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1 Introduction

Let X be a compact connected Riemann surface of genus g, where ¢ > 1. Let C* = C\{0}
be the multiplicative group. We are interested in studying the automorphism groups of certain
C*-moduli spaces associated to X, arising from non-abelian Hodge theory. Namely these are
the de Rham, Betti and Dolbeault moduli spaces Mg, Mg, My parametrizing holomorphic
C*-connections, representations of the fundamental group into C* and degree zero Higgs line
bundles respectively. While these three moduli spaces are all homeomorphic, their algebraic
structures are quite different (M¢ and My are not even biholomorphic) and we find that their
automorphism groups are also quite different.

In [2], a classification was obtained of the analytic automorphism groups of the moduli space
of SL(n, C)-Higgs bundles, i.e., the SL(n, C) Dolbeault moduli space. It remains an open question
to determine which of the analytic automorphisms found in [2] are algebraic and also to determine
the corresponding automorphism groups for the SL(n,C) de Rham and Betti moduli spaces
(note that de Rham and Betti moduli spaces are analytically but not algebraically isomorphic).
As mentioned above, the goal of this paper is to address this classification problem for the
corresponding C*-moduli spaces. We leave the task of extending our results to noncommutative
reductive groups as an interesting and challenging open problem.

Motivation for studying the automorphisms of these moduli spaces arises from mirror sym-
metry, the geometric Langlands program and their relation to physics, as promoted in the
celebrated work of Kapustin and Witten [9]. Namely, one is interested in the construction of
examples of naturally defined subvarieties of these moduli spaces, known as branes in the lan-
guage of physics. One way of constructing such subvarieties which has proved fruitful is as the
fixed point set of an automorphism of the moduli space, as seen in [3, 4]. This has lead us to
consider the problem of determining the automorphism groups of these moduli spaces in order
to see how general our constructions are.
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In what follows we shall describe the structure and results of this paper. We begin this
paper by studying in Section 2 the structure of the de Rham moduli space M of holomorphic
C*-connections on X up to gauge equivalence, i.e., pairs (L, D) where L is a holomorphic line
bundle and D is a holomorphic connection on L. After recalling properties of the space, we
give in Proposition 2.2 a gauge theoretic proof of the known result that every algebraic function
on M is constant.

The moduli space M¢ is a complex algebraic group with multiplication given by taking the
tensor product of line bundles with connections, and thus M acts on itself by translations
giving an injective homomorphism

p: Mo — Aut(Mc),

where Aut(M) denote the group of algebraic automorphisms of M. This map is considered
in Section 3, where we show the following (see Theorem 3.1):

Theorem 1.1. The quotient Aut(Mc)/(p(Mc)) is a countable group. In particular, the image
of p is the connected component of Aut(Mc) containing the identity element.

Let J(X) be the Jacobian of X and let pg: J(X) — Aut(J(X)) be the homomorphism
given by letting J(X) act on itself by translation. In Section 3, it is found that the quotient
Aut(M¢)/(p(Mc)) can be identified with a subgroup of Aut(J(X))/po(J(X)).

From non-abelian Hodge theory it is seen that the moduli space M carries a naturally
defined algebraic symplectic form [1, 7]. Let § € H*(M¢, C) denote the cohomology class of the
symplectic form and let Autg(M) be the subgroup of Aut(M¢) preserving 6. In Section 3 we
study this subgroup, and give its complete characterization in Theorem 3.2. For this, consider
the homomorphism

pc: Aut(X) — Aut(Mce)

defined by sending h € Aut(X) to the automorphism of M¢ given by (L, D) — (h*L,h*D).
We show in Section 3.1 that p¢ is injective if g > 2. Let G denote the subgroup of Aut(M¢)
generated by pc(Aut(X)) together with the inversion (L, D) — (LY, DV) of the group M¢; we
denote the dual of a vector bundle, a vector space or a homomorphism by the superscript “Vv”.
Using the actions of G and pc(Aut(X)) on M, consider the semi-direct products

Go == Mc % po(Aut(X)) and G:=McxaG.
Through these groups we can characterize Autg(Mc) (see Theorem 3.2):

Theorem 1.2. The group Autg(Mc) is given by

1) Autg(Me) =G if X is not hyperelliptic;
2) Autg(Mc) = Go if X is hyperelliptic.

As a Corollary, we deduce that any automorphism of M preserving the cohomology class 6
actually preserves the symplectic form and so the above theorem also gives the group of algebraic
symplectomorphisms of Mg.

