

# First-Principles Calculation of Jahn–Teller Rotational Distortion Parameters

Published as part of *The Journal of Physical Chemistry* virtual special issue “Pacific Conference on Spectroscopy and Dynamics”.

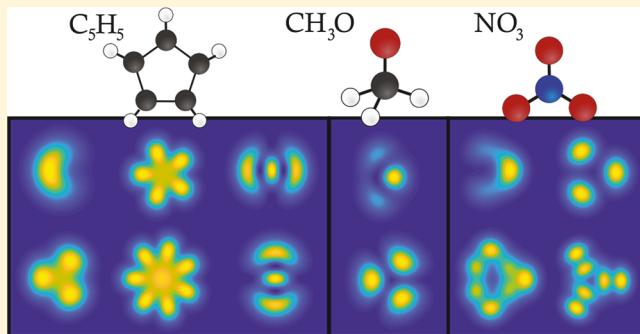
Ketan Sharma,<sup>\*,†</sup> Scott Garner,<sup>†,¶</sup> Terry A. Miller,<sup>\*,†,§</sup> and John F. Stanton<sup>‡,§</sup>

<sup>†</sup>Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States

<sup>‡</sup>Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States

## Supporting Information

**ABSTRACT:** A theoretical and computational framework is presented for the parameters  $h_1$  and  $h_2$  that appear in the rotational Hamiltonian for molecules subject to the Jahn–Teller effect. Expressions that relate  $h_1$  and  $h_2$  to first and second moments of the degenerate normal coordinates as well as derivatives of the inertia tensor are presented in detail for both cylindrical and Cartesian coordinate systems. The method is demonstrated for three situations in which experimental information about  $h_1$  (and/or  $h_2$ ) is available: the ground  $^2E_1'$  and  $^2E$  states of the cyclopentadienyl ( $C_5H_5$ ) and methoxy ( $CH_3O$ ) radicals, respectively, and the excited  $^2E''$  state of the nitrate ( $NO_3$ ) radical. Results for  $h_1$  and  $h_2$  parametrized by *ab initio* calculations exhibit good agreement with measured values, and they are demonstrably superior to those obtained with an approach based on first-order perturbation theory. The computational technology developed for  $h_1$  and  $h_2$  can be used to benchmark quantum chemistry calculations for molecules with Jahn–Teller effects and facilitate the analysis of their spectra.



## 1. INTRODUCTION

Conical intersections (CIs) on potential energy surfaces<sup>1–3</sup> play an important role in molecules, affecting many aspects of their behavior that range from reaction dynamics to spectroscopic signatures.<sup>4,5</sup> While it was once thought that CIs dictated by symmetry (those which epitomize the Jahn–Teller (JT) effect) were far more common than those resulting from accidental degeneracies, it is now widely appreciated that intersections of two or more electronic states are ubiquitous. The last few decades have witnessed many advances made in the study of CIs, and this is now known to be a field of great relevance.

Studies of CIs are made from both the experimental and theoretical viewpoints. In the former area, the short passage time through the CI region in dynamical processes limits what can be learned from experiment, a consequence of the time-energy uncertainty principle. Theoretical calculations are also difficult, as the electronic problem must be solved in a multidimensional space, a fact that compromises the ability of standard single-reference quantum chemical methods (MP2, CCSD(T), etc.) to perform as they do for simpler problems.

The venerable Jahn–Teller problem,<sup>6</sup> where the CI is present because of symmetry, and for which the relatively low-energy dynamics tend to take place in the vicinity of the CI, is a convenient and appropriate case for the development and

testing of theoretical and experimental methods for characterizing CIs. There is a long history of these studies, and many advances have been made in both theory and experiment.<sup>7–11</sup>

Experimental studies of the JT effect that provide information about the CIs are generally based on electronic spectroscopy. The levels measured experimentally can be fit by effective Hamiltonians (typically those characterized by linear and quadratic JT models). These Hamiltonians contain information about the adiabatic potential energy surfaces (PES) that comprise the CI, and also allow the prediction of other level positions that are not observed experimentally, due either to selection rules or to intrinsically weak transitions. Quantum chemical calculations can also be used to determine properties of CIs. Once an appropriate treatment of the electronic Hamiltonian is found (such as methods based on equation-of-motion coupled-cluster (EOM-CC)<sup>12–14</sup> or those based on complete active space self-consistent-field (CASSCF) calculations<sup>15</sup>), the adiabatic surfaces can be computed directly, and properties of the CI such as the JT stabilization energy (JTSE) (the energy difference between the minimum along the CI seam and the global minima of the JT-distorted

Received: April 10, 2019

Revised: May 15, 2019

Published: May 22, 2019

molecule) and pseudorotation barriers are easily obtained. With more effort, quantum chemical calculations can be used to parametrize the aforementioned effective Hamiltonians, which can subsequently be diagonalized to obtain eigenvalues and eigenfunctions, the energy differences between the former giving frequencies in spectra and the latter characterizing the nature of the states involved.

Both experimental and theoretical studies of the JT effect are difficult, and it is desirable to find a way in which these distinctly different approaches can reinforce each other. It is interesting that even a very logical first step in this process—the calibration of theoretical calculations by comparison to experimental results—has turned out to be somewhat problematic. Specifically, it transpires that potential energy surface measures such as the JTSE and pseudorotation barriers that have been inferred from experimental level positions via the effective Hamiltonian approach sometimes agree quite poorly with those obtained directly by sophisticated quantum chemical calculations. While this is the expected result if the model Hamiltonian approach is unable to fit the experimental levels well, a recent work<sup>16</sup> by some of us shows that model Hamiltonian fits can provide quite poor representations of the computed adiabatic potential energy surfaces even when they provide excellent fits to level positions obtained from vibronic structure in spectra.

In this work, we explore how rotational structure in spectra can be used to compare experimental studies of JT molecules with theoretical calculations. The JT effect lowers the symmetry of a molecule by distorting its PES, which leads to the well-known departure of its vibrational (vibronic) structure from that of a typical harmonic oscillator model with small anharmonicities. The molecule's geometry at the PES minimum can be significantly distorted from its high symmetry configuration, which leads to rotational structure markedly different from that expected from the symmetric-top model appropriate to the highly symmetric geometry of the CI.

JT effects on the rotational structure of molecules were first considered by Child and co-workers.<sup>17,18</sup> Subsequently, Hougen<sup>19</sup> introduced two parameters, denoted  $h_1$  and  $h_2$ , that characterize the effect of JT distortion on the rotational structure. While seminal, his analysis was strictly based on group theory, and therefore, it provided no physical explanation of the parameters and hence no basis for interpreting their experimental values or their calculation by quantum chemistry.

Shortly after Hougen's work, Watson<sup>20</sup> provided a physical explanation of two parameters comparable to  $h_1$  and  $h_2$  and correspondingly provided an approximate method for their calculation. His approach was very important in that it derived an effective rotational Hamiltonian that reflected the JT distortion of the PES. Not unexpectedly, given the era of Watson's work, his approach for computing the parameters has significant limitations. Specifically, his results are limited to a linear JT effect, which, moreover, has to be small since his approach was effectively a first order perturbation calculation, which would result in, at best, uncertain vibronic eigenfunctions if the JT distortions are significant. In addition, the power series expansion of the distortion parameters was truncated at first order. Finally, his work provided an approximate formula appropriate only for the zero-point level of the molecule.

Obviously tremendous computational advances have occurred in the meantime. As indicated earlier, vibronic eigenfunctions can now be determined using information from

quantum chemistry calculations of the PES. It is the purpose of this paper to develop a procedure for predicting values of the  $h_1$  and  $h_2$  parameters from calculated vibronic Hamiltonians and to test the method against experimental results for several JT active molecules.

To accomplish this, we review the effective rotational Hamiltonian for JT active molecules and derive an approach to compute  $h_1$  and  $h_2$  from the results of quantum chemistry calculations. There have been spectral analyses<sup>4,21</sup> yielding values of  $h_1$  and/or  $h_2$  for several JT-active molecules, among these being cyclopentadienyl ( $C_5H_5$ ), methoxy ( $CH_3O$ ), and nitrate ( $NO_3$ ) radicals. Here, we calculate parameters for these molecules and compare them to the experimental measurements. We also use our computational results to elucidate some general characteristics of  $h_1$  and  $h_2$  and relate these to the nature of the vibronic eigenfunctions.

