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These notes provide an introduction to Higgs bundles for complex and
real Lie groups, as well as a description of their associated spectral data.

1. Introduction

The first lecture shall introduce classical Higgs bundles and the Hitchin

fibration, and describe the associated spectral data in the case of principal

Higgs bundles for classical complex Lie groups, following mainly Hitchin’s

papers [31, 32, 33, 34]. The second lecture is dedicated to the construction

of Higgs bundles for real forms of classical complex Lie groups as fixed

points of involutions, and the description of the corresponding spectral data,

following mainly [35, 46, 47, 48]. Along the way, we shall mention different

applications and open questions related to the methods introduced in both

lectures.

Each lecture contains exercises of varying difficulty, whose solutions can

be found in [47]. Open questions which might be tackled with methods

similar to the ones introduced in the lectures appear indicated with (*)

together with references which feature approaches that may be useful. Since

it proves to be very difficult to give a comprehensive and exhaustive account

of research in tangential areas, we shall restrain ourselves to mentioning

related work only when it directly involves methods using spectral data. The

reader should refer to references in the bibliography for further research in

related topics (e.g., see references in [4, 42, 47]).

65
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2. Spectral data for Gc-Higgs bundles

The art of doing mathematics

consists in finding that special

case which contains all the germs

of generality.

David Hilbert

Following [31, 32, 34] we dedicate this lecture to overview classical Higgs

bundles as well asGc-Higgs bundles for the groups Gc = SL(n,C), Sp(n,C),

SO(2n+ 1,C) and SO(2n,C). In each case we introduce the Hitchin fibra-

tion and describe the generic fibres through spectral data, i.e., an associated

spectral curve and a line bundle on it.

2.1. Gc-Higgs bundles

Consider Σ a compact Riemann surface of genus g ≥ 2 with canonical

bundle K = T ∗Σ. Classically, a Higgs bundle on Σ is defined as follows:

Definition 2.1: A Higgs bundle is a pair (E,Φ) for E a holomorphic

vector bundle on Σ, and Φ, the Higgs field, a holomorphic section in

H0(Σ,End(E)⊗K).

In order to understand better what Higgs bundles are and how to gen-

eralise the definition, we shall first look at the moduli space of vector

bundles and then study the moduli space of classical Higgs bundles and

its associated spectral data. For more details the reader should refer to

[31, 32, 23, 19, 51, 40, 52].

2.1.1. Moduli space of vector bundles

Holomorphic vector bundles E on a compact Riemann surface Σ of genus

g ≥ 2 are topologically classified by their rank rk(E) and their degree

deg(E).

Definition 2.2: The slope of a holomorphic vector bundle E is defined as

µ(E) := deg(E)/rk(E) and is used to define stability conditions: A vector

bundle E is said to be stable (semi-stable) if for any proper, non-zero sub-

bundle F ⊂ E one has µ(F ) < µ(E) (µ(F ) ≤ µ(E)). It is polystable if it is

a direct sum of stable bundles whose slope is the same as E.
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It is known that the space of holomorphic bundles of fixed rank and

fixed degree, up to isomorphism, is not a Hausdorff space. However, through

Mumford’s Geometric Invariant Theory one can construct the moduli space

N (n, d) of stable bundles of fixed rank n and degree d, which has the natural

structure of an algebraic variety.

Remark 2.3: For coprime n and d, the moduli space N (n, d) is a smooth

projective algebraic variety of dimension n2(g − 1) + 1.

Remark 2.4: All line bundles are stable, and thus N (1, d) contains all line

bundles of degree d, and is isomorphic to Jacd(Σ) of Σ, an abelian variety

of dimension g.

Let Gc be a complex semisimple Lie group. Following [44] one can define

stability for principal Gc-bundles as follows (see [4] for a comprehensive

study):

Definition 2.5: A holomorphic principal Gc-bundle P is said to be stable

(semi-stable) if for every reduction σ : Σ → P/Q to maximal parabolic

subgroups Q of Gc one has deg σ∗Trel > 0 (≥ 0), where Trel is the relative

tangent bundle for the projection P/Q→ Σ.

The notion of polystability may be carried over to principal Gc-bundles,

allowing one to construct the moduli space of isomorphism classes of

polystable principal Gc-bundles of fixed topological type over the compact

Riemann surface Σ.

2.1.2. Moduli space of classical Higgs bundles

In order to define the moduli space of Higgs bundles, the following stability

condition is considered:

Definition 2.6: A vector subbundle F of E for which Φ(F ) ⊂ F ⊗K is

said to be a Φ-invariant subbundle of E. A Higgs bundle (E,Φ) is

• stable (semi-stable) if for each proper Φ-invariant F ⊂ E one has

µ(F ) < µ(E) (equiv. ≤);

• polystable if (E,Φ) = (E1,Φ1) ⊕ (E2,Φ2) ⊕ · · · ⊕ (Er,Φr), where

(Ei,Φi) is stable with µ(Ei) = µ(E) for all i.

Example 2.7: Choose a square root K1/2 of the canonical bundle K,

and a section ω of K2. A family of classical Higgs bundles (E,Φω) may be
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obtained by considering the vector bundle E = K
1
2 ⊕K− 1

2 and the Higgs

bundle Φω given by

Φω =

(
0 ω

1 0

)
∈ H0(Σ,End(E)⊗K).

Problem 2.8: Show that the pairs (E,Φω) from Example 2.7 are stable.

Problem 2.9: Prove that if a Higgs bundle (E,Φ) is stable, then for any

λ ∈ C∗ and α a holomorphic automorphism of E, the induced Higgs bundles

(E, λΦ) and (E,α∗Φ) are stable.

In order to define the moduli space of classical Higgs bundles, we shall

first define an appropriate equivalence relation. For this, consider a strictly

semi-stable Higgs bundle (E,Φ). As it is not stable, E admits a subbundle

F ⊂ E of the same slope which is preserved by Φ. If F is a subbundle of

E of least rank and same slope which is preserved by Φ, it follows that F

is stable and hence the induced pair (F,Φ) is stable. Then, by induction

one obtains a flag of subbundles F0 = 0 ⊂ F1 ⊂ · · · ⊂ Fr = E where

µ(Fi/Fi−1) = µ(E) for 1 ≤ i ≤ r, and where the induced Higgs bundles

(Fi/Fi−1,Φi) are stable. This is the Jordan-Hölder filtration of E, and it is

not unique. However, the graded object Gr(E,Φ) :=
⊕r

i=1(Fi/Fi=1,Φi) is

unique up to isomorphism.

Definition 2.10: Two semi-stable Higgs bundles (E,Φ) and (E′,Φ′) are

said to be S-equivalent if Gr(E,Φ) ∼= Gr(E′,Φ′).

Problem 2.11: If a pair (E,Φ) is strictly stable, what is the induced

Jordan-Hölder filtration?

Following [40] we let M(n, d) be the moduli space of S-equivalence

classes of semi-stable Higgs bundles of fixed degree d and fixed rank n.

The moduli space M(n, d) is a quasi-projective scheme, and has an open

subschemeM′(n, d) which is the moduli scheme of stable pairs. Thus, every

point is represented by either a stable or a polystable Higgs bundle. When

d and n are coprime, the moduli space M(n, d) is smooth.

The cotangent space of N (n, d) over the stable locus is contained in

M(n, d) as a Zariski open subset. The moduli space M(n, d) is a non-

compact variety which has complex dimension 2n2(g− 1) + 2. Moreover, it

is a hyperkähler manifold with natural symplectic form ω defined on the

infinitesimal deformations (Ȧ, Φ̇) of a Higgs bundle (E,Φ) by

ω((Ȧ1, Φ̇1), (Ȧ2, Φ̇2)) =

∫
Σ

tr(Ȧ1Φ̇2 − Ȧ2Φ̇1), (2.1)
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where Ȧ ∈ Ω0,1(End0E) and Φ̇ ∈ Ω1,0(End0E) (see [31, 32] for details). For

simplicity, we shall fix n and d and write M for M(n, d).

2.1.3. Moduli space of Gc-Higgs bundles

The notion of Higgs bundle can be generalized to encompass principal Gc-

bundles, for Gc a complex semi-simple Lie group. For more details, the

reader should refer to [32].

Definition 2.12: A Gc-Higgs bundle is a pair (P,Φ) where P is a principal

Gc-bundle over Σ, and the Higgs field Φ is a holomorphic section of the

vector bundle adP⊗CK, for adP the vector bundle associated to the adjoint

representation.

When Gc ⊂ GL(n,C), a Gc-Higgs bundle gives rise to a Higgs bundle in

the classical sense, with some extra structure reflecting the definition of Gc.

In particular, classical Higgs bundles are given by GL(n,C)-Higgs bundles.

Example 2.13: The Higgs bundles in Example 2.7 have traceless Higgs

field, and the determinant Λ2E is trivial. Hence, for each quadratic differ-

ential ω one has an SL(2,C)-Higgs bundle (E,Φω).

By extending the stability definitions for principal Gc-bundles, one can

define stable, semi-stable and polystable Gc-Higgs bundles. Since in these

notes we shall be working with Higgs pairs which do not preserve any

subbundle, they will be automatically stable and thus we shall not dedicate

time to recall the main study of stability for principal Higgs bundles. For

details about the corresponding constructions, the reader should refer for

example to [12, 4]. We denote by MGc
the moduli space of S-equivalence

classes of polystable Gc-Higgs bundles.

In the remainder of this Section, following [32] and [34] we introduce

the Hitchin fibration and describe the generic fibres for Gc-Higgs bundles

where Gc = GL(n,C), SL(n,C), Sp(2n,C), SO(2n+ 1,C) and SO(2n,C).

