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These notes provide an introduction to Higgs bundles for complex and
real Lie groups, as well as a description of their associated spectral data.

1. Introduction

The first lecture shall introduce classical Higgs bundles and the Hitchin
fibration, and describe the associated spectral data in the case of principal
Higgs bundles for classical complex Lie groups, following mainly Hitchin’s
papers [31,32,33,34]. The second lecture is dedicated to the construction
of Higgs bundles for real forms of classical complex Lie groups as fixed
points of involutions, and the description of the corresponding spectral data,
following mainly [35, 46,47, 48]. Along the way, we shall mention different
applications and open questions related to the methods introduced in both
lectures.

Each lecture contains exercises of varying difficulty, whose solutions can
be found in [47]. Open questions which might be tackled with methods
similar to the ones introduced in the lectures appear indicated with (*)
together with references which feature approaches that may be useful. Since
it proves to be very difficult to give a comprehensive and exhaustive account
of research in tangential areas, we shall restrain ourselves to mentioning
related work only when it directly involves methods using spectral data. The
reader should refer to references in the bibliography for further research in
related topics (e.g., see references in [4,42,47]).
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2. Spectral data for G.-Higgs bundles

The art of doing mathematics
consists in finding that special
case which contains all the germs
of generality.

David Hilbert

Following [31, 32, 34] we dedicate this lecture to overview classical Higgs
bundles as well as G-Higgs bundles for the groups G. = SL(n, C), Sp(n,C),
S0(2n+1,C) and SO(2n,C). In each case we introduce the Hitchin fibra-
tion and describe the generic fibres through spectral data, i.e., an associated
spectral curve and a line bundle on it.

2.1. G.-Higgs bundles

Consider ¥ a compact Riemann surface of genus ¢ > 2 with canonical
bundle K = T*3. Classically, a Higgs bundle on X is defined as follows:

Definition 2.1: A Higgs bundle is a pair (FE,®) for E a holomorphic
vector bundle on ¥, and ®, the Higgs field, a holomorphic section in
H°(X,End(F) ®@ K).

In order to understand better what Higgs bundles are and how to gen-
eralise the definition, we shall first look at the moduli space of vector
bundles and then study the moduli space of classical Higgs bundles and
its associated spectral data. For more details the reader should refer to
[31,32,23,19, 51,40, 52].

2.1.1. Moduli space of vector bundles

Holomorphic vector bundles E on a compact Riemann surface 3 of genus
g > 2 are topologically classified by their rank rk(F) and their degree
deg(E).

Definition 2.2: The slope of a holomorphic vector bundle F is defined as
w(E) :=deg(E)/rk(E) and is used to define stability conditions: A vector
bundle E is said to be stable (semi-stable) if for any proper, non-zero sub-
bundle F' C E one has u(F) < u(E) (u(F) < u(E)). It is polystable if it is
a direct sum of stable bundles whose slope is the same as F.
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It is known that the space of holomorphic bundles of fixed rank and
fixed degree, up to isomorphism, is not a Hausdorff space. However, through
Mumford’s Geometric Invariant Theory one can construct the moduli space
N (n, d) of stable bundles of fixed rank n and degree d, which has the natural
structure of an algebraic variety.

Remark 2.3: For coprime n and d, the moduli space N'(n,d) is a smooth
projective algebraic variety of dimension n?(g — 1) + 1.

Remark 2.4: All line bundles are stable, and thus N'(1,d) contains all line
bundles of degree d, and is isomorphic to Jacd(E) of ¥, an abelian variety
of dimension g.

Let G, be a complex semisimple Lie group. Following [44] one can define
stability for principal G.-bundles as follows (see [4] for a comprehensive
study):

Definition 2.5: A holomorphic principal G.-bundle P is said to be stable
(semi-stable) if for every reduction o : ¥ — P/Q to maximal parabolic
subgroups @ of G, one has deg 0*T;..; > 0 (> 0), where T, is the relative
tangent bundle for the projection P/Q — X.

The notion of polystability may be carried over to principal G.-bundles,
allowing one to construct the moduli space of isomorphism classes of
polystable principal G.-bundles of fixed topological type over the compact
Riemann surface X.

2.1.2. Moduli space of classical Higgs bundles

In order to define the moduli space of Higgs bundles, the following stability
condition is considered:

Definition 2.6: A vector subbundle F of E for which ®(F) C F ® K is
said to be a ®-invariant subbundle of E. A Higgs bundle (E, ®) is

o stable (semi-stable) if for each proper ®-invariant F' C E one has
w(F) < p(E) (equiv. <);

e polystable if (E,P) = (E1,P1) ® (B2, P2) ® -+ @ (E,, ®,), where
(E;, ®;) is stable with u(F;) = u(E) for all 1.

Example 2.7: Choose a square root K'/2 of the canonical bundle K,
and a section w of K2. A family of classical Higgs bundles (E, ®,) may be
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obtained by considering the vector bundle F = K 2@ K2 and the Higgs
bundle ®,, given by

D, = (2 "5) € H°(,End(E) ® K).

Problem 2.8: Show that the pairs (E,®,,) from Example 2.7 are stable.

Problem 2.9: Prove that if a Higgs bundle (E,®) is stable, then for any
A € C* and a a holomorphic automorphism of E, the induced Higgs bundles
(E,A®) and (E,a*®) are stable.

In order to define the moduli space of classical Higgs bundles, we shall
first define an appropriate equivalence relation. For this, consider a strictly
semi-stable Higgs bundle (F, ®). As it is not stable, F admits a subbundle
F C FE of the same slope which is preserved by ®. If F' is a subbundle of
FE of least rank and same slope which is preserved by @, it follows that F
is stable and hence the induced pair (F,®) is stable. Then, by induction
one obtains a flag of subbundles Fy = 0 C F; C --- C F, = E where
w(F;/F;—1) = p(E) for 1 < i < r, and where the induced Higgs bundles
(F;/Fi—1,®;) are stable. This is the Jordan-Hoélder filtration of E| and it is
not unique. However, the graded object Gr(E, ®) := @;_, (F;/Fi=1,®;) is
unique up to isomorphism.

Definition 2.10: Two semi-stable Higgs bundles (F,®) and (E’, ®') are
said to be S-equivalent if Gr(E, ®) = Gr(E’, 9').

Problem 2.11: If a pair (E,®) is strictly stable, what is the induced
Jordan-Hélder filtration?

Following [40] we let M(n,d) be the moduli space of S-equivalence
classes of semi-stable Higgs bundles of fixed degree d and fixed rank n.
The moduli space M(n,d) is a quasi-projective scheme, and has an open
subscheme M’ (n, d) which is the moduli scheme of stable pairs. Thus, every
point is represented by either a stable or a polystable Higgs bundle. When
d and n are coprime, the moduli space M(n,d) is smooth.

The cotangent space of N(n,d) over the stable locus is contained in
M(n,d) as a Zariski open subset. The moduli space M(n,d) is a non-
compact variety which has complex dimension 2n?(g — 1) + 2. Moreover, it
is a hyperkahler manifold with natural symplectic form w defined on the
infinitesimal deformations (A, ®) of a Higgs bundle (E, ®) by

w((Ay, ®1), (Ag, B2)) = /Ztr(/h(i)g — Aydy), (2.1)
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where A € Q% (EndoE) and & € Q10 (EndyE) (see [31, 32] for details). For
simplicity, we shall fix n and d and write M for M(n, d).

2.1.3. Moduli space of G.-Higgs bundles

The notion of Higgs bundle can be generalized to encompass principal G-
bundles, for G, a complex semi-simple Lie group. For more details, the
reader should refer to [32].

Definition 2.12: A G.-Higgs bundle is a pair (P, ®) where P is a principal
Gc-bundle over ¥, and the Higgs field ® is a holomorphic section of the
vector bundle adP®c K, for adP the vector bundle associated to the adjoint
representation.

When G. C GL(n,C), a G.-Higgs bundle gives rise to a Higgs bundle in
the classical sense, with some extra structure reflecting the definition of G..
In particular, classical Higgs bundles are given by G L(n,C)-Higgs bundles.

Example 2.13: The Higgs bundles in Example 2.7 have traceless Higgs
field, and the determinant A2F is trivial. Hence, for each quadratic differ-
ential w one has an SL(2, C)-Higgs bundle (E, ®,,).

By extending the stability definitions for principal G.-bundles, one can
define stable, semi-stable and polystable G.-Higgs bundles. Since in these
notes we shall be working with Higgs pairs which do not preserve any
subbundle, they will be automatically stable and thus we shall not dedicate
time to recall the main study of stability for principal Higgs bundles. For
details about the corresponding constructions, the reader should refer for
example to [12,4]. We denote by Mg, the moduli space of S-equivalence
classes of polystable G.-Higgs bundles.

