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Real structures on moduli spaces of
Higgs bundles

David Baraglia and Laura P. Schaposnik

We construct triples of commuting real structures on the mod-
uli space of Higgs bundles, whose fixed loci are branes of type
(B,A,A), (A,B,A) and (A,A,B). We study the real points through
the associated spectral data and describe the topological invariants
involved using KO, KR and equivariant K-theory.

1. Introduction

The moduli space MG(Σ) of G-Higgs bundles on a compact Riemann sur-
face Σ is the space of solutions to the gauge theoretic Hitchin equations
on the surface, where G is a complex reductive Lie group. The smooth lo-
cus of MG(Σ) is a hyperkähler manifold, so there are complex structures
I, J,K obeying the same relations as the imaginary quaternions. This paper
is concerned with the study of several naturally defined real structures on
this moduli space. In fact, as it is impossible for an involution to be anti-
holomorphic in all three complex structures it is natural to consider not one
but three real structures simultaneously. We introduce a naturally defined
triple of commuting real structures i1, i2, i3 on MG(Σ). We give geomet-
ric interpretations for these real structures and use spectral data to build
up a detailed picture of their fixed point sets. Along the way we encounter
various forms of K-theory as a convenient tool for studying the connected
components of these fixed point sets.

The real structures i1, i2, i3 are defined in Section 3. The involution i1
is defined by taking a real form Gσ of G. Amongst the fixed points of i1 are
solutions to the Hitchin equations with holonomy in the real form Gσ. More-
over, when Gσ is the split real form, we prove in Theorem 3 that the fixed
points of i1 are points of order 2 in the fibres of the Hitchin fibration, as seen
in [Sch13]. The involution i2, introduced in [BarSch13] is defined by choosing
a real structure on Σ, an anti-holomorphic involution f : Σ → Σ. Amongst
the fixed points of i2 are representations of the orbifold fundamental group
of the action of f on Σ. Combining these two involutions we obtain a third
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involution i3 = i1 ◦ i2. Amongst the fixed points of i3 are pseudo-real Higgs
bundles, introduced in [BGH12]. The involutions i2, i3 are well-behaved with
respect to the Hitchin fibration and by restriction we find that their fixed
point sets are real integrable systems. We also give a description of the fixed
point sets in terms of orbifold representations in Section 6.

Section 4 considers in detail the case of the general linear group G =
GL(m,C), with real form GL(m,R) ⊂ GL(m,C). In this case a Higgs bun-
dle (V,Φ) is a rank m holomorphic vector bundle V and a holomorphic
(1, 0)-form valued endomorphism Φ of V . If deg(V ) = 0, then as we recall in
the paper polystable Higgs bundles (V,Φ) correspond to bundles with flat
connection (V,∇), where ∇ has reductive holonomy. We say that ∇ is sim-
ple if the only constant endomorphisms of V are multiples of the identity.
Restricting to simple, reductive holonomy we find:

• Fixed points of i1 are flat bundles with holonomy in GL(m,R) or
GL(m/2,H).

• Fixed points of i2 are flat bundles with involution ϕ : V → V covering
f and preserving ∇.

• Fixed points of i3 are flat bundles with anti-linear isomorphism ϕ :
V → V , covering f , preserving ∇ and with ϕ2 = ±1.

As a first step towards identifying the connected components of the fixed
point sets, we may consider the topological data associated to the underlying
bundle as follows:

• For i1, the bundle V carries a real or quaternionic structure, thus
defines a class [V ] in KO0(Σ) or KSp(Σ), real or quaternionic K-
theory.

• For i2, the bundle V carries a lift of the Z2-action on Σ, thus defines
a class [V ] ∈ K0

Z2
(Σ) in Z2-equivariant K-theory.

• For i3, the bundle V carries a real or quaternionic structure in the
sense of Atiyah [Ati66], hence a class [V ] in KR0(Σ) or KH0(Σ).

In Section 4 we determine these K-theory groups and show that the
K-theory classification is sharp in the sense that one can recover the bundle
plus additional topological data up to isomorphism from the K-theory class.

As an example of the utility of these K-theory classes, we consider
the following construction. Let Σ = Σ× [−1, 1] with involution τ(x, t) =
(f(x),−t). The quotient M = Σ/τ is a 3-manifold with boundary ∂M = Σ.
Then, we show the following:
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Theorem 7 Let (V,∇) be a fixed point of i3 with simple holonomy. Then ∇
extends over M as a flat connection if and only if the class [V ] ∈ K̃0

Z2
(Σ) in

reduced equivariant K-theory is trivial.
In Section 5 we study the spectral data associated to fixed points. As

we recall, spectral data consists of a branched cover p : S → Σ called the
spectral curve and a line bundle L → S. The bundle V and Higgs field Φ are
recovered by pushing down L to Σ. For fixed points, the additional structure
on V determines similar structure on the spectral line L and we recover
the K-theory classes as push-forwards from the spectral curve to Σ. The
push-forward in the KO-theory case was recently used by Hitchin for this
purpose [Hit13]. We complement this by determining explicit expressions for
the push-forwards in equivariant K-theory and KR-theory in Theorems 8
and 9. The image of the push-forward maps p∗ : K0

Z2
(S) → K0

Z2
(Σ) and p∗ :

KR0(S) → KR0(Σ) describe which topological classes of bundle with real
structure can be given a reductive flat connection (with smooth spectral
curve). This is the analogue of the Milnor-Wood type inequalities for the
topological invariants obtained through K-theory.

Along the paper we adopt the physicists’ language in which a Lagrangian
submanifold is called an A-brane and a complex submanifold a B-brane. A
submanifold of a hyperkähler manifold may be of type A or B with re-
spect to each of the complex structures and we may speak of branes of
type (B,B,B), (B,A,A), (A,B,A) and (A,A,B). Under this classification
the fixed point sets of i1, i2, i3 are branes of type (B,A,A), (A,B,A) and
(A,A,B) respectively. The main reason for considering branes is the connec-
tion to mirror symmetry and the geometric Langlands program. This pro-
gram asserts that the moduli spaces MG(Σ),MLG(Σ) are in duality, where
LG is the Langlands dual group of G. According to this duality, specifi-
cally homological mirror symmetry, there should be an equivalence of cate-
gories of branes on MG(Σ) and MLG(Σ) under which there are exchanges
(B,B,B) ↔ (B,A,A), (A,B,A) ↔ (A,B,A) and (A,A,B) ↔ (A,A,B). We
conclude our work with Section 7, in which we speculate on how this duality
acts on the fixed point sets of i1, i2, i3.

Acknowledgements. The authors would like to thank S. Bradlow,
O. Garćıa-Prada, N. Hitchin, and F. Schaffhauser for helpful comments.

2. Higgs bundles

We review Higgs bundles, the hyperkähler structure of their moduli space
and recall the Hitchin fibration.
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2.1. The moduli space of G-Higgs bundles

Let Σ be a Riemann surface of genus g > 1 with canonical bundleK, and G a
complex Lie group with Lie algebra g. We shall assume throughout the paper
that G is reductive. Given a principal G-bundle P on Σ, we let gP denote the
corresponding adjoint bundle. A G-Higgs bundle on a Riemann surface Σ is
a pair (∂A,Φ), where ∂A is a holomorphic structure on a principal G-bundle
P and Φ is a holomorphic section of gP ⊗K. In the case of G = GL(m,C)
a G-Higgs bundle is equivalent to a classical Higgs bundle (V,Φ), consisting
of a rank m holomorphic bundle V and a holomorphic map Φ : V → V ⊗K.