We shall cover with more detail the initial cases, and leave as an exercise

to the reader some of the results for the latter groups.

2.2. The Hitchin fibration

A natural way of studying MGc is through the Hitchin fibration, as intro-

duced in [32]. We shall denote by pi, for i = 1, . . . , k, a homogeneous basis
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for the algebra of invariant polynomials of the Lie algebra gc of Gc, and let

di be their degrees. Then, the Hitchin fibration is given by

h : MGc
−→ AGc

:=
k⊕
i=1

H0(Σ,Kdi), (2.2)

(E,Φ) 7→ (p1(Φ), . . . , pk(Φ)). (2.3)

The map h is referred to as the Hitchin map, and is a proper map for any

choice of basis [32]. Furthermore, dimAGc
= dimMGc

/2, making the Higgs

bundle moduli space into an integrable system.

Remark 2.14: Note that, in a local frame, a Higgs field Φ has values in a

Lie algebra, and thus since this is well defined up to conjugation, evaluating

the invariant polynomials is globally well defined.

Remark 2.15: Let gc be one of the classical Lie algebras sl(n,C),

sp(2n,C), so(2n+1,C). Then, for π : gc → gl(V ) a representation of gc, the

ring of invariant polynomials of gc is generated by Tr(π(X)i), for i ∈ N and

X ∈ gc. Hence, a homogeneous basis of invariant polynomials for classical

Higgs bundles (E,Φ) of rank n can be taken as tr(Φi) for 1 ≤ i ≤ n.

Remark 2.16: Whilst a formal definition of the smooth locus of the

Hitchin base can be given (e.g., see [20]) in these lectures we shall note

that the generic fibres of the Hitchin fibration are smooth, and thus generic

points in the Hitchin base are in the smooth locus.

In what follows we shall describe the spectral data associated to Gc-

Higgs bundles as introduced in [32, 34].

2.2.1. GL(n,C)-Higgs bundles

As before, let K be the canonical bundle of Σ, and X its total space with

projection π : X → Σ. We shall denote by η the tautological section of the

pull back π∗K onX. Abusing notation we denote with the same symbols the

sections of powers Ki on Σ and their pull backs to X. The characteristic

polynomial of a Higgs bundle (E,Φ) in a generic fibre h−1(a) defines a

smooth curve π : Sa → Σ in X, the spectral curve of Φ, whose equation is

det(ηId− π∗Φ) = ηn + a1η
n−1 + a2η

n−2 + · · ·+ an−1η + an = 0, (2.4)

for ai ∈ H0(Σ,Ki) (for simplicity, we shall write det(η − Φ) for the char-

acteristic polynomial of the Higgs field Φ, and drop the subscript a of Sa).

By the adjunction formula on X (see e.g. [29]), since the canonical bundle
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K has trivial cotangent bundle one has KS
∼= π∗Kn, and hence the genus

of S is

gS = 1 + n2(g − 1). (2.5)

The spectral data for classical Higgs bundles in a smooth fibre of the

Hitchin fibration is given by a spectral curve S defined as in (2.4) and a

line bundle L ∈ Jac(S).

In order to see that the smooth fibres of the Hitchin fibration are Jaco-

bians, starting with a line bundle L on the smooth curve π : S → Σ with

equation as in (2.4), we shall obtain a classical Higgs bundle by considering

the direct image π∗L of L. Recall that by definition of direct image, given

an open set U ⊂ Σ, one has H0(π−1(U), L) = H0(U , π∗L). Multiplication

by the tautological section η induces the map

H0(π−1(U), L)
η−→ H0(π−1(U), L⊗ π∗K),

which by definition of direct image can be pushed down to give

Φ : π∗L→ π∗L⊗K.

Then, one obtains a Higgs field Φ ∈ H0(Σ,EndE ⊗K) for E := π∗L.

Problem 2.17: Use Grothendieck-Riemann-Roch to show that the degree

of E is deg(E) = deg(L) + (n2 − n)(1− g).

Moreover, the Higgs field satisfies its characteristic equation, which by

construction is given by ηn + a1η
n−1 + a2η

n−2 + · · · + an−1η + an = 0.

Furthermore, since S is irreducible, from Remark 2.21 there are no

invariant subbundles of the Higgs field, making the induced Higgs bundle

(E,Φ) stable.

Conversely, let (E,Φ) be a classical Higgs bundle. The characteristic

polynomial is given by det(x−Φ) = xn+a1x
n−1+a2x

n−2+· · ·+an−1x+an,

and its coefficients define the spectral curve S in the total space X whose

equation is (2.4).

From [11], there is a bijective correspondence between Higgs bundles

(E,Φ) and the line bundles L on the spectral curve S described previously.

This correspondence identifies the fibre of the Hitchin map with the Picard

variety of line bundles of the appropriate degree. By tensoring the line

bundles L with a chosen line bundle of degree −deg(L), one obtains a point

in the Jacobian Jac(S), the abelian variety of line bundles of degree zero on

S, which has dimension gS as in (2.5). In particular, the Jacobian variety
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is the connected component of the identity in the Picard group H1(S,O∗S).

Thus, the fibre of the classical Hitchin fibration h :M→ A is isomorphic

to the Jacobian of the spectral curve S. For more details, the reader should

refer for example to [34].

Example 2.18: In the case of a classical rank 2 Higgs bundle (E,Φ), the

characteristic polynomial of Φ defines a spectral curve π : S → Σ. This is

a 2-fold cover of Σ in the total space of K, and has equation η2 + a2 = 0,

for a2 a quadratic differential and η the tautological section of π∗K. By

[11] the curve is smooth when a2 has simple zeros, and in this case the

ramification points are given by the divisor of a2. For z a local coordinate

near a ramification point, the covering is given by z 7→ z2 := w. In a

neighbourhood of z = 0, a section of the line bundle M can be expressed as

f(w) = f0(w) + zf1(w). Since the Higgs field is obtained via multiplication

by η, one has

Φ(f0(w) + zf1(w)) = wf1(w) + zf0(w), (2.6)

and thus a local form of the Higgs field Φ is given by

Φ =

(
0 w

1 0

)
.

Remark 2.19: When Gc ⊂ GL(n,C), for the groups Gc we are considering

in these notes, the spectral data of a Gc-Higgs bundle is given by the spectral

data of the pair as a classical Higgs bundle, satisfying extra conditions.

Remark 2.20: For general Gc, a similar description of the fibres can be

obtained though a Lie theoretic approach, by means of what is known

as Cameral covers. The reader should refer to [21] (see also [20]) for this

generic description, and note that it is equivalent to the one given in the

next sections for the groups considered in these lecture notes.

Remark 2.21: The characteristic polynomial of Φ restricted to an invari-

ant subbundle divides the characteristic polynomial of Φ.

2.2.2. SL(n,C)-Higgs bundles

When Gc = SL(n,C) we apply Definition 2.12 to obtain the following:

Definition 2.22: An SL(n,C)-Higgs bundle is a classical Higgs bundle

(E,Φ) where the rank n vector bundle E has trivial determinant and the

Higgs field has zero trace.
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A basis for the invariant polynomials on the Lie algebra sl(n,C) is given

by the coefficients of the characteristic polynomial of a trace-free matrix

A ∈ sl(n,C). In this case, the spectral curve π : S → Σ associated to the

Higgs bundle has equation

ηn + a2η
n−2 + · · ·+ an−1η + an = 0, (2.7)

where ai ∈ H0(Σ,Ki) are the coefficients of the characteristic polynomial of

the Higgs field Φ. In particular, one may consider ai = Tr(Φi), from where

it is clear that in this case a1 = Tr(Φ) = 0. Generically S is a smooth curve

of genus gS = 1 + n2(g − 1), and the coefficients define the corresponding

Hitchin fibration

h : MSL(n,C) −→ ASL(n,C) :=

n⊕
i=2

H0(Σ,Ki). (2.8)

In this case the generic fibres of the Hitchin fibration are given by the

subset of Jac(S) of line bundles L on S for which π∗L = E and Λnπ∗L is

trivial. These conditions in terms of L lead to the following:

The generic fibre of the SL(n,C) Hitchin fibration is biholomorphically

equivalent to the Prym(S,Σ), for S the spectral curve defined as in (2.4).

In order to see why one has to take the Prym variety, recall that the

Norm map

Nm : Pic(S)→ Pic(Σ),

associated to π is defined on divisor classes by Nm(
∑
nipi) =

∑
niπ(pi).

In particular,

Nm(π−1(x)) = π(π−1(x)) = nx.

The kernel of the Norm map is the Prym variety, and is denoted by

Prym(S,Σ). From [11], the determinant bundle of L satisfies

Λnπ∗L ∼= Nm(L)⊗K−n(n−1)/2.

Thus, Λnπ∗L is trivial if and only if

Nm(L) ∼= Kn(n−1)/2. (2.9)

Equivalently, since Nm(
∑
niπ
−1(pi)) = n

∑
nipi, the determinant bundle

Λnπ∗L is trivial if the line bundle M := L ⊗ π∗K−(n−1)/2 is in the Prym

variety.
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Remark 2.23: In the case of even rank, equation (2.9) implies a choice of

a square root of K (see [31] and [34] for more details).

2.2.3. Sp(2n,C)-Higgs bundles

Let Gc = Sp(2n,C), and let V be a 2n-dimensional vector space with a

non-degenerate skew-symmetric form <,>. For vi, vj eigenvectors of A ∈
sp(2n,C) with eigenvalues λi and λj ,

λi < vi, vj > = < λivi, vj > (2.10)

= < Avi, vj > (2.11)

= − < vi, Avj > (2.12)

= − < vi, λjvj > = −λj < vi, vj > .