In the remainder of this Section, following [32] and [34] we introduce
the Hitchin fibration and describe the generic fibres for G.-Higgs bundles
where G. = GL(n,C), SL(n,C), Sp(2n,C), SO(2n + 1,C) and SO(2n,C).
We shall cover with more detail the initial cases, and leave as an exercise
to the reader some of the results for the latter groups.

2.2. The Hitchin fibration

A natural way of studying Mg, is through the Hitchin fibration, as intro-
duced in [32]. We shall denote by p;, for i = 1,..., k, a homogeneous basis
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for the algebra of invariant polynomials of the Lie algebra g. of G., and let
d; be their degrees. Then, the Hitchin fibration is given by

k
h: Mg, — A, =P H (S, K"), (2:2)
i=1

(B, @) = (p1(®),-., k(D)) (2.3)

The map h is referred to as the Hitchin map, and is a proper map for any
choice of basis [32]. Furthermore, dimA¢q, = dimMg, /2, making the Higgs
bundle moduli space into an integrable system.

Remark 2.14: Note that, in a local frame, a Higgs field ® has values in a
Lie algebra, and thus since this is well defined up to conjugation, evaluating
the invariant polynomials is globally well defined.

Remark 2.15: Let g° be one of the classical Lie algebras sl(n,C),
5p(2n,C), s0(2n+1,C). Then, for 7 : g° — gl(V') a representation of g¢, the
ring of invariant polynomials of g¢ is generated by Tr(7(X)?), for i € N and
X € g° Hence, a homogeneous basis of invariant polynomials for classical
Higgs bundles (E, ®) of rank n can be taken as tr(®) for 1 <i < n.

Remark 2.16: Whilst a formal definition of the smooth locus of the
Hitchin base can be given (e.g., see [20]) in these lectures we shall note
that the generic fibres of the Hitchin fibration are smooth, and thus generic
points in the Hitchin base are in the smooth locus.

In what follows we shall describe the spectral data associated to G-
Higgs bundles as introduced in [32, 34].

2.2.1. GL(n,C)-Higgs bundles

As before, let K be the canonical bundle of ¥, and X its total space with
projection 7 : X — 3. We shall denote by 7 the tautological section of the
pull back 7* K on X . Abusing notation we denote with the same symbols the
sections of powers K* on ¥ and their pull backs to X. The characteristic
polynomial of a Higgs bundle (E,®) in a generic fibre h='(a) defines a
smooth curve 7 : S, — X in X, the spectral curve of ®, whose equation is

det(nId — 7*®) = " +ayn™ t +an™ >+ -+ an_1n+a, =0, (2.4)

for a; € H°(X, K*) (for simplicity, we shall write det(n — ®) for the char-
acteristic polynomial of the Higgs field ®, and drop the subscript a of S,).
By the adjunction formula on X (see e.g. [29]), since the canonical bundle

page 70
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K has trivial cotangent bundle one has Kg = 7*K", and hence the genus
of §'is

gs =1+n%*(g—1). (2.5)

The spectral data for classical Higgs bundles in a smooth fibre of the
Hitchin fibration is given by a spectral curve S defined as in (2.4) and a
line bundle L € Jac(S).

In order to see that the smooth fibres of the Hitchin fibration are Jaco-
bians, starting with a line bundle L on the smooth curve 7 : S — ¥ with
equation as in (2.4), we shall obtain a classical Higgs bundle by considering
the direct image m.L of L. Recall that by definition of direct image, given
an open set U C %, one has H(m~Y(U), L) = H°(U, m.L). Multiplication
by the tautological section 1 induces the map

H(z7YU), L) L HY (=Y (U), L @ 7°K),
which by definition of direct image can be pushed down to give
b7, L -7 LK.
Then, one obtains a Higgs field ® € H°(Z, EndE ® K) for E =, L.

Problem 2.17: Use Grothendieck-Riemann-Roch to show that the degree
of E is deg(E) = deg(L) + (n* —n)(1 — g).

Moreover, the Higgs field satisfies its characteristic equation, which by
construction is given by 7" + a1n™ ' + a2 + -+ ap_1n + a, = 0.
Furthermore, since S is irreducible, from Remark 2.21 there are no
invariant subbundles of the Higgs field, making the induced Higgs bundle
(E, @) stable.

Conversely, let (E,®) be a classical Higgs bundle. The characteristic
polynomial is given by det(z—®) = 2" +a12" ' H+as2™ 2+ - -4a,_17+ay,,
and its coeflicients define the spectral curve S in the total space X whose
equation is (2.4).

From [11], there is a bijective correspondence between Higgs bundles
(E,®) and the line bundles L on the spectral curve S described previously.
This correspondence identifies the fibre of the Hitchin map with the Picard
variety of line bundles of the appropriate degree. By tensoring the line
bundles L with a chosen line bundle of degree —deg(L), one obtains a point
in the Jacobian Jac(S), the abelian variety of line bundles of degree zero on
S, which has dimension gg as in (2.5). In particular, the Jacobian variety
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is the connected component of the identity in the Picard group H*(S, 0%).
Thus, the fibre of the classical Hitchin fibration h : M — A is isomorphic
to the Jacobian of the spectral curve S. For more details, the reader should
refer for example to [34].

Example 2.18: In the case of a classical rank 2 Higgs bundle (FE, ®), the
characteristic polynomial of ® defines a spectral curve 7 : S — ¥. This is
a 2-fold cover of ¥ in the total space of K, and has equation n? + ay = 0,
for as a quadratic differential and 7 the tautological section of 7*K. By
[11] the curve is smooth when as has simple zeros, and in this case the
ramification points are given by the divisor of as. For z a local coordinate

2. =w. Ina

near a ramification point, the covering is given by z — z
neighbourhood of z = 0, a section of the line bundle M can be expressed as
f(w) = fo(w)+ zf1(w). Since the Higgs field is obtained via multiplication

by 7, one has

P(fo(w) + zf1(w)) = wfr(w) + zfo(w), (2.6)
and thus a local form of the Higgs field ® is given by

0w
o= .
(1)
Remark 2.19: When G. C GL(n,C), for the groups G, we are considering

in these notes, the spectral data of a G.-Higgs bundle is given by the spectral
data of the pair as a classical Higgs bundle, satisfying extra conditions.

Remark 2.20: For general G, a similar description of the fibres can be
obtained though a Lie theoretic approach, by means of what is known
as Cameral covers. The reader should refer to [21] (see also [20]) for this
generic description, and note that it is equivalent to the one given in the
next sections for the groups considered in these lecture notes.

Remark 2.21: The characteristic polynomial of ® restricted to an invari-
ant subbundle divides the characteristic polynomial of ®.

2.2.2. SL(n,C)-Higgs bundles
When G. = SL(n,C) we apply Definition 2.12 to obtain the following:

Definition 2.22: An SL(n,C)-Higgs bundle is a classical Higgs bundle
(E, ®) where the rank n vector bundle E has trivial determinant and the
Higgs field has zero trace.
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A basis for the invariant polynomials on the Lie algebra sl(n, C) is given
by the coefficients of the characteristic polynomial of a trace-free matrix
A € sl(n,C). In this case, the spectral curve 7 : S — ¥ associated to the
Higgs bundle has equation

77n + a2777l—2 + e _|_ anfllrl —|— ap = 07 (27)

where a; € H(X, K*) are the coefficients of the characteristic polynomial of
the Higgs field ®. In particular, one may consider a; = Tr(®?), from where
it is clear that in this case a3 = Tr(®) = 0. Generically S is a smooth curve
of genus gs = 1+ n%(g — 1), and the coefficients define the corresponding
Hitchin fibration

h i Mspme) — Ascimo) = P H (S, K*). (2.8)
1=2

In this case the generic fibres of the Hitchin fibration are given by the
subset of Jac(S) of line bundles L on S for which 7.L = F and A", L is
trivial. These conditions in terms of L lead to the following:

The generic fibre of the SL(n,C) Hitchin fibration is biholomorphically
equivalent to the Prym(S,X), for S the spectral curve defined as in (2.4).

In order to see why one has to take the Prym variety, recall that the
Norm map
Nm : Pic(S) — Pic(¥),

associated to 7 is defined on divisor classes by Nm(>_ n;p;) = > n;m(p;).
In particular,

Nm(7~(z)) = n(7 " (z)) = na.

The kernel of the Norm map is the Prym variety, and is denoted by
Prym(S, X). From [11], the determinant bundle of L satisfies

A", L = Nm(L) @ K~ =1/2,
Thus, A", L is trivial if and only if
Nm(L) = K™n=1/2, (2.9)

Equivalently, since Nm(Y_ n;7~(p;)) = n_ n;p;, the determinant bundle
A", L is trivial if the line bundle M := L ® 7*K~("=1/2 is in the Prym
variety.
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Remark 2.23: In the case of even rank, equation (2.9) implies a choice of
a square root of K (see [31] and [34] for more details).

