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Real structures on moduli spaces of
Higgs bundles

DAVID BARAGLIA AND LAURA P. SCHAPOSNIK

We construct triples of commuting real structures on the mod-
uli space of Higgs bundles, whose fixed loci are branes of type
(B, A, A), (A, B, A)and (A, A, B). We study the real points through
the associated spectral data and describe the topological invariants
involved using KO, KR and equivariant K-theory.

1. Introduction

The moduli space M¢(X) of G-Higgs bundles on a compact Riemann sur-
face X is the space of solutions to the gauge theoretic Hitchin equations
on the surface, where G is a complex reductive Lie group. The smooth lo-
cus of M¢(X) is a hyperkdhler manifold, so there are complex structures
1, J, K obeying the same relations as the imaginary quaternions. This paper
is concerned with the study of several naturally defined real structures on
this moduli space. In fact, as it is impossible for an involution to be anti-
holomorphic in all three complex structures it is natural to consider not one
but three real structures simultaneously. We introduce a naturally defined
triple of commuting real structures i1,i2,i3 on M¢g(2). We give geomet-
ric interpretations for these real structures and use spectral data to build
up a detailed picture of their fixed point sets. Along the way we encounter
various forms of K-theory as a convenient tool for studying the connected
components of these fixed point sets.

The real structures iq,1i9, 13 are defined in Section 3. The involution iy
is defined by taking a real form G of G. Amongst the fixed points of i1 are
solutions to the Hitchin equations with holonomy in the real form G?. More-
over, when GG7 is the split real form, we prove in Theorem 3 that the fixed
points of i1 are points of order 2 in the fibres of the Hitchin fibration, as seen
in [Sch13]. The involution iz, introduced in [BarSch13] is defined by choosing
a real structure on 3, an anti-holomorphic involution f: 3 — ». Amongst
the fixed points of is are representations of the orbifold fundamental group
of the action of f on . Combining these two involutions we obtain a third
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involution i3 = i1 o i5. Amongst the fixed points of i3 are pseudo-real Higgs
bundles, introduced in [BGH12|. The involutions is, i3 are well-behaved with
respect to the Hitchin fibration and by restriction we find that their fixed
point sets are real integrable systems. We also give a description of the fixed
point sets in terms of orbifold representations in Section 6.

Section 4 considers in detail the case of the general linear group G =
GL(m,C), with real form GL(m,R) C GL(m,C). In this case a Higgs bun-
dle (V,®) is a rank m holomorphic vector bundle V' and a holomorphic
(1,0)-form valued endomorphism ® of V. If deg(V') = 0, then as we recall in
the paper polystable Higgs bundles (V, ®) correspond to bundles with flat
connection (V, V), where V has reductive holonomy. We say that V is sim-
ple if the only constant endomorphisms of V' are multiples of the identity.
Restricting to simple, reductive holonomy we find:

e Fixed points of i1 are flat bundles with holonomy in GL(m,R) or
GL(m/2,H).

e Fixed points of ig are flat bundles with involution ¢ : V' — V covering
f and preserving V.

e Fixed points of i3 are flat bundles with anti-linear isomorphism ¢ :
V — V, covering f, preserving V and with ¢? = +1.

As a first step towards identifying the connected components of the fixed
point sets, we may consider the topological data associated to the underlying
bundle as follows:

e For i1, the bundle V' carries a real or quaternionic structure, thus
defines a class [V] in KOY(Z) or KSp(¥), real or quaternionic K-
theory.

e For 9, the bundle V carries a lift of the Zs-action on X, thus defines
a class [V] € K (¥) in Zy-equivariant K-theory.

e For i3, the bundle V' carries a real or quaternionic structure in the
sense of Atiyah [Ati66], hence a class [V] in KRY(X) or KH(X).

In Section 4 we determine these K-theory groups and show that the
K-theory classification is sharp in the sense that one can recover the bundle
plus additional topological data up to isomorphism from the K-theory class.

As an example of the utility of these K-theory classes, we consider
the following construction. Let ¥ =X x [~1,1] with involution 7(z,t) =
(f(x), —t). The quotient M = /7 is a 3-manifold with boundary OM = X.
Then, we show the following:
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Theorem 7 Let (V,V) be a fixed point of ig with simple holonomy. Then V
extends over M as a flat connection if and only if the class [V] € K’%Z(Z) in
reduced equivariant K -theory is trivial.

In Section 5 we study the spectral data associated to fixed points. As
we recall, spectral data consists of a branched cover p: S — 3 called the
spectral curve and a line bundle L — S. The bundle V' and Higgs field ¢ are
recovered by pushing down L to X. For fixed points, the additional structure
on V determines similar structure on the spectral line L and we recover
the K-theory classes as push-forwards from the spectral curve to X. The
push-forward in the K O-theory case was recently used by Hitchin for this
purpose [Hit13]. We complement this by determining explicit expressions for
the push-forwards in equivariant K-theory and K R-theory in Theorems 8
and 9. The image of the push-forward maps p; : KgZ(S ) — K22 (X) and py :
KR(S) — KR%(X) describe which topological classes of bundle with real
structure can be given a reductive flat connection (with smooth spectral
curve). This is the analogue of the Milnor-Wood type inequalities for the
topological invariants obtained through K-theory.

Along the paper we adopt the physicists’ language in which a Lagrangian
submanifold is called an A-brane and a complex submanifold a B-brane. A
submanifold of a hyperkéihler manifold may be of type A or B with re-
spect to each of the complex structures and we may speak of branes of
type (B, B, B),(B,A,A),(A,B,A) and (A, A, B). Under this classification
the fixed point sets of 41,192,113 are branes of type (B, A, A), (A, B, A) and
(A, A, B) respectively. The main reason for considering branes is the connec-
tion to mirror symmetry and the geometric Langlands program. This pro-
gram asserts that the moduli spaces Mg(X), Mrg(X) are in duality, where
L@ is the Langlands dual group of G. According to this duality, specifi-
cally homological mirror symmetry, there should be an equivalence of cate-
gories of branes on Mg(X) and Mrg(X) under which there are exchanges
(B,B,B) <> (B,A,A),(A,B,A) <> (A,B,A)and (A, A,B) <> (A, A, B). We
conclude our work with Section 7, in which we speculate on how this duality
acts on the fixed point sets of i1, 40, 73.

Acknowledgements. The authors would like to thank S. Bradlow,
O. Garcia-Prada, N. Hitchin, and F. Schaffhauser for helpful comments.

2. Higgs bundles

We review Higgs bundles, the hyperkihler structure of their moduli space
and recall the Hitchin fibration.
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2.1. The moduli space of G-Higgs bundles

Let 3 be a Riemann surface of genus g > 1 with canonical bundle K, and G a
complex Lie group with Lie algebra g. We shall assume throughout the paper
that G is reductive. Given a principal G-bundle P on X, we let gp denote the
corresponding adjoint bundle. A G-Higgs bundle on a Riemann surface X is
a pair (04, ®), where 04 is a holomorphic structure on a principal G-bundle
P and & is a holomorphic section of gp ® K. In the case of G = GL(m,C)
a G-Higgs bundle is equivalent to a classical Higgs bundle (V, ®), consisting
of a rank m holomorphic bundle V' and a holomorphic map ® : V — V ® K.