From the above, < vi, vj >= 0 unless λi = −λj . Since < vj , vj >= 0, from

the non-degeneracy of the symplectic inner product it follows that if λi is

an eigenvalue so is −λi. Thus, distinct eigenvalues of A must occur in ±λi
pairs, and the corresponding eigenspaces are paired by the symplectic form.

The characteristic polynomial of A must therefore be of the form

det(x−A) = x2n + a1x
2n−2 + · · ·+ an−1x

2 + an,

and a basis for the invariant polynomials on the Lie algebra sp(2n,C) is

given by a1, . . . , an.

Definition 2.24: An Sp(2n,C)-Higgs bundle is a pair (E,Φ) for E a rank

2n vector bundle with a symplectic form ω( , ), and the Higgs field Φ ∈
H0(Σ,End(E)⊗K) satisfying

ω(Φv, w) = −ω(v,Φw).

The volume form ωn trivialises the determinant bundle Λ2nE∗. The char-

acteristic polynomial det(η − Φ) defines a spectral curve π : S → Σ in X

with equation

η2n + a1η
2n−1 + · · ·+ an−1η

2 + an = 0, (2.13)

whose genus is gS := 1 + 4n2(g − 1). The curve S has a natural involution

σ(η) = −η and thus one can define the quotient curve π̄ : S = S/σ → Σ,

of which S is a 2-fold cover p : S → S. Note that the Norm map associated

to p satisfies p∗Nm(x) = x+ σx, and thus the Prym variety Prym(S, S) is

given by the line bundles M ∈ Jac(S) for which σ∗M ∼= M∗.
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As in the case of classical Higgs bundles, the characteristic polynomial

of a Higgs field Φ gives the Hitchin fibration

h : MSp(2n,C) −→ ASp(2n,C) :=
n⊕
i=1

H0(Σ,K2i), (2.14)

and one has the following:

The generic fibres h−1(a) of the Hitchin fibration for Sp(2n,C)-Higgs

bundles is given by Prym varieties Prym(S, S), where S and its quotient S̄

are the curves defined by a as above.

The spectral data described above for an Sp(2n,C)-Higgs bundle (E,Φ)

can be obtained by looking at the extra conditions needed on L ∈ Jac(S)

associated to the corresponding classical Higgs pair for which π∗L = E.

In order to understand this, note that for V ⊂ S an open set, we have

V ⊂ π−1(π(V)) and hence a natural restriction map H0(π−1(π(V)), L) →
H0(V, L), which gives the evaluation map ev : π∗π∗L→ L. Multiplication

by η commutes with this linear map and so the action of π∗Φ on the dual of

the vector bundle π∗π∗L preserves a one-dimensional subspace. Hence L∗

is an eigenspace of π∗Φt, with eigenvalue η. Equivalently, L is the cokernel

of π∗Φ− η acting on π∗E ⊗ π∗K∗. By means of the Norm map for π, this

correspondence can be seen on the curve S via the exact sequence

0→ L⊗ π∗K1−2n → π∗E
π∗Φ−η−−−−→ π∗(E ⊗K∗) ev−→ L⊗ π∗K → 0, (2.15)

and its dualised sequence

0→ L∗ ⊗ π∗K∗ → π∗(E∗ ⊗K∗)→ π∗E∗ → L∗ ⊗ π∗K2n−1 → 0. (2.16)

In particular, from the relative duality theorem one has that

π∗(L)∗ ∼= π∗(KS ⊗ π∗K−1 ⊗ L∗), (2.17)

and thus E∗ is the direct image sheaf π∗(L
∗ ⊗ π∗K2n−1).

Given an Sp(2n,C)-Higgs bundle (E,Φ), one has Φt = −Φ and an

eigenspace L of Φ with eigenvalue η is transformed to σ∗L for the eigenvalue

−η. Moreover, since the line bundle L is the cokernel of π∗Φ− η acting on

π∗(E⊗K∗), one can consider the corresponding exact sequences (2.15) and

its dualised sequence, which identify L∗ with L⊗π∗K1−2n, or equivalently,

L2 = π∗K2n−1. By choosing a square root K1/2 one has a line bundle

M := L ⊗ π∗K−n+1/2 for which σ∗M ∼= M∗, i.e., which is in the Prym

variety Prym(S, S).

Conversely, an Sp(2p,C)-Higgs bundle can be recovered from a line bun-

dle M ∈ Prym(S, S), for S a smooth curve with equation (2.13) and S̄ its
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quotient curve. Indeed, by Bertini’s theorem, such a smooth curve S with

equation (2.13) always exists. Letting E := π∗L for L = M⊗π∗Kn−1/2, one

has the exact sequences (2.15) and its dualised on the curve S. Moreover,

since L2 ∼= π∗K2n−1, there is an isomorphism E ∼= E∗ which induces the

symplectic structure on E. Hence, the generic fibres of the corresponding

Hitchin fibration can be identified with the Prym variety Prym(S, S).

2.2.4. SO(2n+ 1,C)-Higgs bundles

We shall now consider the special orthogonal group Gc = SO(2n + 1,C)

and the corresponding Higgs bundles. Following a similar analysis as in the

previous case, one can see that for a generic matrix A ∈ so(2n + 1,C),

its distinct eigenvalues occur in ±λi pairs, and necessarily A has a zero

eigenvalue. Thus, the characteristic polynomial of A must be of the form

det(x−A) = x(x2n + a1x
2n−2 + · · ·+ an−1x

2 + an), (2.18)

where the coefficients a1, . . . , an give a basis for the invariant polynomials

on so(2n+ 1,C).

Definition 2.25: An SO(2n+ 1,C)-Higgs bundle is a pair (E,Φ) for E a

holomorphic vector bundle of rank 2n+1 with a non-degenerate symmetric

bilinear form (v, w), and Φ a Higgs field in H0(Σ,End0(E) ⊗ K) which

satisfies (Φv, w) = −(v,Φw).

The moduli space MSO(2n+1,C) has two connected components, charac-

terised by a class w2 ∈ H2(Σ,Z2) ∼= Z2, depending on whether E has a lift

to a spin bundle or not. The spectral curve induced by the characteristic

polynomial in (2.18) is a reducible curve: an SO(2n + 1,C)-Higgs field Φ

always has a zero eigenvalue, and from [34] the zero eigenspace E0 is given

by E0
∼= K−n.

From (2.18), the characteristic polynomial det(η −Φ) defines a compo-

nent of the spectral curve, which we shall denote by π : S → Σ, and whose

equation is η2n + a1η
2n−2 + · · ·+ an−1η

2 + an = 0, where ai ∈ H0(Σ,K2i).

This is a 2n-fold cover of Σ, with genus gS = 1 + 4n2(g − 1). The Hitchin

fibration in this case is given by the map

h : MSO(2n+1,C) −→ ASO(2n+1,C) :=
n⊕
i=1

H0(Σ,K2i), (2.19)

which sends each pair (E,Φ) to the coefficients of det(η − Φ). As in the

case of Sp(2n,C), the curve S has an involution σ which acts as σ(η) = −η.
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Thus, we may consider the quotient curve S = S/σ in the total space of

K2, for which S is a double cover p : S → S. In this case the regular fibres

can be described as follows:

The regular fibres h−1(a) of the SO(2n + 1,C) Hitchin fibration are

given by Prym varieties Prym(S, S̄) together with a trivialization of each

M ∈ Prym(S, S̄) over the zeros of an defining S as in (2.18).

Following [34], the symmetric bilinear form (v, w) canonically defines a

skew form (Φv, w) on E/E0 with values in K. Moreover, choosing a square

root K1/2 one can define

V = E/E0 ⊗K−1/2,

on which the corresponding skew form is non-degenerate. The Higgs field

Φ induces a transformation Φ′ on V which has characteristic polynomial

det(x− Φ′) = x2n + a1x
2n−2 + · · ·+ an−1x

2 + an.

Note that this is exactly the case of Sp(2n,C) described in Section 2.2.3,

and thus we may describe the above with a choice of a line bundle M0 in

the Prym variety Prym(S, S). In particular, S corresponds to the smooth

spectral curve of an Sp(2n,C)-Higgs bundle.

When reconstructing the vector bundle E with an SO(2n+ 1,C) struc-

ture from an Sp(2n,C)-Higgs bundle (V,Φ′) as in [34], there is a mod 2

invariant associated to each zero of the coefficient an of the characteristic

polynomial det(η − Φ′). This data comes from choosing a trivialisation of

M ∈ Prym(S, S) over the zeros of an, and defines a covering P ′ of the

Prym variety Prym(S, S). The covering has two components corresponding

to the spin and non-spin lifts of the vector bundle. The identity component

of P ′, which corresponds to the spin case, is isomorphic to the dual of the

symplectic Prym variety, and this is the generic fibre of the SO(2n+ 1,C)

Hitchin map - the reader should refer to Hitchin’s work [32] and [33] for a

thorough explanation of how the above description is obtained.

2.2.5. SO(2n,C)-Higgs bundles

Lastly, we consider Gc = SO(2n,C). As in previous cases, the distinct

eigenvalues of a matrix A ∈ so(2n,C) occur in pairs ±λi, and thus the

characteristic polynomial of A is of the form det(x−A) = x2n + a1x
2n−2 +

· · ·+an−1x
2+an. In this case the coefficient an is the square of a polynomial
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pn, the Pfaffian, of degree n. A basis for the invariant polynomials on the

Lie algebra so(2n,C) is a1, a2, . . . , an−1, pn, (the reader should refer, for

example, to [5] and references therein for further details).