2.2.3. Sp(2n,C)-Higgs bundles

Let G. = Sp(2n,C), and let V be a 2n-dimensional vector space with a
non-degenerate skew-symmetric form <,>. For v;,v; eigenvectors of A €
5p(2n, C) with eigenvalues \; and A,

Ai <05, 05 > = < Aoy, v > (2.10)
=< A"Ul',’l)j > (211)
=—-< Ui,A’Uj > (2.12)

:_<Ui7>\jvj > :_>‘j <v;,05 >

From the above, < v;,v; >= 0 unless \; = —\;. Since < v;,v; >= 0, from
the non-degeneracy of the symplectic inner product it follows that if A; is
an eigenvalue so is —\;. Thus, distinct eigenvalues of A must occur in £\,
pairs, and the corresponding eigenspaces are paired by the symplectic form.
The characteristic polynomial of A must therefore be of the form

det(z — A) = 2* + a12°" 2 + -+ a,_12° + ay,

and a basis for the invariant polynomials on the Lie algebra sp(2n,C) is
given by a1,...,an,.

Definition 2.24: An Sp(2n,C)-Higgs bundle is a pair (E, ®) for E a rank
2n vector bundle with a symplectic form w( , ), and the Higgs field ® €
HO(X,End(F) ® K) satisfying

w(Pv, w) = —w(v, Pw).

The volume form w” trivialises the determinant bundle A?" E*. The char-
acteristic polynomial det(n — ®) defines a spectral curve 7 : S — ¥ in X
with equation

772” + amzn*l +oe 4 an,lnz +a, =0, (2.13)

whose genus is gg := 1 +4n?(g — 1). The curve S has a natural involution
o(n) = —n and thus one can define the quotient curve 7 : S = S/o — %,
of which S is a 2-fold cover p : S — S. Note that the Norm map associated
to p satisfies p*Nm(z) = = + o, and thus the Prym variety Prym(S, S) is
given by the line bundles M € Jac(S) for which o*M = M*.

page 74
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As in the case of classical Higgs bundles, the characteristic polynomial
of a Higgs field ® gives the Hitchin fibration

ho: MSp(2n,(C) — ASp(Qn,(C) = @ HO(Ev K2i)7 (214)
i=1
and one has the following;:

The generic fibres h~'(a) of the Hitchin fibration for Sp(2n,C)-Higgs
bundles is given by Prym varieties Prym(S,S), where S and its quotient S
are the curves defined by a as above.

The spectral data described above for an Sp(2n, C)-Higgs bundle (F, D)
can be obtained by looking at the extra conditions needed on L € Jac(.S)
associated to the corresponding classical Higgs pair for which L = FE.
In order to understand this, note that for ¥V C S an open set, we have
V C 77w (V)) and hence a natural restriction map H°(7~!(w(V)), L) —
H°(V, L), which gives the evaluation map ev : 7*m,L — L. Multiplication
by 1 commutes with this linear map and so the action of 7*® on the dual of
the vector bundle m*7, L preserves a one-dimensional subspace. Hence L*
is an eigenspace of 7*®!, with eigenvalue 7. Equivalently, L is the cokernel
of m® — 7 acting on 7*F ® 7* K*. By means of the Norm map for =, this
correspondence can be seen on the curve S via the exact sequence

0= LK™ 5 T2 i Eg K*) < Lok —0, (2.15)
and its dualised sequence
0= L*@m*K* - 1"(E*® K*) » m*E* - L* @ n*K*"™1 - 0. (2.16)

In particular, from the relative duality theorem one has that

m (L) 2 (Ks@m* K '@ L"), (2.17)
and thus E* is the direct image sheaf 7, (L* ® 7* K2"~1).
Given an Sp(2n,C)-Higgs bundle (E,®), one has ®* = —& and an

eigenspace L of ® with eigenvalue 7 is transformed to o* L for the eigenvalue
—1. Moreover, since the line bundle L is the cokernel of 7*® — n acting on
7 (E® K*), one can consider the corresponding exact sequences (2.15) and
its dualised sequence, which identify L* with L ® m* K'~2", or equivalently,
L? = 7*K?"~'. By choosing a square root K'/? one has a line bundle
M = L ® n*K~"t/2 for which o*M = M?*, i.e., which is in the Prym
variety Prym(S, S).

Conversely, an Sp(2p, C)-Higgs bundle can be recovered from a line bun-
dle M € Prym(S, S), for S a smooth curve with equation (2.13) and S its
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quotient curve. Indeed, by Bertini’s theorem, such a smooth curve S with
equation (2.13) always exists. Letting F := 7, L for L = M®7* K" /2 one
has the exact sequences (2.15) and its dualised on the curve S. Moreover,
since L? = 7*K?2"~1, there is an isomorphism F = E* which induces the
symplectic structure on E. Hence, the generic fibres of the corresponding

Hitchin fibration can be identified with the Prym variety Prym(S, S).

2.2.4. SO(2n + 1,C)-Higgs bundles

We shall now consider the special orthogonal group G. = SO(2n + 1,C)
and the corresponding Higgs bundles. Following a similar analysis as in the
previous case, one can see that for a generic matrix A € so(2n + 1,C),
its distinct eigenvalues occur in +£); pairs, and necessarily A has a zero
eigenvalue. Thus, the characteristic polynomial of A must be of the form

det(z — A) = z(2®" + a12®" 2 + - + ap_12% + an), (2.18)

where the coefficients aq, ..., a, give a basis for the invariant polynomials
on so0(2n + 1,C).

Definition 2.25: An SO(2n + 1, C)-Higgs bundle is a pair (F, ®) for F a
holomorphic vector bundle of rank 2n+ 1 with a non-degenerate symmetric
bilinear form (v,w), and ® a Higgs field in H°(X,Endo(FE) ® K) which
satisfies (v, w) = —(v, Pw).

The moduli space Mgo(2n+1,c) has two connected components, charac-
terised by a class wo € H?(X,Zs) = Zso, depending on whether E has a lift
to a spin bundle or not. The spectral curve induced by the characteristic
polynomial in (2.18) is a reducible curve: an SO(2n + 1,C)-Higgs field ®
always has a zero eigenvalue, and from [34] the zero eigenspace Fj is given
by Eg = K™™.

From (2.18), the characteristic polynomial det(n — ®) defines a compo-
nent of the spectral curve, which we shall denote by 7 : .S — X, and whose
equation is n*" +a1n?" "2+ +an,_1n? +a, = 0, where a; € H°(Z, K*).
This is a 2n-fold cover of ¥, with genus gs = 1 + 4n?(g — 1). The Hitchin
fibration in this case is given by the map

h : Mso(QnJrL(c) — Aso(gnJrLC) = @HO(Z,K%), (2.19)
=1

which sends each pair (E,®) to the coefficients of det(n — ®). As in the
case of Sp(2n,C), the curve S has an involution o which acts as o(n) = —n.

page 76
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Thus, we may consider the quotient curve S = S/o in the total space of
K2, for which S is a double cover p : S — S. In this case the regular fibres
can be described as follows:

The regular fibres h='(a) of the SO(2n + 1,C) Hitchin fibration are
given by Prym varieties Prym(S,S) together with a trivialization of each
M € Prym(S,S) over the zeros of a, defining S as in (2.18).

Following [34], the symmetric bilinear form (v, w) canonically defines a
skew form (®v,w) on E/E, with values in K. Moreover, choosing a square
root K1/2 one can define

V=E/E,®@ K~'/2,

on which the corresponding skew form is non-degenerate. The Higgs field
® induces a transformation ® on V which has characteristic polynomial

det(z — @) = 2®" + a1 2> % + - + ap_12° + ap.

Note that this is exactly the case of Sp(2n,C) described in Section 2.2.3,
and thus we may describe the above with a choice of a line bundle My in
the Prym variety Prym(S,S). In particular, S corresponds to the smooth
spectral curve of an Sp(2n, C)-Higgs bundle.

When reconstructing the vector bundle E with an SO(2n+ 1, C) struc-
ture from an Sp(2n,C)-Higgs bundle (V,®’) as in [34], there is a mod 2
invariant associated to each zero of the coefficient a,, of the characteristic
polynomial det(n — ®’). This data comes from choosing a trivialisation of
M € Prym(S,S) over the zeros of a,, and defines a covering P’ of the
Prym variety Prym(S, S). The covering has two components corresponding
to the spin and non-spin lifts of the vector bundle. The identity component
of P’, which corresponds to the spin case, is isomorphic to the dual of the
symplectic Prym variety, and this is the generic fibre of the SO(2n + 1,C)
Hitchin map - the reader should refer to Hitchin’s work [32] and [33] for a
thorough explanation of how the above description is obtained.

2.2.5. SO(2n,C)-Higgs bundles

Lastly, we consider G. = SO(2n,C). As in previous cases, the distinct
eigenvalues of a matrix A € s0(2n,C) occur in pairs +);, and thus the
characteristic polynomial of A is of the form det(z — A) = 22" + a; 22" "2 +
-+ ap_122+a,. In this case the coefficient a,, is the square of a polynomial
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Pn, the Pfaffian, of degree n. A basis for the invariant polynomials on the
Lie algebra so(2n,C) is a1, as,...,an_1,pn, (the reader should refer, for
example, to [5] and references therein for further details).