In order to define a moduli space of such pairs we shall recall the notions
of stability and S-equivalence. Let p(V) = deg(V)/rk(V) be the slope of
the vector bundle V. We say that a GL(m, C)-Higgs bundle (V, ®) is semi-
stable if for every subbundle W C V' such that ®(W) C W ® K we have
w(W) < p(V), and it is stable if one has a strict inequality. If one can write
(V,®) = (V1,P1) & --- & (Vi, D) for (Vi, ;) stable pairs such that u(V;) =
w(V'), then we say the Higgs bundle is polystable. To define S-equivalence
consider a strictly semi-stable Higgs bundle (V,®). As it is not stable, V'
admits a subbundle W C V of the same slope which is preserved by ®. If W
is a subbundle of V' of least rank and same slope which is preserved by @, it
follows that the pair (W, ®) is stable. Then, by induction one obtains a flag
of subbundles Wy =0 C Wy C --- C W, =V where p(W;/W;_1) = u(V) for
1 < <r, and where the induced Higgs bundles (W;/W,;_1,®;) are stable.
This is the Jordan-Hélder filtration of V, and it is not unique. However the
graded object

-
Gr(V, @) := Wi/ Wiy, ®)
i=1
is unique up to isomorphism. Two semi-stable Higgs bundles (V,®) and
(V',®") are said to be S-equivalent if Gr(V,®) = Gr(V’,®’). For a stable
pair (V,®) the associated graded object coincides with (V,®) and the S-
equivalence class is just the isomorphism class of the original pair. More
generally each S-equivalence class contains a unique polystable object.
Through the above definitions, one may construct the moduli space M%
of S-equivalence classes of classical semi-stable Higgs bundles of rank m and
degree d, or equivalently, the moduli space of polystable rank m degree d
Higgs bundles. This space is a quasi-projective scheme of complex dimension
2m?(g — 1) + 2 and contains an open subscheme M’ ‘,in corresponding to the
moduli scheme of stable pairs [N91]. When m and d are coprime semi-stable
implies stable and the moduli space MY, is smooth.
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By extending the stability notions to G-Higgs bundles, one can de-
fine stable, semi-stable and polystable G-Higgs bundles (see e.g., [BiGo08],
[BGMO03]). Then one can construct a corresponding moduli space of poly-
stable G-Higgs bundles, denoted Mg or M¢(X). The dimension of Mg
is 2dim(G)(g — 1). The connected components of M are in bijection with
isomorphism classes of principal G-bundles and these are parametrised by
m1(G) [DoPal2]. For d € m(G) we let M denote the corresponding con-
nected component of M.

2.2. Hyperkéahler structure on Mg

We shall briefly recall here the construction of a hyperkéhler metric on Mg,
obtained by an infinite dimensional hyperkihler reduction. For simplicity
we consider the case where GG is semi-simple. The reductive case requires
only minor alterations such as modifying the Hitchin equations to allow for
projectively flat connections.

Fix a hermitian metric g on ¥ and an anti-holomorphic involution p :
G — G whose fixed point set G gives the compact real form of GG. Let P be
a principal G-bundle and fix a reduction of structure to G”. The reduction
of structure determines a corresponding anti-linear involution p: gp — gp
on the adjoint bundle. Given a section z of gp we write z* for —p(z). We
shall denote by k(, ) the Killing form on g.

The space A of holomorphic structures on P is an affine space over
Q%L(2, gp), hence the cotangent bundle T*A is an infinite dimensional flat
hyperkahler manifold. The tangent space to T*A at any point can be nat-
urally identified with the direct sum Q%(3, gp) ® Q10(2, gp) and we shall
denote by (V¥;, ®;) tangent vectors to this space. In terms of this identifica-
tion the metric on T*A is given by

(1, 1), (01, 81)) =21 [ KW}, 1) — K(@], 00)
X
Moreover there are compatible complex structures I, J, K defined by
(U, ®1) = (i0y,iPy),

J(V1, 1) = (i®7, —iV7),
K(\Ijlﬁq)l) (_ i\j[li):

satisfying the usual quaternionic relations. This defines the hyperkéhler
structure on T*A. We shall denote by wr,w s, wk the corresponding Kéhler
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forms
wI(va) = g([X,Y) ) wJ(X,Y) = g(JX7Y) ) wK(X7Y) = g(KX7Y>

For a pair (04,®) € T*A let V4 =04+ 04 = p(04) + 04 be the as-
sociated unitary connection and F the curvature of V4. The group G”
of unitary gauge transformations acts on T*A preserving the hyperkahler
structure. This action has a hyperkihler moment map (94, ®) = (Fa +
[®, ®*],04®). The hyperkihler quotient ;1~1(0)/G? of this action is then the
moduli space of solutions to the Hitchin equations

(1) Fp+[®,®]=0, 0,®=0,

modulo unitary gauge transformations. From this we obtain a hyperkéhler
structure on the smooth points of the moduli space of solutions to the Hitchin
equations.

For G semi-simple it is a result of Hitchin [Hit87] and Simpson [S88] that
a G-Higgs bundle (94, ®) is gauge equivalent to a solution of the Hitchin
equations (1) if and only if it is polystable. This is used to establish an
isomorphism between the moduli space M of polystable G-Higgs bundle
and the moduli space of solutions to the Hitchin equations. In particular
this gives a hyperkéhler structure on the smooth points of M.

A solution to the above Hitchin equations (1) defines an associated
flat G-connection V =V 4 + ® + &*. From the results of Donaldson [D87]
and Corlette [Cor88], the mapping (94, ®) — V gives an isomorphism be-
tween the Higgs bundle moduli space Mg and the character variety
Hom™ (71 (X), G)/G of reductive representations of 1 (X) in G (the definition
of reductive representations and further details are recalled in Section 6). We
say that a polystable Higgs bundle (04, ®) is simple if the only covariant
constant gauge transformations of the associated connection V are those
valued in the centre Z(G) of G. In particular, one has that simple Higgs
bundles give smooth points on the moduli space [Ric88].

The hyperkahler quotient construction carries over to the case of a re-
ductive group requiring only a small modification. Consider for example the
case G = GL(m,C). The Hitchin equations for a Higgs bundle pair (V, ®)
should be modified to

Fp+ [®,0*] = —27mip(V)vols, 9P =0,
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where 11(V) is the slope of V' and voly, the volume form on X.. The associated
connection V = V4 + ¢ 4+ ®* is now only projectively flat and we obtain a
representation of a central extension of 71 (3).

2.3. The Hitchin fibration

The moduli space Mg has a natural complex Lagrangian fibration over a
vector space Ag. To define this fibration let pq,...,pr be a homogeneous
basis for the algebra of invariant polynomials on g, of degrees dy, ..., d.
Following [Hit87al, the Hitchin fibration is given by

k

h: Mg — Ag:=@@H'S,K),
i=1

(04,®2) = (p1(®),...,pr(D)).