The computational technology developed and described herein to compute  $h_1$  and  $h_2$  has significant potential for helping to calibrate the quality of theoretical calculations of the JT effect. Provided accurate experimental determination of the parameters is achieved (which however is not a trivial undertaking), then the quality of the calculated values can be unambiguously assessed, since they correspond precisely to what is measured. Thus, a comparison of calculated and experimental values of  $h_1$  and  $h_2$  is meaningful; in a sense, apples are being compared to apples and oranges to oranges. Historically, this is not the way that quantum chemical calculations of the JT effect have been benchmarked. It has rather been the *de facto* standard to compute potential energy surfaces and then compare these to properties of these surfaces (specifically the JTSE and pseudorotation barriers) extracted from experimentally based vibronic Hamiltonians. This is clearly a less straightforward comparison, as the surfaces are what is calculated but not really what is "measured" in the experiments and what goes on between the measurement of the energy levels and the construction (and necessary truncation) of the vibronic Hamiltonian can strongly undermine the fidelity of the resulting surface, as has recently been demonstrated.

## 2. THEORETICAL BACKGROUND AND DEVELOPMENT

**2.1. Microscopic Rotational Hamiltonian.** Since we are dealing with modification of rotational structure by the JT effect, a good starting place for our analysis is the general expression for the rotational kinetic energy of a nonrigid molecule,  $H_R$ , which is given as<sup>19</sup>

$$H_R = [R_\alpha \ R_\beta \ R_\sigma] \begin{bmatrix} B_{\alpha\alpha} & B_{\alpha\beta} & B_{\alpha\sigma} \\ B_{\beta\alpha} & B_{\beta\beta} & B_{\beta\sigma} \\ B_{\sigma\alpha} & B_{\sigma\beta} & B_{\sigma\sigma} \end{bmatrix} \begin{bmatrix} R_\alpha \\ R_\beta \\ R_\sigma \end{bmatrix} \quad (1)$$

The components of the rotational constant tensor,  $B$ , are a function of nuclear coordinates ( $R_N$ ). The nuclear coordinates can be described in terms of a reference geometry ( $R_0$ ) and normal mode coordinates ( $q_N$ ) with  $q_N = 0$  at  $R_0$ .  $R$  is the rotational angular momentum, defined as

$$R \equiv J - L - G - S = N - L - G \quad (2)$$

where  $N \equiv J - S$ , with  $J$  and  $S$  being the total angular momentum of the molecule (excluding nuclear spin) and the electron spin, respectively. The electronic ( $L$ ) and the

vibrational ( $G$ ) angular momenta are conventionally combined to form the “vibronic” angular momentum

$$\boldsymbol{\pi} \equiv \mathbf{L} + \mathbf{G} \quad (3)$$

The components  $\alpha$ ,  $\beta$ , and  $\sigma$  in eq 1, can be expressed in Cartesian coordinates ( $x$ ,  $y$  and  $z$ ) or cylindrical coordinates ( $\pm = re^{\pm i\theta} = x \pm iy$  and  $z = z$ ) which are related by a transformation matrix  $\mathbf{U}$ ,

$$\mathbf{U} = \begin{bmatrix} 1 & i & 0 \\ 1 & -i & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \mathbf{U}^{-1} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{i}{2} & \frac{i}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad (4)$$

The components of the inertia tensor are quadratic functions of the coordinates and therefore transform contravariantly

$$\begin{bmatrix} \mathbf{B}_{++} & \mathbf{B}_{+-} & \mathbf{B}_{+z} \\ \mathbf{B}_{-+} & \mathbf{B}_{--} & \mathbf{B}_{-z} \\ \mathbf{B}_{z+} & \mathbf{B}_{z-} & \mathbf{B}_{zz} \end{bmatrix} = \begin{bmatrix} \frac{1}{4}(\mathbf{B}_{xx} - \mathbf{B}_{yy} - i(\mathbf{B}_{yx} + \mathbf{B}_{xy})) & \frac{1}{4}(\mathbf{B}_{xx} + \mathbf{B}_{yy} + i(\mathbf{B}_{xy} - \mathbf{B}_{yx})) & \frac{1}{2}(\mathbf{B}_{xz} - i\mathbf{B}_{yz}) \\ \frac{1}{4}(\mathbf{B}_{xx} + \mathbf{B}_{yy} + i(\mathbf{B}_{yx} - \mathbf{B}_{xy})) & \frac{1}{4}(\mathbf{B}_{xx} - \mathbf{B}_{yy} + i(\mathbf{B}_{yx} + \mathbf{B}_{xy})) & \frac{1}{2}(\mathbf{B}_{xz} + i\mathbf{B}_{yz}) \\ \frac{1}{2}(\mathbf{B}_{zx} - i\mathbf{B}_{zy}) & \mathbf{B}_{zz} & \end{bmatrix} \quad (6)$$

The inverse relationship is

$$\mathbf{B}(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \mathbf{U}^T \mathbf{B}(+, -, z) \mathbf{U} \quad (7)$$

The rotational Hamiltonian in eq 1 can be recast in terms of raising and lowering operators

$$\mathbf{N}_\pm = \mathbf{N}_x \pm i\mathbf{N}_y \quad (8)$$

$$\boldsymbol{\pi}_\pm = \boldsymbol{\pi}_x \pm i\boldsymbol{\pi}_y \quad (9)$$

Using eqs 1–3 and these operators, we can rewrite  $H_R$  as

$$\begin{aligned} \mathbf{H}_R = (\mathbf{N} - \boldsymbol{\pi})^T \mathbf{B}(\mathbf{N} - \boldsymbol{\pi}) &= \mathbf{N}^T \mathbf{B} \mathbf{N} - (\mathbf{N}^T \mathbf{B} \boldsymbol{\pi} + \boldsymbol{\pi}^T \mathbf{B} \mathbf{N}) \\ &+ \boldsymbol{\pi}^T \mathbf{B} \boldsymbol{\pi} = \mathbf{H}_R^0 + \mathbf{H}_R^1 + \mathbf{H}_R^2 \end{aligned} \quad (10)$$

where

$$\begin{aligned} \mathbf{H}_R^0 &= \mathbf{B}_{-+} \boldsymbol{\pi}_- \boldsymbol{\pi}_+ + \mathbf{B}_{+-} \boldsymbol{\pi}_- \boldsymbol{\pi}_+ + \mathbf{B}_{--} \boldsymbol{\pi}_+^2 + \mathbf{B}_{+z} \boldsymbol{\pi}_- \boldsymbol{\pi}_z \\ &+ \mathbf{B}_{z+} \boldsymbol{\pi}_- \boldsymbol{\pi}_z + \mathbf{B}_{-z} \boldsymbol{\pi}_+ \boldsymbol{\pi}_z + \mathbf{B}_{z-} \boldsymbol{\pi}_+ \boldsymbol{\pi}_z + \mathbf{B}_{zz} \boldsymbol{\pi}_z^2 + \mathbf{B}_{++} \boldsymbol{\pi}_-^2 \end{aligned} \quad (11)$$

$$\begin{aligned} \mathbf{H}_R^1 &= -2\mathbf{B}_{zz} \mathbf{N}_z \boldsymbol{\pi}_z - \mathbf{B}_{-+} \mathbf{N}_+ \boldsymbol{\pi}_- - \mathbf{B}_{-+} \mathbf{N}_- \boldsymbol{\pi}_+ - \mathbf{B}_{+-} \mathbf{N}_- \boldsymbol{\pi}_- \\ &- \mathbf{B}_{+-} \mathbf{N}_- \boldsymbol{\pi}_+ - \mathbf{B}_{+z} \mathbf{N}_z \boldsymbol{\pi}_- - \mathbf{B}_{z+} \mathbf{N}_z \boldsymbol{\pi}_- - \mathbf{B}_{+z} \mathbf{N}_- \boldsymbol{\pi}_z \\ &- \mathbf{B}_{z+} \mathbf{N}_- \boldsymbol{\pi}_z - \mathbf{B}_{-z} \mathbf{N}_z \boldsymbol{\pi}_+ - \mathbf{B}_{z-} \mathbf{N}_z \boldsymbol{\pi}_+ - \mathbf{B}_{-z} \mathbf{N}_+ \boldsymbol{\pi}_z \\ &- \mathbf{B}_{z-} \mathbf{N}_+ \boldsymbol{\pi}_z - 2\mathbf{B}_{++} \mathbf{N}_- \boldsymbol{\pi}_- - 2\mathbf{B}_{--} \mathbf{N}_+ \boldsymbol{\pi}_+ \end{aligned} \quad (12)$$

$$\begin{aligned} \mathbf{H}_R^2 &= \mathbf{B}_{-+} \mathbf{N}_- \mathbf{N}_+ + \mathbf{B}_{zz} \mathbf{N}_z^2 + \mathbf{B}_{+-} \mathbf{N}_- \mathbf{N}_+ + \mathbf{B}_{++} \mathbf{N}_-^2 \\ &+ \mathbf{B}_{--} \mathbf{N}_+^2 + \mathbf{B}_{+z} \mathbf{N}_- \mathbf{N}_z + \mathbf{B}_{z+} \mathbf{N}_- \mathbf{N}_z + \mathbf{B}_{-z} \mathbf{N}_+ \mathbf{N}_z \\ &+ \mathbf{B}_{z-} \mathbf{N}_+ \mathbf{N}_z \end{aligned} \quad (13)$$