In Section 4 we consider the Betti moduli space Mp of representations of m1(X) into the
multiplicative group C* (following [12]). The space Mg = Hom(m(X), C*), which is isomorphic
to (C*)29. The group I' of automorphisms of the Z-module Hy(X,Z) is isomorphic to GL(2g, Z),
and thus there is a natural map

f: Aut(Mp) — T,
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that sends an automorphism of Mg to its induced action on H;(X,Z). In Section 4, we show
that f admits a right-splitting so that Aut(Mpg) = kernel(f) x I'. Moreover, since the kernel
of f is given by the natural action of My = (C*)29 on itself by translations, we obtain that (see
Theorem 4.2):

Theorem 1.3. The automorphism group Aut(Mpg) is the semi-direct product Mp x T.

As with the de Rham moduli space, non-abelian Hodge theory determines a natural sym-
plectic form on Mp. We find that the subgroup of Aut(Mpg) preserving this form is given by
Mg % I'sp, where I's, is the subgroup of I" preserving the cap product on Hy(X,Z), so I'sp, is
isomorphic to the symplectic group Sp(2g,Z).

Finally, in Section 5 we study the Dolbeault moduli space Mg of degree zero Higgs line
bundles, that is pairs (L, ®), where L is a degree zero line bundle on X and ® is a holomorphic
1-form on X. This moduli space is the holomorphic cotangent bundle TV J(X) of the Jaco-
bian J(X). Considering the isomorphism TVJ(X) = J(X) x H°(X,Kx), where Kx is the
holomorphic cotangent bundle of X we obtain that (see Lemma 5.1):

Lemma 1.4. Any f € Aut(Mpg) is of the form

f=hxf,
where fi € Aut(J(X)) and fo € Aut(H(X, Kx)).

Since the moduli space M is the cotangent bundle of J(X), it carries a canonical symplectic
form 0. We shall denote by Autg(My) the subgroup of Aut(My) preserving 6, and let Q ;x)
denote the holomorphic cotangent bundle of J(X). Recalling that there is an isomorphism
HY(X, Kx)=H°(J(X), Q7(x)), we conclude the paper showing that (see Theorem 5.2):

Theorem 1.5. The group Autg(Myy) is the semi-direct product
HO(J(X),9(x)) x Aut(J(X)),

where Aut(J(X)) acts on HY(J(X),Qyx)) by f-a = (f71)*(a), for f € Aut(J(X)), a €
H(J(X),Qx))-

2 Structure of the moduli space of C*-connections

Let X be a compact connected Riemann surface of genus g > 1, and Kx its holomorphic cotan-
gent bundle. The Jacobian of X, which parametrizes all the isomorphism classes of holomorphic
line bundles on X of degree zero, is denoted by J(X). Let M¢ be the moduli space of holo-
morphic connections on X of rank one. Therefore, M parametrizes the isomorphism classes
of pairs of the form (L, D), where L is a holomorphic line bundle on X and D is a holomorphic
connection on L. Since there are no nonzero (2,0)-forms on X, any holomorphic connection
on X is automatically integrable.

The adjoint action of the algebraic group C* on its Lie algebra Lie(C*) = C is trivial.
Consequently, for any (L,D) € M¢, the holomorphic tangent bundle to M¢ at the point
(L,D) is

T(r,pyMc = H'(X,C). (2.1)

Therefore, the real tangent bundle TERL D)MC is identified with H'(X,C), and the almost com-
plex structure on T(Hi D)./\/lc = H'(X,C) is multiplication by /1.
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Since any holomorphic connection on X is flat, the degree of any holomorphic line bundle
admitting a holomorphic connection is zero. Therefore, we have an algebraic morphism

¢: Mc — J(X), (L,D)+—s L. (2.2)

This map ¢ is surjective because any holomorphic line bundle L on X of degree zero admits
a holomorphic connection. More precisely, the space of all holomorphic connections on L is an
affine space for the vector space H(X, Kx). Therefore, ¢ makes M¢ an algebraic principal
H°(X, Kx)-bundle over J(X).

Let V denote the trivial holomorphic vector bundle J(X) x H(X, Kx) over J(X) with fiber
HY(X, Kx). The isomorphism classes of algebraic principal H°(X, Kx)-bundles over J(X) are
parametrized by H'(J(X),V). We will calculate the cohomology class corresponding to M.
Note that ¢ does not admit any holomorphic section because J(X) is compact and M¢ is
biholomorphic to (C*)29 thus ruling out the existence of any nonconstant holomorphic map
from J(X) to M¢. Consequently, the class in H!(J(X),V) corresponding to M is nonzero.