Definition 2.26: An SO(2n,C)-Higgs bundle is a pair (E,Φ), for E a

holomorphic vector bundle of rank 2n with a non-degenerate symmetric

bilinear form ( , ), and the Higgs field Φ ∈ H0(Σ,End0(E)⊗K) satisfying

(Φv, w) = −(v,Φw).

Considering the characteristic polynomial det(η−Φ) of a Higgs bundle

(E,Φ) one obtains a 2n-fold cover π : S → Σ whose equation is given by

det(η − Φ) = η2n + a1η
2n−2 + · · ·+ an−1η

2 + p2
n,

for ai ∈ H0(Σ,K2i) and pn ∈ H0(Σ,Kn). Note that this curve has always

singularities, which are given by η = 0. The curve S has a natural involution

σ(η) = −η, whose fixed points in this case are the singularities of S. The

virtual genus of S can be obtained via the adjunction formula, giving gS =

1 + 4n2(g − 1).

In order to define the spectral data, one may consider its non-singular

model π̂ : Ŝ → Σ, whose genus is given by

gŜ = gS −#singularities

= 1 + 4n2(g − 1)− 2n(g − 1)

= 1 + 2n(2n− 1)(g − 1).

As the fixed points of σ are double points, the involution extends to an

involution σ̂ on Ŝ which does not have fixed points. Considering the asso-

ciated basis of invariant polynomials for each Higgs field Φ, one may define

the Hitchin fibration

h : MSO(2n,C) −→ ASO(2n,C) := H0(Σ,Kn)⊕
n−1⊕
i=1

H0(Σ,K2i). (2.20)

In this case the line bundle associated to an SO(2n,C)-Higgs bundle is

defined on the desingularisation Ŝ of S:

The smooth fibres of the SO(2n,C) Hitchin fibration are given by

Prym(Ŝ, Ŝ/σ̂), for Ŝ the desingularisation of the curve S associated to the

regular base point a.

Starting with an SO(2n,C)-Higgs bundle, since Ŝ is smooth we obtain

an eigenspace bundle L ⊂ ker(η−Φ) inside the vector bundle E pulled back
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to Ŝ. In particular, this line bundle satisfies σ̂∗L ∼= L∗ ⊗ (KŜ ⊗ π∗K∗)−1,

thus defining a point in Prym(Ŝ, Ŝ/σ̂) given by

M := L⊗ (KŜ ⊗ π
∗K∗)1/2.

Conversely, a Higgs bundle (E,Φ) may be recovered from a curve S with

has equation η2n + a1η
2n−2 + · · · + an−1η

2 + p2
n = 0, and a line bundle L

on its desingularisation Ŝ. Note that given the sections

s = η2n + a1η
2n−2 + · · ·+ an−1η

2 + p2
n

for fixed pn with simple zeros, one has a linear system whose only base

points are when η = 0 and pn = 0. Hence, by Bertini’s theorem the generic

divisor of the linear system defined by the sections s has those base points

as its only singularities. Moreover, as pn is a section of Kn, in general there

are 2n(g − 1) singularities which are generically ordinary double points. A

generic divisor of the above linear system defines a curve S which has an

involution σ(η) = −η whose only fixed points are the base points.

The involution σ induces an involution σ̂ on the desingularisation Ŝ of S

which has no fixed points, and thus we may consider the quotient Ŝ/σ̂ and

the corresponding Prym variety Prym(Ŝ, Ŝ/σ̂). Following a similar proce-

dure as before, a line bundle M ∈ Prym(Ŝ, Ŝ/σ̂) induces a Higgs bundle

(E,Φ) where E is the direct image sheaf of L = M ⊗ (KŜ ⊗ π∗K∗)−1/2. It

is thus the Prym variety of Ŝ which is a generic fibre of the corresponding

Hitchin fibration.

Problem 2.27: Show that the genus gŜ/σ̂ of Ŝ/σ̂ is n(2n− 1)(g − 1).

2.3. Spectral data for complex Higgs bundles

Considering S a spectral curve, Ŝ a normalized spectral curve, and S and

Ŝ the quotients of S and Ŝ by the involution η 7→ −η. Moreover, let D be

a sub-divisor of [an]. Then, the spectral data described in this lecture can

be summarised as follows:

Table 1. Spectral data for complex Higgs bundles.

Group Spectral curve Generic fibre Ref.

GL(n,C) ηn + a1ηn−1 + · · ·+ an−1η + an Jac(S) [32], [34]

SL(n,C) ηn + a2ηn−2 + · · ·+ an−1η + an Prym(S/Σ) [32], [34]

Sp(n,C) η2n + a1η2n−2 + · · ·+ an−1η2 + an Prym(S/S) [32], [34]

SO(2n+ 1,C) η2n + a1η2n−2 + · · ·+ an−1η2 + an Prym(S/S) + D [32], [34]

SO(2n,C) η2n + a1η2n−2 + · · ·+ an−1η2 + p2n Prym(Ŝ/Ŝ) [32]



March 20, 2018 Lecture Note Series, IMS, NUS — Review Vol. 9in x 6in 10683-02 page 80

80 L. P. Schaposnik

3. Spectral data for G-Higgs bundles

But most of all a good example is

a thing of beauty. It shines and

convinces. It gives insight and

understanding. It provides the

bedrock of belief.

Sir Michael Atiyah

Higgs bundles for real forms were first studied by N. Hitchin in [31],

and the results for SL(2,R) were generalised in [33], where Hitchin studied

the case of G = SL(n,R). Using Higgs bundles he counted the number

of connected components and, in the case of split real forms, he identified

a component homeomorphic to RdimG(2g−2) and which naturally contains

a copy of a Teichmüller space. The aim of this Lecture is to introduce

principal Higgs bundles for real forms and their corresponding spectral

data as studied in [47] and further developed in [35, 36].

3.1. G-Higgs bundles

We shall begin by reviewing definitions and properties related to real forms

of Lie algebras and Lie groups (see e.g., [24, 37, 41, 39, 45]), and then define

G-Higgs bundles for real forms G of classical semisimple complex Lie groups

Gc, or of GL(n,C). Through the approach of [33], we describe these Higgs

bundles as the fixed points of a certain involution on the moduli space of Gc-

Higgs bundles. In later sections we study G-Higgs bundles for non-compact

real forms G and in each case give an overview of the corresponding spectral

data when available.

3.1.1. Real forms

Let gc be a complex Lie algebra with complex structure i, whose Lie group

is Gc.

Definition 3.1: A real form of gc is a real Lie algebra which satisfies

gc = g⊕ ig.

Given a real form g of gc, an element Z ∈ gc in the Lie algebra may be

written as Z = X + iY for X,Y ∈ g. The mapping X + iY 7→ X − iY is

called the conjugation with respect to g.
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Remark 3.2: Any real form g of gc is given by the fixed points set of an

antilinear involution τ on gc. In particular the conjugation with respect to

g satisfies these properties.

Definition 3.3: A real form of a complex Lie group Gc is an antiholomor-

phic Lie group automorphism τ : Gc → Gc of order two, i.e., τ2 = 1.

Every X ∈ gc defines an endomorphism adX of the Lie algebra gc

given by adX(Y ) = [X,Y ] for Y ∈ gc. For Tr the trace of a vector space

endomorphism, B(X,Y ) = Tr(adXadY ) is a the bilinear form on gc × gc

called the Killing form of gc.

Definition 3.4: A real Lie algebra g is called compact if the Killing form

is negative definite on it. The corresponding Lie group G is a compact Lie

group.

Definition 3.5: Let g be a real form of a complex simple Lie algebra gc,

given by the fixed points of an antilinear involution τ . Then, if there is a

Cartan subalgebra invariant under τ on which the Killing form is negative

definite, the real form g is called a compact real form. Such a compact

real form of gc corresponds to a compact real form G of Gc; if there is an

invariant Cartan subalgebra on which the Killing form is positive definite,

the form is called a split (or normal) real form. The corresponding Lie group

G is the split real form of Gc.

Any complex semisimple Lie algebra gc has a compact and a split real

form which are unique up to conjugation via AutCg
c (e.g., for sl(n,C) these

are su(n) and sl(n,R) respectively).

Remark 3.6: Recall that all Cartan subalgebras h of a finite dimensional

Lie algebra g have the same dimension. The rank of g is defined to be this

dimension, and a real form g of a complex Lie algebra gc is split if and only

if the real rank of g equals the complex rank of gc.

An involution θ of a real semisimple Lie algebra g such that the sym-

metric bilinear form Bθ(X,Y ) = −B(X, θY ) is positive definite is called a

Cartan involution. Any real semisimple Lie algebra has a Cartan involution,

and any two Cartan involutions θ1, θ2 of g are conjugate via an automor-

phism of g, i.e., there is a map ϕ in Autg such that ϕθ1ϕ
−1 = θ2. The

decomposition of g into eigenspaces of a Cartan involution θ is called the

Cartan decomposition of g.
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Proposition 3.7: [39] Let gc be a complex semisimple Lie algebra, and ρ

the conjugation with respect to a compact real form u of gc. Then, ρ is a

Cartan involution.

Proposition 3.8: [37] Any non-compact real form g of a complex simple

Lie algebra gc can be obtained from a pair (u, θ), for u the compact real

form of gc and θ an involution on u.