In order to define a moduli space of such pairs we shall recall the notions
of stability and S-equivalence. Let µ(V ) = deg(V )/rk(V ) be the slope of
the vector bundle V . We say that a GL(m,C)-Higgs bundle (V,Φ) is semi-
stable if for every subbundle W ⊂ V such that Φ(W ) ⊂ W ⊗K we have
µ(W ) ≤ µ(V ), and it is stable if one has a strict inequality. If one can write
(V,Φ) = (V1,Φ1)⊕ · · ·⊕ (Vk,Φk) for (Vi,Φi) stable pairs such that µ(Vi) =
µ(V ), then we say the Higgs bundle is polystable. To define S-equivalence
consider a strictly semi-stable Higgs bundle (V,Φ). As it is not stable, V
admits a subbundle W ⊂ V of the same slope which is preserved by Φ. If W
is a subbundle of V of least rank and same slope which is preserved by Φ, it
follows that the pair (W,Φ) is stable. Then, by induction one obtains a flag
of subbundles W0 = 0 ⊂ W1 ⊂ · · · ⊂ Wr = V where µ(Wi/Wi−1) = µ(V ) for
1 ≤ i ≤ r, and where the induced Higgs bundles (Wi/Wi−1,Φi) are stable.
This is the Jordan-Hölder filtration of V , and it is not unique. However the
graded object

Gr(V,Φ) :=
r⊕

i=1

(Wi/Wi−1,Φi)

is unique up to isomorphism. Two semi-stable Higgs bundles (V,Φ) and
(V ′,Φ′) are said to be S-equivalent if Gr(V,Φ) ∼= Gr(V ′,Φ′). For a stable
pair (V,Φ) the associated graded object coincides with (V,Φ) and the S-
equivalence class is just the isomorphism class of the original pair. More
generally each S-equivalence class contains a unique polystable object.

Through the above definitions, one may construct the moduli space Md
m

of S-equivalence classes of classical semi-stable Higgs bundles of rank m and
degree d, or equivalently, the moduli space of polystable rank m degree d
Higgs bundles. This space is a quasi-projective scheme of complex dimension
2m2(g − 1) + 2 and contains an open subscheme M′d

m corresponding to the
moduli scheme of stable pairs [N91]. When m and d are coprime semi-stable
implies stable and the moduli space Md

m is smooth.
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By extending the stability notions to G-Higgs bundles, one can de-
fine stable, semi-stable and polystable G-Higgs bundles (see e.g., [BiGo08],
[BGM03]). Then one can construct a corresponding moduli space of poly-
stable G-Higgs bundles, denoted MG or MG(Σ). The dimension of MG

is 2dim(G)(g − 1). The connected components of MG are in bijection with
isomorphism classes of principal G-bundles and these are parametrised by
π1(G) [DoPa12]. For d ∈ π1(G) we let Md

G denote the corresponding con-
nected component of MG.

2.2. Hyperkähler structure on MG

We shall briefly recall here the construction of a hyperkähler metric on MG,
obtained by an infinite dimensional hyperkähler reduction. For simplicity
we consider the case where G is semi-simple. The reductive case requires
only minor alterations such as modifying the Hitchin equations to allow for
projectively flat connections.

Fix a hermitian metric g on Σ and an anti-holomorphic involution ρ :
G → G whose fixed point set Gρ gives the compact real form of G. Let P be
a principal G-bundle and fix a reduction of structure to Gρ. The reduction
of structure determines a corresponding anti-linear involution ρ : gP → gP
on the adjoint bundle. Given a section x of gP we write x∗ for −ρ(x). We
shall denote by k( , ) the Killing form on g.

The space A of holomorphic structures on P is an affine space over
Ω0,1(Σ, gP ), hence the cotangent bundle T ∗A is an infinite dimensional flat
hyperkähler manifold. The tangent space to T ∗A at any point can be nat-
urally identified with the direct sum Ω0,1(Σ, gP )⊕ Ω1,0(Σ, gP ) and we shall
denote by (Ψi,Φi) tangent vectors to this space. In terms of this identifica-
tion the metric on T ∗A is given by

g((Ψ1,Φ1), (Ψ1,Φ1)) = 2i

∫

Σ
k(Ψ∗

1,Ψ1)− k(Φ∗
1,Φ1).

Moreover there are compatible complex structures I, J,K defined by

I(Ψ1,Φ1) = (iΨ1, iΦ1),

J(Ψ1,Φ1) = (iΦ∗
1,−iΨ∗

1),

K(Ψ1,Φ1) = (−Φ∗
1,Ψ

∗
1),

satisfying the usual quaternionic relations. This defines the hyperkähler
structure on T ∗A. We shall denote by ωI ,ωJ ,ωK the corresponding Kähler
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forms

ωI(X,Y ) := g(IX, Y ) , ωJ(X,Y ) := g(JX, Y ) , ωK(X,Y ) := g(KX,Y ).

For a pair (∂A,Φ) ∈ T ∗A let ∇A = ∂A + ∂A = ρ(∂A) + ∂A be the as-
sociated unitary connection and FA the curvature of ∇A. The group Gρ

of unitary gauge transformations acts on T ∗A preserving the hyperkähler
structure. This action has a hyperkähler moment map µ(∂A,Φ) = (FA +
[Φ,Φ∗], ∂AΦ). The hyperkähler quotient µ−1(0)/Gρ of this action is then the
moduli space of solutions to the Hitchin equations

(1) FA + [Φ,Φ∗] = 0, ∂AΦ = 0,

modulo unitary gauge transformations. From this we obtain a hyperkähler
structure on the smooth points of the moduli space of solutions to the Hitchin
equations.

For G semi-simple it is a result of Hitchin [Hit87] and Simpson [S88] that
a G-Higgs bundle (∂A,Φ) is gauge equivalent to a solution of the Hitchin
equations (1) if and only if it is polystable. This is used to establish an
isomorphism between the moduli space MG of polystable G-Higgs bundle
and the moduli space of solutions to the Hitchin equations. In particular
this gives a hyperkähler structure on the smooth points of MG.

A solution to the above Hitchin equations (1) defines an associated
flat G-connection ∇ = ∇A + Φ+ Φ∗. From the results of Donaldson [D87]
and Corlette [Cor88], the mapping (∂A,Φ) -→ ∇ gives an isomorphism be-
tween the Higgs bundle moduli space MG and the character variety
Hom+(π1(Σ), G)/G of reductive representations of π1(Σ) in G (the definition
of reductive representations and further details are recalled in Section 6). We
say that a polystable Higgs bundle (∂A,Φ) is simple if the only covariant
constant gauge transformations of the associated connection ∇ are those
valued in the centre Z(G) of G. In particular, one has that simple Higgs
bundles give smooth points on the moduli space [Ric88].

The hyperkähler quotient construction carries over to the case of a re-
ductive group requiring only a small modification. Consider for example the
case G = GL(m,C). The Hitchin equations for a Higgs bundle pair (V,Φ)
should be modified to

FA + [Φ,Φ∗] = −2πiµ(V )volΣ, ∂AΦ = 0,
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where µ(V ) is the slope of V and volΣ the volume form on Σ. The associated
connection ∇ = ∇A + Φ+ Φ∗ is now only projectively flat and we obtain a
representation of a central extension of π1(Σ).

2.3. The Hitchin fibration

The moduli space MG has a natural complex Lagrangian fibration over a
vector space AG. To define this fibration let p1, . . . , pk be a homogeneous
basis for the algebra of invariant polynomials on g, of degrees d1, . . . , dk.
Following [Hit87a], the Hitchin fibration is given by

h : MG −→ AG :=
k⊕

i=1

H0(Σ,Kdi),

(∂A,Φ) -→ (p1(Φ), . . . , pk(Φ)).

The map h, referred to as the Hitchin map, is a proper map for any choice
of basis (see [Hit87a, Section 4] for details). Given d ∈ π1(G) consider the
restricted Hitchin map h : Md

G → AG. For each component Md
G the smooth

fibres of h are connected [DoPa12] complex Lagrangian submanifolds with
respect to the holomorphic symplectic form ΩI = ωJ + iωK . We have
dim(AG) = dim(MG)/2, and the Hitchin map gives each component Md

G
the structure of an algebraically completely integrable system [Hit87a]. In
particular h is generically a submersion and the generic fibres are abelian
varieties.