We will briefly describe the Dolbeault type construction of cohomological invariants for prin-
cipal H°(X, Kx)-bundles.

Take an algebraic principal H°(X, K x)-bundle ¢: E — J(X). Choose a C° section

s: J(X)— E

for ¢; such a section exists because the fibers of the projection ¢ are contractible. If s is
holomorphic, then the holomorphic principal H°(X, Ky)-bundle E is trivial. The invariant
for E/ is a measure of the failure of s to be holomorphic. To explain this, let J; and Jo denote
the almost complex structures on J(X) and E respectively. Let ds: T®.J(X) — T®E be the
differential of the map s. For any x € J(X) and y € E,, consider the homomorphism

TRJ(X) — T,)E, v+ ds(J1(v)) — Ja(ds(v)). (2.3)
Since

® JOS—= IdJ(X), and
e the map ¢ is holomorphic,
it follows that the tangent vector ds(Ji(v)) — Ja(ds(v)) in (2.3) is vertical for q. Using the action

of the group H(X, Kx) on E, the vertical tangent bundle for ¢ is the trivial vector bundle with
fiber H°(X, Kx). Consequently, the homomorphism in (2.3) defines a section

o(E,s) € C*(J(X), 2y, ® V).

This (0,1)-form c(FE,s) is O-closed because E is a holomorphic principal H°(X, Kx)-bundle.
Then, the Dolbeault cohomological class

¢(E) € H'(J(X),V) (2.4)

defined by it is the invariant for F.

The Lie algebra Lie(J(X)) of J(X) is the abelian algebra H'(X,Ox). The Serre duality
theorem says that H'(X,Ox) = H°(X, Kx)V. Therefore, the vector bundle V is identified with
the holomorphic cotangent bundle €2 ;x). Consequently, we have

HY(J(X),V) = H'(J(X), Qx))-
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Hence the isomorphism classes of holomorphic principal H°(X, Kx)-bundles on J(X) are pa-
rametrized by H'(J(X),Q;(x)). We note that every element of H'(J(X),Q;(x)) is the inva-
riant (2.4) for some holomorphic principal H°(X, K x)-bundles on J(X).

Let Mp := Hom(m (X, z¢),C*) = Hom(H;(X,Z),C*) be the space of 1-dimensional repre-
sentations. Sending a flat connection to its monodromy representation, we get a holomorphic
isomorphism

f: Mc = Mg.

We have Hom(H;(X,Z),U(1)) < Mg using the inclusion of U(1) = S in C*. From Hodge
theory it follows that every L € J(X) admits a unique holomorphic connection such that the
monodromy lies in U(1), and thus the composition

Hom(H.(X,7),U(1)) 155 Me -2 J(X) (2.5)

is a diffeomorphism, where ¢ is constructed in (2.2). We note that the above composition o f !
is a diffeomorphism because it is bijective and homomorphism of groups. We shall denote by

£ J(X) — Mce (2.6)

the C* section of ¢ given by the inverse of the composition in (2.5).

Given any L € J(X), we consider V. = V50 4 V%! the unique unitary flat connection
on L such that (0,1)-type component V%! is the Dolbeault operator on L. The real tangent
space Tg L)MC is H'(X,C), and the almost complex structure on Tg L)MC coincides with the

multiplication by v/—1 on H'(X,C) (see (2.1) and the sentence following it). Therefore, the
holomorphic tangent space to M is identified with H'(X,C). The inclusion of the Lie group
U(1) — C*, identifies the Lie algebra Lie(U(1)) with the subspace

v—1R C Lie(C*) = C.
Therefore, the subspace
T§tpy Hom(H:(X,2),U(1)) C Ty yMe = H' (X, C)
coincides with H'(X,+/—1R) equipped with its natural inclusion
HY(X,V/=1IR) — H'(X,C).

The anti-holomorphic tangent space Tg’lJ (X) is identified with H°(X, Kx) by sending any
a € HY(X, Kx) to the flat unitary connection

(VM0 —a) + (VO +a).