For completion, we shall recall here the construction of real forms from

[37]. Let h be the +1-eigenspaces of θ and im the −1-eigenspace of θ acting

on u, thus having

u = h⊕ im. (3.1)

Since gc = h⊕m⊕ i(h⊕m), there is a natural non-compact real form g of

gc given by

g = h⊕m. (3.2)

Moreover, if a linear isomorphism θ0 induces the decomposition as in (3.2),

then θ0 is a Cartan involution of g and h is the maximal compact subalgebra

of g.

Following the notation of Proposition 3.8, let ρ be the antilinear involu-

tion defining the compact form u of a complex simple Lie algebra gc whose

decomposition via an involution θ is given by equation (3.1). Moreover, let

τ be an antilinear involution which defines the corresponding non-compact

real form g = h⊕m of gc. Considering the action of the two antilinear invo-

lutions ρ and τ on gc, we may decompose the Lie algebra gc into eigenspaces

gc = h(+,+) ⊕m(−,+) ⊕ (im)(+,−) ⊕ (ih)(−,−), (3.3)

where the upper index (·, ·) represents the ±-eigenvalue of ρ and τ respec-

tively. From the decomposition (3.3), the involution θ on the compact real

form u giving a non-compact real form g of gc can be seen as acting on gc

as σ := ρτ . Moreover, this induces an involution on the corresponding Lie

group σ := Gc → Gc.

Remark 3.9: The fixed point set gσ of σ is given by gσ = h ⊕ ih, and

thus it is the complexification of the maximal compact subalgebra h of g.

Equivalently, the anti-invariant set under the involution σ is given by mC.
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3.1.2. G-Higgs bundles through involutions

As mentioned previously, non-abelian Hodge theory on the compact Rie-

mann surface Σ gives a correspondence between the moduli space of reduc-

tive representations of π1(Σ) in a complex Lie group Gc and the moduli

space of Gc-Higgs bundles. The anti-holomorphic operation of conjugating

by a real form τ of Gc in the moduli space of representations can be seen

via this correspondence as a holomorphic involution Θ of the moduli space

of Gc-Higgs bundles.

Following [32], in order to obtain a G-Higgs bundle, for A the connection

which solves Hitchin equations, one requires the flat GL(n,C) connection

∇ = ∇A + Φ + Φ∗ (3.4)

to have holonomy in a non-compact real form G of GL(n,C), whose real

structure is τ and Lie algebra is g. More generally, for a complex Lie group

Gc with non-compact real form G and real structure τ , one requires

∇ = ∇A + Φ− ρ(Φ) (3.5)

to have holonomy in G, where ρ is the compact real structure of Gc. Since

A has holonomy in the compact real form of Gc, we have ρ(∇A) = ∇A.

Hence, requiring ∇ = τ(∇) is equivalent to requiring ∇A = τ(∇A) and

Φ− ρ(Φ) = τ(Φ− ρ(Φ)). In terms of σ = ρτ , these two equalities are given

by σ(∇A) = ∇A and Φ−ρ(Φ) = τ(Φ−ρ(Φ)) = τ(Φ)−σ(Φ) = σ(ρ(Φ)−Φ).

Hence, ∇ has holonomy in the real form G if ∇A is invariant under σ, and

Φ anti-invariant. In terms of a Gc-Higgs bundle (P,Φ), one has that for U
and V two trivialising open sets in the compact Riemann surface Σ, the

involution σ induces an action on the transition functions guv : U ∩V → Gc
given by guv 7→ σ(guv), and on the Higgs field by sending Φ 7→ −σ(Φ).

Concretely, for G a real form of a complex semisimple lie group Gc, we

may construct G-Higgs bundles as follows. For H the maximal compact

subgroup of G, we have seen that the Cartan decomposition of g is given

by g = h⊕m, for h the Lie algebra of H, and m its orthogonal complement.

This induces the following decomposition of the Lie algebra gc of Gc in

terms of the eigenspaces of the corresponding involution σ as defined before:

gc = hC ⊕mC. Note that the Lie algebras satisfy [h, h] ⊂ h, [h,m] ⊂ m, and

[m,m] ⊂ h. Hence there is an induced isotropy representation given by

Ad|HC : HC → GL(mC). Then, Definition 2.12 generalises to the following

(see e.g. [27]):
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Definition 3.10: A principal G-Higgs bundle is a pair (P,Φ) where P is a

holomorphic principal HC-bundle on Σ, and Φ is a holomorphic section of

P ×Ad mC ⊗K.

Example 3.11: For a compact real form G, one has G = H and m = {0},
and thus σ is the identity and the Higgs field must vanish: a G-Higgs bundle

becomes a principal Gc-bundle.

In terms of involutions, following [33] and recalling the previous analysis

leading to Remark 3.9, we have the following:

Proposition 3.12: Let G be a real form of a complex semi-simple Lie

group Gc, whose real structure is τ . Then, G-Higgs bundles are given by

the fixed points in MGc of the involution ΘG acting by

ΘG : (P,Φ) 7→ (σ(P ),−σ(Φ)),

where σ = ρτ , for ρ the compact real form of Gc.

Similarly to the case of Gc-Higgs bundles, there is a notion of stability, semi

stability and polystability for G-Higgs bundles. Following [14] and [15], one

can see that the polystability of a G-Higgs bundle for G ⊂ GL(n,C) is

equivalent to the polystability of the corresponding GL(n,C)-Higgs bundle.

However, a G-Higgs bundle can be stable as a G-Higgs bundle but not as

a GL(n,C)-Higgs bundle. We shall denote by MG the moduli space of

polystable G-Higgs bundles on Σ.

Problem 3.13: (*) Considering the notion of “strong real form” from [2],

describe the corresponding Higgs bundles and give a definition of ΘG for

which one does not have the problem described in the above paragraph. The

reader might find useful the notes in [1, 2] for a concise definition.

One should note that a fixed point of ΘG inMGc gives a representation

of π1(Σ) into the real form G up to the equivalence of conjugation by the

normalizer of G in Gc. This may be bigger than G itself, and thus two

distinct classes in MG could be isomorphic in MGc via a complex map.

Hence, although there is a map from MG to the fixed point subvarieties in

MGc , this might not be an embedding. The reader may refer to [25] for the

Hitchin-Kobayashi type correspondence for real forms.

Remark 3.14: A description of the above phenomena in the case of rank

2 Higgs bundles is given in [46], where one can see how the SL(2,R)-Higgs

bundles which have different topological invariants lie in the same connected

component as SL(2,C)-Higgs bundles.
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Remark 3.15: As mentioned previously, the study of real Higgs bundles

as fixed point sets of involutions was initiated by Hitchin in [33] in the case

of split real forms, and developed for other real forms in [47]. Moreover,

this approach has been taken in several papers recently (see, among others,

[7, 8, 10, 13, 18, 49]), and continues to be used (see, among others, [9]).

Remark 3.16: The point of view of Proposition 3.12, which is considered

throughout [47], fits into a more global picture where ΘG is one of three

natural involutions acting on the moduli space of Higgs bundles [7, 8], giv-

ing three families of (B,A,A), (A,B,A) and (A,A,B) branes in MGc
as

the fixed point sets. One should note that the fixed point sets of these in-

volutions are of great importance when studying the relation of Langlands

duality with Higgs bundles, as initiated in [30, 38] and [34].

3.2. Spectral data for G-Higgs bundles

As mentioned in the first Lecture, the moduli spaces MGc
have a natural

symplectic structure, which we denoted by ω. Moreover, following [32], the

involutions ΘG send ω 7→ −ω. Thus, at a smooth point, the fixed point

set must be Lagrangian and so the expected dimension of MG is half the

dimension of MGc
. In order to describe the spectral data for real G-Higgs

bundles, one considers the moduli space MG sitting inside MGc as fixed

points of ΘG in the Hitchin base AGc
and the corresponding preserved

fibres.

By considering Cartan’s classification of classical semisimple Lie alge-

bras, we shall now describe G-Higgs bundles and their spectral data for

non-compact real forms of a classical semisimple complex Lie algebra gc.

For In the unit matrix of order n, we denote by Ip,q, Jn and Kp,q the

matrices

Ip,q =

(
−Ip 0

0 Iq

)
, Jn =

(
0 In
−In 0

)
, Kp,q =


−Ip 0 0 0

0 Iq 0 0

0 0 −Ip 0

0 0 0 Iq

 .

Following Proposition 3.8, we study each complex Lie algebra gc and

compact form u with different involutions θ which give decompositions

u = h ⊕ im. Then the corresponding natural non-compact real form is

g = h⊕m, and to make sense of Proposition 3.12 we consider the following

Lie algebras, Lie groups, real forms, and holomorphic and anti holomorphic

involutions:
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Table 2. Compact forms u of classical Lie algebras.

gc Lie group Gc Split form Compact form u ρ fixing u

an SL(n,C) sl(n,R) su(n) ρ(X) = −Xt

bn SO(2n+ 1,C) so(n, n+ 1) so(2n+ 1) ρ(X) = X

cn Sp(2n,C) sp(2n,R) sp(n) ρ(X) = JnXJ
−1
n

dn SO(2n,C) so(n, n) so(2n) ρ(X) = X

Table 3. Non-compact forms G of classical Lie algebras Gc.

gc Real form G τ fixing G Involution θ on u

an SL(n,R) ρ(X) = −Xt
θ(X) = X.