The first term,  $H_R^0$ , in the rovibronic Hamiltonian is clearly independent of  $N$ , while the second,  $H_R^1$  and third,  $H_R^2$ , contain operators that are linear and quadratic in  $N$ , respectively.  $H_R^0$  does not contribute directly to the rotational spectrum and is

(same as the coordinate system). The rotational tensor transforms as the inverse of the inertial tensor and hence covariantly. Therefore, the rotational tensor is transformed from Cartesian to cylindrical coordinates via

$$\mathbf{B}(+, -, z) = \frac{\hbar}{8\pi^2 c} \mathbf{I}(+, -, z)^{-1} \quad (5a)$$

$$= \frac{\hbar}{8\pi^2 c} (\mathbf{U} \mathbf{I}(\mathbf{x}, \mathbf{y}, \mathbf{z}) \mathbf{U}^T)^{-1} \quad (5b)$$

$$= \frac{\hbar}{8\pi^2 c} (\mathbf{U}^{-1})^T \mathbf{I}(\mathbf{x}, \mathbf{y}, \mathbf{z})^{-1} \mathbf{U}^{-1} \quad (5c)$$

$$= (\mathbf{U}^{-1})^T \mathbf{B}(\mathbf{x}, \mathbf{y}, \mathbf{z}) \mathbf{U}^{-1} \quad (5d)$$

Explicitly

ignored. The terms linear in  $N$  constitute the Coriolis coupling terms. The part of the Hamiltonian upon which we will concentrate in this paper is the one quadratic in  $N$ , which is the most significantly affected by JT interactions and gives rise to the distortion parameters  $h_1$  and  $h_2$ .

**2.2. Spin-Vibronic and Rotational Basis Sets.** A judicious choice of basis set is extremely helpful both to minimize the computational effort and to provide the best physical picture of the mechanisms responsible for observed effects in spectra resulting from JT interactions. We will refer to the overall basis set as rotational spin vibronic  $|RSV\rangle$ , i.e.

$$|RSV\rangle = |SV\rangle |R\rangle \quad (14)$$

For the purposes of this paper, where the molecules are subject to nonzero JT interactions, the explicit rotational basis function is taken as a symmetric top with suitable extension for nonrigidity since both require a proper or improper rotational symmetry axis of order three or higher.<sup>22</sup> (While a spherical top is also possible, its rotational basis functions can be trivially derived from those of the symmetric top.)

The coupling of the electronic spin to the rotational angular momentum can be described by either of two conventional models referred to as Hund’s case a and case b. The former has good quantum numbers  $|JPS\Sigma\rangle$ . The total angular momentum,  $J$ , of the molecule has a projection,  $P$ , along the  $z$  axis. The projection,  $P_s$ , of  $S$  upon the same axis is  $\Sigma$ . The case b like basis functions can be written  $|JSNK\rangle$  in which the total angular is  $J = N + S$  and  $K$  is the projection of  $N$  along the symmetric top ( $z$ ) axis. As will be explained in more detail below, generally the better choice for large spin–orbit coupling is case a while case b is preferable for small coupling. Of course the case a or b sets span the same space, and they are related to one another by a unitary transformation:<sup>23</sup>

$$|JSNK\rangle = \sum_{\Sigma, P} (-1)^{-J+p+2S} \sqrt{2N+1} \begin{pmatrix} J & N & S \\ P & -K & -\Sigma \end{pmatrix} |JPS\Sigma\rangle \quad (15)$$

For a doublet state, and Hund's case b basis functions, this relationship condenses to,

$$\begin{aligned} \left| J = N \pm \frac{1}{2}, SKN \right\rangle &= \sqrt{\frac{J+K+1/2}{2J+1}} \left| JP = K \pm \frac{1}{2} \right\rangle \\ \left| S\Sigma = \pm \frac{1}{2} \right\rangle &\pm \sqrt{\frac{J+K+1/2}{2J+1}} \left| JP = K \mp \frac{1}{2} \right\rangle \\ \left| S\Sigma = \mp \frac{1}{2} \right\rangle \end{aligned} \quad (16)$$

It is important to pair  $|SV\rangle$  and  $|R\rangle$  basis functions appropriately and to do that we need to characterize the spin-vibronic basis functions by considering the Hamiltonian

$$H_T = H_e^0 + H_{JT} + H_{SO} \quad (17)$$

In the absence of JT-type vibronic interactions, i.e.,  $H_{JT} = 0$ ,  $H_e^0$  can be taken to have diabatic eigenfunctions, at fixed  $R_0$ , which we write as  $|\Lambda_i\rangle$  where  $\Lambda_i$  is a signed integer that denotes their rotational transformation property,  $e^{i\Lambda\theta}$ , ( $\theta = \frac{2\pi}{n}$ ), about the highest symmetry axis,  $z$ , of order  $n$ .

The Hamiltonian,  $H_{JT}$ , has been studied in great detail.<sup>24,25</sup> For a doubly degenerate state,  $H_{JT}$  can be represented as a  $2 \times 2$  matrix in the electronic basis, with the harmonic, vibrational basis projected on each  $\Lambda$  state<sup>26</sup>

$$H_{JT} = \begin{bmatrix} T_N & 0 \\ 0 & T_N \end{bmatrix} + \begin{bmatrix} V_{\tilde{\Lambda}_+} & V_{\tilde{\Lambda}_{+-}} \\ V_{\tilde{\Lambda}_{-+}} & V_{\tilde{\Lambda}_-} \end{bmatrix} \quad (18)$$

Here  $T_N$  is the nuclear kinetic energy, excluding rotation, and (through quadratic terms)

$$\begin{aligned} V_{\tilde{\Lambda}_+} &= V_{\tilde{\Lambda}_-} \\ &= V_0 + \frac{1}{2} \sum_{i=1}^f \omega_i q_i^2 + \frac{1}{2} \sum_{i=f+1}^{f+g} \omega_i q_{i+} q_{i-} + \sum_{i=1}^f d_i q_i \end{aligned} \quad (19a)$$

The form of  $V_{\tilde{\Lambda}_{+-}}$  depends on the symmetry of the electronic state. We give results later for  $^2E$  electronic states of  $C_{3v}$  and  $D_{3h}$  symmetry for which

$$\begin{aligned} V_{\tilde{\Lambda}_{+-}} &= \sum_{i=f+1}^{f+g} k_i q_{i-} + \sum_{i=f+1}^{f+g} g_{ii} q_{i+}^2 + \sum_{i=f+1}^{f+g-1} \sum_{j=i+1}^{f+g} g_{ij} q_{i+} q_{j-} \\ &+ \sum_{i=1}^f \sum_{j=f+1}^{f+g} b_{ij} q_i q_{j-} \end{aligned} \quad (19b)$$

and for the  $^2E'_1$  state of  $D_{S\text{h}}$  for which

$$\begin{aligned} V_{\tilde{\Lambda}_{+-}} &= \sum_{i=f+1}^{f+g} k_i q_{i+} + \sum_{i=f+1}^{f+g} g_{ii} q_{i-}^2 + \sum_{i=f+1}^{f+g-1} \sum_{j=i+1}^{f+g} g_{ij} q_{i-} q_{j-} \\ &+ \sum_{i=1}^f \sum_{j=f+1}^{f+g} b_{ij} q_i q_{j+} \end{aligned} \quad (19c)$$

In the above,  $f$  is the total number of nondegenerate modes and  $g$  is the total number of degenerate modes ( $f+2g = 3N-6$ ).  $V_0$  is the (degenerate) eigenenergy of  $H_e$  which can be dropped. We express the other parameters in terms of derivatives of the adiabatic electronic potential energy surface (PES) with respect to the normal coordinates in cylindrical form. The expansion has been carried out to the second power, and the explicit parameter definitions are found in Table 1. It is of note that  $d_i$  is nonzero only for totally symmetric modes and only if the expansion is carried out at a nonstationary point of the diabatic potential.