From the above, the complex structure on Tg’lJ (X) coincides with multiplication by v/—1 on
HY(X,Kx). If we identify TLO’lJ(X) with TRJ(X) by sending any (0, 1)-tangent vector to its
real part, then the isomorphism

TpJ(X) — Ty Hom(H:(X,Z), U(1))

given by the differential of the composition map in (2.5) sends any o € H°(X, Kx) to the
element in

—2v/~1-Im(a) € H'(X,V—IR).
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The cup product
2
/\ H'(X,V-1IR) — H*(X,R) =R

produces a 2-form w on J(X). The form w is closed because the translation action of J(X) on
itself preserves w, and any translation invariant form on a torus is closed. In fact, w is a Kéhler
form on J(X). We shall let

weH (J(X),Qx)) (2.7)

be the Dolbeault cohomology class represented by w.
From the above, the anti-holomorphic tangent space TL0’1J (X) is identified with

TéREL) Hom(Hl (X7 Z)? U(l))a

a subspace of H'(X,C) which in turn gives the holomorphic tangent space to M¢. Hence,
consider the almost complex structures obtained for J(X) and Mg, combined with the above
description of the differential of &, one has that the class in H'(J(X),V) corresponding to the
principal H(X, Ky )-bundle M¢ coincides with & in (2.7).

Let

OHQJ(X)AEL)OJ(X)HO (28)

be the extension of Oj(x) by ;(x) associated to the extension class & in (2.7). The section
of Oj(x) given by the constant function 1 will be denoted by 1;x). We note that for the
projection o in (2.8), the inverse image 0~ (1,(x)(J(X))) C E is a principal H°(X, Kx)-bundle
on J(X) (recall that the dual vector space Lie(J(X))Y is identified with H°(X, Kx)). Since
the class in H*(J(X),Q (x)) corresponding to the principal H(X, Kx)-bundle M¢ coincides
with @, we have the following:

Lemma 2.1. The variety Mc is algebraically isomorphic to the inverse image

o~ (L) (J (X))

Through the above lemma, we can recover the following result, which from a different per-
spective can be deduced since the universal vector extension of the Jacobian parametrizes line
bundles with connections [10, Chapter 1], and the universal vector extension of any abelian
variety is anti-affine [5, Proposition 2.3(i)].

Proposition 2.2. There are no nonconstant algebraic functions on Mc.

Proof. In view of Lemma 2.1 it suffices to show that the variety o~ (1;x)(J(X))) does not
admit any nonconstant algebraic function. We will first express o~ (1;(x)(J(X))) as a hyper-
plane complement ) in a projective bundle over J(X) in Step 1. Then in Step 2 we shall study
associated bundles, which in turn allow us to study H°(), Oy) in Step 3. From the description
of the cohomology group that we obtain, we see that ) does not admit any nonconstant algebraic
function if and only if certain natural inclusion is surjective. Hence, in Step 4 we study this
inclusion, by taking the dual exact sequence to (2.8). Surjectivity of the inclusion can be then
seen equivalent to injectivity of an associated map B. We conclude the proof of the proposition
by showing in Step 5 that this map is indeed injective.

Step 1. Let P(E) — J(X) and P(Q;(x)) — J(X) be the projective bundles parametrizing
the lines in the fibers of £ (constructed in (2.8)) and €2 ;(x) respectively. The homomorphism ¢
in (2.8) produces an embedding
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The divisor ©(P((x))) C P(E) will be denoted by D. We have

Y i= P(END 2 0~} (1x)(J(X))) (2.9)

by sending any v € o~ !(1(x)(2)) and z € J(X), to the line in the fiber E. generated by v.
Step 2. Consider now the natural projection

p: P(E) — J(X).

For £L — P(E) the dual of the tautological line bundle, the fiber of £ over any y € P(FE) is
the dual of the line in Ej,, represented by y.

Note that for any point z € J(X), the two line bundles L|,,-1(,) and Opg)(D)|,-1(.) on p~1(2)
are isomorphic. Therefore, from the seesaw theorem (see [11, p. 51, Corollary 6]) it follows that
there is a holomorphic line bundle Ly on J(X) such that

OP(E) (D) = L ®p*Ly. (2.10)

By the adjunction formula [8, p. 146], the restriction of Opg)(D) to D is the normal bundle Np
to the divisor D C P(E). This normal bundle Np is identified with

Hom ((£|D)v,pT(E/QJ(X))) = pi(E/Qyx)) ® (L]p),
where
p1 =plp: D — J(X)

is the restriction of p. Now, since the quotient E/€)(x is the trivial line bundle (see (2.8)), it
follows that Np is isomorphic to £|p. Consequently from (2.10) it follows that the line bundle L
is trivial. This in turn implies that