SU∗(2m) τ(X) = JmXJ
−1
m θ(X) = JmXJ

−1
m

SU(p, q) τ(X) = −Ip,qX
t
Ip,q θ(X) = Ip,qXIp,q

bn SO(p, q) τ(X) = Ip,qXIp,q . θ(X) = Ip,qXIp,q
cn Sp(2n,R) τ(X) = X θ(X) = X

Sp(2p, 2q) τ(X) = −Kp,qX∗Kp,q . θ(X) = Kp,qXKp,q ,

dn SO(p, q) τ(X) = Ip,qXIp,q . θ(X) = Ip,qXIp,q
SO∗(2m) τ(X) = JmXJ

−1
m . θ(X) = JmXJ

−1
m

In the case of split real forms, following the methods of [33] one obtains a

description of real Higgs bundles which we shall use in subsequent sections:

Theorem 3.17: [47] For G the split real form of Gc, the fixed points of

ΘG in the smooth fibres of the Hitchin fibration for Gc-Higgs bundles are

given by points of order two.

3.2.1. SL(n,R)-Higgs bundles

Higgs bundles for SL(n,R) were first considered in [33], where Hitchin

studied a copy of Teichmüller space inside the moduli space of Higgs bundles

for split real forms. Following Definition 3.10, an SL(n,R)-Higgs bundle is

a pair (E,Φ) where E is a rank n orthogonal vector bundle and the Higgs

field Φ : E → E ⊗K is a symmetric and traceless holomorphic map.

Proposition 3.18: SL(n,R)-Higgs bundles are given by the fixed points of

ΘSL(n,R) : (E,Φ) 7→ (E∗,Φt)

in MSL(n,C)corresponding to automorphisms f : E → E∗ giving a symmet-

ric form on E.

Problem 3.19: Find the decomposition of u = su(n) induced by the cor-

responding θ in Table 5, and use this to deduce Proposition 3.18.
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Recalling that the trace is invariant under transposition, one has that

the ring of invariant polynomials of gc = sl(n,C) is acted on trivially by the

involution −σ, and thus the Hitchin base is preserved by ΘSL(n,R). In order

to find the spectral data for SL(n,R)-Higgs bundles, following Theorem

3.17 we look at elements of order two in the fibres of the Hitchin fibration

for SL(n,C)-Higgs bundles:

Over a smooth point in the Hitchin base ASL(n,C), Higgs bundles for

SL(n,R) correspond to line bundles L ∈ Prym(S,Σ) such that L2 ∼= O.

In the case of n = 2, the SL(2,C)-spectral curve S given as in (2.7) has a

natural involution σ : η 7→ −η and Prym(S,Σ) = {L ∈ Jac(S) : σ∗L ∼= L∗}.
Hence, points in the smooth fibres corresponding to SL(2,R)-Higgs bundles

are given by line bundles L ∈ Jac(S) such that σ∗L ∼= L.

Problem 3.20: Let L ∈ Prym(S,Σ) be a line bundle of order two. Then,

its direct image is a rank 2 bundle on Σ which decomposes into the sum of

two line bundles V ⊕ V ∗. How can the Lefschetz fixed point formula (which

relates the action of an involution on a line bundle, and the dimension of

the spaces of invariant and anti-invariant sections of a line bundle) from

[6] be used to relate the degree of V and the action of σ on L in the spirit

of [48]?

The topological invariant associated to SL(n,R)-Higgs bundles is the char-

acteristic class ω2 ∈ Z2 which is the obstruction to lifting the orthogonal

bundle to a spin bundle, and its study was carried through in [36].

Problem 3.21: For n = 2, use the approach of [36] to relate ω2 to the

invariants in Problem 3.20.

The spectral data of SL(n,R)-Higgs bundles gives a finite cover of the

smooth locus of the Hitchin fibration. For n = 2, an explicit description

of the monodromy action whose orbits are the connected components of

MSL(2,R) is given in [46].

Problem 3.22: (*) How can the methods in [46] be extended to study mon-

odromy for SL(n,R)-Higgs bundles for n ≥ 3?

3.2.2. SU∗(2m)-Higgs bundles

The group SU∗(2m) is the subgroup of SL(2m,C) which commutes with

an antilinear automorphism J of C2m such that J2 = −1. At the level of
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the Lie algebras we have that the involution θ decomposes u = h⊕im where

h = sp(m). The induced non-compact real form g = h⊕m is

g = su∗(2m) =

{(
Z1 Z2

−Z2 Z1

) ∣∣∣∣Z1, Z2 m×m complex matrices,

TrZ1 + TrZ1 = 0

}
.

Definition 3.23: An SU∗(2m) Higgs bundle on Σ is a pair (E,Φ) for E

a rank 2m vector bundle with a symplectic form ω, and the Higgs field

Φ ∈ H0(Σ,End(E)⊗K) traceless and symmetric with respect to ω.

These Higgs bundles are the first example considered in this notes for

which one has nonabelian spectral data. It was first studied in [35], provid-

ing what one may call the nonabelianization of the Hitching fibration. In

what follows we shall describe the nonabelian spectral data, and also do so

for other cases which behave similarly, which have been studied in [35, 47].

Proposition 3.24: Isomorphism classes of SU∗(2m)-Higgs bundles are

given by fixed points of the involution

ΘSU∗ : (E,Φ) 7→ (E∗,Φt)

on SL(2m,C)-Higgs bundles corresponding to pairs which have an auto-

morphism f : E → E∗ endowing it with a symplectic structure, and which

trivialises its determinant bundle.

As the trace is invariant under conjugation and transposition, one has

that the involution−σ(X) = JmX
tJ−1
m acts trivially on the ring of invariant

polynomials of sl(2m,C), and thus preserves the Hitchin base. The spectral

data associated to SU∗(2m)-Higgs bundles (E,Φ) was studied in [35], and

we shall describe here its main features.

The characteristic polynomial of an SU∗(2m)-Higgs bundle (E,Φ) can

be seen to be the square of a Pfaffian, det(η−Φ) = p(η)2 and thus all fixed

points of ΘSU∗ lie over singular points of the SL(2m,C) Hitchin fibration.

With a slight abuse of notation, we denote by S the spectral curve in the

total space of K defined by

p(η) = ηm + a2η
m−2 + · · ·+ am = 0

where the coefficients ai ∈ H0(Σ,Ki). It is a ramified m-fold cover of Σ

whose ramification points are the zeros of am. As in the case of complex

groups, we interpret p(η) = 0 as the vanishing of a section of π∗Km over the

total space of the canonical bundle π : K → Σ, where η is the tautological

section of π∗K, and Bertini’s theorem assures us that for generic ai the

curve is nonsingular.
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Problem 3.25: What is the genus gS of S?

On the spectral curve S, the cokernel of (η−Φ) is a rank two holomor-

phic vector bundle V on S. Then, following [11] (and using p(Φ) = 0 instead

of the Cayley-Hamilton theorem), we can identify E with the direct image

π∗V and Φ as the direct image of η : V → V ⊗ π∗K. From [35] one has a

description of the spectral data:

The fixed point set of ΘSU∗(2m) in a smooth fibre of the SL(2m,C)-

Hitchin fibration is the moduli space of semi-stable rank 2 vector bundles

on S with fixed determinant π∗Km−1.

Problem 3.26: Use Remark 2.21 together with Grothendieck-Riemann-

Roch to show that semi-stability of V implies semi-stability of (E,Φ).

Problem 3.27: Follow the approach of SL(n,C)-Higgs bundles to note

that by fixing the determinant of V one obtains a trivialization of the de-

terminant of π∗V on Σ.

3.2.3. SU(p, q)-Higgs bundles

Definition 3.28: An SU(p, q)-Higgs bundle over Σ is a pair (E,Φ) where

E = W1 ⊕ W2 for W1,W2 vector bundles over Σ of rank p and q such

that ΛpW1
∼= ΛqW ∗2 , and the Higgs field Φ is given by Φ =

(
0 β

γ 0

)
, for

β : W2 →W1 ⊗K and γ : W1 →W2 ⊗K.

Problem 3.29: Find the decomposition u = h ⊕ im via the action of θ

in Table 2 and deduce that θρ is the anti-holomorphic involution fixing the

non-compact real form u(p, q).

Proposition 3.30: SU(p, q)-Higgs bundles are fixed points of ΘSU(p,q) :

(E,Φ) 7→ (E,−Φ) on SL(p+ q,C)-Higgs bundles corresponding to bundles

E which have an automorphism conjugate to Ip,q sending Φ to −Φ, and

whose ±1 eigenspaces have dimensions p and q.

The involution −σ acts trivially on the polynomials of even degree.

Whilst the spectral data is not known for p 6= q, in the case of p = q

it has been described in [47] and [48] by looking at U(p, p)-Higgs bundles

(W1⊕W2,Φ), which when satisfying ΛpW1
∼= ΛqW ∗2 correspond to SU(p, p)-

Higgs bundles. In this case, the characteristic polynomial defines a spectral

curve π : S → Σ through the equation det(η − Φ) = η2p + a2η
2p−2 +
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· · · + a2p−2η
2 + a2p = 0, where η is the tautological section of π∗K and

ai ∈ H0(Σ,Ki). This is a 2p-fold cover of Σ, ramified over the 4p(g − 1)

zeros of a2p, and has a natural involution η 7→ −η which has as fixed points

the ramification points of the cover, and which by abuse of notation, we

shall call σ.

The involution σ plays an important role when constructing the spectral

data as described in [48]. A line bundle L on S which defines a classical

Higgs bundle induces a U(p, p)-Higgs bundle if and only if σ∗L ∼= L. In this

case, at a fixed point x ∈ S of the involution, there is a linear action of σ

on the fibre Lx given by scalar multiplication of ±1. This description of the

spectral data can be then seen in terms of Jacobians through [48]:

The fixed point set of ΘU(p,p) in a smooth fibre of the classical Hitchin

fibration can be seen in terms of pull backs of Jac(S/σ) on a symmetric

product of Σ to a point of the Hitching base.