Definition 2.26: An SO(2n,C)-Higgs bundle is a pair (E,®), for F a
holomorphic vector bundle of rank 2n with a non-degenerate symmetric
bilinear form (, ), and the Higgs field ® € H°(X, Endg(E) ® K) satisfying
(Pv,w) = —(v, Pw).

Considering the characteristic polynomial det(n — ®) of a Higgs bundle
(E, ®) one obtains a 2n-fold cover 7 : S — ¥ whose equation is given by

det(n — @) = *" + a1n® 2 + -+ + an_19* + p3,

for a; € HY(X, K?%) and p,, € H°(3, K™). Note that this curve has always
singularities, which are given by = 0. The curve S has a natural involution
o(n) = —n, whose fixed points in this case are the singularities of S. The
virtual genus of S can be obtained via the adjunction formula, giving gs =
1+4n%(g —1).
In order to define the spectral data, one may consider its non-singular
model 7 : S — X, whose genus is given by
gg = gs — ##singularities
=1+4n*(g—1)—2n(g—1)
=1+2n2n—1)(g —1).
As the fixed points of ¢ are double points, the involution extends to an
involution & on S which does not have fixed points. Considering the asso-
ciated basis of invariant polynomials for each Higgs field ®, one may define
the Hitchin fibration
n—1
h : Mso@nc) — Aso@nc) = H(Z,K™) & P H (T, K*). (2.20)
i=1
In this case the line bundle associated to an SO(2n, C)-Higgs bundle is
defined on the desingularisation S of S:

The smooth fibres of the SO(2n,C) Hitchin fibration are given by
Prym(S,S5/5), for S the desingularisation of the curve S associated to the
reqular base point a.

Starting with an SO(2n, C)-Higgs bundle, since S is smooth we obtain
an eigenspace bundle L C ker(n— ®) inside the vector bundle E pulled back
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to S. In particular, this line bundle satisfies 6*L & L* ® (Kg® T K*)7L,
thus defining a point in Prym(S, S/&) given by

M:=L® (Ks@n K*)/2

Conversely, a Higgs bundle (E, ®) may be recovered from a curve S with
has equation 7" + a1n*" =2 + .-+ + a,_11? + p2 = 0, and a line bundle L
on its desingularisation S. Note that given the sections

s=0"+an ?+ 4 a1’ +p3

for fixed p, with simple zeros, one has a linear system whose only base
points are when 7 = 0 and p,, = 0. Hence, by Bertini’s theorem the generic
divisor of the linear system defined by the sections s has those base points
as its only singularities. Moreover, as p,, is a section of K™, in general there
are 2n(g — 1) singularities which are generically ordinary double points. A
generic divisor of the above linear system defines a curve S which has an
involution o(n) = —n whose only fixed points are the base points.

The involution ¢ induces an involution & on the desingularisation Sof S
which has no fixed points, and thus we may consider the quotient S /6 and
the corresponding Prym variety Prym(g .S /). Following a similar proce-
dure as before, a line bundle M € Prym(S,S5/4) induces a Higgs bundle
(E, ®) where E is the direct image sheaf of L = M ® (K¢ ® m*K*)~Y/2. It
is thus the Prym variety of .S which is a generic fibre of the corresponding
Hitchin fibration.

Problem 2.27: Show that the genus gz, of S/6 isn(2n —1)(g —1).

2.3. Spectral data for complex Higgs bundles

Considering S a spectral curve, S a normalized spectral curve, and S and

S the quotients of S and S by the involution n — —n. Moreover, let D be
a sub-divisor of [a,]. Then, the spectral data described in this lecture can
be summarised as follows:

Table 1. Spectral data for complex Higgs bundles.

Group Spectral curve Generic fibre Ref.
GL(n,C) " +an” 4+ an—1n+an Jac(S) [32], [34
SL(n,C) 4 aon® 24+ an_11m+ an Prym(S/X) [32], [34

]
D) ]
Sp(n,C)  [n*" +a1n®™ 2 +---+an-1m> +an| Prym(S/S) |[32], [34]
SO2n+1,0) [n®" + a1n®™ 2+ -+ an_17% + an | Prym(S/S) + D|[[32], [34]

S0(2n,C) |7 +a1n® 24 +an_1m®+p2| Prym(8/9) (32]
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3. Spectral data for G-Higgs bundles

But most of all a good example is
a thing of beauty. It shines and
convinces. It gives insight and
understanding. It provides the
bedrock of belief.

Sir Michael Atiyah

Higgs bundles for real forms were first studied by N. Hitchin in [31],
and the results for SL(2,R) were generalised in [33], where Hitchin studied
the case of G = SL(n,R). Using Higgs bundles he counted the number
of connected components and, in the case of split real forms, he identified
a component homeomorphic to RUm&(29-2) and which naturally contains
a copy of a Teichmiiller space. The aim of this Lecture is to introduce
principal Higgs bundles for real forms and their corresponding spectral
data as studied in [47] and further developed in [35, 36].

3.1. G-Higgs bundles

We shall begin by reviewing definitions and properties related to real forms
of Lie algebras and Lie groups (see e.g., [24, 37,41, 39, 45]), and then define
G-Higgs bundles for real forms G of classical semisimple complex Lie groups
G, or of GL(n,C). Through the approach of [33], we describe these Higgs
bundles as the fixed points of a certain involution on the moduli space of G-
Higgs bundles. In later sections we study G-Higgs bundles for non-compact
real forms G and in each case give an overview of the corresponding spectral
data when available.

3.1.1. Real forms

Let g. be a complex Lie algebra with complex structure ¢, whose Lie group
is G..

Definition 3.1: A real form of g is a real Lie algebra which satisfies
g° =g Dig.

Given a real form g of g¢ an element Z € g° in the Lie algebra may be
written as Z = X 4+ 1Y for X|Y € g. The mapping X + Y — X — Y is
called the conjugation with respect to g.
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Remark 3.2: Any real form g of g¢ is given by the fixed points set of an
antilinear involution 7 on g°. In particular the conjugation with respect to
g satisfies these properties.

Definition 3.3: A real form of a complex Lie group G, is an antiholomor-
phic Lie group automorphism 7 : G. — G. of order two, i.e., 72 = 1.

Every X € g° defines an endomorphism adX of the Lie algebra g°
given by adX(Y) = [X,Y] for Y € g°. For Tr the trace of a vector space
endomorphism, B(X,Y) = Tr(adXadY) is a the bilinear form on g¢ x g°
called the Killing form of g°.

Definition 3.4: A real Lie algebra g is called compact if the Killing form
is negative definite on it. The corresponding Lie group G is a compact Lie
group.

Definition 3.5: Let g be a real form of a complex simple Lie algebra g€,
given by the fixed points of an antilinear involution 7. Then, if there is a
Cartan subalgebra invariant under 7 on which the Killing form is negative
definite, the real form g is called a compact real form. Such a compact
real form of g¢ corresponds to a compact real form G of G,; if there is an
invariant Cartan subalgebra on which the Killing form is positive definite,
the form is called a split (or normal) real form. The corresponding Lie group
G is the split real form of G..

Any complex semisimple Lie algebra g¢ has a compact and a split real
form which are unique up to conjugation via Autcg® (e.g., for sl(n, C) these
are su(n) and sl(n, R) respectively).

Remark 3.6: Recall that all Cartan subalgebras § of a finite dimensional
Lie algebra g have the same dimension. The rank of g is defined to be this
dimension, and a real form g of a complex Lie algebra g€ is split if and only
if the real rank of g equals the complex rank of g°.

An involution 6 of a real semisimple Lie algebra g such that the sym-
metric bilinear form By(X,Y) = —B(X,0Y) is positive definite is called a
Cartan involution. Any real semisimple Lie algebra has a Cartan involution,
and any two Cartan involutions 61,65 of g are conjugate via an automor-
phism of g, i.e., there is a map ¢ in Autg such that pf;o~1 = 63. The
decomposition of g into eigenspaces of a Cartan involution 6 is called the
Cartan decomposition of g.
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Proposition 3.7: [39] Let g° be a complex semisimple Lie algebra, and p
the conjugation with respect to a compact real form u of g¢. Then, p is a
Cartan involution.

Proposition 3.8: [37] Any non-compact real form g of a complex simple
Lie algebra g¢ can be obtained from a pair (u,0), for u the compact real
form of g° and 6 an involution on u.

For completion, we shall recall here the construction of real forms from
[37]. Let b be the +1-eigenspaces of § and im the —1-eigenspace of 6 acting
on u, thus having

u="hoim. (3.1)

Since g¢ = h @ m @ i(h @ m), there is a natural non-compact real form g of
g¢ given by

g=hodm (3.2)

Moreover, if a linear isomorphism 6y induces the decomposition as in (3.2),
then 6 is a Cartan involution of g and b is the maximal compact subalgebra
of g.