Opr)(D) = L. (2.11)
Step 3. To calculate H°(Y, Oy), note that
HO(Y, 0y) = liy H(P(E), O (g (iD)) = limy H* (P(E), £) (2.12)
i>0 >0

(see (2.9) and (2.11)). Since D is an effective divisor, from (2.9) and (2.12) we conclude that
o1 (1(x)(J(X))) does not admit any nonconstant algebraic function if and only if the natural
inclusion

H°(P(E),L') = H'(P(E), Op)(iD))
— H°(P(E),Op(g)((i + 1)D)) = H(P(E), L") (2.13)

is surjective for all ¢ > 0. Note that
HY(P(E),Op(g)(iD)) = H°(J(X),Sym" (EY)).

Step 4. To prove that the homomorphism in (2.13) is indeed surjective, consider the dual of
the exact sequence in (2.8):

oV VA
0— Oyx)— E" —TJ(X)—0.
Taking its (i 4+ 1)-th symmetric power, we have

. / . mét1(V .
0 — Sym’ (BY) - Sym™! (£Y) P57 sym*+(1(X)) — 0, (2.14)
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where Sym‘*1(:V) is the homomorphism of symmetric products induced by the homomor-

phism ¢V; the above homomorphism ¢ is the symmetrization of the homomorphism
®'EY = 0yx) ® (& EY) oL@l gitl pv.

Let
B: H°(J(X),Sym"™ (TJ(X))) — H'(J(X),Sym" (EY))

be the connecting homomorphism in the long exact sequence of cohomologies associated to the
short exact sequence in (2.14). Consider the homomorphisms

HO(J(X), Sym ™™ (TJ(X))) 2 H'(J(X),Sym' (EY))
1 H'(J(X),Sym' (T J(X))), (2.15)

where 7 is induced by the homomorphism Sym®(.") (see (2.14)).

From the long exact sequence of cohomologies for (2.14) it follows immediately that the
homomorphism in (2.13) is surjective if 8 in (2.15) is injective. To prove that § is injective, it
is enough to show that the composition v o 3 in (2.15) is injective.

Step 5. Since the extension class for (2.8) is the cohomology class @, the extension class
for (2.14) is —(i + 1)@w. Consequently, the homomorphism v o 8 sends any

n € H°(J(X),Sym™™ (T J(X)))
to the Dolbeault cohomology class of the contraction

w @' n e C™(J(X), 0, @ Sym™H(TI(X)))

of w®n of QIJ’(OX) and T'(X); note that the tensor product w ® 7 is a section of Qg’(lX) ® Q}]’(OX) ®
Sym‘t(TJ(X)) and hence its contraction w ®' 7 is a section of Qg’(lx) ® Sym‘(TJ(X))). Since
both w and 7 are invariant under translations of J(X), it follows that w ®' n is also invariant
under translations of J(X), and hence represents a nonzero cohomology class. The section w®'n
is nonzero because w is pointwise nondegenerate (recall that it is a Kéhler form). Therefore,
we conclude that the homomorphism v o 3 is injective. Hence the homomorphism in (2.13) is
surjective, and the proof is complete. |

3 Automorphisms of the moduli of C*-connections

The group of algebraic automorphisms of the variety Mg will be denoted by Aut(Mc¢). The
moduli space M is an algebraic group, with group operation

(Ll, Dl) . (LQ,DQ) = (L1 ® LQ, D ® IdL2 —|—IdL1 ®D2)

The algebraic map ¢ in (2.2) is a homomorphism of algebraic groups.
The translation action of M¢ on itself produces an injective homomorphism

p: Mo — Aut(Mc).

Theorem 3.1. The quotient Aut(Mc)/(p(Mc¢)) is a countable group. In particular, the image
of p is the connected component of Aut(Mc) containing the identity element.
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Proof. We will show that any automorphism of M descends to J(X). For that, first note
that there is no nonconstant algebraic map from C to an abelian variety. Indeed, such a map
would extend to a nonconstant algebraic map from CP!, and therefore some holomorphic 1-form
on the abelian variety would pull back to a nonzero holomorphic 1-form on CP!, but CP! does
not have any nonzero holomorphic 1-form. Since there is no nonconstant algebraic map from C
to J(X), there is no nonconstant algebraic map from a fiber of ¢ (see (2.2)) to the variety J(X),
because the fibers of ¢ are isomorphic to C9. This immediately implies that any automorphism
of M¢ descends to an automorphism of J(X).