The map h, referred to as the Hitchin map, is a proper map for any choice
of basis (see [Hit87a, Section 4] for details). Given d € m1(G) consider the
restricted Hitchin map h : M‘é — Ag. For each component M“Cl; the smooth
fibres of h are connected [DoPal2] complex Lagrangian submanifolds with
respect to the holomorphic symplectic form Q; =wjy +iwg. We have
dim(Ag) = dim(M¢)/2, and the Hitchin map gives each component M
the structure of an algebraically completely integrable system [Hit87al. In
particular h is generically a submersion and the generic fibres are abelian
varieties.

3. Real structures

Having defined the moduli space M (X) of G-Higgs bundles on a compact
Riemann surface 3, we shall now consider the three natural involutions iy, io
and i3 on it and study their fixed point sets.

3.1. The three involutions

The moduli space Mg(X) admits several distinct real structures, a phe-
nomenon related to its hyperkahler geometry. First consider a real form
of G, given by the fixed point set G° of an anti-holomorphic involution
o0 : G — G. For any real form o we can find an anti-holomorphic involution
p: G — G commuting with o, whose fixed point set defines the compact real
form of G (for details, see [He01]). The Cartan involution of the real form
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G is the holomorphic involution 6 = p o ¢. From ¢ we obtain an involution
i1 on the Moduli space of Higgs bundles, given by

i1(0a,®) = (6(9a), —0(®)).

The involution 47 is an isometry of the hyperkahler metric, holomorphic in
I and anti-holomorphic in J, K. Therefore its fixed point set is a brane of
type (B, A, A).

A second way to obtain a real structure on Mg(X) is to consider real
structures on the surface X. Let f : % — 3 be an anti-holomorphic involu-
tion, a real structure on . Viewing M (X) as a moduli space of connections,
the action of f on ¥ induces an involution iy by pullback of connections. In
terms of Higgs bundles, 75 is given by

i2(04, @) = (f*(04), [*(27)) = (F*(p(04)), — [ (p(®))).

We have seen in [BarSchl13] that iy is an isometry which is holomorphic in
J and anti-holomorphic in I, K. Therefore its fixed point set is a brane of
type (A, B, A).

Lastly, by combining a real structure on the group G with a real structure
on the surface ¥, we obtain a third class of involution i3, given by

i3(04,®) = (f*0(0a), [0 (®)).

Since i3 = i1 0io we have that i3 is an isometry, holomorphic in K and
anti-holomorphic in I, J. Therefore its fixed point set is a brane of type
(A, A, B).

3.2. Fixed point sets

The fixed point sets of i1, 9,73 meet the smooth points of Mg in complex
Lagrangian submanifolds. The case of iy was established in [BarSch13] and
the same argument applies to the other involutions. The fixed point sets have
interpretations in terms of the corresponding holonomy representations. The
simplest case are fixed points of 75, which in terms of connections are simply
those connections V which are isomorphic to their pullback f*V. For the
involution i3 we have fixed points given by pseudo-real Higgs bundles as
defined in [BGH12].

To discuss fixed points of i1, recall that the involutions o, p,0 induce
corresponding involutions on the Lie algebra g. We shall denote by g the
fixed point set of o, the Lie algebra of G?. We obtain a decomposition g% =
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u @ m of g7 into the +1-eigenspaces of |4-, the Cartan decomposition of g7.
Let u® = u @ iu and m® = m @ ¢m be the complexifications of u and m. Let U
be the maximal compact subgroup of G? and U¢ its complexification. Higgs
bundles with holonomy in the real form G° are pairs (94, ®), where 94 is a
holomorphic structure on a principal U¢-bundle P’ and @ is a holomorphic
section of (P’ xye m) ® K. Clearly such Higgs bundles are fixed points of 4.
In general, there are fixed points of ¢; and i3 other than those we have just
described. We address the problem of classifying all fixed points in Section 6
in terms of special classes of representations.

We consider the action of the real structures on the connected compo-
nents of M. For this note that the Cartan involution 0 : G — G induces
an involution 0, : 71 (G) — m (G).

Proposition 1. The action of the involutions i1, 12,13 on the space of con-
nected components mo(Mg) ~ 1 (G) is given by

where d € T (G).

Proof. Let P be a principal G-bundle on ¥. We define 6(P) to be the prin-
cipal bundle diffeomorphic to P but with G-action (p,g) — p 0(g). At the
level of isomorphism classes this gives the map 6. : 71 (G) — 71 (G). From
the definition of 4, it is clear that it sends a principal G-bundle P to 6(P).
It was shown in [BarSchl13] that the action of iz on principal G-bundles is
d — —d. The result for i3 follows since i3 = i1 0 i5. [l

When o = p is the compact real form, we find a close relationship be-
tween the fixed point sets of i and 3.

Proposition 2. Let 0 = p be the compact real form. Then the fized point
sets of io,13 are diffeomorphic.

Proof. Let i: Mg — Mg denote the action of i € C* sending (04, ®) to
(04,i®). Then if 0 = p we see that i3 =ioigoi . It follows that i ex-
changes the fixed point sets of the involutions is, i3. O

By restriction J defines a complex structure on the fixed point set of
9. Similarly K defines a complex structure on the fixed point set of is.
Moreover we have ¢ o J = K o1, so the isomorphism in Proposition 2 is in
fact a complex analytic isomorphism. In Section 6, we see that the fixed
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point sets for i9,i3 correspond to quite different classes of representations.
It is then unexpected to find a natural bijection between these spaces.

When o is the split real form the involution ¢; admits a very simple
description in terms of the Hitchin fibration. For d € m1(G), we have that
i1 sends MY, to Mgf(d). Thus fixed points can only occur when 6,(d) = d.
Suppose now that 0.(d) = d and let F = h~!(a) be a non-singular fibre of
h: /\/ldG — Ag corresponding to a point a € Ag. From [Sch13, Chapter 4]
we have the following:

Theorem 3. The action of i1 preserves the Hitchin fibration, h oy = h.
Let d € 71(G) with 0.(d) = d and let F be a non-singular fibre of M%. The
restriction i1|p : F'— F of i1 to F has fived points. Let m € F be a fized
point. Then the action of i1|p on F is given by x — —x with respect to the
origin defined by m.

Proof. For the split real form the map ® — —0(®P) preserves the invariant
polynomials, hence h oi; = h. Then for any d € m1(G) with 0.(d) = d, we
have that i; acts on the fibres of M% — Ag. Let F = h~1(a) be a non-
singular fibre of h over a point a € Ag. As the fibres are connected [DoPal2]
we have that F' is a complex torus and the restriction i1|p: F — F is a
complex automorphism, since 7; is holomorphic in 1.