Following the notation of Proposition 3.8, let p be the antilinear involu-
tion defining the compact form u of a complex simple Lie algebra g¢ whose
decomposition via an involution 6 is given by equation (3.1). Moreover, let
7 be an antilinear involution which defines the corresponding non-compact
real form g = h @ m of g¢. Considering the action of the two antilinear invo-
lutions p and 7 on g¢, we may decompose the Lie algebra g° into eigenspaces

g° =0 oml= @ (im) ) @ (i) ), (3-3)

where the upper index (-, -) represents the +-eigenvalue of p and 7 respec-
tively. From the decomposition (3.3), the involution 6 on the compact real
form u giving a non-compact real form g of g¢ can be seen as acting on g°¢
as o := p71. Moreover, this induces an involution on the corresponding Lie
group o := G, — G..

Remark 3.9: The fixed point set g° of o is given by g7 = b & ih, and
thus it is the complexification of the maximal compact subalgebra b of g.
Equivalently, the anti-invariant set under the involution o is given by mC.
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3.1.2. G-Higgs bundles through involutions

As mentioned previously, non-abelian Hodge theory on the compact Rie-
mann surface ¥ gives a correspondence between the moduli space of reduc-
tive representations of m1(X) in a complex Lie group G. and the moduli
space of G.-Higgs bundles. The anti-holomorphic operation of conjugating
by a real form 7 of G, in the moduli space of representations can be seen
via this correspondence as a holomorphic involution © of the moduli space
of G.-Higgs bundles.

Following [32], in order to obtain a G-Higgs bundle, for A the connection
which solves Hitchin equations, one requires the flat GL(n,C) connection

V=Vatd+o* (3.4)

to have holonomy in a non-compact real form G of GL(n,C), whose real
structure is 7 and Lie algebra is g. More generally, for a complex Lie group
(. with non-compact real form G and real structure 7, one requires

V=Vi+®—p®) (3.5)

to have holonomy in G, where p is the compact real structure of G.. Since
A has holonomy in the compact real form of G., we have p(V4) = Va.
Hence, requiring V = 7(V) is equivalent to requiring V4 = 7(V4) and
D — p(®) =7(P — p(P)). In terms of 0 = p7, these two equalities are given
by 0(V.4) = V.4 and & p(®) = 7( — p(®)) = 7(®) — o(®) = o(p(®) — D).
Hence, V has holonomy in the real form G if V4 is invariant under o, and
® anti-invariant. In terms of a G-Higgs bundle (P, ®), one has that for I
and V two trivialising open sets in the compact Riemann surface ¥, the
involution ¢ induces an action on the transition functions g., : YNV — G,
given by guy — 0(guv), and on the Higgs field by sending ® — —o(P).

Concretely, for G a real form of a complex semisimple lie group G., we
may construct G-Higgs bundles as follows. For H the maximal compact
subgroup of G, we have seen that the Cartan decomposition of g is given
by g = h@&m, for h the Lie algebra of H, and m its orthogonal complement.
This induces the following decomposition of the Lie algebra g¢ of G. in
terms of the eigenspaces of the corresponding involution ¢ as defined before:
g¢ = h® @ mC. Note that the Lie algebras satisfy [h, ] C b, [h,m] C m, and
[m,m] C h. Hence there is an induced isotropy representation given by
Ad|ge : H® — GL(m%). Then, Definition 2.12 generalises to the following
(see e.g. [27]):

page 83
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Definition 3.10: A principal G-Higgs bundle is a pair (P, ®) where P is a
holomorphic principal H®-bundle on X, and @ is a holomorphic section of
P X a4 mC€ ® K.

Example 3.11: For a compact real form G, one has G = H and m = {0},
and thus o is the identity and the Higgs field must vanish: a G-Higgs bundle
becomes a principal G.-bundle.

In terms of involutions, following [33] and recalling the previous analysis
leading to Remark 3.9, we have the following:

Proposition 3.12: Let G be a real form of a complex semi-simple Lie
group G., whose real structure is 7. Then, G-Higgs bundles are given by
the fized points in Mg, of the involution ©¢ acting by

Oc : (P,®) = (a(P), —0o(®)),
where o = pt, for p the compact real form of G..

Similarly to the case of G.-Higgs bundles, there is a notion of stability, semi
stability and polystability for G-Higgs bundles. Following [14] and [15], one
can see that the polystability of a G-Higgs bundle for G C GL(n,C) is
equivalent to the polystability of the corresponding G L(n, C)-Higgs bundle.
However, a G-Higgs bundle can be stable as a G-Higgs bundle but not as
a GL(n,C)-Higgs bundle. We shall denote by Mg the moduli space of
polystable G-Higgs bundles on .

Problem 3.13: (*) Considering the notion of “strong real form” from [2],
describe the corresponding Higgs bundles and give a definition of ©g for
which one does not have the problem described in the above paragraph. The
reader might find useful the notes in [1,2] for a concise definition.

One should note that a fixed point of O in Mge gives a representation
of m1(X) into the real form G up to the equivalence of conjugation by the
normalizer of G in G°. This may be bigger than G itself, and thus two
distinct classes in M could be isomorphic in Mge via a complex map.
Hence, although there is a map from Mg to the fixed point subvarieties in
M e, this might not be an embedding. The reader may refer to [25] for the
Hitchin-Kobayashi type correspondence for real forms.

Remark 3.14: A description of the above phenomena in the case of rank
2 Higgs bundles is given in [46], where one can see how the SL(2, R)-Higgs
bundles which have different topological invariants lie in the same connected
component as SL(2,C)-Higgs bundles.
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Remark 3.15: As mentioned previously, the study of real Higgs bundles
as fixed point sets of involutions was initiated by Hitchin in [33] in the case
of split real forms, and developed for other real forms in [47]. Moreover,
this approach has been taken in several papers recently (see, among others,
[7,8,10,13,18,49]), and continues to be used (see, among others, [9]).

Remark 3.16: The point of view of Proposition 3.12, which is considered
throughout [47], fits into a more global picture where ©¢ is one of three
natural involutions acting on the moduli space of Higgs bundles [7, 8], giv-
ing three families of (B, A, A), (A, B, A) and (A, A, B) branes in Mg, as
the fixed point sets. One should note that the fixed point sets of these in-
volutions are of great importance when studying the relation of Langlands
duality with Higgs bundles, as initiated in [30, 38] and [34].

3.2. Spectral data for G-Higgs bundles

As mentioned in the first Lecture, the moduli spaces Mg, have a natural
symplectic structure, which we denoted by w. Moreover, following [32], the
involutions ©¢ send w — —w. Thus, at a smooth point, the fixed point
set must be Lagrangian and so the expected dimension of M is half the
dimension of Mg, . In order to describe the spectral data for real G-Higgs
bundles, one considers the moduli space Mg sitting inside Mg, as fixed
points of O¢ in the Hitchin base Ag, and the corresponding preserved
fibres.

By considering Cartan’s classification of classical semisimple Lie alge-
bras, we shall now describe G-Higgs bundles and their spectral data for
non-compact real forms of a classical semisimple complex Lie algebra g°.
For I, the unit matrix of order n, we denote by I, 4, J, and K, the

matrices
-1, 0 0 0
-1, 0 0 I 0 I, 0 O
pa ( 0 Iq)’ In (—In 0)’ P 0 01,0
0 0 0 I,

Following Proposition 3.8, we study each complex Lie algebra g. and
compact form u with different involutions 6 which give decompositions
u = bh @ im. Then the corresponding natural non-compact real form is
g = h dm, and to make sense of Proposition 3.12 we consider the following
Lie algebras, Lie groups, real forms, and holomorphic and anti holomorphic
involutions:
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Table 2. Compact forms u of classical Lie algebras.

gc Lie group G¢ Split form | Compact form u p fixing u

an SL(n,C) sl(n,R) su(n) p(X)=—-X'
by | SO(2n+1,C) | so(n,n+1) s50(2n + 1) p(X)=X

n Sp(2n, C) sp(2n, R) sp(n) p(X) = Jn XI5t
0 SO(2n,C) so(n,n) 50(2n) p(X)=X

Table 3. Non-compact forms G of classical Lie algebras Ge.

gc | Real form G 7 fixing G Involution 6 on u
an | SL(n,R) p(X)=—X' 0(X) = X.
SU*(2m) 7(X) = Jm X Jm’ 0(X) = I X It
SU(p,q) T(X) = _Ip,tﬁ(tlp,q 0(X) = IpqXIpq
bn S50(p,q) T(X) = Ip,q)ilpyzr 0(X) = Ip,qilp,q
n Sp(2n,R) T(X)=X 0(X)=X
Sp(2p, 2q) T(X) = *Kp,qf*Kp,m 0(X) = Kp g XKpq,
0n SO0(p,q) T(X) = Ip,qXIpgq- 0(X) = 1IpqXIpq
SO*(2m) 7(X) = Jm X Jm?. O0(X) = Jm X I

In the case of split real forms, following the methods of [33] one obtains a
description of real Higgs bundles which we shall use in subsequent sections:

Theorem 3.17: [47] For G the split real form of G., the fized points of
Og in the smooth fibres of the Hitchin fibration for G.-Higgs bundles are
given by points of order two.

