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Abstract We present a shooting-bouncing approach to ray-tracing  
as applied to signal propagation modeling in electrically large 
waveguides, such as underground mine tunnels at wireless 
communication frequencies. The method is verified for a dominant-
mode rectangular metallic waveguide excited by a dipole antenna. 
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I. INTRODUCTION 
This paper addresses application of computational 

electromagnetics (CEM) to signal propagation modeling in 
underground mines. One of our main approaches to the wireless 
propagation analysis of underground mines, which is an 
extremely challenging CEM problem, relies primarily on 
shooting-bouncing rays (SBR) ray-tracing (RT).  

Using traditional full-wave EM solvers for microwave 
frequencies in an underground mine may prove impractical in 
many cases due to computation run time required, as well as 
memory requirements, depending on the particular technique 
employed. Ray-tracing provides a significant decrease in 
computational run time for these electrically large structures. 
Ray-tracing methods enable propagation modeling in very 
complicated scenarios such as railway stations, and they can 
provide useful prediction of signal loss characteristics [1,4]. 

 
II. RAY TRACING THEORY 

The shooting-bouncing rays approach in RT involves 
launching a set of test rays in all directions in which propagation 
from the source can be expected. These rays are then traced 
through the scene, and their intersections with objects in the 
scene recorded. This method is described in detail in [1]. The 
electric field at a desired location in the scene is then found  
by employing an ideal plane wave approximation for each  
ray. Then, using the reflection coefficients based on surface 
parameters for each reflection, the final electric field at the 
desired observation point can be approximated due to each ray 
path between the source and observation point [3]. This process 
may be repeated for several observation points to produce a 2D 
or 3D field profile at a desired location in the scene.  

When a 2D field profile is desired, we discretize the plane 
of the desired field profile into a grid of uniform pixels or  

grid blocks. The complex-valued field vectors of all rays 
intersecting a given block are added to approximate the total 
field at that block due to the given source and scene geometry. 
This process naturally approximates interference. While this 
introduces phase and magnitude error, the error can be 
minimized by ensuring the grid blocks are small relatively  
to the wavelength, and that a large number of rays are used,  
such that each block has a sufficiently high sample density to 
accurately approximate the field. 

The shooting-bouncing approach to ray-tracing is 
advantageous because it is conveniently parallelizable which 
allows for efficient and expeditious computations. This is 
essential because it enables analysis of problems that require 
very high ray counts to achieve sufficient sample density for 
field convergence. Another benefit to the acceleration (by 
parallelization) of ray-tracing is that larger structures can be 
evaluated for signal propagation characteristics more easily and 
more quickly. This technique may be further accelerated by 
reducing the total cost of ray to facet (environment objects) 
intersection tests. The rays that propagate in this model interact 
with environment objects that cause the rays to be reflected. 
These interactions with the environment can be optimized using 
space-partitioning trees that efficiently store and access obstacles 
located in the environment (similar to a binary search tree) 
[1,2]. 

 
III. RESULTS AND DISCUSSION 

Testing of the ray-tracing method we developed was 
conducted on a perfect electric conductor (PEC) rectangular 
waveguide. This scene was chosen because of the ability to 
compare with an analytic solution for verification. The 
waveguide dimensions are chosen to be 0.5842 m × 0.2921 m, 
and the waveguide was excited with a Hertzian dipole antenna 
of unit peak field magnitude and frequency 350 MHz. The 
observation plane was placed 50 cm from the source. Operation 
frequency was chosen to only propagate the dominant TE10 
mode in this waveguide.  

This waveguide embodies a very challenging case for ray-
tracing, as it is PEC, so all reflections must be considered (this 
is a completely convex scene), and it is not electrically very 
large, as convenient in ray-tracing technique.  
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The analytical solution for the dominant mode in the 
rectangular PEC waveguide states that the electric field should 
be uniform in the direction parallel to the short axis of the 
waveguide, and vary with a half-cosine in the axis parallel with 
the long axis of the waveguide. Figure 1 shows the result of the 
ray-tracing method on this scene. 
 

 
 
Fig. 1. Magnitude of the electric field for the waveguide excited 
with a Hertzian dipole at 350 MHz. The cutoff frequency for 
the waveguide is 256 MHz, which only allows propagation of 
the TE10 mode.  
 

We observe in Fig. 1 the expected trends along both axes. 
The magnitude varies only slightly along y for any x coordinate 
in the waveguide, and the magnitude is peaked in x at the center 
of the waveguide, and is relatively symmetrical about the center 
of the waveguide. 

The final electric field is found by summing a discrete 
number of uniform plane waves at the observation plane. The 
number of rays that intersect the observation plane determines 
the number of plane waves. The solution generated by a ray-
tracing method should converge to the analytical solution as  
the number of rays increases. Figure 2 shows the electric field 
magnitudes for a cross section of the waveguide for varying 
numbers of rays. 
 

 
 
Fig. 2. Electric field magnitude in the cross section of the 
waveguide, with the waveguide parameters and excitation 
frequency remaining identical to Fig. 1. The number of rays was 
varied from 100 thousand rays to 10 million rays. 

 
We observe from Fig. 2 the expected convergence of the 

ray tracing results with increasing the number of rays in the 
simulation. As the number of rays increases, the cross-section 

magnitude begins to smoothen to a cosine. The analytical 
solution states the electric field should be zero at the walls of 
the waveguide. The ray-tracing method results in a symmetrical 
offset of approximately 0.2 units on the edges. The offset is a 
result of the loss of accuracy from sending a finite number of 
rays resulting in a finite sampling density. 

Each ray is terminated after a given number of reflections; 
if it did not reach the observation plane within the reflection 
limit, it will not contribute to a field at observation location. The 
solution should converge as the number of permissible 
reflections increases, as each additional ray that intersects the 
observation plane increases the sampling density. Figure 3 
shows the cross-sectional magnitude for varying number of 
reflections. 
 

 
 
Fig. 3. Electric field magnitude based on the reflection order. 
The waveguide parameters remain identical to Fig. 1. The 
reflection order allowed varied from 1 to 25. 
 

We observe from Fig. 3 a good convergence of the ray 
tracing results to the offset cosine as reflection order increases. 
The error is worst for low reflection order, and best for high 
reflection order, as expected. 
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