The group of all algebraic automorphisms of J(X) will be denoted by Aut(J(X)). The above
observation produces a homomorphism

§: Aut(Me) — Aut(J(X)). (3.1)
Recall that ¢ in (2.2) is a homomorphism of algebraic groups. Clearly, we have

p(kernel(yp)) C kernel(d).
We shall denote by

po: J(X) — Aut(J(X))

the homomorphism given by the translation action of J(X) on itself.
To prove the theorem, by the snake lemma it suffices to show the following two statements:

1) the quotient Aut(J(X))/(po(J(X))) is a countable group,
2) the inclusion p(kernel(y)) < kernel(d) is surjective.

The first statement follows from the fact that HO(J(X),TJ(X)) = Lie(J(X)). In what
follows we will prove the second statement.
Take any 1 € kernel(§) C Aut(Mc), and for ¢ € H°(X, Kx)V, define the function

Fye: Mo —C, z— C(Y(2) — 2).

Note that p(1(2)) = ¢(2) because 1 € kernel(§), and hence (z) — 2 € H*(X, Kx). From
Proposition 2.2 we know that F), ¢ is a constant function. This implies that there is an element
v € HY(X, Kx) such that 1(z) = z + v for all z € M¢. So we have 1) € p(kernel(y)), which
completes the proof. [ |

3.1 Automorphisms preserving cohomology class

As mentioned previously, the moduli space M is equipped with an algebraic symplectic form
(see [1, 7]). The cohomology class in H2(M, C) defined by the symplectic form will be denoted
by 6. The pullback of the symplectic form on M by the section £ in (2.6) coincides with the
Kahler form on J(X). Therefore, the cohomology class § on M¢ coincides with the pull-
back ¢*@ of the Kéhler class on J(X) (see (2.2) and (2.7)). Let Autg(M¢) denote the group of
all 7 € Aut(Mc) such that 7%0 = 6. Our aim in this subsection is to compute Auty(Mc).

The group of all holomorphic automorphisms of X will be denoted by Aut(X). Let

Aut®(X) C Aut(X)

be the connected component containing the identity element. If g > 2, then we have Aut®(X)=e.
Let

po: Aut(X) — Aut(Mce)
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be the homomorphism that sends any h € Aut(X) to the automorphism of M¢ defined by
(L,D) — (h*L,h*D). If g > 2, then p¢ is injective. Indeed, the homomorphism Aut(X) —
Aut(J(X)) that sends any h € Aut(X) to the automorphism L — h*L is injective if g > 2.
If g = 1 then X is an elliptic curve and Aut’(X) = X, acting on itself by translations. If
7: X — X is any such translation then for any line bundle with holomorphic connection (L, D),
we have (7*L,7*D) = (L, D) since the corresponding flat connections have the same mon-
odromy. Therefore the homomorphism pc| s 0 (x) 18 trivial, and po produces an embedding of
Aut(X)/ Aut®(X) in Aut(J(X)).

Let G denote the subgroup of Aut(M¢) generated by pc(Aut(X)) together with the inversion
(L,D) — (LY,D") of the group M. Using the actions of G and pc(Aut(X)) on M¢, we
construct the semi-direct products

Go := Mg X po(Aut(X)) and G :=McxG.

Note that using the action of pc(Aut(X)) (respectively, G) and the translation action of M¢
on itself, the group Gy (respectively, G) acts on M.

Theorem 3.2. The group Auty(Mc) is given by
1) Autg(Me) =G if X is not hyperelliptic;
2) Autg(Mc) = Go if X is hyperelliptic.

Proof. As mentioned before, we have § = ¢*©. From this it follows that for any element of G,
the corresponding automorphism of M preserves 6.

Let Autg(J(X)) be the group of all automorphisms of the variety J(X) that preserve the
cohomology class @. From [13, Hauptsatz, p. 35] one has the following:

1. Assume that X is not hyperelliptic. Then Autg(J(X)) is generated by translations of
J(X), Aut(X) and the inversion L — LY of J(X).

2. Assume that X is hyperelliptic. Then Autg(J(X)) is generated by translations of J(X)
and Aut(X). (The hyperelliptic involution of X induces the inversion of J(X).)