3. Real structures

Having defined the moduli space MG(Σ) of G-Higgs bundles on a compact
Riemann surface Σ, we shall now consider the three natural involutions i1, i2
and i3 on it and study their fixed point sets.

3.1. The three involutions

The moduli space MG(Σ) admits several distinct real structures, a phe-
nomenon related to its hyperkähler geometry. First consider a real form
of G, given by the fixed point set Gσ of an anti-holomorphic involution
σ : G → G. For any real form σ we can find an anti-holomorphic involution
ρ : G → G commuting with σ, whose fixed point set defines the compact real
form of G (for details, see [He01]). The Cartan involution of the real form
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Gσ is the holomorphic involution θ = ρ ◦ σ. From σ we obtain an involution
i1 on the Moduli space of Higgs bundles, given by

i1(∂̄A,Φ) = (θ(∂̄A),−θ(Φ)).

The involution i1 is an isometry of the hyperkähler metric, holomorphic in
I and anti-holomorphic in J , K. Therefore its fixed point set is a brane of
type (B,A,A).

A second way to obtain a real structure on MG(Σ) is to consider real
structures on the surface Σ. Let f : Σ → Σ be an anti-holomorphic involu-
tion, a real structure on Σ. ViewingMG(Σ) as a moduli space of connections,
the action of f on Σ induces an involution i2 by pullback of connections. In
terms of Higgs bundles, i2 is given by

i2(∂̄A,Φ) = (f∗(∂A), f
∗(Φ∗)) = (f∗(ρ(∂̄A)),−f∗(ρ(Φ))).

We have seen in [BarSch13] that i2 is an isometry which is holomorphic in
J and anti-holomorphic in I, K. Therefore its fixed point set is a brane of
type (A,B,A).

Lastly, by combining a real structure on the group G with a real structure
on the surface Σ, we obtain a third class of involution i3, given by

i3(∂̄A,Φ) = (f∗σ(∂̄A), f
∗σ(Φ)).

Since i3 = i1 ◦ i2 we have that i3 is an isometry, holomorphic in K and
anti-holomorphic in I, J . Therefore its fixed point set is a brane of type
(A,A,B).

3.2. Fixed point sets

The fixed point sets of i1, i2, i3 meet the smooth points of MG in complex
Lagrangian submanifolds. The case of i2 was established in [BarSch13] and
the same argument applies to the other involutions. The fixed point sets have
interpretations in terms of the corresponding holonomy representations. The
simplest case are fixed points of i2, which in terms of connections are simply
those connections ∇ which are isomorphic to their pullback f∗∇. For the
involution i3 we have fixed points given by pseudo-real Higgs bundles as
defined in [BGH12].

To discuss fixed points of i1, recall that the involutions σ, ρ, θ induce
corresponding involutions on the Lie algebra g. We shall denote by gσ the
fixed point set of σ, the Lie algebra of Gσ. We obtain a decomposition gσ =
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u⊕m of gσ into the ±1-eigenspaces of θ|gσ , the Cartan decomposition of gσ.
Let uc = u⊕ iu and mc = m⊕ im be the complexifications of u and m. Let U
be the maximal compact subgroup of Gσ and U c its complexification. Higgs
bundles with holonomy in the real form Gσ are pairs (∂A,Φ), where ∂A is a
holomorphic structure on a principal U c-bundle P ′ and Φ is a holomorphic
section of (P ′ ×Uc m)⊗K. Clearly such Higgs bundles are fixed points of i1.
In general, there are fixed points of i1 and i3 other than those we have just
described. We address the problem of classifying all fixed points in Section 6
in terms of special classes of representations.

We consider the action of the real structures on the connected compo-
nents of MG. For this note that the Cartan involution θ : G → G induces
an involution θ∗ : π1(G) → π1(G).

Proposition 1. The action of the involutions i1, i2, i3 on the space of con-
nected components π0(MG) ≃ π1(G) is given by

i1(d) = θ∗(d), i2(d) = −d, i3(d) = −θ∗(d),

where d ∈ π1(G).

Proof. Let P be a principal G-bundle on Σ. We define θ(P ) to be the prin-
cipal bundle diffeomorphic to P but with G-action (p, g) -→ p θ(g). At the
level of isomorphism classes this gives the map θ∗ : π1(G) → π1(G). From
the definition of i1 it is clear that it sends a principal G-bundle P to θ(P ).
It was shown in [BarSch13] that the action of i2 on principal G-bundles is
d -→ −d. The result for i3 follows since i3 = i1 ◦ i2. !

When σ = ρ is the compact real form, we find a close relationship be-
tween the fixed point sets of i2 and i3.

Proposition 2. Let σ = ρ be the compact real form. Then the fixed point
sets of i2, i3 are diffeomorphic.

Proof. Let i : MG → MG denote the action of i ∈ C∗ sending (∂A,Φ) to
(∂A, iΦ). Then if σ = ρ we see that i3 = i ◦ i2 ◦ i−1. It follows that i ex-
changes the fixed point sets of the involutions i2, i3. !

By restriction J defines a complex structure on the fixed point set of
i2. Similarly K defines a complex structure on the fixed point set of i3.
Moreover we have i ◦ J = K ◦ i, so the isomorphism in Proposition 2 is in
fact a complex analytic isomorphism. In Section 6, we see that the fixed
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point sets for i2, i3 correspond to quite different classes of representations.
It is then unexpected to find a natural bijection between these spaces.

When σ is the split real form the involution i1 admits a very simple
description in terms of the Hitchin fibration. For d ∈ π1(G), we have that
i1 sends Md

G to Mθ∗(d)
G . Thus fixed points can only occur when θ∗(d) = d.

Suppose now that θ∗(d) = d and let F = h−1(a) be a non-singular fibre of
h : Md

G → AG corresponding to a point a ∈ AG. From [Sch13, Chapter 4]
we have the following:

Theorem 3. The action of i1 preserves the Hitchin fibration, h ◦ i1 = h.
Let d ∈ π1(G) with θ∗(d) = d and let F be a non-singular fibre of Md

G. The
restriction i1|F : F → F of i1 to F has fixed points. Let m ∈ F be a fixed
point. Then the action of i1|F on F is given by x -→ −x with respect to the
origin defined by m.

Proof. For the split real form the map Φ -→ −θ(Φ) preserves the invariant
polynomials, hence h ◦ i1 = h. Then for any d ∈ π1(G) with θ∗(d) = d, we
have that i1 acts on the fibres of Md

G → AG. Let F = h−1(a) be a non-
singular fibre of h over a point a ∈ AG. As the fibres are connected [DoPa12]
we have that F is a complex torus and the restriction i1|F : F → F is a
complex automorphism, since i1 is holomorphic in I.

Recall that the Hitchin fibration is Lagrangian with respect to ΩI =
ωJ + iωK . Let α1, . . . ,αk be a complex basis for T ∗

aAG and define vector
fields X1, . . . , Xk on F by requiring iXi

ΩI = h∗αi. These vector fields are
commuting and integrate to an action of Ck on F by translation. The stabi-
lizer of this action is a lattice Λ ⊆ Ck giving an identification F = Ck/Λ. Us-
ing the fact that i1 is an isometry which is anti-holomorphic in J,K we have
i∗1ΩI = −ΩI . On the other hand since h ◦ i1 = h we have i∗1(h

∗αi) = h∗αi. It
follows that i1∗(Xi) = −Xi for each i. This is enough to ensure that i1 has
a fixed point m ∈ F . Using m as an origin, we have by exponentiation that
the action of i1 on F is given by x -→ −x. !