**Table 1. Harmonic Frequency and Jahn Teller Coupling Parameters in Cylindrical Coordinates<sup>a</sup>**

| Symbols      | Description                                  | Definition                                                                                                                             |
|--------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| $d_i$        | gradient along symmetric mode                | $\frac{\partial}{\partial q_i} (\langle \Lambda_{\pm}   \mathcal{H}_e   \Lambda_{\pm} \rangle) \Big _{R_0}$                            |
| $k_i$        | linear JT coupling constant                  | $\frac{\partial}{\partial q_{i,\pm}} (\langle \Lambda_{\pm}   \mathcal{H}_e   \Lambda_{\mp} \rangle) \Big _{R_0}$                      |
| $\lambda_i$  | harmonic force constant for JT active mode   | $\frac{\partial^2}{\partial q_{i,+} \partial q_{i,-}} (\langle \Lambda_{\pm}   \mathcal{H}_e   \Lambda_{\pm} \rangle) \Big _{R_0}$     |
| $\lambda'_i$ | harmonic force constant for JT inactive mode | $\frac{\partial^2}{\partial q_i^2} (\langle \Lambda_{\pm}   \mathcal{H}_e   \Lambda_{\pm} \rangle) \Big _{R_0}$                        |
| $g_{ii}$     | quadratic JT coupling constant               | $\frac{\partial^2}{\partial q_{i,\pm}^2} (\langle \Lambda_{\pm}   \mathcal{H}_e   \Lambda_{\mp} \rangle) \Big _{R_0}$                  |
| $g_{ij}$     | cross-quadratic JT coupling constant         | $\frac{\partial^2}{\partial q_{i,\pm} \partial q_{j,\pm}} (\langle \Lambda_{\pm}   \mathcal{H}_e   \Lambda_{\mp} \rangle) \Big _{R_0}$ |
| $b_{ij}$     | bilinear JT coupling constant                | $\frac{\partial^2}{\partial q_{i,\pm} \partial q_j} (\langle \Lambda_{\pm}   \mathcal{H}_e   \Lambda_{\mp} \rangle) \Big _{R_0}$       |

<sup>a</sup> $\langle \Lambda | \mathcal{H}_e | \Lambda' \rangle$  is the electronic potential at the symmetric configuration denoted by  $R_0$ , which includes Coulomb interaction, exchange interaction etc.

The effective Hamiltonian  $H_{SO}$  for spin-orbit interaction can be written with sufficient generality as<sup>24</sup>

$$H_{SO} = a_z L_z S_z + \frac{1}{2} a_{\perp} (L_+ S_- + L_- S_+) \quad (20)$$

It is worthwhile to note that  $a_z$  and  $a_{\perp}$ , like the rotational parameters,  $B_{\alpha\alpha}$ , are operators in the vibronic space.  $H_{SO}$  may be combined with  $H_{JT}$  or incorporated into the rotational Hamiltonian, typically depending upon its relative magnitude compared to  $H_{JT}$  and  $H_R$ .

In the absence of  $H_{SO}$ ,  $H_{JT}$  can be represented in a direct-product, vibronic basis,  $|D_p\rangle_p$ , where

$$|D_p\rangle_p = |\Lambda_i\rangle \otimes \prod_{m=1}^f |\nu_{m,i}\rangle \otimes \prod_{m=f+1}^{f+g} |\nu_{m,i}, l_{m,i}\rangle \quad (21)$$

The matrix elements of the operators in eq 19 in this basis are presented in the Supporting Information. The Hamiltonian matrix is truncated by limiting the vibrational part of the basis to a reasonable value ( $\nu_{max}$ ), and the Lanczos algorithm is used

to calculate its eigenvalues and eigenvectors. The details for truncation of the matrix and convergence of eigenvalues are different for each molecule and are discussed subsequently. The eigenvectors of the Hamiltonian are a linear combination of basis functions and are further characterized on the basis of symmetry. The vibronic eigenfunction,  $|V\rangle$ , can be uniquely labeled by its spatial symmetry,  $E_{s\pm}^{\kappa}$  (see the [Supporting Information](#)), and energy position, denoted by  $n$  starting at zero for the lowest energy state and increasing monotonically, i.e.

$$|V\rangle = |n, E_{s\pm}^{\kappa}\rangle = \sum_i C_i^n |\Lambda_i\rangle \prod_{m=1}^f |v_{m,i}\rangle \prod_{m=f+1}^{f+g} |v_{m,i}, l_{m,i}\rangle \quad (22)$$

For small  $H_{SO}$ , it can be included in the rotational Hamiltonian and the  $|V\rangle$  basis is paired with a case b like rotational basis  $|JSNK\rangle$  which incorporates the spin  $S$  and its space-fixed projection  $P_s = M_s$ .

If  $H_{SO}$  is comparable or larger than  $H_{JT}$ , the appropriate combination is a case a  $|JPS\Sigma\rangle$  rotational basis with a complete spin-vibronic basis, i.e.  $|SV\rangle = |n, \tilde{E}_{s\pm}^{\kappa}, \Sigma\rangle$ , where now  $P_s = \Sigma$ , the spin's projection on the molecule's symmetry axis. The eigenfunction  $|n, \tilde{E}_{s\pm}^{\kappa}, \Sigma\rangle$  of  $(H_{JT} + H_{SO})$  transforms as an irreducible representation of the symmetry group  $\tilde{E}_{s\pm}^{\kappa}$  of the molecule including electron spin,  $\pm$  depicting the two Kramers components of a degenerate vibronic level. The spin-vibronic eigenstates are

$$|SV\rangle \equiv \Psi^{SV} \equiv |n, \tilde{E}_{s\pm}^{\kappa}, \Sigma\rangle = \sum_{i,k} C_{i,k}^n |\Lambda_i\rangle |S\Sigma\rangle \prod_{m=p+1}^{f+g} |v_{m,k}, l_{m,k}\rangle \prod_{m=1}^f |v_{m,k}\rangle \quad (23)$$

In either case, the coefficients,  $C^n$ , of the eigenkets can be obtained from our spin-orbit coupling Jahn-Teller (SOCJT2) software<sup>27,28</sup> assuming suitable values are input for the JT and SO parameters (zero for the latter in case b). These eigenvectors are used to calculate  $h_1$  and  $h_2$ , as described in [Section 2.3](#).

**2.3. The JT Parameters,  $h_1$  and  $h_2$ , in the Effective Rovibronic Hamiltonian.** To obtain an effective rotational Hamiltonian for a given spin-vibronic level, we need to expand the rotational tensor components of  $H_R^2$  (eq 13) in terms of the normal coordinates. The inertial tensor, and therefore the rotational tensor (eq 5), is a function of the nuclear coordinates,  $\mathcal{R}$ . The matrix elements of the rotational tensor component  $B_{\alpha\beta}$  in the vibronic basis (eq 21):

$$\langle \phi_i | \mathbf{B}_{\alpha\beta} | \phi_i \rangle = \langle \Lambda_i | \prod_{m=1}^f |v_{m,i}\rangle \prod_{m=f+1}^{f+g} |v_{m,i}, l_{m,i}\rangle | \mathbf{B}_{\alpha\beta} | \Lambda_i \rangle \prod_{m=1}^f |v_{m,i}\rangle \prod_{m=f+1}^{f+g} |v_{m,i}, l_{m,i}\rangle \quad (24)$$

are treated as follows. In the diabatic representations, the electronic basis functions ( $|\Lambda_i\rangle$ ) are fixed (to those at  $\mathcal{R}_0$ ) and only the vibrational part has  $\mathcal{R}$  dependence.

$$\begin{aligned} \langle \phi_i | \mathbf{B}_{\alpha\beta} | \phi_i \rangle &= \delta_{\Lambda_i, \Lambda_i} \prod_{m=1}^f |v_{m,i}\rangle \prod_{m=f+1}^{f+g} |v_{m,i}, l_{m,i}\rangle | \mathbf{B}_{\alpha\beta} | \Lambda_i \rangle \prod_{m=1}^f |v_{m,i}\rangle \\ \prod_{m=f+1}^{f+g} |v_{m,i}, l_{m,i}\rangle &= \delta_{\Lambda_i, \Lambda_i} [B_{\alpha\beta}]_{\mathcal{R}_0} \prod_{m=1}^g \delta_{v_{m,i}, v_{m,i}} \prod_{m=f+1}^{f+g} \delta_{l_{m,i}, l_{m,i}} \\ &+ \sum_{j=1}^f \sum_{r=+, -} \frac{\partial B_{\alpha\beta}}{\partial q_{j,r}} \Big|_{\mathcal{R}_0} \prod_{m=1}^f |v_{m,i}\rangle \prod_{m=f+1}^{f+g} |v_{m,i}, l_{m,i}\rangle | \mathbf{q}_{j,r} \\ \prod_{m=1}^f |v_{m,i}\rangle \prod_{m=f+1}^{f+g} |v_{m,i}, l_{m,i}\rangle & \\ + \frac{1}{2} \sum_j \sum_{k>i} \sum_{r=+, -} \sum_{n_k=+, -} \frac{\partial^2 B_{\alpha\beta}}{\partial q_{j,r} \partial q_{k,n_k}} \Big|_{\mathcal{R}_0} & \prod_{m=1}^f |v_{m,i}\rangle \\ \prod_{m=f+1}^{f+g} |v_{m,i}, l_{m,i}\rangle | \mathbf{q}_{j,r} | \mathbf{q}_{k,n_k} \prod_{m=1}^f |v_{m,i}\rangle \prod_{m=f+1}^{f+g} |v_{m,i}, l_{m,i}\rangle + \dots \quad (25) \end{aligned}$$

We have omitted the sum over contributions involving nondegenerate modes as their nonlinear contribution to  $h_i$  tends to be negligible, but an extension of this expansion to include nondegenerate modes is trivial.