3.2.1. SL(n,R)-Higgs bundles

Higgs bundles for SL(n,R) were first considered in [33], where Hitchin
studied a copy of Teichmiiller space inside the moduli space of Higgs bundles
for split real forms. Following Definition 3.10, an SL(n,R)-Higgs bundle is
a pair (E, ®) where F is a rank n orthogonal vector bundle and the Higgs
field ® : F — F ® K is a symmetric and traceless holomorphic map.

Proposition 3.18: SL(n,R)-Higgs bundles are given by the fized points of
@SL(n,R) : (E, @) — (E*7(Pt)

in Mg, (n,c)corresponding to automorphisms f : E — E* giving a symmet-
ric form on E.

Problem 3.19: Find the decomposition of u = su(n) induced by the cor-
responding 6 in Table 5, and use this to deduce Proposition 3.18.

page 86
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Recalling that the trace is invariant under transposition, one has that
the ring of invariant polynomials of g¢ = sl(n, C) is acted on trivially by the
involution —o, and thus the Hitchin base is preserved by © g, r). In order
to find the spectral data for SL(n,R)-Higgs bundles, following Theorem
3.17 we look at elements of order two in the fibres of the Hitchin fibration
for SL(n,C)-Higgs bundles:

Over a smooth point in the Hitchin base Agpn.c), Higgs bundles for
SL(n,R) correspond to line bundles L € Prym(S,X) such that L? = O.

In the case of n = 2, the SL(2, C)-spectral curve S given as in (2.7) has a
natural involution o : n — —n and Prym(S, %) = {L € Jac(S) : 0*L = L*}.
Hence, points in the smooth fibres corresponding to SL(2,R)-Higgs bundles
are given by line bundles L € Jac(S) such that o*L = L.

Problem 3.20: Let L € Prym(S,X) be a line bundle of order two. Then,
its direct image is a rank 2 bundle on 3 which decomposes into the sum of
two line bundles V @ V*. How can the Lefschetz fized point formula (which
relates the action of an involution on a line bundle, and the dimension of
the spaces of invariant and anti-invariant sections of a line bundle) from
[6] be used to relate the degree of V and the action of o on L in the spirit
of [48]7

The topological invariant associated to SL(n, R)-Higgs bundles is the char-
acteristic class wy € Zo which is the obstruction to lifting the orthogonal
bundle to a spin bundle, and its study was carried through in [36].

Problem 3.21: For n = 2, use the approach of [36] to relate wy to the
invariants in Problem 3.20.

The spectral data of SL(n,R)-Higgs bundles gives a finite cover of the
smooth locus of the Hitchin fibration. For n = 2, an explicit description
of the monodromy action whose orbits are the connected components of
Mg (2,r) is given in [46].

Problem 3.22: (*) How can the methods in [46] be extended to study mon-
odromy for SL(n,R)-Higgs bundles for n > 3%

3.2.2. SU*(2m)-Higgs bundles

The group SU*(2m) is the subgroup of SL(2m,C) which commutes with
an antilinear automorphism J of C?™ such that J? = —1. At the level of
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the Lie algebras we have that the involution § decomposes u = h@im where
b = sp(m). The induced non-compact real form g = h ® m is

— su*(2m) = Z1 Zs Z1,Z5 m x m  complex matrices,
8= o —72 71 Ter + TI‘Zl =0 ’

Definition 3.23: An SU*(2m) Higgs bundle on ¥ is a pair (E,®) for E
a rank 2m vector bundle with a symplectic form w, and the Higgs field
® € H°(3,End(F) ® K) traceless and symmetric with respect to w.

These Higgs bundles are the first example considered in this notes for
which one has nonabelian spectral data. It was first studied in [35], provid-
ing what one may call the nonabelianization of the Hitching fibration. In
what follows we shall describe the nonabelian spectral data, and also do so
for other cases which behave similarly, which have been studied in [35,47].

Proposition 3.24: Isomorphism classes of SU*(2m)-Higgs bundles are
given by fized points of the involution

Osu- : (E,®) s (E*, ")

on SL(2m,C)-Higgs bundles corresponding to pairs which have an auto-
morphism f : E — E* endowing it with a symplectic structure, and which
trivialises its determinant bundle.

As the trace is invariant under conjugation and transposition, one has
that the involution —o(X) = J,, X'J,,! acts trivially on the ring of invariant
polynomials of s[(2m, C), and thus preserves the Hitchin base. The spectral
data associated to SU*(2m)-Higgs bundles (E, ®) was studied in [35], and
we shall describe here its main features.

The characteristic polynomial of an SU*(2m)-Higgs bundle (E, ®) can
be seen to be the square of a Pfaffian, det(n — ®) = p(n)? and thus all fixed
points of gy~ lie over singular points of the SL(2m,C) Hitchin fibration.
With a slight abuse of notation, we denote by S the spectral curve in the
total space of K defined by

p(n) =n"+am™ 2+ +an=0

where the coefficients a; € H°(3, K'). It is a ramified m-fold cover of ¥
whose ramification points are the zeros of a,,. As in the case of complex
groups, we interpret p(n) = 0 as the vanishing of a section of 7* K™ over the
total space of the canonical bundle 7w : K — ¥, where 7 is the tautological
section of 7*K, and Bertini’s theorem assures us that for generic a; the
curve is nonsingular.
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Problem 3.25: What is the genus gs of S?

On the spectral curve S, the cokernel of (n — @) is a rank two holomor-
phic vector bundle V on S. Then, following [11] (and using p(®) = 0 instead
of the Cayley-Hamilton theorem), we can identify F with the direct image
7.V and ® as the direct image of n: V — V @ 7*K. From [35] one has a
description of the spectral data:

The fized point set of Ogy«(am) in a smooth fibre of the SL(2m,C)-
Hitchin fibration is the moduli space of semi-stable rank 2 vector bundles
on S with fized determinant m* K™ 1.

Problem 3.26: Use Remark 2.21 together with Grothendieck-Riemann-
Roch to show that semi-stability of V' implies semi-stability of (E,®).

Problem 3.27: Follow the approach of SL(n,C)-Higgs bundles to note
that by fixing the determinant of V' one obtains a trivialization of the de-
terminant of w,V on X.

3.2.3. SU(p, q)-Higgs bundles

Definition 3.28: An SU(p, ¢)-Higgs bundle over X is a pair (F, ®) where
E = Wy, ® Wy for Wi, Wy vector bundles over 3 of rank p and ¢ such

that APW, =2 AYW5, and the Higgs field ® is given by & = (2 ’g) , for
B:We =W @Kandvy: W, - W, ® K.

Problem 3.29: Find the decomposition u = h @ im wvia the action of 0
in Table 2 and deduce that 0p is the anti-holomorphic involution fizing the
non-compact real form u(p,q).

Proposition 3.30: SU(p, q)-Higgs bundles are fized points of Oy (pq)
(E,®) — (E,—®) on SL(p + q,C)-Higgs bundles corresponding to bundles
E which have an automorphism conjugate to I, 4 sending ® to —®, and
whose +1 eigenspaces have dimensions p and q.

The involution —o acts trivially on the polynomials of even degree.
Whilst the spectral data is not known for p # ¢, in the case of p = ¢
it has been described in [47] and [48] by looking at U(p, p)-Higgs bundles
(W1®Ws, @), which when satisfying APW; = AW correspond to SU (p, p)-
Higgs bundles. In this case, the characteristic polynomial defines a spectral
curve 7 : S — ¥ through the equation det(n — ®) = n?? + an*~2 +



March 20, 2018 Lecture Note Series, IMS, NUS — Review Vol. 9in x 6in 10683-02 page 90

90 L. P. Schaposnik

et agp_2n2 + agp = 0, where 7 is the tautological section of 7*K and
a; € H(X, K'). This is a 2p-fold cover of ¥, ramified over the 4p(g — 1)
zeros of ag,, and has a natural involution n — —n which has as fixed points
the ramification points of the cover, and which by abuse of notation, we
shall call o.

The involution ¢ plays an important role when constructing the spectral
data as described in [48]. A line bundle L on S which defines a classical
Higgs bundle induces a U (p, p)-Higgs bundle if and only if *L 2 L. In this
case, at a fixed point x € S of the involution, there is a linear action of o
on the fibre L, given by scalar multiplication of +1. This description of the
spectral data can be then seen in terms of Jacobians through [48]:

The fized point set of Oy, in a smooth fibre of the classical Hitchin
fibration can be seen in terms of pull backs of Jac(S/o) on a symmetric
product of X3 to a point of the Hitching base.