Remark 4. In particular, for each d ∈ π1(G) with θ∗(d) = d, the intersec-
tion of the fixed points of i1 on Md

G with the smooth fibres of the Hitchin
fibration h : Md

G → AG is given by the elements of order two in those fibres.

The involutions i2, i3 are well-behaved with respect to the Hitchin fi-
bration MG → AG and give rise to real integrable systems. In [BarSch13]
we saw that there exists an anti-linear involution f2 : AG → AG such that
h ◦ i2 = f2 ◦ h. The details of this proof carry over without difficulty to the
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case i3 and we obtain a second anti-linear involution f3 : AG → AG such that
h ◦ i3 = f3 ◦ h. Let LG ⊂ MG be the fixed point set of i2 and LG ⊂ AG the
fixed point set of f2. The restriction of ωJ to LG gives a symplectic structure
and h : LG → LG is a Lagrangian fibration [BarSch13]. The non-singular fi-
bres are a disjoint union of tori, though the number of components of the
fibres generally varies as one moves around the base LG. The proof applies
just as well to the case i3. Let L′

G be the fixed point set of i3 and L′
G the

fixed point set of f3. The restriction of ωK to L′
G gives a symplectic structure

and h : L′
G → L′

G is a Lagrangian fibration. Again, the non-singular fibres
are unions of tori.

The situation for i1 is different. In this case the action of i1 on MG

covers the involution f1 = f2 ◦ f3 : AG → AG. Note that f1 is linear and
thus its fixed point subspace need not be half dimensional. Moreover it
is possible that the fixed point subspace of f1 could lie entirely within
the singular locus of the Hitchin fibration, so that the restriction of h
to the fixed point set of i1 may be poorly behaved (for example this is
the case when G = SL(2m,C), SO(4m,C), Sp(4m,C) and Gσ = SL(m,H),
SO(2m,H), Sp(m,m) respectively, studied in [HitSch13]).

Remark 5. In the case of the involution i3, the set of fixed points in the
moduli space of classical Higgs bundles for which Φ = 0 was thoroughly
studied in [Schaf12].

4. General linear case and K-theory

In this section we consider the case where G = GL(m,C) with real structure
σ(A) = A and Cartan involution θ(A) = (At)−1. Here a Higgs bundle (V,Φ)
is a rank m holomorphic vector bundle V and holomorphic map Φ : V →
V ⊗K. We will see that K-theory in various forms helps to distinguish
between connected components of the fixed point sets of the real structures
i1, i2, i3.

4.1. KO-theory and i1

Fixed points of i1 may be obtained from solutions to the Hitchin equations
with holonomy in the corresponding real form Gσ = GL(m,R). For Higgs
bundles with holonomy in GL(m,R) we may take V to be a holomorphic
O(m,C)-bundle with reduction to the maximal compact O(m) and Φ to
be symmetric. Such a Higgs bundle (V,Φ) is a fixed point of i1 since the
orthogonal structure gives an isomorphism between (V,Φ) and i1(V,Φ) =
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(V ∗,Φt). Since the vector bundle V has a real structure it defines a class
[V ] ∈ KO0(Σ) in the KO-theory of Σ. We have an isomorphism

KO0(Σ) = Z⊕H1(Σ,Z2)⊕H2(Σ,Z2)

given by [V ] -→ (rank(V ), w1(V ), w2(V )), so the relevant topological invari-
ants are the Stiefel-Whitney classes w1(V ), w2(V ) of V .

When m = 2m′ is even a second class of fixed points of i1 are given
by Higgs bundles with holonomy in GL(m′,H). For this V is a holomor-
phic bundle with Sp(2m′,C)-structure and Φ = Φt using the symplectic
transpose [HitSch13]. The symplectic structure then gives an isomorphism
(V,Φ) ≃ (V ∗,Φt) so that such Higgs bundles are fixed points of i1. The sym-
plectic structure on V defines a class [V ] ∈ KSp(Σ), the Grothendieck group
of bundles with symplectic structure on Σ. However since Sp(m′) is simply
connected all symplectic bundles are trivial and KSp(Σ) = Z, the only in-
variant being the rank of the bundle. We will see in Section 6 that a fixed
point of i1 with simple holonomy must belong to one of these two classes.

4.2. Equivariant K-theory and i2

Let (V,Φ) be a fixed point of i2 with simple holonomy. This requires V
to have degree zero, so the associated connection ∇ = ∇A + Φ+ Φ∗ is flat.
Fixed points of i2 correspond to connections ∇ such that f∗∇ ≃ ∇, for
f : Σ → Σ an anti-holomorphic involution as introduced in Section 3. Equiv-
alently there is a bundle isomorphism ϕ : V → V covering f which respects
∇. Thus ϕ2 is covariantly constant, so assuming ∇ is simple we have that
ϕ2 = c for some constant c ∈ C∗. Choosing a square root c1/2 and replacing
ϕ by ϕc−1/2 we obtain an involution ϕ : V → V lifting f and preserving ∇.
By simplicity the lift ϕ is unique up to an overall sign. The Z2-action of
ϕ gives V the structure of a Z2-equivariant vector bundle and thus defines
a class [V ] ∈ K0

Z2
(Σ) in equivariant K-theory. The class [V ] is determined

from (V,Φ) up to a sign ambiguity which corresponds to replacing ϕ by −ϕ.
If f acts without fixed points, the quotient Σ′ = Σ/f is a compact non-

orientable surface. Equivariant bundles are obtained by pullback from Σ′

and we have

K̃0
Z2
(Σ) = K̃0(Σ′) = Z2.

This defines a Z2-invariant with the property that it is non-zero for the
unique non-trivial rankm bundle on Σ′. When f has n > 0 fixed components
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we have, by the Mayer-Vietoris sequence

(2) K̃0
Z2
(Σ) = Zn.

Over each fixed component S1 ⊂ Σ of f we may decompose V |S1 into the
±1-eigenspaces V ±|S1 of ϕ. Taking the dimension dim(V −|S1) gives a homo-
morphism K̃0

Z2
(Σ) → Z and taking the sum of these homomorphisms over

the fixed components of f gives the isomorphism (2). The group of Z2-
equivariant line bundles is given by H2

Z2
(Σ,Z) = Zn

2 . For each assignment
of ±1 to each fixed component of f , we can therefore find a corresponding
equivariant line bundle unique up to isomorphism. This shows that exactly
(m+ 1)n classes in K̃0

Z2
(Σ) are represented by rank m equivariant bundles.

The equivariant K-theory classification is sharp in the following sense:

Proposition 6. Let V, V ′ be equivariant vector bundles on Σ. Then V, V ′

are isomorphic as equivariant vector bundles if and only if [V ] = [V ′] ∈
K0

Z2
(Σ).

Proof. In the case that f has no fixed points this is trivial. Suppose now that
f has fixed points and let V be an equivariant vector bundle. Let ϕ : V → V
be the involution on V and let S1

1 , . . . , S
1
n ⊂ Σ be the fixed circle components

of f . Suppose that for i = 1, . . . , n we are given sections si of V |S1
i
such that

ϕ(si) = ϵisi, where ϵi = ±1. We claim that there exists a rank 1 subbundle
L ⊂ V such that ϕ(L) = L and the restriction of L to S1

i is spanned by si.
Let L be the equivariant line bundle with eigenvalue ϵi over S1

i . Considering
V ⊗ L∗ it suffices to assume ϵi = 1 for all i. This is enough to ensure the
existence of a section s of V which restricts to si on S1

i and such that
ϕ(si) = si. This proves our claim. Choosing a ϕ-invariant hermitian metric
and taking the complement of L in V we have that V is the sum of L and
a lower rank equivariant bundle. The proposition now follows by induction
on rank. !