By definition, in the principal axis system (PAS) the values of the components of the rigid-rotor rotational tensor at  $\mathcal{R}_0$  are nonzero only for the diagonal terms,  $B_{\alpha\alpha}$ , which define the rotational constants for the effective Hamiltonian. The expansion of the other elements of the rotational tensor,  $B_{\alpha\beta}$ , both diagonal and off-diagonal, start with the term linear in  $q$ .

In the [Supporting Information](#), we derive the symmetry properties of the various terms of  $H_R^2$  and the rotational eigenfunctions. Only the operators  $B_{zz}$ ,  $B_{+-}$ , and  $B_{-+}$  transform as the totally symmetric representation of the molecular symmetry group and have nonvanishing contributions in the "standard" symmetric top rotational Hamiltonian model. This is because these are the only operators that have nonvanishing matrix elements within the + or - components of a degenerate vibronic level, i.e.,  $|E_{s\pm}^{\kappa}\rangle$ .

Group theoretically, the remaining terms of  $H_R^2$  may have nonzero off-diagonal matrix elements between the components of a vibronic level of the molecule considered.  $B_{\pm\pm}$  transforms as  $E_{2\pm}'$  for  $C_3H_5$  and therefore has nonzero matrix elements of the form  $\langle E_{1\pm}' | B_{\pm\pm} | E_{1\mp}' \rangle$ . Similarly, for  $NO_3$  and  $CH_3O$ ,  $B_{\pm\pm}$  transforms as  $E_{\pm}^{\kappa}$  and  $E_{\pm}$  respectively, which leads to nonzero matrix elements of the form  $\langle E_{\mp}' | B_{\pm\pm} | E_{\pm}' \rangle$  and  $\langle E_{\mp} | B_{\pm\pm} | E_{\pm} \rangle$  for the two molecules.  $B_{z\pm}$  and  $B_{\pm z}$  transform as  $E_{1\pm}''$  for  $C_3H_5$  and  $E_{\pm}''$  for  $NO_3$  and has no nonvanishing matrix elements. This leads to vanishing of  $h_2$  for such molecules. On the other hand, for  $CH_3O$ ,  $B_{\pm z}$  and  $B_{z\pm}$  transform as  $E_{\pm}$  and have nonvanishing matrix elements of the form  $\langle E_{\pm} | B_{z\pm} | E_{\mp} \rangle = \langle E_{\mp} | B_{\pm z} | E_{\pm} \rangle$ . Application of these principles leads to explicit equations for the first ( $h'_i$ ) and second ( $h''_i$ ) contributions to  $h_1$  and  $h_2$ , i.e.,  $h_i = h'_i + h''_i$ , in terms of their expectation values over specific (spin-) vibronic eigenkets. We can express the matrix elements of  $h_1$  in terms of degenerate vibronic eigenfunctions which are of the following form:

$$|E_{s\pm}^{\kappa}\rangle = \sum_i C_i |\pm \Lambda_i\rangle \prod_{m=1}^p |v_{m,i}, \pm l_{m,i}\rangle \quad (26)$$

Therefore, we can write the first order contribution to  $h_1$  ( $h_1'$ ) as

$$h_1' = \sum_i \sum_{r=+,-} \frac{\partial B_{++}}{\partial q_{i,r}} \left|_{R_0} \right. \langle E_{s+}^{\kappa} | \mathbf{q}_{i,r} | E_{s+}^{\kappa} \rangle \\ = \sum_i \sum_{r=+,-} \frac{\partial B_{--}}{\partial q_{i,r}} \left|_{R_0} \right. \langle E_{s-}^{\kappa} | \mathbf{q}_{i,r} | E_{s-}^{\kappa} \rangle \quad (27)$$

The rotational constant derivatives are evaluated at the fixed nuclear configuration  $\mathcal{R}_0$ .

Correspondingly

$$h_1'' = \frac{1}{2} \sum_{i,j} \sum_{r_i=+,-} \sum_{r_j=+,-} \frac{\partial^2 B_{++}}{\partial q_{i,r_i} \partial q_{j,r_j}} \left|_{R_0} \right. \langle E_{s+}^{\kappa} | \mathbf{q}_{i,r_i} \mathbf{q}_{j,r_j} | E_{s+}^{\kappa} \rangle \\ = \frac{1}{2} \sum_{i,j} \sum_{r_i=+,-} \sum_{r_j=+,-} \frac{\partial^2 B_{--}}{\partial q_{i,r_i} \partial q_{j,r_j}} \left|_{R_0} \right. \langle E_{s-}^{\kappa} | \mathbf{q}_{i,r_i} \mathbf{q}_{j,r_j} | E_{s-}^{\kappa} \rangle \quad (28)$$

Similarly for  $h_2'$

$$h_2' = \sum_i \sum_{r=+,-} \frac{\partial B_{-z}}{\partial q_{i,r}} \left|_{R_0} \right. \langle E_{s+}^{\kappa} | \mathbf{q}_{i,r} | E_{s+}^{\kappa} \rangle \\ = \sum_i \sum_{r=+,-} \frac{\partial B_{+z}}{\partial q_{i,r}} \left|_{R_0} \right. \langle E_{s-}^{\kappa} | \mathbf{q}_{i,r} | E_{s-}^{\kappa} \rangle \quad (29)$$

and for  $h_2''$

$$h_2'' = \frac{1}{2} \sum_{i,j} \sum_{r_i=+,-} \sum_{r_j=+,-} \frac{\partial^2 B_{-z}}{\partial q_{i,r_i} \partial q_{j,r_j}} \left|_{R_0} \right. \langle E_{s+}^{\kappa} | \mathbf{q}_{i,r_i} \mathbf{q}_{j,r_j} | E_{s+}^{\kappa} \rangle \\ = \frac{1}{2} \sum_{i,j} \sum_{r_i=+,-} \sum_{r_j=+,-} \frac{\partial^2 B_{+z}}{\partial q_{i,r_i} \partial q_{j,r_j}} \left|_{R_0} \right. \langle E_{s-}^{\kappa} | \mathbf{q}_{i,r_i} \mathbf{q}_{j,r_j} | E_{s-}^{\kappa} \rangle \quad (30)$$

In the above, the kets (bras)  $|E_{s\pm}^{\kappa}\rangle$  apply to the case where  $H_{SO}$  is included with  $H_R$ . If  $H_{SO}$  is included with  $H_{JT}$ ,  $|E_{s\pm}^{\kappa}\rangle$  should be replaced by the spin-vibronic eigenket  $|n, E_{s\pm}^{\kappa}, \Sigma\rangle$ . In the next section, we detail how to obtain the derivatives of the rotational constant tensor components. In section S1 of the **Supporting Information**, we provide the symmetry properties for the derivatives of the rotational tensor. In section S2 of the **Supporting Information**, we provide some equivalent definitions of  $h_1$  and  $h_2$  in terms of the Cartesian basis, which will be useful to those who choose to work in these coordinates. The calculation of the values of the  $h_i$  is discussed in more detail in section S3 of the **Supporting Information**.