Recall that the Hitchin fibration is Lagrangian with respect to Qy =
wy +iwg. Let o', ... o be a complex basis for T} Ag and define vector
fields X1,..., X} on F by requiring ix,Q; = h*a’. These vector fields are
commuting and integrate to an action of C* on F by translation. The stabi-
lizer of this action is a lattice A C C* giving an identification F = C*/A. Us-
ing the fact that ¢; is an isometry which is anti-holomorphic in J, K we have
itQ; = —Qy. On the other hand since h o i1 = h we have i}(h*a’) = h*a’. It
follows that i1, (X;) = —X; for each 4. This is enough to ensure that i; has
a fixed point m € F. Using m as an origin, we have by exponentiation that
the action of iy on F'is given by = — —zx. O

Remark 4. In particular, for each d € m1(G) with 6.(d) = d, the intersec-
tion of the fixed points of 7; on MdG with the smooth fibres of the Hitchin
fibration h : Mé — Ag is given by the elements of order two in those fibres.

The involutions 9,3 are well-behaved with respect to the Hitchin fi-
bration Mg — Ag and give rise to real integrable systems. In [BarSch13]
we saw that there exists an anti-linear involution f5 : Ag — Ag such that
h oiy = fo o h. The details of this proof carry over without difficulty to the
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case i3 and we obtain a second anti-linear involution f3 : A — Ag such that
hois = f3oh. Let Lo C Mg be the fixed point set of is and Lg C Ag the
fixed point set of f5. The restriction of wy to L gives a symplectic structure
and h: Lo — Lg is a Lagrangian fibration [BarSch13]. The non-singular fi-
bres are a disjoint union of tori, though the number of components of the
fibres generally varies as one moves around the base Lg. The proof applies
just as well to the case i3. Let Lf, be the fixed point set of i3 and L, the
fixed point set of f3. The restriction of wx to L, gives a symplectic structure
and h: Ly — Li; is a Lagrangian fibration. Again, the non-singular fibres
are unions of tori.

The situation for 47 is different. In this case the action of i; on Mg
covers the involution f; = foo f3: Ag — Ag. Note that f; is linear and
thus its fixed point subspace need not be half dimensional. Moreover it
is possible that the fixed point subspace of f; could lie entirely within
the singular locus of the Hitchin fibration, so that the restriction of h
to the fixed point set of 7; may be poorly behaved (for example this is
the case when G = SL(2m,C), SO(4m,C), Sp(4m,C) and G° = SL(m,H),
SO(2m, H), Sp(m,m) respectively, studied in [HitSch13]).

Remark 5. In the case of the involution i3, the set of fixed points in the
moduli space of classical Higgs bundles for which ® =0 was thoroughly
studied in [Schafl2].

4. General linear case and K-theory

In this section we consider the case where G = GL(m, C) with real structure
o(A) = A and Cartan involution 6(A) = (A")~!. Here a Higgs bundle (V, ®)
is a rank m holomorphic vector bundle V' and holomorphic map ® : V —
V ® K. We will see that K-theory in various forms helps to distinguish
between connected components of the fixed point sets of the real structures

ila i27 i3'
4.1. KO-theory and

Fixed points of 7; may be obtained from solutions to the Hitchin equations
with holonomy in the corresponding real form G? = GL(m,R). For Higgs
bundles with holonomy in GL(m,R) we may take V' to be a holomorphic
O(m, C)-bundle with reduction to the maximal compact O(m) and @ to
be symmetric. Such a Higgs bundle (V,®) is a fixed point of i1 since the
orthogonal structure gives an isomorphism between (V,®) and i1(V,®) =
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(V* ®%). Since the vector bundle V has a real structure it defines a class
[V] € KO°(X) in the KO-theory of ¥. We have an isomorphism

KO"(X) =7 @ H (X, Zy) ® HX (X, Zs)

given by [V] — (rank(V),w;(V'), w2(V)), so the relevant topological invari-
ants are the Stiefel-Whitney classes wq(V'), w2(V) of V.

When m = 2m/ is even a second class of fixed points of i1 are given
by Higgs bundles with holonomy in GL(m/,H). For this V is a holomor-
phic bundle with Sp(2m/, C)-structure and ® = ®' using the symplectic
transpose [HitSch13]. The symplectic structure then gives an isomorphism
(V,®) ~ (V*, ®!) so that such Higgs bundles are fixed points of 4. The sym-
plectic structure on V' defines a class [V] € K.Sp(2), the Grothendieck group
of bundles with symplectic structure on X. However since Sp(m’) is simply
connected all symplectic bundles are trivial and KSp(X) = Z, the only in-
variant being the rank of the bundle. We will see in Section 6 that a fixed
point of 77 with simple holonomy must belong to one of these two classes.

4.2. Equivariant K-theory and s

Let (V,®) be a fixed point of is with simple holonomy. This requires V'
to have degree zero, so the associated connection V =V 4 + ® 4+ &* is flat.
Fixed points of is correspond to connections V such that f*V ~ V. for
f 3 — ¥ an anti-holomorphic involution as introduced in Section 3. Equiv-
alently there is a bundle isomorphism ¢ : V' — V covering f which respects
V. Thus ¢? is covariantly constant, so assuming V is simple we have that
©? = ¢ for some constant ¢ € C*. Choosing a square root ¢'/2 and replacing
© by ¢c1/2 we obtain an involution ¢ : V — V lifting f and preserving V.
By simplicity the lift ¢ is unique up to an overall sign. The Zs-action of
@ gives V the structure of a Zs-equivariant vector bundle and thus defines
a class [V] € KJ (¥) in equivariant K-theory. The class [V] is determined
from (V, ®) up to a sign ambiguity which corresponds to replacing ¢ by —¢.

If f acts without fixed points, the quotient ¥’ = ¥/ f is a compact non-
orientable surface. Equivariant bundles are obtained by pullback from >’
and we have

K9 (%) = K'(Y) = Z».

This defines a Zso-invariant with the property that it is non-zero for the
unique non-trivial rank m bundle on ¥’. When f has n > 0 fixed components
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we have, by the Mayer-Vietoris sequence
(2) K9 (%) = 12"

Over each fixed component S* C ¥ of f we may decompose V|s: into the
+1-eigenspaces VF|g: of . Taking the dimension dim(V ~|s1) gives a homo-
morphism IN(QZ(E) — Z and taking the sum of these homomorphisms over
the fixed components of f gives the isomorphism (2). The group of Zo-
equivariant line bundles is given by H%Q (X,Z) =Z%. For each assignment
of +1 to each fixed component of f, we can therefore find a corresponding
equivariant line bundle unique up to isomorphism. This shows that exactly
(m +1)" classes in K7 (¥) are represented by rank m equivariant bundles.
The equivariant K-theory classification is sharp in the following sense:

Proposition 6. Let V, V' be equivariant vector bundles on . Then V, V'
are isomorphic as equivariant vector bundles if and only if [V]=1[V'] €

K3, (%)