We give another description of equivariant K-theory, which though un-
conventional is well suited to spectral curves. Let V be a complex vec-
tor bundle with anti-linear isomorphism ψ : V → V ∗ covering f . We say
ψ is symmetric if (ψ(a))(b) = (ψ(b))(a) for all a, b. Let h be a hermitian
metric on V , taken anti-linear in the first factor. We can also view h as
an anti-linear isomorphism h : V → V ∗. We say h is compatible with ψ if
h(a, b) = ψ(a)(h−1ψ(b)). Setting ϕ = h−1 ◦ ψ, we have that ϕ : V → V is a
linear involution covering f and (V,ϕ) becomes a class in K0

Z2
(Σ). It is clear

that this class does not depend on the choice of compatible hermitian metric
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h. Therefore we may identify K0
Z2
(Σ) with the Grothendieck group of vector

bundles V equipped with a symmetric anti-linear isomorphism ψ : V → V ∗.
Note that over the fixed points of f , the map ψ defines an indefinite hermi-
tian form ⟨a, b⟩ = (ψ(a))(b). The signature of this form over each component
corresponds to the dimensions of the ±1-eigenspaces of the restriction of ϕ.

Consider the product Σ=Σ× [−1, 1] with involution τ(x, t)=(f(x),−t).
The quotient M = Σ̄/τ is a 3-manifold with boundary ∂M = Σ. From M we
obtain a distinguished subspace of representations of π1(Σ), those represen-
tations which extend as flat connections from Σ to M . Such representations
are fixed points of i2 [BarSch13]. Moreover, we can use equivariant K-theory
to characterise which fixed points of i2 arise in this manner.

Theorem 7. Let (V,Φ) be a solution of the Hitchin equations with a lift
of f to an involution ϕ : V → V preserving the associated flat connection
∇. Suppose also that ∇ has simple holonomy. Then ∇ extends over the
3-manifold M if and only if the class [V ] ∈ K̃0

Z2
(Σ) is trivial (possibly on

replacing ϕ by −ϕ).

Proof. Let Σ′ = Σ/f be the quotient which is a surface with boundary. There
is a homotopy equivalence M ≃ Σ′, so we can restate the problem in terms
of finding a local system on Σ′ such that the pullback to Σ gives the local
system of constant sections of ∇. If such a local system exists we must have
that ϕ or −ϕ acts as the identity on each fixed component by simplicity.
Conversely suppose that ϕ acts as the identity on each fixed component.
Then the local system of constant sections of ∇ can be factored by ϕ giving
the desired local system on Σ′. !

4.3. KR-theory and i3

Let (V,Φ) be a fixed point of i3 with simple holonomy. Again it is easiest
to describe fixed points in terms of the associated connection ∇. In this
case fixed points correspond to the condition that there is an anti-linear
isomorphism ϕ : V → V covering V and preserving∇. Since ϕ2 is covariantly
constant we have, assuming ∇ is simple, that ϕ2 = c for some non-zero
constant c. Then since ϕ3 = ϕ ◦ c = c ◦ ϕ we find c is real. After rescaling
we may assume that c is either 1 or −1. Since ∇ is simple it follows that
one and only one of these two cases can occur.

When c = 1 we have that f lifts to an anti-linear involution ϕ : V → V
preserving ∇. This gives V the structure of a real vector bundle in the sense
of Atiyah [Ati66] and a class [V ] ∈ KR0(Σ). The map ϕ is determined only
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up to rescaling by U(1) ⊂ C∗, but this action is trivial on KR0(Σ) so that
the class [V ] is independent of the choice of ϕ. Let n be the number of
components of the fixed point set of f . From the Mayer-Vietoris sequence
we have an isomorphism [KarWei03]

K̃R
0
(Σ) = {(d, x1, . . . , xn) ∈ Z⊕ Zn

2 | d = x1 + · · ·+ xn(mod 2)}.

For a bundle V real with respect to f , let d be the degree. For each fixed circle
component S1 ⊂ Σ of f the restriction V |S1 is a real line bundle over the
circle which has a first Stiefel-Whitney class w1(V |S1) ∈ H1(S1,Z2) = Z2.
Let x1, . . . , xn be the first Stiefel-Whitney classes of V restricted to the
fixed components. Then [V ] corresponds to (d, x1, . . . , xn). Conversely every

class in K̃R
0
(Σ) can be represented by a real bundle of rank m for any m.

When c = −1 we have that f lifts to an anti-linear isomorphism ϕ :
V → V preserving ∇ and ϕ2 = −1. This gives V a quaternionic structure.
Let KH0(Σ) denote the Grothendieck group of quaternionic vector bundles
on Σ. Then, from [Dup69] there is an isomorphism KH0(Σ) = KR−4(Σ).
Using this one finds

KH0(Σ) = Z2.

When the anti-holomorphic involution f on Σ has no fixed points there exists
a quaternionic line bundle L of degree g − 1(mod 2). Tensoring by L gives
the isomorphism KH0(Σ) ≃ KR0(Σ) = Z2. When f has fixed points any
quaternionic bundle must have even rank 2r and even degree 2d [BHH10].
Moreover every such pair (2r, 2d) occurs for if V is a complex bundle of rank
r and degree d, the bundle V ⊕ f∗(V ) admits a quaternionic structure. In
all cases we see that the KH-class of a quaternionic bundle is classified by
rank and degree.

From [BHH10] it can be deduced that the KR-theory class of a real
bundle E on Σ completely determines V as a real bundle. The same is true
for quaternionic bundles and KH-theory.

5. Spectral data of the fixed points

From [Hit87a], principalG-Higgs bundles have associated some spectral data
on which we can study the induced action of the involutions i1, i2 and i3.
In this section we study these fixed point sets in terms of the corresponding
spectral data.
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5.1. Spectral curves

The fibres of the Hitchin system are most easily seen using spectral curves,
introduced in [Hit87a]. Given a classical Higgs bundle (V,Φ) of rank m,
the spectral curve S is the set of points λ ∈ K satisfying the characteristic
equation

det(λ− Φ) = λm + a1λ
m−1 + · · ·+ am = 0,

where ai ∈ H0(Σ,Ki). From Bertini’s theorem S is smooth for generic a1,
. . . , am. For a smooth spectral curve S the projection K → Σ restricts to
S giving a branched m-fold cover p : S → Σ and the canonical bundle KS

of S is given by p∗Km. The eigenspaces of Φ define a line bundle U on S.
More precisely, U ⊗ p∗K is the cokernel of η − p∗Φ in p∗V ⊗ p∗K, where η
is the tautological section of p∗K [BNR89]. The bundle V is recovered as
the direct image sheaf V = p∗U and we recover Φ by pushing forward the
endomorphism η : U → U ⊗ p∗K.

Conversely, given a generic point a = (a1, . . . , am) ∈ AGL(m,C) and a line
bundle U over the corresponding spectral curve S, we obtain a Higgs bundle
by the above construction. This identifies the fibre of the Hitchin map over
a with the Picard variety Pic(S) of S. Let K1/2 be a spin structure on Σ. It
is convenient to define a new line bundle L such that U = L⊗ p∗K(m−1)/2.
Then if V = p∗(U), we have by Grothendieck-Riemann-Roch deg V = degL.
The map sending a line bundle L ∈ Pic(S) to the vector bundle V = p∗(L⊗
p∗K(m−1)/2) with corresponding Higgs field identifies the fibre of Md

GL(m,C)
over a with Picd(S), the space of degree d line bundles on S. In particular
the fibre of M0

GL(m,C) may be identified with the Jacobian Jac(S) of S.

5.2. Push-forward maps

For this section we take p : S → Σ to be an m-sheeted branched cover, not
necessarily given as a spectral curve and let KΣ,KS denote the correspond-
ing canonical bundles. Let K1/2

Σ ,K1/2
S be spin structures on Σ,S. Given

a holomorphic vector bundle W on S, set U = W ⊗K1/2
S ⊗ p∗K−1/2

Σ and
V = p∗(V ). Note that deg V = degW and rk(V ) = m.rk(W ).