**2.4. Computational Procedures.** The components of the electronic state can be chosen to transform as distinct representation, in some Abelian subgroup ( $\mathcal{G}$ ) of the molecular symmetry group ( $\mathcal{G}$ ). The two states are labeled here as  $\Gamma_1$  and  $\Gamma_2$ . **Table 2** lists the transformation properties of components

**Table 2. Transformation Properties of Components of the Degenerate State in the Abelian Subgroup**

| molecule               | $\mathcal{G}$ | $\mathcal{G}$ | state                        | components in Abelian subgroup    |
|------------------------|---------------|---------------|------------------------------|-----------------------------------|
| $\text{C}_5\text{H}_5$ | $D_{5h}$      | $C_{2v}$      | $\tilde{\chi}^2\text{E}_1''$ | $^2\text{A}_2$ and $^2\text{B}_1$ |
| $\text{NO}_3$          | $D_{3h}$      | $C_{2v}$      | $\tilde{\chi}^2\text{E}_1''$ | $^2\text{A}_2$ and $^2\text{B}_1$ |
| $\text{CH}_3\text{O}$  | $C_{3v}$      | $C_s$         | $\tilde{\chi}^2\text{E}$     | $^2\text{A}'$ and $^2\text{A}''$  |

of the degenerate state in the Abelian subgroup for  $\text{C}_5\text{H}_5$ ,  $\text{NO}_3$ , and  $\text{CH}_3\text{O}$ . The adiabatic potential energy surfaces (PES) of  $\Gamma_1$  and  $\Gamma_2$  are determined using equation of motion-coupled cluster singles and doubles theory (EOMIP-CCSD) using the CFOUR package. The reference state for these EOMIP-CCSD calculations is taken to be the corresponding anion. The adiabatic, electronic eigenfunctions,  $\psi_{\Gamma_1}$  and  $\psi_{\Gamma_2}$ , which are calculated, are related to the previously defined basis functions  $|\Lambda = \pm 1\rangle$  by

$$|\Lambda = \pm 1\rangle = \frac{1}{\sqrt{2}} (|\psi_{\Gamma_1}\rangle \pm i|\psi_{\Gamma_2}\rangle) \quad (31)$$

The various coefficients of the Jahn–Teller Hamiltonian (eq 19) are obtainable in terms of first and second derivatives of the *adiabatic* PES of  $\Gamma_1$  and  $\Gamma_2$ , in terms of dimensionless normal coordinates. Of course a quantum chemistry package produces derivatives with respect to the Cartesian displacements of the atoms, but the transformation of these to dimensionless normal coordinates is straightforward.<sup>29</sup> In the work discussed here, done in the rectilinear normal coordinate representation, each degenerate normal mode ( $q_i \forall f+1 \leq i \leq f+g$ ) has two components,  $q_{ia}$  and  $q_{ib}$ , which are chosen such that  $q_{ia}$  transforms as the totally symmetric representation of the Abelian subgroup ( $\mathcal{G}$ ). The first and second derivatives of the adiabatic PES of  $\Gamma_k$ , where  $k = 1$  or  $2$ , with respect to dimensionless normal coordinate,  $q_i$  (or  $q_{ia}$  and  $q_{ib}$  for a degenerate mode), are

$$f_i^{\Gamma_k} = \frac{\partial E_k}{\partial q_i} \Big|_{q_0} \quad (32)$$

$$f_{ij}^{\Gamma_k} = \frac{\partial^2 E_k}{\partial q_i \partial q_j} \Big|_{q_0} \quad (33)$$

where  $E_k$  is the energy of the  $k$ th adiabatic state. The relationship between the Cartesian components and the cylindrical representation used in eq 19 is given by

$$q_{i\pm} = q_{ia} \pm iq_{ib} \quad (34)$$

For a JT system, the derivatives of the diabatic PES with respect to totally symmetric (in  $\mathcal{G}$ ) normal coordinate,  $q_{ia}$ , are identical to those of the adiabatic PES of  $\Gamma_1$  and  $\Gamma_2$ .<sup>16,30</sup> Therefore, the parameters in **Table 1**, defined in terms of the matrix elements of  $\hat{\mathcal{H}}_e$ , are related to linear and quadratic force constants ( $f$ ) involving nondegenerate modes ( $q_i \forall 1 \leq i \leq f$ ) and the totally symmetric component of degenerate modes ( $q_{ia} \forall f+1 \leq i \leq f+g$ ) as

$$k_i = f_{ia}^{\Gamma_1} = -f_{ia}^{\Gamma_2} \quad (35)$$

$$d_i = f_i^{\Gamma_1} = f_i^{\Gamma_2} \quad (36)$$

$$\lambda_i = \frac{1}{2}(f_{iaia}^{\Gamma_1} + f_{iaia}^{\Gamma_2}) \quad (37)$$

$$\lambda'_i = f_{ii}^{\Gamma_1} = f_{ii}^{\Gamma_2} \quad (38)$$

$$g_{ii} = \frac{1}{2}(f_{iaia}^{\Gamma_1} - f_{iaia}^{\Gamma_2}) \quad (39)$$

$$b_{ij} = f_{ija}^{\Gamma_1} = -f_{ija}^{\Gamma_2} \quad (40)$$

$$g_{ij} = \frac{1}{2}(f_{iaja}^{\Gamma_1} - f_{iaja}^{\Gamma_2}) \quad (41)$$

These relations are obtained using eq 31 and eq 34 together with relatively simple symmetry relations and are consistent with Table 1 of ref 16. Tables giving values of these parameters for C<sub>5</sub>H<sub>5</sub>, CH<sub>3</sub>O, and NO<sub>3</sub> are provided in the Supporting Information. Using these values, we can now solve the Hamiltonian in eq 17. One needs to emphasize here that while we use EOMIP-CCSD to obtain these parameters, any quantum chemical method can be useful for this calculation, as long as it provides a proper treatment of the degenerate states and satisfies the associated symmetry properties.

To obtain numerical values for the rotational tensor components, we note that the rotational tensor,  $B$  (in cm<sup>-1</sup>), is related to the inertial tensor ( $I$ ) by

$$B = \frac{h}{8\pi^2 c} I^{-1} \quad (42)$$

where  $c$  is the speed of light and  $I$  is written in the molecular frame ( $x, y, z$ ) and has the form

$$I = \begin{pmatrix} \sum_i (y_i^2 + z_i^2)m_i & -\sum_i x_i y_i m_i & -\sum_i x_i z_i m_i \\ -\sum_i y_i x_i m_i & \sum_i (x_i^2 + z_i^2)m_i & -\sum_i y_i z_i m_i \\ -\sum_i z_i x_i m_i & -\sum_i z_i y_i m_i & \sum_i (x_i^2 + y_i^2)m_i \end{pmatrix} \quad (43)$$

The sum is taken over all atoms of the molecule with  $x_i, y_i, z_i$  being the Cartesian coordinates of each atom. Derivatives of the inertial tensor with respect to dimensionless normal coordinates are calculated numerically using finite differences. The first and second derivatives of the rotational tensor are calculated using the derivative of inertial tensor as follows:

$$\frac{\partial B}{\partial q_i} = -\frac{h}{8\pi^2 c} I^{-1} \cdot \frac{\partial I}{\partial q_i} \cdot I^{-1} \quad (44a)$$

$$\begin{aligned} \frac{\partial^2 B}{\partial q_i \partial q_j} = & \frac{h}{8\pi^2 c} \left[ I^{-1} \frac{\partial I}{\partial q_i} I^{-1} \frac{\partial I}{\partial q_j} I^{-1} - I^{-1} \frac{\partial^2 I}{\partial q_i \partial q_j} I^{-1} \right. \\ & \left. + I^{-1} \frac{\partial I}{\partial q_j} I^{-1} \frac{\partial I}{\partial q_i} I^{-1} \right] \end{aligned} \quad (44b)$$

These equations are used to calculate the derivatives in Cartesian coordinates, which are then transformed to cylindrical coordinates. The methodology for converting them to cylindrical coordinates and complete set of values for the derivatives of rotational and inertial tensor for C<sub>5</sub>H<sub>5</sub>, NO<sub>3</sub>, and CH<sub>3</sub>O are included in the Supporting Information.

### 3. RESULTS

To benchmark our theoretical calculations, we have selected three radicals, cyclopentadienyl (Cp), C<sub>5</sub>H<sub>5</sub>; methoxy, CH<sub>3</sub>O; and nitrate, NO<sub>3</sub>; each of which have been extensively studied experimentally. All three contain a relatively small number of atoms, so they should be amenable to quantum chemistry calculations of relatively high quality. These same characteristics are ideal for spectroscopic study, and experimental values of  $h_i$  of relatively high precision are available for them.

As eqs 27–30 show, the rotational distortion parameters  $h_1$  and  $h_2$  depend upon the derivatives of the components of the rotational tensor, whose values are in the Supporting Information. The  $h_i$  parameters also critically depend upon the spin-vibronic eigenfunctions. These eigenfunctions, specifically the coefficients in the basis functions expansions of eqs 22 and 23, are obtained by diagonalizing the Hamiltonian matrix,  $H_V$  (+H<sub>SO</sub>), which in turn depends upon the JT (and spin) parameters contained in the spin-vibronic Hamiltonian of eqs 19a, 19b, 19c, and 20. As noted before, we use our SOCJT2 software to obtain these eigenvalues and functions.