Proof. In the case that f has no fixed points this is trivial. Suppose now that
f has fixed points and let V' be an equivariant vector bundle. Let ¢ : V — V
be the involution on V" and let Sll, ..., S C ¥ be the fixed circle components
of f. Suppose that for i = 1,...,n we are given sections s; of V[g: such that
©(si) = €;s;, where ¢, = £1. We claim that there exists a rank 1 subbundle
L C V such that p(L) = L and the restriction of L to S} is spanned by s;.
Let L be the equivariant line bundle with eigenvalue €; over S’il. Considering
V ® L* it suffices to assume ¢; = 1 for all 7. This is enough to ensure the
existence of a section s of V which restricts to s; on S} and such that
©(si) = s;. This proves our claim. Choosing a @-invariant hermitian metric
and taking the complement of L in V' we have that V is the sum of L and
a lower rank equivariant bundle. The proposition now follows by induction
on rank. O

We give another description of equivariant K-theory, which though un-
conventional is well suited to spectral curves. Let V be a complex vec-
tor bundle with anti-linear isomorphism ¢ : V — V* covering f. We say
¥ is symmetric if (¢¥(a))(b) = (¥(b))(a) for all a,b. Let h be a hermitian
metric on V', taken anti-linear in the first factor. We can also view h as
an anti-linear isomorphism h:V — V*. We say h is compatible with ¢ if
h(a,b) = ¥(a)(h~ 4 (b)). Setting ¢ = h~! 01, we have that ¢ : V — V is a
linear involution covering f and (V, ¢) becomes a class in K7 (). It is clear
that this class does not depend on the choice of compatible hermitian metric
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h. Therefore we may identify K (3) with the Grothendieck group of vector
bundles V' equipped with a symmetric anti-linear isomorphism ¢ : V' — V*.
Note that over the fixed points of f, the map 1 defines an indefinite hermi-
tian form (a, b) = (1(a))(b). The signature of this form over each component
corresponds to the dimensions of the +1-eigenspaces of the restriction of .

Consider the product ¥ =3 x [—1, 1] with involution 7(z,t) = (f(z), —t).
The quotient M = ¥ /7 is a 3-manifold with boundary OM = . From M we
obtain a distinguished subspace of representations of 71 (X), those represen-
tations which extend as flat connections from ¥ to M. Such representations
are fixed points of i [BarSch13]. Moreover, we can use equivariant K-theory
to characterise which fixed points of i9 arise in this manner.

Theorem 7. Let (V,®) be a solution of the Hitchin equations with a lift
of f to an involution ¢ :V — V preserving the associated flat connection
V. Suppose also that V has simple holonomy. Then V extends over the
3-manifold M if and only if the class [V] € K’%Q(Z) is trivial (possibly on
replacing ¢ by —¢).

Proof. Let X' = %/ f be the quotient which is a surface with boundary. There
is a homotopy equivalence M ~ ¥, so we can restate the problem in terms
of finding a local system on ¥’ such that the pullback to ¥ gives the local
system of constant sections of V. If such a local system exists we must have
that ¢ or —p acts as the identity on each fixed component by simplicity.
Conversely suppose that ¢ acts as the identity on each fixed component.
Then the local system of constant sections of V can be factored by ¢ giving
the desired local system on Y. 0

4.3. K R-theory and i3

Let (V,®) be a fixed point of i3 with simple holonomy. Again it is easiest
to describe fixed points in terms of the associated connection V. In this
case fixed points correspond to the condition that there is an anti-linear
isomorphism ¢ : V' — V covering V and preserving V. Since ¢? is covariantly
constant we have, assuming V is simple, that ¢? = ¢ for some non-zero
constant c. Then since ¢? = @ oc = co ¢ we find ¢ is real. After rescaling
we may assume that c is either 1 or —1. Since V is simple it follows that
one and only one of these two cases can occur.

When ¢ =1 we have that f lifts to an anti-linear involution ¢ : V' — V'
preserving V. This gives V' the structure of a real vector bundle in the sense
of Atiyah [Ati66] and a class [V] € KR"(X). The map ¢ is determined only
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up to rescaling by U(1) € C*, but this action is trivial on K R°(X) so that
the class [V] is independent of the choice of . Let n be the number of
components of the fixed point set of f. From the Mayer-Vietoris sequence
we have an isomorphism [KarWei03]

KR(Z) = {(da',...,2") € Z®ZE |d ="+ - +2"(mod 2)}.

For a bundle V real with respect to f, let d be the degree. For each fixed circle
component S' C ¥ of f the restriction V|s: is a real line bundle over the
circle which has a first Stiefel-Whitney class wy(V|s1) € H(S1, Zs) = Zo.
Let z',...,2" be the first Stiefel-Whitney classes of V restricted to the
fixed components. Then [V] corresponds to (d,z?, ..., 2™). Conversely every

class in ﬁO(E) can be represented by a real bundle of rank m for any m.

When ¢ = —1 we have that f lifts to an anti-linear isomorphism ¢ :
V — V preserving V and ¢? = —1. This gives V a quaternionic structure.
Let K H%(X) denote the Grothendieck group of quaternionic vector bundles
on ¥. Then, from [Dup69] there is an isomorphism KH%(X) = KR™4(%).
Using this one finds

KH(%) =72

When the anti-holomorphic involution f on 3 has no fixed points there exists
a quaternionic line bundle L of degree g — 1(mod 2). Tensoring by L gives
the isomorphism KH%(¥) ~ KR%(X) = Z*. When f has fixed points any
quaternionic bundle must have even rank 2r and even degree 2d [BHH10].
Moreover every such pair (2r, 2d) occurs for if V' is a complex bundle of rank
r and degree d, the bundle V @ f*(V) admits a quaternionic structure. In
all cases we see that the K H-class of a quaternionic bundle is classified by
rank and degree.

From [BHH10] it can be deduced that the K R-theory class of a real
bundle E on ¥ completely determines V' as a real bundle. The same is true
for quaternionic bundles and K H-theory.

5. Spectral data of the fixed points

From [Hit87a], principal G-Higgs bundles have associated some spectral data
on which we can study the induced action of the involutions i1,io and i3.
In this section we study these fixed point sets in terms of the corresponding
spectral data.
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5.1. Spectral curves

The fibres of the Hitchin system are most easily seen using spectral curves,
introduced in [Hit87a]. Given a classical Higgs bundle (V,®) of rank m,
the spectral curve S is the set of points A\ € K satisfying the characteristic
equation

detOh —®) = A" +a N+ a, =0,

where a; € H(3, K'). From Bertini’s theorem S is smooth for generic a1,
..., Gm. For a smooth spectral curve S the projection K — ¥ restricts to
S giving a branched m-fold cover p: .S — ¥ and the canonical bundle Kg
of S is given by p*K". The eigenspaces of ® define a line bundle U on S.
More precisely, U ® p*K is the cokernel of n — p*® in p*V ® p* K, where 7
is the tautological section of p*K [BNR89]. The bundle V is recovered as
the direct image sheaf V = p, U and we recover ® by pushing forward the
endomorphism n: U — U ® p*K.