For KO-theory we take W to be a rank k holomorphic bundle with com-
plex orthogonal structure. Choosing a compatible hermitian structure on W
we have a reduction to O(k), soW defines a class [W ] ∈ KO0(S). By relative
duality we obtain an isomorphism V ≃ V ∗, which is symmetric. Thus V has
an orthogonal structure and defines a class [V ] ∈ KO0(Σ). This construc-
tion defines a push-forward homomorphism p∗ : KO0(S) → KO0(Σ) in real
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K-theory. The choice of spin structures K1/2
Σ , K1/2

S are the KO-orientations
required to define the push-forward.

To consider the other K-theory groups suppose that f lifts to an anti-
holomorphic involution f̃ : S → S. We must choose spin structures com-
patibly. For this recall that to any compact Riemann surface Σ with anti-
holomorphic involution f , there exists a spin structure K1/2

Σ such that

f∗(K1/2
Σ ) ≃ K

1/2
Σ [Ati71]. In fact we have that f lifts to an anti-linear map

γΣ : K1/2
Σ → K1/2

Σ such that γΣ ⊗ γΣ : KΣ → KΣ is the map ω -→ f∗(ω). If
f has fixed points then γ2Σ = 1, and if f has no fixed points then γ2Σ = 1 if
g is odd and −1 if g is even [Ati71]. In other words, KΣ admits a real or
quaternionic square root K1/2

Σ . Similarly choose such a spin structure K1/2
S

on S with anti-linear isomorphism γS : K1/2
S → KS covering f̃ . If S1 ⊂ Σ is

a fixed component of f then γΣ defines a real structure on the restriction of
K1/2

Σ to S1. By squaring we obtain a real non-vanishing section of KΣ along
the circle and hence an orientation of the circle. Similarly we can use γS to
orient circles in S fixed by f̃ .

For equivariant K-theory we suppose that W is a holomorphic vector
bundle on S with a symmetric anti-linear isomorphism ψ : W → W ∗ cover-
ing f̃ . Recall that this defines a class [W ] ∈ K0

Z2
(S). For the push-forward

construction we require ψ to be holomorphic in the sense that if α is the germ
of a holomorphic section of W at s ∈ S, then ψ ◦ α ◦ f̃ is the germ of a holo-
morphic section of W ∗ as f̃(s). Set U = W ⊗K1/2

S ⊗ p∗K−1/2
Σ . Combining ψ

with γS , γΣ we obtain an isomorphism ψ′ : U → U∗ ⊗KS ⊗ p∗K−1
Σ . Setting

V = p∗(U) we have that ψ′ descends to a symmetric anti-linear isomorphism
V → V ∗ covering f and hence defines an equivariant vector bundle on Σ.
Sending W to p∗(W ⊗K1/2

S ⊗ p∗K−1/2
Σ ) defines a push-forward homomor-

phism p∗ : K0
Z2
(S) → K0

Z2
(Σ). When f has fixed points the following theorem

completely determines the push-forward in equivariant K-theory:

Theorem 8. Let S1 ⊂ Σ be a fixed component of f and m+,m− the dimen-
sions of the ±1-eigenspaces of the Z2-action on V over S1. If f̃ has no fixed
points then m+ = m−. If f̃ has fixed points then K1/2

Σ ,K1/2
S are real with

respect to f, f̃ . Let S1
1 , . . . , S

1
k ⊂ S be the fixed circle components of f̃ lying

over S1 and m+
i ,m

−
i the dimensions of the ±1-eigenspaces of the Z2-action

on W over S1
i . Let di be the degree of p : S1

i → S1 using the orientations
induced by γS , γΣ. Then

m+ −m− =
k∑

i=1

(m+
i −m−

i )di.
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Proof. Let x ∈ S1 be a point of S1 which is not a branch point. Consider
the points in the inverse image p−1(x). Pairs of points in p−1(x) exchanged
by f̃ will push down to give a Z2-action with ±1-eigenspaces of equal di-
mension, so will not contribute to m+ −m−. Therefore we need only con-
sider points in p−1(x) which are fixed by f̃ . Let x1i , . . . , x

ri
i be the points of

p−1(x) lying on S1
i . Let ξΣ be a real non-vanishing section of KΣ over S1

compatible with the orientation of S1 determined by γΣ and similarly let
ξji be a real non-vanishing section of KS over S1

i compatible with γS . Let
ϵji = ±1 according to whether p∗(ξΣ) is a positive or negative multiple of ξji ,
so di = ϵ1i + · · ·+ ϵrii . Let ϕ : W → W be the Z2-action, h : W → W a com-

patible hermitian metric and ψ = h ◦ ϕ : W → W ∗. Then U = W ⊗K1/2
S ⊗

p∗K−1/2
Σ and we obtain a map ψ̃ = ψ ⊗ γS ⊗ γ−1

Σ : U → U∗ ⊗KS ⊗ p∗K−1
Σ .

Choose eΣ ∈ (K1/2
Σ )x such that e2Σ = ξΣ(x) and eji ∈ (K1/2

S )xj
i
with (eji )

2 =

ξji (x
j
i ). Now let α,β ∈ Uxj

i
and write α = α′ ⊗ eji ⊗ e−1

Σ , β = β′ ⊗ eji ⊗ e−1
Σ

with α′,β′ ∈ Wxj
i
. Then, as ψ̃ is defined through relative duality, we have

ψ̃(α)β/dp = ψ(α′)β′ ⊗ ξji ⊗ ξ−1
Σ /dp. If p∗(ξΣ) = ρji ξ

j
i , this is (ρji )

−1ψ(α′)β′.
This contributes a sign of ϵji (m

+
i −m−

i ) to m+ −m−. Summing we obtain
the result. !

For the cases of real and quaternionic K-theory suppose W is a holomor-
phic bundle on S with real or quaternionic structure ϕ : W → W . To define
the push-forward we require ϕ to be holomorphic meaning the map α -→ ϕ ◦
α ◦ f̃ send holomorphic germs to holomorphic germs. Since K1/2

S ,K1/2
Σ carry

real or quaternionic structures it follows that the vector bundle U = W ⊗
K1/2

S ⊗ p∗K−1/2
Σ is similarly real or quaternionic and this structure descends

to V = p∗(U). If K1/2
S ,K1/2

Σ are both real or both quaternionic we obtain
homomorphisms p∗ : KR0(S) → KR0(Σ) and p∗ : KH0(S) → KH0(Σ). On
the other hand if one of K1/2

S ,K1/2
Σ is real and the other quaternionic, we ob-

tain push-forwards of the form p∗ : KR0(S) → KH0(Σ) and p∗ : KR0(S) →
KH0(Σ). The following Theorem, which can be proved similarly to Theo-
rem 8, completely determines the push-forward in KR-theory:

Theorem 9. Suppose W has a real structure with respect to f̃ . Let S1 ⊂ Σ
be a fixed component of f and ω the first Stiefel-Whitney class of V over
S1. If f̃ has no fixed points then ω = 0. If f̃ has fixed points then KS ,KΣ

have real square roots. Choose real square roots K1/2
S ,K1/2

Σ such that their
restriction over any fixed component of f̃ , f are trivial as real bundles. Let
S1
1 , . . . , S

1
k ⊂ S be the fixed circle components of f̃ lying over S1 and ωi the



Real structures on moduli spaces of Higgs bundles 543

first Stiefel-Whitney class of W over S1
i . Then

ω =
k∑

i=1

ωi (mod 2).

In the case where we start with a quaternionic bundle on S the push-
forward follows from Grothendieck-Riemann-Roch.