The parameters in  $H_{JT}$  and  $H_{SO}$  can be obtained by one of two general ways. As explained in Section 2.4, they can be determined directly from the derivatives (see Table 1) of the calculated electronic PES. The second approach is to fit these parameters to the difference of the spin-vibronic eigenvalues determined spectroscopically. While the spectroscopically fit values are usually of relatively high precision, limitations to the availability of sufficient experimental data often dictate rather severe truncations of the Hamiltonian and correspondingly may introduce some bias into the parameters.<sup>16</sup> Of course all of the terms of the quadratic JT Hamiltonian may readily be determined via quantum chemistry calculations, but those of  $H_{SO}$  may not be available in some computation packages.

**3.1. Ground  $\tilde{X}^2E_1''$  State of Cyclopentadienyl (Cp), C<sub>5</sub>H<sub>5</sub>, Radical.** Cyclopentadienyl (Cp), C<sub>5</sub>H<sub>5</sub>, is a relatively small hydrocarbon radical that has been studied extensively, both experimentally and computationally. Cp is a good candidate for studying JT effects in that it has five equivalent C and H atoms and belongs to the symmetry group, D<sub>5h</sub>. Its ground electronic  $\tilde{X}$  state is doubly degenerate ( $^2E_1''$ ) and possesses several JT-active vibrations. Group theoretically, e'<sub>2</sub> vibrations are linearly JT-active only, whereas e'<sub>1</sub> vibrations are quadratically Jahn–Teller active only. This fact is convenient for determining  $h_1'$  and  $h_1''$ , as  $h_1'$  only has contributions from modes which are linearly JT-active, whereas  $h_1''$  only has contributions from quadratically active Jahn–Teller modes. In addition, Cp has a plane of symmetry, so  $h_2'$  vanishes as is shown subsequently.

The spectroscopy of Cp has been studied for more than 50 years, with its electron paramagnetic resonance spectrum (EPR) observed in 1963<sup>31</sup> and electronic absorption spectrum first observed<sup>32</sup> in 1970. Subsequently, photodetachment (PD), and rotationally and/or vibrationally resolved laser-induced fluorescence (LIF), and laser excited dispersed fluorescence (LEDF) spectroscopic methods have all been utilized to probe geometric distortions from the predicted equilibrium structure with D<sub>5h</sub> symmetry. Recent spectroscopic experiments at low temperature include jet-cooled LIF,<sup>33,34</sup> LEDF,<sup>35</sup> PD<sup>36</sup> of C<sub>5</sub>H<sub>5</sub><sup>−</sup>, and mid-IR absorption of Cp in He droplets.<sup>37</sup> These papers cite the numerous experiments performed in the intervening years.

Early quantum chemistry calculations on  $\text{Cp}$  appeared in 1956(!)<sup>38</sup> and 1960,<sup>39</sup> and numerous calculations followed thereafter. The most recent calculations relevant to the JT effect in  $\text{Cp}$  were published<sup>36,40</sup> in the early 21st Century and cite most of the quantum chemistry calculations in the intervening years.

Following the procedures outlined in [Section 2.4](#), quantum chemistry calculations were carried out on  $\text{Cp}$  with the EOMIP-CCSD method using the ground electronic state of the anion as the reference. [Table S5](#) of the [Supporting Information](#) list the symmetries and harmonic vibrational frequencies resulting from the calculation. It tabulates the linear and quadratic JT coupling constants in terms of  $k_i$  and  $g_{ii}$  which are contained in the Hamiltonian in [eqs 19a, 19b, and 19c](#), and it also provides the conventional JT experimental parameters  $D_i$  and  $K_b$  which are used as input to SOCJT2. [Table S6](#) provides the bilinear and cross-quadratic JT coupling constants.

Using SOCJT2 to solve the complete vibronic Hamiltonian for  $\text{C}_5\text{H}_5^-$  is impossible because of the huge size basis set that would be needed for the computation given the large number of linear and quadratic JT-active vibrational modes. To alleviate this problem, we ignore the cross quadratic coupling between the linear ( $e_2'$ ) and quadratic ( $e_1'$ ) modes. This allows us to do separate calculations for the four  $e_2'$  ( $\nu_8, \nu_9, \nu_{10}$  and  $\nu_{11}$ ) and three  $e_1'$  modes ( $\nu_5, \nu_6$  and  $\nu_7$ ). For the  $e_2'$ -mode-only calculation, the vibronic basis set is truncated at  $\nu_{\max} = 8$  except for  $\nu_8$  which is truncated at  $\nu_{\max} = 4$ . The Lanczos algorithm is run for 1000 iterations to get the converged eigenvalues and eigenvectors. For the  $e_1'$  mode only calculation, the vibronic basis set is truncated at  $\nu_{\max} = 10$  and the Lanczos algorithm is run for 800 iterations to get the eigenvalues and eigenvectors.

The outputs of SOCJT2 are vibronic eigenenergies and eigenkets. The latter are used to calculate matrix elements of the linear and bilinear combinations of the normal coordinates given in [Tables S7 and S8](#), which as [eqs 23 and 28](#) show, are necessary to calculate values for  $h_1$ . These equations also require the derivatives of the components of the rotational tensor. As outlined in [Section 2.4](#), these are obtained from the derivatives of the inertial tensor. The resulting values are tabulated in [Tables S9–S16](#). [Tables S17–S18](#) contain respectively the resulting  $h_1'$  values and  $h_1''$  values for the vibronic levels of  $\text{C}_5\text{H}_5^-$  with energies less than 2200  $\text{cm}^{-1}$ .

The rotationally resolved spectrum of the  $\tilde{\text{A}}^2\text{A}_1'' - \tilde{\text{X}}^2\text{E}_1''$  origin transition has been observed and analyzed, yielding an experimental value of  $|h_1| = 211.8(3)$  MHz for the zero-point level of the  $\text{Cp}$   $\tilde{\text{X}}$  state.<sup>33,34</sup> Referring to [Table 3](#), we see that the calculated value of  $h_1$  is 207.4 MHz. While this agreement

**Table 3. Calculated and Experimental Values (MHz) of  $|h_1|$ <sup>a</sup> for the Vibrationless level of the  $\tilde{\text{X}}^2\text{E}_1''$  of  $\text{C}_5\text{H}_5^-$**

| vibrational mode symmetry    | $h_1'$   | $h_1''$ |
|------------------------------|----------|---------|
| $e_2'$ (linear JT)           | -207.1   | 0       |
| $e_1'$ (quadratic JT)        | 0        | -0.3    |
| vibronic calculation $ h_1 $ | 207.1    | 0.3     |
| Watson calculation $ h_1 $   | 247.9    |         |
| experimental $ h_1 $         | 211.8(3) |         |

<sup>a</sup>Note that while relative signs of  $h_1'$  and  $h_1''$ , as well the contributions to them from individual modes, are determined, their overall sign is not as it depends on an arbitrary phase factor.

is somewhat fortuitous in that it certainly exceeds the expected accuracy of the procedure and quantum chemistry treatment used here, it also tends to affirm the computational method. We also see from [Table 3](#) that, for practical purposes,  $h_1''$  is negligible compared to  $h_1'$  for  $\text{Cp}$ .

In the [Introduction](#) we noted that in his early work, Watson introduced an approximate, perturbative formula for computing parameters directly related to the  $h_i$ . Those formulas yield the following relations for the  $h_i$

$$h_1 \approx \sum_i \sqrt{2D_i} \frac{\partial B_{xx}}{\partial q_{ia}} \quad (45)$$

and

$$h_2 \approx \sum_i \sqrt{2D_i} \frac{\partial B_{xz}}{\partial q_{ia}} \quad (46)$$

where  $i$  refers to the JT active doubly degenerate normal modes and  $q_{ia}$  denotes the totally symmetric component in the Abelian subgroup. Such simple relations are obtainable from [eqs 27–30](#) by assuming only a linear JT interaction parametrized by  $D_i$  and treating its effect via perturbation theory.

[Table 3](#) shows that using the Watson formulation we calculate  $h_1 = h_1' = 247.9$  MHz. This is a good estimate for  $h_1$  but, as one might expect, less so than the one from the vibronic calculation. Since we know that the quadratic contribution to the power series expansion of the rotational derivative is negligible, the limitation of the Watson approach for  $\text{C}_5\text{H}_5^-$  is likely to be the treatment by perturbation theory.