Consider the homomorphism § in (3.1). In the proof of Theorem 3.1 it was shown that the
inclusion

p(kernel(yp)) < kernel(0) (3.2)
is surjective. First assume that X is not hyperelliptic. Using ¢ in (2.2), we get a homomorphism
G — Aut(J(X)).

From the above result of [13] we know that this homomorphism is injective, its image is a normal
subgroup of Aut(J(X)) and the composition

G — Aut(J(X)) — Aut(J(X))/J(X)

is an isomorphism. Therefore, from the surjectivity of the homomorphism in (3.2) we conclude
that Autg(M¢) = G.

If X is hyperelliptic, then Aut(J(X))/ Aut(X) = J(X) by the above theorem of [13]. There-
fore, by the above argument it follows that Auty(Mc) = Go. [ |

From the definitions of Gy and G, it is straightforward to verify that these groups preserve
the algebraic symplectic form on M. Therefore, Theorem 3.2 gives the following;:
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Corollary 3.3.
1. Assume that X is not hyperelliptic. Then the group of algebraic automorphisms of Mc
that preserve the symplectic form on Mc is G.

2. Assume that X is hyperelliptic. Then the group of algebraic automorphisms of Mg that
preserve the symplectic form on Mc is Gg.

4 Automorphisms of the representation space
The representation space
Mg = Hom(H, (X, Z),C*) = Hom(m; (X), C*)

is algebraically isomorphic to (C*)29. A choice of a basis of the Z-module H; (X, Z) produces an
isomorphism of Mg with (C*)29. The group structure of the multiplicative group C* makes Mg
a complex algebraic group.

The group Hy(X,Z) is identified with H!(Mg,Z) by the (1, 1)-type Kiinneth component of
the first Chern class of a Poincaré line bundle on X x Mpg. It should be clarified that this
(1,1)-type Kiinneth component is independent of the choice of the Poincaré line bundle. The
group of all automorphisms of the Z-module H;(X,Z) will be denoted by I'. So I' is isomorphic
to GL(2¢g,7Z).

Let Aut(Mp) denote the group of all algebraic automorphisms of Mp. Let

f: Aut(Mp) — T (4.1)
be the homomorphism that sends any automorphism of Mg to the automorphism of

HY (Mg, Z) = H|(X,7)
induced by it.

Lemma 4.1. The homomorphism f in (4.1) is surjective.

Proof. Given any (aij)?,g'zl € GL(2g,7Z), consider the automorphism T' of (C*)29 defined as
follows: the i-th coordinate of T'(z1,.. ., 294), (21,...,224) € (C*)*, is

29
A4
J
7j=1

The automorphism of H!((C*)29,Z) = 729 induced by T is given by the standard action of
(aij)?g-zl on Z%9. [

The map (aij)?z'zl — Aut((C*)%9) in the proof of Lemma 4.1 produces a canonical right-
splitting of the homomorphism f in (4.1). Since f is surjective, this implies that the group
Aut(Mpg) is the semi-direct product

Aut(Mp) = kernel(f) x T

The group of all algebraic automorphisms of (C*)29 that preserve every factor is (C*)29 acting
on itself by translations. Therefore, we have the following:

Theorem 4.2. The automorphism group Aut(Mpg) is the semi-direct product Mp x T.
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We shall consider now I's, C I' = Aut(H(X,Z)) the group of automorphisms that preserve
the cap product on H;(X,Z). So I's, is isomorphic to the symplectic group Sp(2g,Z). Using
Theorem 4.2 it can be deduced that the group of automorphisms of Mpg that preserve its
symplectic form is Mp x I'gp,.

Although the holomorphic isomorphism between Mo and Mg is not algebraic, comparing
Theorem 3.2 and Theorem 4.2 we obtain a relation between their automorphism groups. Let
h: Aut(X)/ Aut®(X) x Zy — Aut(MRg) be the homomorphism which sends Aut(X)/ Aut®(X)
to its image in Aut(Mp) and maps the generator of Zs to the inversion map ¢ — ¢!, sending
a homomorphism ¢: m1(X) — C* to its inverse ¢ 1. Let Gy C Aut(Mpg) be the image of h.
Then:

Corollary 4.3. For any 7 € Auty(Mc¢), the holomorphic automorphism of Mg given by T
using the holomorphic identification between Mc and My is actually algebraic. More precisely,
the set of automorphisms of Mp given by Autg(Mc) is as follows:

1) it is Mg x Gy if X is not hyperelliptic,
2) it is Mg x h(Aut(X)/ Aut®(X)) if X is hyperelliptic.

