside the
space given by

⊕2p−2
i=1 H0(�, K 2i ) over the total space of B → SM�. Then, as

in [16, Proposition 4], this agrees with the previous section, asserting that the inter-
section of the space with the fibre is a Z2 vector space of dimension 4p(g − 1) −
2.

Finally, from the above analysis it follows that when M = 0 and p is odd the
intersection with smooth fibres is given by 22g copies of Prym(S, �) over a vector
space. �


One should keep in mind that the characteristic classes of the SO(p+1, p)-Higgs
bundles are topological invariants, and thus are constantwithin connected components.
On the other hand, the invariant M labels components which often intersect over
the singular locus of the Hitchin fibration. An interesting comparison can be made
with [7, Section 6.4], where it is shown how the invariant M labels certain connected
components of the moduli space. One should note also that the space H1(S,Z2) is
in fact the spectral data for K 2-twisted GL(p,R)-Higgs bundles, and thus over each
point in the Hitchin base one has the fibre giving the spectral data for a corresponding
K 2-twisted GL(p,R)-Higgs bundle, the Cayley partners.

5 Concluding remarks

In what follows, we shall describe some applications of the above methods in the
context of understanding the moduli spaces for other real groups.
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5.1 The Sp(2 p,R)- and SO( p+1, p)-Hitchin components

When considering the Hitchin components for both split real forms Sp(2p,R) and
SO(2p+1,R) as described in [14], one can see that the vector bundle for Sp(2p,R)

is given by (e.g. see [16, p. 4])

E ..=
2p⊕
i=1

(K−p+i⊗K−1/2).

Then, by considering E⊗K+1/2⊕K−p one obtains, as expected, the orthogonal bun-
dle for SO(p+1, p)-Higgs bundles

V ..=
2p⊕
i=0

K−p+i.

The pairing for the symplectic vector bundle E = W ⊕W ∗ is obtained by considering
the symplectic pairing between K±a. On the other hand, the pairing for the orthogonal
bundle V = V−⊕V+ is obtained by taking the natural orthogonal structure for each
Ka⊕K−a and thus for p even one has

V− =
p−1⊕
i=0

K−p+2i+1, and

V+ =
p⊕

i=0

K−p+2i = K p⊕
p−1⊕
i=0

K−p+2i . (14)

Whenever p is odd, the roles of V− and V+ are interchanged. One should note that,
in particular, separating the vector bundle W = W+⊕W− into the odd (−) and even
(+) values of i , one has

V− = W−⊕W ∗− and V+ = W+⊕W ∗+,

and thus the relation between both decompositions of the symplectic bundle and
orthogonal bundle become apparent. In the case of SL(p,R)-Higgs bundles, the
Hitchin component is given by Higgs bundles whose underlying vector Ṽ bundle
has the form (see [14, Section 3])

Ṽ =
p−1⊕
i=0

K (−p+1+2i)/2.

This bundle is obtained from the origin in the fibre of the Hitchin fibration, and a
similar construction leads to the Hitchin component for K 2 twisted SL(p,R)-Higgs
bundles, where
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V =
p−1⊕
i=0

K−p+1+2i.

In particular, this rank p vector bundle coincides with V− in (14), which is not sur-
prising, as it follows from the proof of Theorem 4.6.

Remark 5.1 One should note the extension class involved when one goes from
Sp(2p,C)-Higgs bundles to SO(2p+1,C)-Higgs bundles considered by Hitchin in
[15] vanishes for Higgs bundles in the Hitchin component. This is because these Higgs
bundles are of maximal Toledo invariant, which when seen through the action of the
involution σ : η → −η on the spectral curve S, one can see that it implies that the
action has the same sign over all the zeros of the divisor [ap], which implies that the
extension class is the trivial one.