5.3. Spectral data and K-theory

Let (V,Φ) be a Higgs bundle with GL(m,R)-holonomy and L the corre-
sponding spectral line bundle, hence V = p∗(L⊗K(m−1)/2). By Theorem 3
we have L ≃ L∗, so L2 is trivial and L is a real line bundle on S. Then L
defines a class [L] ∈ KO0(S) and we see that the KO-theory class of V is
given by the push-forward [V ] = p∗[L]. This observation was recently made
by Hitchin [Hit13] and was used to relate the second Stiefel-Whitney class
of V to the mod 2 index of L. Note that the fixed points of i1 with holon-
omy in GL(m/2,H) always have singular spectral curves [HitSch13], so on
restricting to smooth fibres we do not see these fixed points.

Next consider fixed points of the involution i2. Let h : MGL(m,C) →
AGL(m,C) be the Hitchin fibration, where for GL(m,C) we have AGL(m,C) =⊕m

i=1H
0(Σ,Ki). Let f : AGL(m,C) → AGL(m,C) be the map sending a holo-

morphic differential ω to f∗(ω). We show in [BarSch13] that h ◦ i2 = f ◦ h.
Therefore the fixed points of i2 lie over fixed points of f . Let p : S → Σ be
a non-singular spectral curve associated to a fixed point a ∈ AGL(m,C) of
f : AGL(m,C) → AGL(m,C). We extend f to an involution f̃ : K → K on the
total space of K by setting f̃(x) = f∗(x) for x ∈ K. Then since S corre-
sponds to a fixed point a ∈ AGL(m,C), we find that f̃ restricts to an anti-
holomorphic involution on S covering f . Choosing a spin structure K1/2, we
identify the fibre of the Hitchin map over a with the Picard variety Pic(S).
Assume that the chosen spin structure K1/2 is preserved by f , so we obtain
a real or quaternionic structure γ : K1/2 → K1/2. The action of i2 on the
fibre Pic(S) is then given by L -→ f̃∗(L

∗
) [BarSch13]. Choosing a hermitian

structure on L which is f̃ -invariant, we have L ≃ f̃∗(L), so the involution
f̃ lifts to L defining a class [L] ∈ K0

Z2
(S). The class of V in K0

Z2
(Σ) is then

given by the push-forward [V ] = p∗[L]. As discussed previously the class of
[V ] in equivariant K-theory is only well-defined modulo replacing the invo-
lution ϕ : V → V with −ϕ. This corresponds to the ambiguity in lifting f̃
to an involution on L.
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Using Theorem 8 we can determine which classes in K0
Z2
(Σ) lie in the

image of the push-forward. Note that the push-forward depends on the topol-
ogy of S,Σ and the maps f̃ , f , but not the complex structures. The classes
in the image of p∗ are the isomorphism classes of equivariant bundles which
admit an equivariant flat connection with reductive holonomy and smooth
spectral curve. The condition [V ] ∈ im(p∗) may be interpreted as an ana-
logue of the Milnor-Wood inequality for equivariant flat connections.

Finally, consider fixed points of the involution i3. For a Higgs bundle
(V,Φ) we have i3(V,Φ) = (f∗(V ), f∗(Φ)). It follows that h ◦ i2 = f ◦ h, so
that fixed points of i3 must lie over fixed points of f : AGL(m,C) → AGL(m,C).
Let a ∈ AGL(m,C) be a fixed point corresponding to a smooth spectral curve
p : S → Σ. As before we have an anti-holomorphic involution f̃ : S → S.
Choosing an f -invariant spin structure K1/2 we have that the action of
i3 on the fibre Jac(S) is given by L -→ f̃∗(L). Fixed points correspond to
line bundles with L ≃ f∗(L). Thus L carries either a real or quaternionic
structure which pushes down to a real or quaternionic structure on V =
p∗(L⊗K(m−1)/2). The class of V in KR- or KH-theory is then the push-
forward [V ] = p∗[L].

Remark 10. Given a spin structure K1/2, recall that in [Hit92] Hitchin
constructed a section s : AGL(m,C) → MGL(m,C) of the Hitchin fibration

which is invariant under i1. Choosing K1/2 with f∗(K
1/2

) ≃ K1/2, we have
that s is fixed by all three involutions i1, i2, i3. This shows that the fixed
point sets of i1, i2, i3 are non-empty and contain smooth points.

Using Theorem 9 we may determine which classes in KR-theory lie in
the image of the push-forward. This gives a constraint on the topology of
a real bundle [V ] to admit a real flat connection with reductive holonomy
and smooth spectral curve. In this case the constraint for [V ] to lie in the
image of p∗ is simple to state: for each fixed component S1 ⊂ Σ of f for
which p−1(S1) contains no fixed point of f̃ , we require V |S1 to be trivial as
a real bundle.

6. Fixed points as representations

In this section we give a representation theoretic description of the fixed
point set of the involutions for any complex semisimple group G. The case
of reductive groups is similar but one must replace the fundamental group
by a central extension.
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6.1. Fixed points of i1 and real holonomy

A representation φ : π1(Σ) → G is called reductive if the induced action of
π1(Σ) on g by the adjoint representation decomposes into a direct sum of
irreducible representations. Let Hom+(π1(Σ), G) be the set of all reductive
representations of π1(Σ) into G given the compact-open topology. The group
G acts on this space by conjugation and the quotient Hom+(π1(Σ), G)/G
is Hausdorff [Ric88]. As discussed in Section 2.2 there is a homeomorphism
between the moduli space of polystable Higgs bundles and the character va-
riety Hom+(π1(Σ), G)/G of reductive representations. The correspondence
sends a solution (∂A,Φ) of the Hitchin equations to the monodromy rep-
resentation of the associated connection ∇ = ∇A + Φ+ Φ∗. We say that a
reductive representation φ : π1(Σ) → G is simple if for all g ∈ G such that
Adg ◦ φ = φ, we have g ∈ Z(G).

Consider a basepoint x0 ∈ Σ and write π1(Σ) for π1(Σ, x0). Let γ be a
path from x0 to f(x0) and define f∗ : π1(Σ) → π1(Σ) by f∗(p) = γ.f(p).γ−1.
For µ = [γ.f(γ)] ∈ π1(Σ) one has f2

∗ (p) = Adµ(p) and f∗(µ) = µ. In terms of
conjugacy classes of representations φ : π1(Σ) → G, the involutions i1, i2, i3
take the form

i1(φ) = σ ◦ φ,
i2(φ) = φ ◦ f∗,
i3(φ) = σ ◦ φ ◦ f∗.

This description of the involutions makes the relation i1i2 = i3 especially
clear.

Let σ,σ′ be anti-involutions of G. Following [G-P07], we say that σ,σ′

are inner equivalent if σ′ = Adh ◦ σ for some h ∈ G. Note that it is possible
for distinct real forms to be inner equivalent.

Proposition 11. Let φ : π1 → G be a simple fixed point of i1. Then there
exists an anti-involution σ′ inner equivalent to σ such that σ′ ◦ φ = φ. Con-
versely if σ′ is inner equivalent to σ and φ is a reductive representation with
σ′ ◦ φ = φ, then φ is a fixed point of i1.

Proof. If φ is a fixed point of i1 then σ ◦ φ = Adg ◦ φ for some g ∈ G. Ap-
plying σ twice and using simplicity gives σ(g)g ∈ Z(G). Let σ′ = Adg−1 ◦ σ.
Then σ′ is an anti-holomorphic involution inner equivalent to σ. Clearly we
have σ′ ◦ φ = φ. The proof of the converse is immediate. !
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Remark 12. For example if we consider GL(m,R) ⊂ GL(m,C) then aside
from GL(m,R) itself the only inner equivalent real form is GL(m/2,H)
which occurs when m is even.

Remark 13. Properties of inner equivalent involutions in relation with
Higgs bundles appear in [G-P07] and are also currently being studied in
[G-PR].