Proof. Recall from Theorem 3.2 that Autg(M) is generated by the translation action of M¢
on itself together with the action of Aut(X) and the inversion (L,D) — (LY, D") of the
group M. In the case that X is hyperelliptic the action of inversion coincides with the hy-
perelliptic involution, so may be omitted. As abstract groups, M¢ and Mg are isomorphic, so
the translation action of M coincides with the translation action of Mg, hence is algebraic
with respect to Mp. It is also clear that the action of Aut(X) together with the inversion
(L, D) — (LY, DY) act on Mp = Hom(H;(X,Z),C*) as a subgroup of I'sp, hence are also al-
gebraic with respect to Mp. This proves the claim that any 7 € Auty(M) acts as an algebraic
automorphism of Mp and hence defines natural homomorphism j: Auty(Mc) = Aut(Mc).
We claim that j is injective. For this note that the restriction of f to Gj; defines a ho-
momorphism f: Gpr — I'sp which sends an automorphism of X to its induced action on
Hy{(X,Z) and sends the inversion map to —Id. If X is not hyperelliptic, then the compo-
sition f o h: Aut(X)/Aut®(X) x Zy + T, is injective and if X is hyperelliptic then f o
] Aut(x)/ Aut®(x) - Aut(X)/ Aut?(X) — T'sp is injective (for g = 1 this is trivial, while for g > 2
this follows from, e.g., [6, Section V.2]). This proves the claim that j is injective and that
the image of j is Mg x Gy if X is not hyperelliptic and Mp x h(Aut(X)/Aut®(X)) if X is
hyperelliptic. |

5 Automorphisms of moduli space of Higgs line bundles

The moduli space of Higgs line bundles on X of degree zero is the Cartesian product
My =J(X)x H(X,Kx).

Let Aut(Mp) denote the group of all algebraic automorphisms of the variety M.

Lemma 5.1. Any f € Aut(Mpg) is of the form

f = fl X f27
where fi € Aut(J(X)) and fo € Aut(H(X, Kx)).
Proof. Let

¢1: My =J(X)x H(X,Kx) — J(X),
¢o: J(X) x H'(X,Kx) — H°(X,Kx)
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be the natural projections. As noted before, there are no nonconstant algebraic maps from
H(X,Kx) to J(X). So given f, there is a unique automorphism

f1 € Aut(J(X))

such that f; o ¢1 = ¢1 0 f.
Note that given v € H°(X, Kx), one can define the map

v J(X) — H°X,Kx),
A ¢2(f(z7v))7

which is a constant map since it is holomorphic. Denoting by v' € H%(X, Kx) the constant
image of v, one can see that

fo: HY(X,Kx) — HY(X,Kx),
v *—)U,

is an automorphism, and thus one has that f = f; x fs. |

The moduli space My can be naturally identified with the cotangent bundle of J(X), hence
it carries a canonical symplectic form 6. Let Autg(Mp) be the subgroup of Aut(My) preser-
ving 6. Recall that Q;x) denotes the holomorphic cotangent bundle of J(X) and that there is
a naturally defined isomorphism H°(X, Kx) = H°(J(X), Qyx))-

Theorem 5.2. The group Autg(Myy) is the semi-direct product
HO(J(X), Qyx)) % Aut(J(X)),

where Aut(J(X)) acts on H'(J(X),Qyx)) by f-a = (f1)*(a), for f € Aut(J(X)), a €
HO(J(X), Qx))-

Proof. By Lemma 5.1, any automorphism of TV J(X) = J(X) x H°(J(X),(x)) has the form
F(,w) = (h1(2), fo(v) for fi € Aut(J(X), f» € Aut(HO(I(X), Qyx))- Since fi € Aut(J(X)).
the derivative (f1)«(z): HO(J(X),Q;x))" — H°(J(X),Qx))" is independent of z and will
be denoted by A. Then, it is clear that f; x fo preserves the symplectic form on TVJ(X)
if and only if (f2)«(y) = (AY)~! for all y. Thus fo is an affine transformation of the form
foly) = (AY) Yty + yo, for some gy € HO(J(X),QJ(X)). So fi x fo is the composition of
(ff)~t: TVJ(X) — TVJ(X) with a translation by yo in the fibers of TVJ(X) — J(X). It
follows easily that Autg(Myr) is the semi-direct product H(J(X),2;x)) x Aut(J(X)). [
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