Conversely, given a generic point a = (a1, ..., an) € Agrm,c) and a line
bundle U over the corresponding spectral curve S, we obtain a Higgs bundle
by the above construction. This identifies the fibre of the Hitchin map over
a with the Picard variety Pic(S) of S. Let K'/2 be a spin structure on ¥. It
is convenient to define a new line bundle L such that U = L @ p*K(m~1)/2,
Then if V = p,(U), we have by Grothendieck-Riemann-Roch deg V' = deg L.
The map sending a line bundle L € Pic(S) to the vector bundle V = p.(L ®
p*K(m_l)/Q) with corresponding Higgs field identifies the fibre of MdGL(m C)
over a with Picy(S), the space of degree d line bundles on S. In particufar
the fibre of M(C)T'L(m,(C) may be identified with the Jacobian Jac(S) of S.

5.2. Push-forward maps

For this section we take p : S — 3 to be an m-sheeted branched cover, not
necessarily given as a spectral curve and let Ky, Kg denote the correspond-
ing canonical bundles. Let K; 2, K;/ % e spin structures on 3.5. Given
a holomorphic vector bundle W on 5, set U =W ® Ké/z ®p*K§1/2 and
V = p«(V). Note that degV = deg W and rk(V) = m.rk(W).

For KO-theory we take W to be a rank k holomorphic bundle with com-
plex orthogonal structure. Choosing a compatible hermitian structure on W
we have a reduction to O(k), so W defines a class [W] € KOY(S). By relative
duality we obtain an isomorphism V' ~ V* which is symmetric. Thus V has
an orthogonal structure and defines a class [V] € KO°(X). This construc-
tion defines a push-forward homomorphism p, : KO°(S) — KO"(X) in real
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K-theory. The choice of spin structures K;/ 2, Ké/ ? are the K O-orientations
required to define the push-forward.

To consider the other K-theory groups suppose that f lifts to an anti-
holomorphic involution f: S — S. We must choose spin structures com-
patibly. For this recall that to any compact Riemann surface > with anti-
holomorphic involution f, there exists a spin structure Ké/ 2 such that
(K KY 2) 1/ 2 [Ati71]. In fact we have that f lifts to an anti-linear map
Vs KE/ — KE/ such that v5 ® 75 : Ky — Ky is the map w — f*(@). If
f has fixed points then 4% = 1, and if f has no fixed points then & = 1 if
g is odd and —1 if g is even [Ati71]. In other words, Ky, admits a real or
quaternionic square root Ky 1/2 . Similarly choose such a spin structure K¢ Y2
on S with anti-linear isomorphism s : K¢ V2 LK s covering f. If ST C ¥ is
a fixed component of f then vy, defines a real structure on the restriction of
Ky, Y2 o ST By squaring we obtain a real non-vanishing section of Ky, along
the circle and hence an orientation of the circle. Similarly we can use vg to
orient circles in S fixed by f .

For equivariant K-theory we suppose that W is a holomorphic vector
bundle on S with a symmetric anti-linear isomorphism ) : W — W* cover-
ing f. Recall that this defines a class [IW] € K) (S). For the push-forward
construction we require 1 to be holomorphic in the sense that if « is the germ
of a holomorphic section of W at s € S, then 1) o a0 f is the germ of a holo-
morphic section of W* as f( ). SetU =W @ Kg Y2 ®Xp K_1/2 Combining v
with g, vs; we obtain an isomorphism ¢’ : U — U* ® KS ®p Ky ! Setting
V = p.(U) we have that ¢’ descends to a symmetric anti-linear isomorphism
V' — V* covering f and hence defines an equivariant vector bundle on 3.
Sending W to p.(W ® K;/ ’® P Ky, 1/ 2) defines a push-forward homomor-
phism p, : K9 (S) — K (X). When f has fixed points the following theorem
completely determines the push-forward in equivariant K-theory:

Theorem 8. Let S' C X be a fized component of f and m™*, m~ the dimen-
sions of the £1-eigenspaces of the Zy-action on 'V over St Iff has no fixed
points then m™ =m~. If f has fized points then K1/2 Ky Y2 are real with
respect to f, f. Let St .. Sl C S be the fixed circle components of f lying
over S' and m;r, m; the dimensions of the £1-eigenspaces of the Zo-action
on W over S}!. Let d; be the degree of p: Sil — ST using the orientations
induced by vs,vx. Then
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Proof. Let x € S! be a point of S' which is not a branch point. Consider
the points in the inverse image p~!(x). Pairs of points in p~!(z) exchanged
by f will push down to give a Zs-action with +1-eigenspaces of equal di-
mension, so will not contribute to m™ — m ™. Therefore we need only con-
sider points in p~! () which are fixed by f. Let z},..., 2" be the points of
p~!(x) lying on S}. Let & be a real non-vanishing section of Ky over S1
compatible with the orientation of S' determined by ~s; and similarly let
& be a real non-vanishing section of Kg over S} compatible with ~g. Let
eg = +1 according to whether p*({x) is a positive or negative multiple of gf ,
S0 d; —61+---—|—er" Let ¢ : W — W be the Zs-action, h : W — W a com-
patible hermitian metric and ¢ = hop : W — W* Then U =W ® K1/2
p*Kgl/ and we obtain a map ¢ Y ® s ®’yz U —-U"® Kg ®p*K L
Choose ey, € (K /2)96 such that €% = &x(z) and € € (K /2)96] with ( )2 =
5]( ) Now let a,3 € U,y and write a=dao ®e Reg', =0 e @egt
with o/, 3 € W . Then, as w is defined through relatlve duality, we have

G(e)B/dp = v(a)8 @ €] @ &5 dp. 16 p* (&) = ple], this is (o) ()8
This contributes a sign of €] (m;” —m; ) to m™ —m~. Summing we obtain

the result. O

For the cases of real and quaternionic K-theory suppose W is a holomor-
phic bundle on S with real or quaternionic structure ¢ : W — W. To define
the push- forward we require ¢ to be holomorphic meaning the map o +— ¢ o
Qo f send holomorphic germs to holomorphic germs. Since K g L2 Ké/ 2 carry
real or quaternionic structures it follows that the vector bundle U=W®
K é/ ’® P Ky, 12 4 similarly real or quaternionic and this structure descends
to V =p.(U). If Ké/Q, K§/2 are both real or both quaternionic we obtain
homomorphisms p, : KR?(S) — KR%(X) and p, : KH’(S) - KH'(%). On
the other hand if one of K¢/ ~, Ké/ is real and the other quaternionic, we ob-
tain push-forwards of the form p, : KR%(S) — KH°(X) and p, : KR(S) —
KHY(Y). The following Theorem, which can be proved similarly to Theo-
rem 8, completely determines the push-forward in K R-theory:

Theorem 9. Suppose W has a real structure with respect to f Let S' ¢ %
be a fixred component of f and w the first Stiefel-Whitney class of V' over
St If f has no fixed points then w = 0. If f has fixed points then Kg, Kx,
have real square roots. Choose real square roots KS/Q,Ké % such that their
restriction over any fized component of f, f are trivial as real bundles. Let
Si,..., 8L C S be the fized circle components of f lying over S* and w; the
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first Stiefel-Whitney class of W over Sil. Then

k

w= Zwi (mod 2).

i=1

In the case where we start with a quaternionic bundle on S the push-
forward follows from Grothendieck-Riemann-Roch.