As described in [48], the topological invariants associated to a U(p,p)-
Higgs bundle (W @& Wy, @) are the degrees deg(W7) and deg(Ws), and can
be seen in terms of the degree of the line bundle L on S and the number
of ramification points of S over which the linear action of ¢ on the fibre of
Lis —1.

Problem 3.31: Use the Lefschetz fized point formula in [6] to see that the
parity of the degree of L and the number of points over which o acts as —1
needs to be the same.

Problem 3.32: Following [14], a U(p,p)-Higgs bundles has an associated
invariant T(deg(W1), deg(W3)) := deg(W1) — deg(Ws), known as the Toledo
invariant. Use Problem 3.31 to express the invariant in terms of fized points
of o and obtain natural bounds.

In the case of SU (p, p)-Higgs bundles, for maximal Toledo invariant (i.e.,
when the invariant in the above problem achieves the bounds), the fixed
point set of O gy (p,py in a smooth fibre of the SL(2p, C)-Hitchin fibration
is given by a covering of Prym(S/c,X), the Prym variety of the quotient
curve S/o. For SU(p, p + 1)-Higgs bundles, the methods and arguments of
[20] can be adapted and used to obtain the spectral data as seen in [42].

Problem 3.33: (*) How can the methods from [48] together with the ap-
proach of [53] be used to obtain the spectral data for SU (p,1)-Higgs bundles?
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Remark 3.34: The moduli space of real Higgs bundles is a brane in the
moduli space of complex Higgs bundles, and as such it has a dual space,
a brane in the moduli space of complex Higgs bundles for the Langlands
dual group. Properties of this dual space have been conjectured in [8], and
it is interesting to note that the spectral data for SU(p,p)-Higgs bundles
from [48] is used to conjecture a dual space to Mgy (p ) through Langlands
duality in [36].

3.2.4. SO(p, q)-Higgs bundles

In this case, if p+q is even, g is a split real form if and only if p = ¢; if p+q is
odd, g is a split real form if and only if p = ¢+ 1. Whilst we shall give some
details on the construction of SO(p, ¢)-Higgs bundles, for a more detailed
description of the approach needed to understand groups with signature the
reader should refer to the following section on Sp(2p,2¢)-Higgs bundles.
The vector space V associated to the standard representation of € can
be decomposed into V' = V, @ V,, for V,, and V, complex vector spaces
of dimension p and ¢ respectively, with orthogonal structures. The max-
imal compact subalgebra of so(p,q) is h = so(p) x so(q) and the Cartan
decomposition of so(p + g, C) is given by (so(p,C) @ so(g,C)) & m®, for

0 Xo .
m_{(Xé 0 )'XQ real p X ¢q matrlx}.

Definition 3.35: An SO(p,q) Higgs bundle is a pair (E,®) where the
vector bundle is £ = V, @ V, for V, and V, complex vector spaces of
dimension p and ¢ respectively, with orthogonal structures, and the Higgs
field is a section in H°(X, (Hom(V,, V,) & Hom(V,,V,)) ® K) given by

o= (3 g) for v = —pT, and fTthe orthogonal transpose of 3.

Proposition 3.36: SO(p,q) Higgs bundles are fized points of
Os0(p,q) ¢ (E,P) = (E,-P)

on the moduli space of SO(p+q,C) corresponding to vector bundles E which
have an automorphism f conjugate to I, ; sending ® to —® and whose +1
etgenspaces have dimensions p and q.

Problem 3.37: The involution 6 from the Table 2 decomposes u = h & im.
Give an explicit description of m and b and of the real form g =t & m.
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Since the ring of invariant polynomials of g¢ = s0(2m+1, C) is generated
by Tr(X?) for X € g¢, for p+ ¢ = 2m + 1 one has that the induced action
of the involution ©gp(p,q) is trivial on the ring of invariant polynomials of
the Lie algebra so(2m + 1,C), i.e., when p and ¢ have different parity.

Problem 3.38: In the case of s0(2m,C), for 2m = p + q, the ring of
invariant polynomials is generated by Tr(X*) for X € g and i < 2m,
together with the Pfaffian p,,, which is of degree m. Under which conditions
on p and q is the induced action of ©go(p,q) trivial on the ring of invariant
polynomials?

The spectral data for SO(p,q)-Higgs bundles when p = q orp=q+1
can be seen through Theorem 3.17 from [47] as points of order two in the
smooth fibres of the SO(p + q, C)-Hitchin fibration.

In both cases a key ingredient is the double cover p : S — S/o given
by the spectral curve (the desingularised curve in the case of SO(2n,C))
over the quotient curve, which through K-theoretic methods allows one to
express the topological invariants involved in terms of the action of o [9].

3.2.5. SO*(2m)-Higgs bundles

The action of 6 in Table 2 decomposes the compact form u = h @ im for
b =u(m) = so(2m) Nsp(m), and

m = X1 Xs
B X — X,

and the induced non-compact real form g =h & m is

{42

The vector space associated to the standard representation of hC has
an orthogonal and symplectic structure J. Since J~! = J?* and J? = —1,
the vector space may be expressed in terms of the +i eigenspaces of J as
V@ V*, for V arank m vector space. Thus, we have the following definition:

X1, X, eso(m)}, (3.6)

Z1,Z5 m X m complex matrices
71 skew symmetric, Zo Hermitian |

Definition 3.39: An SO*(2m)-Higgs bundle is given by a pair (E,®)
where E =V @ V* for V a rank m holomorphic vector bundle, and where
the Higgs field @ is given by

o 0p for 17 V = V*® K satisfying v = —~¢
~\vo0 B: V* -V ®K satisfying 3 = -3t °
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In terms of involutions, these Higgs bundles may be seen as follows:

Proposition 3.40: SO*(2m)-Higgs bundles are fized points of the involu-
tion

Oso+(2m) : (E,®) — (E,—®)

on the moduli space of SO(2m,C)-Higgs bundles corresponding to vector
bundles E which have an orthogonal automorphism f conjugate to J,,
sending ® to —® and which squares to —1, equipping E with a symplec-
tic structure.

As in the previous case, the involution induced action of ©go«(2m) is
trivial on the ring of invariant polynomials of g¢. The spectral data for
these Higgs bundles is studied in [35], and we shall give a short description
bellow.

In order to understand the associated spectral data, one notes that
SO*(2m)-Higgs bundles (E, ®) may be regarded as SU*(2m)-Higgs bundle
with extra conditions. Hence, one may define a natural m cover of the
Riemann surface 7 : S — ¥ by taking

Vehar(®) = 0™ + aen®™ 2 + -+ ap,

and a rank 2 vector bundle V on S whose direct image on X gives E. Since
in this case the equation of the spectral curve only has even coefficients,
there is a natural involution ¢ : » — —n and one may consider the in-
duced action of o on V' and on its determinant bundle. In particular, from
[35] the vector bundle V' gives an SO*(2m)-Higgs bundle if and only if it
is preserved by the involution and the induced action on it satisfies some
conditions:

The fized point set of ©go=(2m) i a smooth fibre of the SO(2m,C)-
Hitchin fibration is given by the moduli space of semi-stable rank 2 vector
bundles V on S with fized determinant 7*K?™ 1, whose induced action by
o on the determinant bundle is trivial.

Problem 3.41: The relative duality theorem gives
(m(V)" 2m (V'@ Kg) @ K*.

Use this to see that in order to have EE = E* through a skew form, the action
of o needs to be trivial on the determinant bundle of V' for m,V = E.

Problem 3.42: (*) Describe how the vector bundles of rank 2 in [35] ap-
pear in the description of the connected components of Mgo«(2m) in [17].
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3.2.6. Sp(2n,R)-Higgs bundles

In this section and the one which follows we consider the non-compact real
forms of the complex Lie group Sp(2n, C). For this, recall that the symplec-
tic Lie algebra sp(2n, C) is given by the set of 2n x 2n complex matrices X
that satisfy J, X + X*.J,, = 0 or equivalently, X = —J 1 X' J,.

Let u be the compact real form u = sp(n) and 0(X) = X = J,XJ, 1.
The Lie algebra sp(n) is given by the quaternionic skew-Hermitian matrices;
that is, the set of n X n quaternionic matrices X which satisfy X = X'
The compact form is u = h @ im, for h = u(n) = so(2n) Nsp(n), which leads

to the split real form g = h & m defined by

B B X7 Xo X; real n x n matrices
s=men®={ (3 %) | f
Definition 3.43: An Sp(2n,R)-Higgs bundle is given by a pair (F,®)
where £ = V @& V* for V a rank n holomorphic vector bundle, and for

® the Higgs field given by

o= 073 for 47 V - V*® K satisfying v = ~*
“\nyo B: V' 5V ®K satisfying 8 = ¢

Proposition 3.44: Sp(2n,C) Higgs bundles, and Sp(2n,R)-Higgs bundles
are given by the fixed points of

Xo, X3 symmetric

@Sp(Qn,]R{) : (E,‘I)) — (E, —(I))

on Sp(2n, C)-Higgs bundles corresponding to vector bundles E which have a
symplectic isomorphism sending ® to —®, and whose square is the identity,
endowing E with an orthogonal structure.