5.2 Maximal Sp(4,R)-Higgs bundles and SO(2, 3)-Higgs bundles

Connectivity for SO(2, 3)-Higgs bundles has been studied in [4,11]. Moreover, from
Gothen’s work [8,9] on the so-called Gothen components, in the case of maximal
Toledo invariant (i.e. M = 0), the number of connected components for Sp(4,R) is
3 ·22g + 2g − 4. As in the general case, the components are described by H1(S,Z2)

over a vector bundle over the symmetric product SM�. But in the case of m = 2 one
has one more correspondence to consider. Indeed, H1(S,Z2) becomes the spectral
data for K 2-twisted GL(2,R)-Higgs bundles, the Cayley partner of Sp(4,R)-Higgs
bundles. As in [4, Theorem 6.8], one has that

H1(S,Z2) = ��[2]⊕Z2([ap])ev/b0⊕��[2]

and as seen in [4, Corollary 6.9], one recovers the 3 ·22g+2g−4 components as orbits
of themonodromy action.Moreover, from the description in Sect. 3, these components
appear as the components of K 2-twisted Higgs bundles over the vector space A. The
geometry of these components can be studied as in Sects. 3 and 4, by noting that a
choice in Z2([ap])ev/b0 gives a point in a symmetric product labeled by the invariant
M , and over that one has 22g covers coming from H1(�,Z2).

5.3 The dual (B, B, B)-branes

The smooth locus of the moduli space of SO(2p+1,C)-Higgs bundles on � is a
hyper-Kähler manifold, so there are natural complex structures I, J, K obeying the
same relations as the imaginary quaternions (following the notation of [17]). Adopting
physicists’ language, a Lagrangian submanifold of a symplectic manifold is called an
A-brane and a complex submanifold a B-brane. A submanifold of a hyper-Kähler
manifold may be of type A or B with respect to each of the complex or symplectic
structures, and thus choosing a triple of structures one may speak of branes of type
(B, B, B), (B, A, A), (A, B, A) and (A, A, B). The moduli space of SO(p+1, p)-
Higgs bundles is a (B, A, A)-brane in themoduli spaceMSO(2p+1,C) of complexHiggs
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bundles. As such, it has a dual (B, B, B)-brane in the dual moduli space MSp(2p,C)

(see [17]).
It was conjectured by David Baraglia and the author, in [3, Section 7], that the

support of the dual (B, B, B)-brane should be the whole moduli space of Sp(2p,C)-
Higgs bundles, which can now be understood through the spectral data description of
the components of MSO(p+1,p) given in this paper. Indeed, the line bundles on the
spectral curve S giving SO(p+1, p)-Higgs bundles are given by L ∈ Prym(S, S),
L2 ∼= O, which is equivalent to requiring σ ∗L ∼= L . When one considers the com-
plementary spectral data we recover the data for Sp(2p,C)-Higgs bundles, given by
σ ∗L ∼= L∗.

Since SO(p+1, p)-Higgs bundles and U(p, p)-Higgs bundles provide examples
of (B, A, A)-branes whose dual (B, B, B)-brane should have the same support, the
above can be compared to the hyperholomorphic (B, B, B)-brane constructed by
Hitchin in [16, Section 7] dual to the U(p, p)-Higgs bundles studied in [19], and
one should be able to adapt the hyperholomorphic bundle in [16, Section 7] to the
case of split orthogonal bundles. The study of this brane and the one appearing from
a more generic setting for orthogonal Higgs bundles of any signature appears in [5].

Remark 5.2 The analogies between SO(p+1, p)-Higgs bundles and U(p, p)-Higgs
bundles should not be surprising. Indeed, an SO(p+1, p)-Higgs bundle (V−⊕V+,�)

defines the space V0 = ker(γ ) ⊂ V−. Then, the induced Higgs pair whose bundle is
V−/V0⊕V+ (with Higgs field defined through �′) gives a canonical U(p, p)-Higgs
bundle with spectral data as in [19], and through [15] one can understand the extension
data that relates these Higgs bundles.
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