6.2. Fixed points of i2, i3 and orbifold representations

The fixed points of i2, i3 can be described in terms of the orbifold funda-
mental group πorb

1 (Σ) of Σ. This group is related to the usual fundamental
group by a short exact sequence

(3) 1 → π1(Σ) → πorb
1 (Σ)

ν→ Z2 → 1.

To describe this group we consider separately the cases where f has fixed
points or not. If f acts freely then the quotient Σ′ = Σ/f is a compact
non-orientable surface. The orbifold fundamental group is simply the funda-
mental group of Σ′ and (3) becomes the usual exact sequence for a double
cover. When f has fixed points, we take our basepoint x0 to be a fixed point
and γ to be the constant path. In this case f∗ is an involution and πorb

1 (Σ)
is the semi-direct product πorb

1 (Σ) = Z2 ! π1(Σ), where Z2 acts on π1(Σ)
by f∗. In either case we may take the orbifold fundamental group to be
Z2 × π1(Σ) with product given by (0, x)(0, y) = (0, xy), (0, x)(1, e) = (1, x),
(1, e)(0, x) = (1, f∗(x)), (1, e)(1, e) = (0, µ).

Let c : Z2 × Z2 → Z be given by c(1, 1) = 1, and c(u, v) = 0 otherwise.
Then c is a 2-cocycle representing the non-trivial class in H2(Z2,Z) = Z2.
Let π̃orb

1 (Σ) be the central extension of πorb
1 (Σ) by Z corresponding to ν∗(c) ∈

H2(πorb
1 (Σ),Z). Observe that the extension class ν∗(c) ∈ H2(πorb

1 (Σ),Z) is
trivial when restricted to π1(Σ) so we obtain a short exact sequence

1 → π1(Σ)× Z → π̃orb
1 (Σ)

ν̃→ Z2 → 1.

Explicitly π̃orb
1 (Σ) is the group generated by π1(Σ)× Z together with

an element y modulo the relations yx = f∗(x)y, yz = zy, y2 = zµ, where
x ∈ π1(Σ) and z is a generator of Z.

Proposition 14. There is a bijection between conjugacy classes of repre-
sentations ψ : π̃orb

1 (Σ) → G and equivalence classes of pairs (φ, u), where φ :
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π1(Σ) → G is a representation, and u ∈ G such that φ ◦ f∗ = Adu ◦ φ. Two
pairs (φ, u), (φ′, u′) are equivalent if φ′ = Adh ◦ φ and u′ = Adh(u) for some
h ∈ G.

Proof. Given ψ : π̃orb
1 (Σ) → G, we let φ be the restriction of ψ to π1(Σ) ⊂

π̃orb
1 (Σ) and take u = ψ(y). This gives the desired bijection. !

The above establishes that fixed points of i2 correspond to representations
of π̃orb

1 (Σ). On the other hand there is an obstruction to representing a fixed
point of i2 as a representation of πorb

1 (Σ). Suppose that φ is a simple point
fixed by i2. Then φ ◦ f∗ = Adu ◦ φ for some u ∈ G. Since φ is simple any two
such u differ by an element of Z(G). Applying f∗ twice and using simplicity
we find c = u2φ(µ)−1 ∈ Z(G). In order to extend φ to a representation of
πorb
1 (Σ) we need to find such a u with u2φ(µ)−1 = e. Replacing u by uv for

v ∈ Z(G) we get (uv)2φ(µ)−1 = cv2. Hence the obstruction to extending φ
to an orbifold representation is a class in Z(G)/2Z(G).

The case of fixed points of i3 is similar. For this let G̃ be the semi-direct
product Z2 !G, where Z2 acts on G by σ. Let π : G̃ → Z2 be the projection.

Proposition 15. There is a bijection between conjugacy classes of rep-
resentations ψ : π̃orb

1 (Σ) → G̃ such that π ◦ ψ = ν̃ and equivalence classes
of pairs (φ, u), where φ : π1(Σ) → G is a representation, and u ∈ G such
that σ ◦ φ ◦ f∗ = Adσ(u) ◦ φ. Two pairs (φ, u), (φ′, u′) are equivalent if φ′ =
Adh ◦ φ and u′ = huσ(h)−1 for some h ∈ G.

It follows that every fixed point of i3 extends to a representation of
π̃orb
1 (Σ). As in the case of i2 we can consider the problem of extending a fixed

point of i3 to a representation of πorb
1 (Σ). Suppose φ is a simple fixed point of

i3, so σ ◦ φ ◦ f∗ = Adσ(u) ◦ φ for some u ∈ G. Applying the involutions σ and
f∗ twice and using simplicity we obtain an element c = uσ(u)φ(µ)−1 ∈ Z(G)
such that σ(c) = c. Replacing u by uv for v ∈ Z(G) we have c -→ cvσ(v),
so we obtain a class in Z ′ = {c ∈ Z(G) | c = σ(c)}/{vσ(v) | v ∈ Z(G)}. This
class is the obstruction to lifting φ to a representation φ̃ : πorb

1 (Σ) → G̃ with
π ◦ φ̃ = ν.

For example when G = GL(m,C) and σ is conjugation we find Z ′ = Z2.
In this case the trivial class in Z ′ corresponds to real bundles and the non-
trivial class to quaternionic bundles.
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7. Duality

Let LG be the Langlands dual group of G. There is a correspondence between
invariant polynomials for G and LG giving an identification AG ≃ ALG.
The moduli spaces MG,MLG are then torus fibrations over a common base
and their non-singular fibres are dual abelian varieties [DoPa12]. Kapustin
and Witten give a physical interpretation of this in terms of S-duality, us-
ing it as the basis for their approach to the geometric Langlands program
[KW07]. In this approach a crucial role is played by the various types of
branes and their transformation under mirror symmetry. This duality ex-
changes branes according to (B,B,B) ↔ (B,A,A), (A,B,A) ↔ (A,B,A),
(A,A,B) ↔ (A,A,B). We consider here the question of how this duality acts
on the fixed point sets of the real structures i1, i2, i3. We make some conjec-
tures without attempting to give rigorous justifications. We let Ba

G ⊂ MG

denote the fixed point set of ia for a = 1, 2, 3.
The simplest case is the fixed point set of i2, which is of type (A,B,A).

Since the definition of i2 requires only the choice of anti-holomorphic invo-
lution f , we have a corresponding involution î2 on MLG with fixed point set
an (A,B,A)-brane B̂2

LG ⊂ MLG. We conjecture that B̂2
LG is the dual brane

to B2
G. We give some evidence for this in [BarSch13].
Consider next the (A,A,B)-brane B3

G⊂MG. Since the dual brane B̂3
LG⊂

MLG is also of type (A,A,B) one might conjecture that it is the fixed point
set of a corresponding involution î3. To define î3 we need to choose a real
structure σ̂ on LG. If G is a simple group not of type Bn, Cn, the Lie algebras
of G and LG coincide and we have a natural choice for σ̂. The Bn, Cn cases
however remain a mystery.

The most interesting case is the (B,A,A)-brane B1
G ⊂ MG. The dual

B̂1
LG ⊂ MLG must be of type (B,B,B), a submanifold which is complex

with respect to I, J,K. One natural way of constructing (B,B,B)-branes in
MLG is to take a complex subgroup H ⊂ LG and to let B̂1

LG be the space of
LG-Higgs bundles with holonomy in H. It remains to find a natural choice
of subgroup H. In [Nad05] a correspondence between real structures on G
and complex subgroups of the dual group LG is given. We conjecture that
the correspondence given in [Nad05] determines the correct dual brane to
B1
G. Some evidence for this duality in the case U(m,m) ⊂ GL(2m,C) ↔

Sp(2m,C) ⊂ GL(2m,C) has been shown by Hitchin in [Hit13].
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École Norm. Sup. (4) (1971), vol. 4, 47–62.

[BarSch13] D. Baraglia and L. P. Schaposnik, Higgs bundles and (A,B,A)-
branes, arXiv:1305.4638, (2013).
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