As described in [48], the topological invariants associated to a U(p, p)-

Higgs bundle (W1⊕W2,Φ) are the degrees deg(W1) and deg(W2), and can

be seen in terms of the degree of the line bundle L on S and the number

of ramification points of S over which the linear action of σ on the fibre of

L is −1.

Problem 3.31: Use the Lefschetz fixed point formula in [6] to see that the

parity of the degree of L and the number of points over which σ acts as −1

needs to be the same.

Problem 3.32: Following [14], a U(p, p)-Higgs bundles has an associated

invariant τ(deg(W1), deg(W2)) := deg(W1)− deg(W2), known as the Toledo

invariant. Use Problem 3.31 to express the invariant in terms of fixed points

of σ and obtain natural bounds.

In the case of SU(p, p)-Higgs bundles, for maximal Toledo invariant (i.e.,

when the invariant in the above problem achieves the bounds), the fixed

point set of ΘSU(p,p) in a smooth fibre of the SL(2p,C)-Hitchin fibration

is given by a covering of Prym(S/σ,Σ), the Prym variety of the quotient

curve S/σ. For SU(p, p+ 1)-Higgs bundles, the methods and arguments of

[20] can be adapted and used to obtain the spectral data as seen in [42].

Problem 3.33: (*) How can the methods from [48] together with the ap-

proach of [53] be used to obtain the spectral data for SU(p, 1)-Higgs bundles?
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Remark 3.34: The moduli space of real Higgs bundles is a brane in the

moduli space of complex Higgs bundles, and as such it has a dual space,

a brane in the moduli space of complex Higgs bundles for the Langlands

dual group. Properties of this dual space have been conjectured in [8], and

it is interesting to note that the spectral data for SU(p, p)-Higgs bundles

from [48] is used to conjecture a dual space toMSU(p,p) through Langlands

duality in [36].

3.2.4. SO(p, q)-Higgs bundles

In this case, if p+q is even, g is a split real form if and only if p = q; if p+q is

odd, g is a split real form if and only if p = q+1. Whilst we shall give some

details on the construction of SO(p, q)-Higgs bundles, for a more detailed

description of the approach needed to understand groups with signature the

reader should refer to the following section on Sp(2p, 2q)-Higgs bundles.

The vector space V associated to the standard representation of hC can

be decomposed into V = Vp ⊕ Vq, for Vp and Vq complex vector spaces

of dimension p and q respectively, with orthogonal structures. The max-

imal compact subalgebra of so(p, q) is h = so(p) × so(q) and the Cartan

decomposition of so(p+ q,C) is given by (so(p,C)⊕ so(q,C))⊕mC, for

m =

{(
0 X2

Xt
2 0

)∣∣∣∣X2 real p× q matrix

}
.

Definition 3.35: An SO(p, q) Higgs bundle is a pair (E,Φ) where the

vector bundle is E = Vp ⊕ Vq for Vp and Vq complex vector spaces of

dimension p and q respectively, with orthogonal structures, and the Higgs

field is a section in H0(Σ, (Hom(Vq, Vp)⊕Hom(Vp, Vq))⊗K) given by

Φ =

(
0 β

γ 0

)
for γ ≡ −βT, and βTthe orthogonal transpose of β.

Proposition 3.36: SO(p, q) Higgs bundles are fixed points of

ΘSO(p,q) : (E,Φ) 7→ (E,−Φ)

on the moduli space of SO(p+q,C) corresponding to vector bundles E which

have an automorphism f conjugate to Ip,q sending Φ to −Φ and whose ±1

eigenspaces have dimensions p and q.

Problem 3.37: The involution θ from the Table 2 decomposes u = h⊕ im.

Give an explicit description of m and h and of the real form g = h⊕m.
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Since the ring of invariant polynomials of gc = so(2m+1,C) is generated

by Tr(Xi) for X ∈ gc, for p+ q = 2m+ 1 one has that the induced action

of the involution ΘSO(p,q) is trivial on the ring of invariant polynomials of

the Lie algebra so(2m+ 1,C), i.e., when p and q have different parity.

Problem 3.38: In the case of so(2m,C), for 2m = p + q, the ring of

invariant polynomials is generated by Tr(Xi) for X ∈ gc and i < 2m,

together with the Pfaffian pm, which is of degree m. Under which conditions

on p and q is the induced action of ΘSO(p,q) trivial on the ring of invariant

polynomials?

The spectral data for SO(p, q)-Higgs bundles when p = q or p = q + 1

can be seen through Theorem 3.17 from [47] as points of order two in the

smooth fibres of the SO(p+ q,C)-Hitchin fibration.

In both cases a key ingredient is the double cover p : S → S/σ given

by the spectral curve (the desingularised curve in the case of SO(2n,C))

over the quotient curve, which through K-theoretic methods allows one to

express the topological invariants involved in terms of the action of σ [9].

3.2.5. SO∗(2m)-Higgs bundles

The action of θ in Table 2 decomposes the compact form u = h ⊕ im for

h = u(m) ∼= so(2m) ∩ sp(m), and

im =

{(
X1 X2

X2 −X1

)∣∣∣∣X1, X2 ∈ so(m)

}
, (3.6)

and the induced non-compact real form g = h⊕m is

g = so∗(2m) =

{(
Z1 Z2

−Z2 Z1

) ∣∣∣∣Z1, Z2 m×m complex matrices

Z1 skew symmetric, Z2 Hermitian

}
.

The vector space associated to the standard representation of hC has

an orthogonal and symplectic structure J . Since J−1 = J t and J2 = −1,

the vector space may be expressed in terms of the ±i eigenspaces of J as

V ⊕V ∗, for V a rank m vector space. Thus, we have the following definition:

Definition 3.39: An SO∗(2m)-Higgs bundle is given by a pair (E,Φ)

where E = V ⊕ V ∗ for V a rank m holomorphic vector bundle, and where

the Higgs field Φ is given by

Φ =

(
0 β

γ 0

)
for

{
γ : V → V ∗ ⊗K satisfying γ = −γt
β : V ∗ → V ⊗K satisfying β = −βt .
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In terms of involutions, these Higgs bundles may be seen as follows:

Proposition 3.40: SO∗(2m)-Higgs bundles are fixed points of the involu-

tion

ΘSO∗(2m) : (E,Φ) 7→ (E,−Φ)

on the moduli space of SO(2m,C)-Higgs bundles corresponding to vector

bundles E which have an orthogonal automorphism f conjugate to Jm,

sending Φ to −Φ and which squares to −1, equipping E with a symplec-

tic structure.

As in the previous case, the involution induced action of ΘSO∗(2m) is

trivial on the ring of invariant polynomials of gc. The spectral data for

these Higgs bundles is studied in [35], and we shall give a short description

bellow.

In order to understand the associated spectral data, one notes that

SO∗(2m)-Higgs bundles (E,Φ) may be regarded as SU∗(2m)-Higgs bundle

with extra conditions. Hence, one may define a natural m cover of the

Riemann surface π : S → Σ by taking√
char(Φ) = ηm + a2η

2m−2 + · · ·+ am,

and a rank 2 vector bundle V on S whose direct image on Σ gives E. Since

in this case the equation of the spectral curve only has even coefficients,

there is a natural involution σ : η → −η and one may consider the in-

duced action of σ on V and on its determinant bundle. In particular, from

[35] the vector bundle V gives an SO∗(2m)-Higgs bundle if and only if it

is preserved by the involution and the induced action on it satisfies some

conditions:

The fixed point set of ΘSO∗(2m) in a smooth fibre of the SO(2m,C)-

Hitchin fibration is given by the moduli space of semi-stable rank 2 vector

bundles V on S with fixed determinant π∗K2m−1, whose induced action by

σ on the determinant bundle is trivial.

Problem 3.41: The relative duality theorem gives

(π∗(V ))∗ ∼= π∗(V
∗ ⊗KS)⊗K∗.

Use this to see that in order to have E ∼= E∗ through a skew form, the action

of σ needs to be trivial on the determinant bundle of V for π∗V = E.

Problem 3.42: (*) Describe how the vector bundles of rank 2 in [35] ap-

pear in the description of the connected components of MSO∗(2m) in [17].
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3.2.6. Sp(2n,R)-Higgs bundles

In this section and the one which follows we consider the non-compact real

forms of the complex Lie group Sp(2n,C). For this, recall that the symplec-

tic Lie algebra sp(2n,C) is given by the set of 2n× 2n complex matrices X

that satisfy JnX +XtJn = 0 or equivalently, X = −J−1
n XtJn.

Let u be the compact real form u = sp(n) and θ(X) = X = JnXJ
−1
n .

The Lie algebra sp(n) is given by the quaternionic skew-Hermitian matrices;

that is, the set of n × n quaternionic matrices X which satisfy X = −Xt
.

The compact form is u = h⊕ im, for h = u(n) ∼= so(2n)∩ sp(n), which leads

to the split real form g = h⊕m defined by

g = sp(2n,R) =

{(
X1 X2

X3 −Xt
1

) ∣∣∣∣Xi real n× n matrices

X2, X3 symmetric

}
.

Definition 3.43: An Sp(2n,R)-Higgs bundle is given by a pair (E,Φ)

where E = V ⊕ V ∗ for V a rank n holomorphic vector bundle, and for

Φ the Higgs field given by

Φ =

(
0 β

γ 0

)
for

{
γ : V → V ∗ ⊗K satisfying γ = γt

β : V ∗ → V ⊗K satisfying β = βt
.