5.3. Spectral data and K-theory

Let (V,®) be a Higgs bundle with GL(m,R)-holonomy and L the corre-
sponding spectral line bundle, hence V = p, (L ® K (m=1)/ 2). By Theorem 3
we have L ~ L*, so L? is trivial and L is a real line bundle on S. Then L
defines a class [L] € KO°(S) and we see that the KO-theory class of V is
given by the push-forward [V] = p.[L]. This observation was recently made
by Hitchin [Hit13] and was used to relate the second Stiefel-Whitney class
of V' to the mod 2 index of L. Note that the fixed points of i; with holon-
omy in GL(m/2,H) always have singular spectral curves [HitSch13], so on
restricting to smooth fibres we do not see these fixed points.

Next consider fixed points of the involution . Let h: Mgrm,c) —
AGL(m,(Cg be the Hitchin fibration, where for GL(m, C) we have Agr(m,c) =
D2, H' (X, K*). Let f : Agrm,c) = AcL(m,c) be the map sending a holo-
morphic differential w to f*(w). We show in [BarSchl13] that hoiy = f o h.
Therefore the fixed points of is lie over fixed points of f. Let p: .S — X be
a non-singular spectral curve associated to a fixed point a € Agp(m,c) of
[ Acrimec) = Acrim,c)- We extend f to an involution f: K — K on the
total space of K by setting f(a:) = f*(z) for z € K. Then since S corre-
sponds to a fixed point a € Agr(m,c), we find that f restricts to an anti-
holomorphic involution on S covering f. Choosing a spin structure K/2, we
identify the fibre of the Hitchin map over a with the Picard variety Pic(S).
Assume that the chosen spin structure K/2 is preserved by f, so we obtain
a real or quaternionic structure v : K/2 — K'/2. The action of iy on the
fibre Pic(S) is then given by L — f*(L") [BarSch13]. Choosing a hermitian
structure on L which is f-invariant, we have L ~ f*(L), so the involution
f lifts to L defining a class [L] € K) (S5). The class of V in K (3) is then
given by the push-forward [V] = p.[L]|. As discussed previously the class of
[V] in equivariant K-theory is only well-defined modulo replacing the invo-
lution ¢ : V' — V with —¢p. This corresponds to the ambiguity in lifting f
to an involution on L.
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Using Theorem 8 we can determine which classes in K9 (X) lie in the
image of the push-forward. Note that the push-forward depends on the topol-
ogy of 5,3 and the maps f, f, but not the complex structures. The classes
in the image of p, are the isomorphism classes of equivariant bundles which
admit an equivariant flat connection with reductive holonomy and smooth
spectral curve. The condition [V] € im(p,) may be interpreted as an ana-
logue of the Milnor-Wood inequality for equivariant flat connections.

Finally, consider fixed points of the involution is. For a Higgs bundle
(V,®) we have i3(V,®) = (f*(V), f*(®)). It follows that hois = foh, so
that fixed points of i3 must lie over fixed points of f : Agrm,c) = Aarim,c)-
Let a € Agr(m,c) be a fixed point corresponding to a smooth spectral curve
p:S — ¥. As before we have an anti-holomorphic involution f: S — S.
Choosing an f-invariant spin structure K'/2 we have that the action of
i3 on the fibre Jac(S) is given by L — f*(L). Fixed points correspond to
line bundles with L ~ f*(L). Thus L carries either a real or quaternionic
structure which pushes down to a real or quaternionic structure on V =
po(L @ Km=1D/2) The class of V in KR- or K H-theory is then the push-
forward [V] = p.[L].

Remark 10. Given a spin structure K'/2, recall that in [Hit92] Hitchin
constructed a section s: Agrm,c) — Marim,c) of the Hitchin fibration
which is invariant under i;. Choosing K'/? with f *(?1/ 2) ~ K2 we have
that s is fixed by all three involutions i1, 49,73. This shows that the fixed
point sets of i1, 42,73 are non-empty and contain smooth points.

Using Theorem 9 we may determine which classes in K R-theory lie in
the image of the push-forward. This gives a constraint on the topology of
a real bundle [V] to admit a real flat connection with reductive holonomy
and smooth spectral curve. In this case the constraint for [V] to lie in the
image of p, is simple to state: for each fixed component S' C ¥ of f for
which p~1(S') contains no fixed point of f, we require V|s: to be trivial as
a real bundle.

6. Fixed points as representations

In this section we give a representation theoretic description of the fixed
point set of the involutions for any complex semisimple group G. The case
of reductive groups is similar but one must replace the fundamental group
by a central extension.
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6.1. Fixed points of 7; and real holonomy

A representation ¢ : m1(3) — G is called reductive if the induced action of
m1(X) on g by the adjoint representation decomposes into a direct sum of
irreducible representations. Let Hom™ (71 (X)), G) be the set of all reductive
representations of 7 (X) into G given the compact-open topology. The group
G acts on this space by conjugation and the quotient Hom™ (7 (%), G)/G
is Hausdorff [Ric88]. As discussed in Section 2.2 there is a homeomorphism
between the moduli space of polystable Higgs bundles and the character va-
riety Hom™ (71(X), G)/G of reductive representations. The correspondence
sends a solution (94, ®) of the Hitchin equations to the monodromy rep-
resentation of the associated connection V =V 4 + ® 4+ &*. We say that a
reductive representation ¢ : m1(3) — G is simple if for all g € G such that
Adgy o ¢ = ¢, we have g € Z(G).

Consider a basepoint xo € ¥ and write m(X) for m (X, zg). Let v be a
path from xq to f(zg) and define f, : 71(X) — 71(X) by fu(p) = v.f(p).y " .
For yu = [7.f(v)] € m1(X) one has f2(p) = Ad,(p) and f.(u) = p. In terms of
conjugacy classes of representations ¢ : m1(X) — G, the involutions i1, 2, i3
take the form

i1(¢) = 009,
i2(¢) = do fu,
i3(¢) =00 go f.

This description of the involutions makes the relation 71io = i3 especially
clear.

Let 0,0’ be anti-involutions of G. Following [G-P07], we say that o,0’
are inner equivalent if 0/ = Adj, o o for some h € G. Note that it is possible
for distinct real forms to be inner equivalent.

Proposition 11. Let ¢ : w1 — G be a simple fixed point of i1. Then there
exists an anti-involution o’ inner equivalent to o such that o’ o ¢ = ¢. Con-
versely if o’ is inner equivalent to o and ¢ is a reductive representation with
o' o= ¢, then ¢ is a fized point of i1.

Proof. 1f ¢ is a fixed point of iy then o o ¢ = Ad, o ¢ for some g € G. Ap-
plying o twice and using simplicity gives o(g)g € Z(G). Let 0’/ = Ady-1 o0 0.
Then ¢’ is an anti-holomorphic involution inner equivalent to o. Clearly we
have o’ o ¢ = ¢. The proof of the converse is immediate. O
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Remark 12. For example if we consider GL(m,R) C GL(m,C) then aside
from GL(m,R) itself the only inner equivalent real form is GL(m/2,H)
which occurs when m is even.