The invariant polynomials of g¢ are of even degree, and hence the in-
volution —o acts trivially on them, making ©g,(2,,r) preserve the whole
Hitchin base Agp(2n,c). In the case of rank 4 Higgs bundles, the spectral
data was first consider in P. Gothen’s thesis [27, 28], and through Theorem
3.17 and the spectral data for complex Higgs bundles one has the following;:

The fived points of ©gpanr) in the smooth fibres of the Sp(2n,C)-
Hitchin fibration are given by line bundles L € Prym(S,S/o) such that
L= 0.

page 94
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In particular, since S is a ramified double cover of S/o, one has that
L € Prym(S, S/o) if and only if 0*L = L*. Hence, by considering points of
order two one has that ¢*L = L and thus there is a natural induced action
of o on the line bundle L. The topological invariants associated to these
Higgs bundles were studied in [36] through the natural action of o.

Problem 3.45: Compare the calculations in [27] which lead to Milnor-
Wood type inequalities for Sp(2n,R)-Higgs bundles, with the inequalities
one obtains by using the involution o as in [36].

Problem 3.46: (*) Express the invariants from [27] in terms of different
choices of the natural involution o on S as well as in terms of the action
of a second natural involution appearing in some situations on S/o.

3.2.7. Sp(2p,2q)-Higgs bundles
The induced non-compact real form g =h @& m is

Zu T Tz Zi Ziij C(anlex OIlnatrlces,
—t , order p,
ZJ2 522 Ef‘l Z£4 11, 413 p
—Z13 Z1a Zu —Z12
7t J— J—
Zyy —Za ~Ziy Za

sp(2p,2q)= Z19, Z14 p X q matrices,
Z11, Zao skew Hermitian,

Z13, Za4 symmetric.

Problem 3.47: Show that m® can be expressed as subset of certain off-
diagonal matrices.

Definition 3.48: An Sp(2p, 2¢)-Higgs bundle is given by a pair (E, ®) for
E =V, @ Vyq is a direct sum of symplectic vector spaces of rank 2p and
2q, and

0T v Ve = Vo ® K
o= f P Y
(7 0 ) o {”YT:VZq%V?p(@K7

for v the symplectic transpose of 7.
Proposition 3.49: Sp(2p,2q)-Higgs bundles are the fized points of
Ospipzq) © (B, @)= (B,-27)

on the moduli space of Sp(2p + 2q, C)-Higgs bundles corresponding to sym-
plectic vector bundles E which have an endomorphism f : E — E conju-
gate to f(p,q, sending ® to the symplectic transpose —®T, and whose +1
eigenspaces are of dimension 2p and 2q.
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As the trace is invariant under conjugation and transposition, the in-
duced action of O gy (2p 24) 18 trivial on the ring of invariant polynomials of
g = sp(2(p + ¢),C). In the case of p = ¢, one can see that Sp(2p,2p)-
Higgs bundles are a particular case of SU*(2p)-Higgs bundles, and thus
one needs to understand which extra conditions to the spectral data for
SU*(2p)-Higgs bundles needs to be added in order to have the Higgs bun-
dles for the symplectic real form.

From the previous section, when p = ¢ the corresponding spectral curve
is a 2p-fold cover of the Riemann surface ¥ whose equation is given by the
square root of the characteristic polynomial of the Higgs field. Moreover, it
has a natural involution o whose action determines the associated spectral
data. More precisely, the following is shown in [47] and [35]:

The fized point set of ©gp(ap2p) in a smooth fibre of the Sp(4p,C)-
Hitchin fibration is given by the moduli space of semi-stable rank 2 vector
bundles V on S with fixed determinant m*K?*P~1, whose induced action by
o on A%V is —1.

Since the action on A2V is —1, the involution ¢ : S — S acts with
different eigenvalues +1 on the fibres of V over the ramification points of
S, and thus through [3], the spectral data relates to the moduli space of
admissible parabolic rank 2 bundles on S/o as seen in [47].

Problem 3.50: (*) Nonabelianization can also be seen through Cameral
covers [42]. Realise the action of o in terms of Cameral covers.

4. Spectral data for real Higgs bundles

From the above sections, we have seen that spectral data can be been
defined for G-Higgs bundles, and this has been done for several groups G.
A summary of the state of the art in this direction is given as follows (to the
best of the author’s knowledge), where the notation is as in the previous
sections (for the precise objects in each case, the reader should refer to the
previous sections)®:

2For the groups missing, no spectral data has yet been defined.
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Table 4. Spectral data for real Higgs bundles.
Group Spectral curve generic fibre Ref.
GL(n,R) " +an® 4+ +an—1n+an Jac(9)[2] [47]
U(p,p) %P +a1n??"2 4+ +ap_1n® +ap| Jac(S)+ D + m (47, 48]
SL(n,R) Nt a2+ Fan_1n+an Prym(S, 2)[2] (47, 46]
SU*(2m)  |n?P +a1n* 2+ .-+ ap_1n* +ap| Subspace of Na(S) [35]
SU(p, p) %P +a1n??72 + ... +ap_1n® +ap| Prym(S,S) + D +m | [47,48]
SU(p,p+1) |n* +a1n* 2+ - 4+ap_1n®>+ap Jac(S) + f [43,47]
SO(p,p+1) [n?? +a1n*® 2+ -+ap_1n* +ap| Prym(S,S)[2] +D [[47,50,9]
Sp(2p,R) %P +a1n?P2 + ... tap_1n® +ap Prym(S, S)[2] (36, 47]
Sp(2p,2p) (%P +a1n??"2+ - +ap_1m® +ap| Subspace of N2(S) [35]
Sp(2p, 2p + 2q) n2I(n*P + a1n*P=2 + ... Abelian & non-abelian 9]
+ azp—11° + azp)
SO(p,p)  |n* +an®* 2+ +ap_1m?+a2|  Prym(S,9)[2] (47]
SO(p,p+q) n4(n?P +a1n?P=2 4 ... Abelian & non-abelian 9]
+ ap—1m* + ap)
SO*(2p) %P +a1n??~2 + ... +ap_1n® +ap| Subspace of N2(S) (35, 47]

In the above table, we have considered the following notation, following
the previous sections:

the spectral curve S.

S stands for a spectral curve and S for the normalized curve;

S and S denote the quotients of S and S by the involution n — —n;
D denotes a positive divisor and f an extension class;
N>(S) is the moduli space of semi-stable rank 2 vector bundles on

Although Morse theoretic approaches (following [31], for a partial list,
see [14,15,17] and references therein) are usually considered to study con-
nectivity of the moduli space of G-Higgs bundles, spectral data may also be
used to calculate the number of connected components of the moduli spaces
of G-Higgs bundles. This approach was taken for the following groups”:

PIn the table we give references for work done through spectral data, and in Remark 4 we
mention the original sources of those results, when done previously with other methods.
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Table 5. Connectivity for real Higgs bundles.

Group restriction components Ref.
PGL;(n,R) n=2andi=0 229 4 g—1 [10]
n=2andi=1 229 +g—2 [10]
PSL;(n,R) n=2and =0 29 —1 [10]
n=2andi=1 29 — 2 [10]
GL(n,R) n=2 3:229 + g3 [10]
SL(n,R) n=2 2.229 4 29— 3 [10, 46, 47]
SU*(2m) - 1 [35]
SU(p,q) |p = g, maximal, over generic loci 229 [46,47]
Sp(2n,R) n = 2, maximal 3.2%9 £ 29— 4 [10]
Sp(2p, 2q) P=q 1 [35,47]
SO(p, p) p=2 3.6%9 +49%2 —6g—3 [10]
SO*(2m) - 1 [35]

Some of the above connectivity results have been obtained before with
other methods, some of which do not require the restrictions in the table:

e The number of components for Sp(4, R) was obtained originally by
Gothen in [27].

e The number of components 2.229 + 2g — 3 for SL(2,R) and 4g — 3
for PSL(2,R) were shown by Goldman in [26]. Xia [54, 55] showed
that the number of components of the space of homomorphisms
Hom(m (%), PSL(2,R)) is 2.229 + 4g — 5. This number is different
to the number 2.229 4+ 2g — 3 of components of PGL(2,R) because
upon taking the quotient of the conjugation action of PGL(2,R),
certain pairs of components are identified.

e Connectivity for SU(p, p)-Higgs bundles was first studied in [14],
and for SU*(2m) in [16] and for SO*(2m) in [17].

The remaining results mentioned in the above table have not, as far as
we are aware, been obtained elsewhere.
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