Proposition 3.44: Sp(2n,C) Higgs bundles, and Sp(2n,R)-Higgs bundles

are given by the fixed points of

ΘSp(2n,R) : (E,Φ) 7→ (E,−Φ)

on Sp(2n,C)-Higgs bundles corresponding to vector bundles E which have a

symplectic isomorphism sending Φ to −Φ, and whose square is the identity,

endowing E with an orthogonal structure.

The invariant polynomials of gc are of even degree, and hence the in-

volution −σ acts trivially on them, making ΘSp(2n,R) preserve the whole

Hitchin base ASp(2n,C). In the case of rank 4 Higgs bundles, the spectral

data was first consider in P. Gothen’s thesis [27, 28], and through Theorem

3.17 and the spectral data for complex Higgs bundles one has the following:

The fixed points of ΘSp(2n,R) in the smooth fibres of the Sp(2n,C)-

Hitchin fibration are given by line bundles L ∈ Prym(S, S/σ) such that

L2 ∼= O.
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In particular, since S is a ramified double cover of S/σ, one has that

L ∈ Prym(S, S/σ) if and only if σ∗L ∼= L∗. Hence, by considering points of

order two one has that σ∗L ∼= L and thus there is a natural induced action

of σ on the line bundle L. The topological invariants associated to these

Higgs bundles were studied in [36] through the natural action of σ.

Problem 3.45: Compare the calculations in [27] which lead to Milnor-

Wood type inequalities for Sp(2n,R)-Higgs bundles, with the inequalities

one obtains by using the involution σ as in [36].

Problem 3.46: (*) Express the invariants from [27] in terms of different

choices of the natural involution σ on S as well as in terms of the action

of a second natural involution appearing in some situations on S/σ.

3.2.7. Sp(2p, 2q)-Higgs bundles

The induced non-compact real form g = h⊕m is

sp(2p, 2q)=




Z11 Z12 Z13 Z14

Z
t

12 Z22 Zt14 Z24

−Z13 Z14 Z11 −Z12

Z
t

14 −Z24 −Zt12 Z22


∣∣∣∣∣∣∣∣∣∣

Zi,j complex matrices,

Z11, Z13 order p,

Z12, Z14 p× q matrices,

Z11, Z22 skew Hermitian,

Z13, Z24 symmetric.

 .

Problem 3.47: Show that mC can be expressed as subset of certain off-

diagonal matrices.

Definition 3.48: An Sp(2p, 2q)-Higgs bundle is given by a pair (E,Φ) for

E = V2p ⊕ V2q is a direct sum of symplectic vector spaces of rank 2p and

2q, and

Φ =

(
0 −γT

γ 0

)
for

{
γ : V2p → V2q ⊗K
−γT : V2q → V2p ⊗K

,

for γT the symplectic transpose of γ.

Proposition 3.49: Sp(2p, 2q)-Higgs bundles are the fixed points of

ΘSp(2p,2q) : (E,Φ) 7→ (E,−ΦT)

on the moduli space of Sp(2p+ 2q,C)-Higgs bundles corresponding to sym-

plectic vector bundles E which have an endomorphism f : E → E conju-

gate to K̃p,q, sending Φ to the symplectic transpose −ΦT, and whose ±1

eigenspaces are of dimension 2p and 2q.
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As the trace is invariant under conjugation and transposition, the in-

duced action of ΘSp(2p,2q) is trivial on the ring of invariant polynomials of

gc = sp(2(p + q),C). In the case of p = q, one can see that Sp(2p, 2p)-

Higgs bundles are a particular case of SU∗(2p)-Higgs bundles, and thus

one needs to understand which extra conditions to the spectral data for

SU∗(2p)-Higgs bundles needs to be added in order to have the Higgs bun-

dles for the symplectic real form.

From the previous section, when p = q the corresponding spectral curve

is a 2p-fold cover of the Riemann surface Σ whose equation is given by the

square root of the characteristic polynomial of the Higgs field. Moreover, it

has a natural involution σ whose action determines the associated spectral

data. More precisely, the following is shown in [47] and [35]:

The fixed point set of ΘSp(2p,2p) in a smooth fibre of the Sp(4p,C)-

Hitchin fibration is given by the moduli space of semi-stable rank 2 vector

bundles V on S with fixed determinant π∗K2p−1, whose induced action by

σ on Λ2V is −1.

Since the action on Λ2V is −1, the involution σ : S → S acts with

different eigenvalues ±1 on the fibres of V over the ramification points of

S, and thus through [3], the spectral data relates to the moduli space of

admissible parabolic rank 2 bundles on S/σ as seen in [47].

Problem 3.50: (*) Nonabelianization can also be seen through Cameral

covers [42]. Realise the action of σ in terms of Cameral covers.

4. Spectral data for real Higgs bundles

From the above sections, we have seen that spectral data can be been

defined for G-Higgs bundles, and this has been done for several groups G.

A summary of the state of the art in this direction is given as follows (to the

best of the author’s knowledge), where the notation is as in the previous

sections (for the precise objects in each case, the reader should refer to the

previous sections)a:

aFor the groups missing, no spectral data has yet been defined.
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Table 4. Spectral data for real Higgs bundles.

Group Spectral curve generic fibre Ref.

GL(n,R) ηn + a1ηn−1 + · · ·+ an−1η + an Jac(S)[2] [47]

U(p, p) η2p + a1η2p−2 + · · ·+ ap−1η2 + ap Jac(S) + D + m [47, 48]

SL(n,R) ηn + a2ηn−2 + · · ·+ an−1η + an Prym(S,Σ)[2] [47, 46]
SU∗(2m) η2p + a1η2p−2 + · · ·+ ap−1η2 + ap Subspace of N2(S) [35]

SU(p, p) η2p + a1η2p−2 + · · ·+ ap−1η2 + ap Prym(S, S) +D +m [47, 48]

SU(p, p+ 1) η2p + a1η2p−2 + · · ·+ ap−1η2 + ap Jac(S) + f [43, 47]

SO(p, p+ 1) η2p + a1η2p−2 + · · ·+ ap−1η2 + ap Prym(S, S)[2] +D [47, 50, 9]

Sp(2p,R) η2p + a1η2p−2 + · · ·+ ap−1η2 + ap Prym(S, S)[2] [36, 47]
Sp(2p, 2p) η2p + a1η2p−2 + · · ·+ ap−1η2 + ap Subspace of N2(S) [35]

Sp(2p, 2p+ 2q) η2q(η4p + a1η4p−2 + · · · Abelian & non-abelian [9]

+ a2p−1η2 + a2p)

SO(p, p) η2p + a1η2p−2 + · · ·+ ap−1η2 + a2p Prym(Ŝ, Ŝ)[2] [47]

SO(p, p+ q) ηq(η2p + a1η2p−2 + · · · Abelian & non-abelian [9]
+ ap−1η2 + ap)

SO∗(2p) η2p + a1η2p−2 + · · ·+ ap−1η2 + ap Subspace of N2(S) [35, 47]

In the above table, we have considered the following notation, following

the previous sections:

• S stands for a spectral curve and Ŝ for the normalized curve;

• S and Ŝ denote the quotients of S and Ŝ by the involution η 7→ −η;

• D denotes a positive divisor and f an extension class;

• N2(S) is the moduli space of semi-stable rank 2 vector bundles on

the spectral curve S.

Although Morse theoretic approaches (following [31], for a partial list,

see [14, 15, 17] and references therein) are usually considered to study con-

nectivity of the moduli space of G-Higgs bundles, spectral data may also be

used to calculate the number of connected components of the moduli spaces

of G-Higgs bundles. This approach was taken for the following groupsb:

bIn the table we give references for work done through spectral data, and in Remark 4 we
mention the original sources of those results, when done previously with other methods.
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Table 5. Connectivity for real Higgs bundles.

Group restriction components Ref.

PGLi(n,R) n = 2 and i = 0 22g + g − 1 [10]

n = 2 and i = 1 22g + g − 2 [10]

PSLi(n,R) n = 2 and i = 0 2g − 1 [10]
n = 2 and i = 1 2g − 2 [10]

GL(n,R) n = 2 3 · 22g + g − 3 [10]

SL(n,R) n = 2 2 · 22g + 2g − 3 [10, 46, 47]

SU∗(2m) - 1 [35]
SU(p, q) p = q, maximal, over generic loci 22g [46, 47]

Sp(2n,R) n = 2, maximal 3 · 22g + 2g − 4 [10]
Sp(2p, 2q) p = q 1 [35, 47]

SO(p, p) p = 2 3 · 62g + 4g2 − 6g − 3 [10]

SO∗(2m) - 1 [35]

Some of the above connectivity results have been obtained before with

other methods, some of which do not require the restrictions in the table:

• The number of components for Sp(4,R) was obtained originally by

Gothen in [27].

• The number of components 2.22g + 2g − 3 for SL(2,R) and 4g − 3

for PSL(2,R) were shown by Goldman in [26]. Xia [54, 55] showed

that the number of components of the space of homomorphisms

Hom(π1(Σ), PSL(2,R)) is 2.22g + 4g− 5. This number is different

to the number 2.22g + 2g− 3 of components of PGL(2,R) because

upon taking the quotient of the conjugation action of PGL(2,R),

certain pairs of components are identified.

• Connectivity for SU(p, p)-Higgs bundles was first studied in [14],

and for SU∗(2m) in [16] and for SO∗(2m) in [17].

The remaining results mentioned in the above table have not, as far as

we are aware, been obtained elsewhere.
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