Remark 13. Properties of inner equivalent involutions in relation with
Higgs bundles appear in [G-P07] and are also currently being studied in
[G-PR].

6.2. Fixed points of i5, 13 and orbifold representations

The fixed points of is, 73 can be described in terms of the orbifold funda-
mental group 7¢™(¥) of ¥. This group is related to the usual fundamental

group by a short exact sequence
(3) 1= m(B) = mP(2) 5 Zy — 1.

To describe this group we consider separately the cases where f has fixed
points or not. If f acts freely then the quotient ¥’ =3/f is a compact
non-orientable surface. The orbifold fundamental group is simply the funda-
mental group of ¥ and (3) becomes the usual exact sequence for a double
cover. When f has fixed points, we take our basepoint x¢ to be a fixed point
and v to be the constant path. In this case f, is an involution and 7¢™ (%)
is the semi-direct product 7¢™(¥) = Zy x m1(X), where Zy acts on 71(%)
by f«. In either case we may take the orbifold fundamental group to be
Zy x w1 (%) with product given by (0,x)(0,y) = (0, zy), (0,x)(1,e) = (1,x),
(1,e)(0,z) = (1, fi(z)), (1,e)(1,e) = (0, ).

Let ¢ : Zy x Zy — 7Z be given by ¢(1,1) = 1, and ¢(u,v) = 0 otherwise.
Then c is a 2-cocycle representing the non-trivial class in H?(Zg,Z) = Zo.
Let 79™(32) be the central extension of 7¢*®(2) by Z corresponding to v*(c) €
H?(79™(X),Z). Observe that the extension class v*(c) € H?(n¢™(%),Z) is
trivial when restricted to 71(X) so we obtain a short exact sequence

15 m(X) x Z - 752(2) 5 2y — 1.
Explicitly 7$™"(X) is the group generated by (%) x Z together with
an element y modulo the relations yz = f.(z)y, yz = zy, y*> = zu, where

x € m(X) and z is a generator of Z.

Proposition 14. There is a bijection between conjugacy classes of repre-
sentations ¥ : TP (X) — G and equivalence classes of pairs (¢,u), where ¢
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m1(X) = G is a representation, and u € G such that ¢ o f, = Ady o ¢. Two
pairs (¢, u), (¢',u') are equivalent if ' = Adp, o ¢ and v’ = Ady(u) for some
hed.

Proof. Given 1 : 7™ (%) — G, we let ¢ be the restriction of ¥ to m (%) C
79 (X) and take u = 1(y). This gives the desired bijection. O

The above establishes that fixed points of 75 correspond to representations
of 79™(X). On the other hand there is an obstruction to representing a fixed
point of iy as a representation of Wi’rb(Z). Suppose that ¢ is a simple point
fixed by io. Then ¢ o f, = Ad, o ¢ for some u € G. Since ¢ is simple any two
such v differ by an element of Z(G). Applying f. twice and using simplicity
we find ¢ = u?¢(u)~! € Z(G). In order to extend ¢ to a representation of
79" (X) we need to find such a u with u?¢(u)~! = e. Replacing u by uv for
v € Z(G) we get (uv)?¢(u)~! = cv?. Hence the obstruction to extending ¢
to an orbifold representation is a class in Z(G)/2Z(G).

The case of fixed points of i3 is similar. For this let G be the semi-direct

product Zs X G, where Zo acts on G by o. Let 7 : G — Zo be the projection.

Proposition 15. There is_a bijection between conjugacy classes of rep-
resentations 1 : 7~r‘1’rb(2) — G such that movy = U and equivalence classes
of pairs (¢p,u), where ¢ :m(X) — G is a representation, and u € G such
that 0 o o fr = Ady(yy 0 . Two pairs (¢,u), (¢',u’) are equivalent if ¢' =

Adp o ¢ and u' = huo(h)™t for some h € G.

It follows that every fixed point of i3 extends to a representation of
79™P(X). As in the case of i3 we can consider the problem of extending a fixed
point of i3 to a representation of w‘frb(E). Suppose ¢ is a simple fixed point of
i3,80 0 0 po fu = Ady(y) o ¢ for some u € G. Applying the involutions o and
f« twice and using simplicity we obtain an element ¢ = uo(u)¢(u)~! € Z(Q)
such that o(c) = c¢. Replacing u by wv for v € Z(G) we have ¢ — cvo(v),
so we obtain a class in Z' = {c € Z(G)|c=o(c)}/{vo(v)|v € Z(G)}. This
class is the obstruction to lifting ¢ to a representation ¢ : ﬂ'frb(E) — G with
mTop=v.

For example when G = GL(m,C) and o is conjugation we find Z' = Z.
In this case the trivial class in Z’ corresponds to real bundles and the non-
trivial class to quaternionic bundles.
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7. Duality

Let “G be the Langlands dual group of G. There is a correspondence between
invariant polynomials for G and “G giving an identification Ag ~ Awrg.
The moduli spaces Mg, Mrg are then torus fibrations over a common base
and their non-singular fibres are dual abelian varieties [DoPal2]. Kapustin
and Witten give a physical interpretation of this in terms of S-duality, us-
ing it as the basis for their approach to the geometric Langlands program
[KWO07]. In this approach a crucial role is played by the various types of
branes and their transformation under mirror symmetry. This duality ex-
changes branes according to (B, B, B) <» (B, A, A), (A,B,A) <+ (A, B, A),
(A, A, B) <» (A, A, B). We consider here the question of how this duality acts
on the fixed point sets of the real structures i1, 72, i3. We make some conjec-
tures without attempting to give rigorous justifications. We let B¢, C Mg
denote the fixed point set of i, for a = 1,2, 3.

The simplest case is the fixed point set of io, which is of type (4, B, A).
Since the definition of is requires only the choice of anti-holomorphic invo-
lution f, we have a corresponding involution is on MLG’ with fixed point set
an (A, B, A)-brane BLG C Muwg. We conjecture that BLG is the dual brane
to BZ. We give some evidence for this in [BarSch13].

Consider next the (A, A, B)-brane B, C M. Since the dual brane BLG C
Mg is also of type (A, A, B) one mlght conjecture that it is the fixed point
set of a corresponding involution %3. To define 23 we need to choose a real
structure & on “G. If G is a simple group not of type B,,, Cp, the Lie algebras
of G and “G coincide and we have a natural choice for 6. The B, C,, cases
however remain a mystery.

The most interesting case is the (B, A, A)-brane B}, C M. The dual
B! o C Mrg must be of type (B, B, B), a submanifold which is complex
with respect to I, J, K. One natural way of constructing LB , B, B)-branes in
M_:¢ is to take a complex subgroup H C “G and to let B}G be the space of
LG-Higgs bundles with holonomy in H. It remains to find a natural choice
of subgroup H. In [Nad05] a correspondence between real structures on G
and complex subgroups of the dual group “G is given. We conjecture that
the correspondence given in [Nad05] determines the correct dual brane to
Bt. Some evidence for this duality in the case U(m,m) C GL(2m,C) <
Sp(2m,C) C GL(2m,C) has been shown by Hitchin in [Hit13].
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