**3.2. Ground  $\tilde{\text{X}}^2\text{E}$  State of Methoxy,  $\text{CH}_3\text{O}$ , Radical.** The  $\tilde{\text{X}}^2\text{E}$  state of methoxy radical,  $\text{CH}_3\text{O}$ , is perhaps the most studied example of the JT effect, both theoretically and experimentally. Moreover, it provides an example with significant spin-orbit coupling. With  $\text{C}_{3v}$  symmetry, methoxy has  $3a_1$  and  $3e$  vibrations, with the latter being JT active. The  $\tilde{\text{X}}^2\text{E}$  state of methoxy has been characterized experimentally by PD spectra<sup>41,42</sup> from the anion, and by numerous optical techniques: emission,<sup>43</sup> laser paramagnetic resonance (LMR),<sup>44,45</sup> and LIF,<sup>46–50</sup> LEDF,<sup>51</sup> and stimulated emission pumping (SEP),<sup>52–54</sup> via its  $\tilde{\text{A}}^2\text{A}_1 - \tilde{\text{X}}^2\text{E}$  electronic transition. In addition, IR absorption<sup>55</sup> and microwave rotational spectra<sup>56,57</sup> in the  $\tilde{\text{X}}$  state have been observed. Both  $h_1$  and  $h_2$  values have been measured in the zero-point level of each the  ${}^2\text{E}_{1/2}$  and  ${}^2\text{E}_{3/2}$  (spin-orbit) components of its  $\tilde{\text{X}}$  state. The highest precision values of  $h_1$  and  $h_2$  are a result of fits<sup>54</sup> to combined microwave and LIF data.

Methoxy has also been a subject of numerous theoretical studies,<sup>58–64</sup> some of these combining experimental with computational work. However, none has addressed the calculation of  $h_1$  and  $h_2$ . Following the approach of [Section 2.4](#), we have performed an EOMIP calculation on methoxy with the anion as the reference state. [Table S19](#) of the [Supporting Information](#) lists the symmetric harmonic vibrational frequencies and JT parameters resulting from this calculation. These parameters and the spin-orbit coupling parameters are required as input to SOCJT2. For the spin-orbit coupling, we use the value<sup>42</sup> of  $a_{||} = 133$   $\text{cm}^{-1}$  consistent with the value previously computed and which approximately yields the observed quenched spin-orbit coupling, which was previously measured<sup>54</sup> at 61.495  $\text{cm}^{-1}$ . Our calculations show that the bilinear and cross-quadratic couplings for  $\text{CH}_3\text{O}$  are negligible and are not included in the SOCJT2 analysis.

For  $\text{CH}_3\text{O}$ , the vibronic calculation included the three modes ( $\nu_4$ ,  $\nu_5$  and  $\nu_6$ ) which are JT active. The vibronic basis set is truncated at  $\nu_{\max} = 10$  for all three modes. The SOCJT2 input parameters for  $\text{CH}_3\text{O}$  are given in Table S19. The eigenket output is used to calculate the matrix elements of the normal coordinates that appear in the definitions of the  $h_i$  and whose values are given in Table S20. In addition, first and second derivatives of the elements of the rotational tensor are listed in Tables S21–S26. The resulting  $h_1$  and  $h_2$  values for methoxy for vibrational levels up to  $2000 \text{ cm}^{-1}$  above the zero-point  $\tilde{X}$  state level are given in Tables S27 and S28.

In Table 4, we compare the experimental values of  $h_1$  and  $h_2$  with the calculated results. As the table shows, once again there

**Table 4. Values (MHz) of  $h_1$  and  $h_2$  in the  $^2\text{E}_{1/2}$  and  $^2\text{E}_{3/2}$  Spin Components of the Vibrationless Level of the  $\tilde{X}^2\text{E}$  State of  $\text{CH}_3\text{O}$**

| method                                                                                                                                         | $ h_1 $            |                    | $ h_2 $           |                       |
|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|-------------------|-----------------------|
|                                                                                                                                                | $\text{E}_{3/2}$   | $\text{E}_{1/2}$   | $\text{E}_{3/2}$  | $\text{E}_{1/2}$      |
| vibronic calculation                                                                                                                           | 72.22 <sup>a</sup> | 77.61 <sup>b</sup> | 1208 <sup>c</sup> | 1301(26) <sup>d</sup> |
| vibronic calculation (av.)                                                                                                                     | 74.91              |                    | 1268              |                       |
| Watson calculation (av.)                                                                                                                       |                    | 86                 |                   | 1587                  |
| experimental                                                                                                                                   |                    | 75.45(26)          |                   | 1331(3)               |
| ${}^a h_1' = -64.58; h_1'' = -7.63. {}^b h_1' = -69.24; h_1'' = -8.36. {}^c h_2' = -1199.2; h_2'' = -9.3. {}^d h_2' = -1315.7; h_2'' = -10.2.$ |                    |                    |                   |                       |

is good agreement between calculated and experimental values of the  $h_1$ . Considering the experimental uncertainties (see below) the agreement for  $h_2$  is also good, albeit not as spectacular as that for  $h_1$ . The methoxy results tend to confirm the validity of the calculation even when spin orbit coupling is present with a magnitude comparable to JT distortion.

For  $h_1$ , it is clear that  $h_1''$  is small compared to  $h_1'$ . However, due to the larger magnitude of  $h_2$ , the same is more true for  $h_2''$  relative to  $h_2'$ . Finally, we note that the vibronic calculation and Watson approximation agree fairly well for  $h_1$ , but the more rigorous vibronic calculation agrees significantly better with experiment for  $h_2$ .

Before closing the discussion on methoxy, it is worthwhile to note a few points about the comparison between calculated and experimental values. Reference S4 provides a table with the experimental parameters of  $\text{CH}_3\text{O}$  determined with four different combinations of data. Generally speaking, all the parameters are consistent within their statistical errors, which in turn are reflective of the overall size and precision of the respective data sets. It is, however, worth noting that the standard deviation of the  $h_i$  among the four sets is 0.50 MHz for  $h_1$  and 53 MHz for  $h_2$ . Clearly the statistical error for  $h_1$  and its deviation among sets is comparable, while the deviation for  $h_2$  among data sets is much greater and possibly indicates less reliability for the experimental value of  $h_2$  than its statistical error indicates.

There is another interesting point. Theoretically one would expect  $h_1$  and  $h_2$  to vary modestly between spin components as is indeed shown by the calculated values. Nonetheless, and understandably, the fit to the experimental spectra constrained the  $h_i$  values to be equal for both spin components. This possibly contributes to the relatively poor agreement among the  $h_2$  values obtained from different data sets.

**3.3. Excited  $\tilde{\text{A}}^2\text{E}$  State of Nitrate,  $\text{NO}_3$ , Radical.** The three lowest electronic states,  $\tilde{X}^2\text{A}'_2$ ,  $\tilde{\text{A}}^2\text{E}'$ , and  $\tilde{\text{B}}^2\text{E}'$ , of the nitrate radical,  $\text{NO}_3$ , have long been explored spectroscopically

and investigated by quantum chemistry methods. The  $\tilde{X}$  and  $\tilde{\text{B}}$  states have been most studied and considerable interest in them remains. The  $\tilde{\text{A}}$  state has been less studied, principally because transitions between it and the ground  $\tilde{X}$  state are electronically forbidden for electric dipole radiation. Nonetheless, in recent years, weak vibronically allowed and magnetic dipole transitions have been observed by cavity ringdown spectroscopy (CRDS).<sup>65–69</sup> The  $\tilde{\text{A}}$  state has also been studied experimentally by PD spectroscopy.<sup>70</sup> These experiments have further stimulated interest from quantum chemistry.<sup>66,67,69,71–75</sup>

Our focus here is on the  $\tilde{\text{A}}$  state, which transforms as  $\text{E}''$  in the  $D_{3h}$  point group. It has one  $a_1'$ , one  $a_2''$ , and two  $e'$  vibrational modes, with the latter two being JT-active. In addition, PJT coupling exists in first or second order between all three states, with  $\tilde{X}$ – $\tilde{\text{B}}$  linear coupling being particularly strong and ultimately responsible for the great complexity of the  $\text{NO}_3$  molecule.

Rotationally resolved spectra have been observed for several bands of the jet-cooled  $\tilde{\text{A}}$ – $\tilde{X}$  CRDS spectrum. None of the observed bands show definitive evidence of the effect of  $h_1$ , and an upper limit for  $|h_1|$  of less than 75 MHz for the zero-point level can be established as is reflected in Table 5. (No values of

**Table 5. Values (MHz) of  $h_1$  for the Vibrationless Level of the  $\tilde{\text{A}}^2\text{E}$  State of  $\text{NO}_3$**

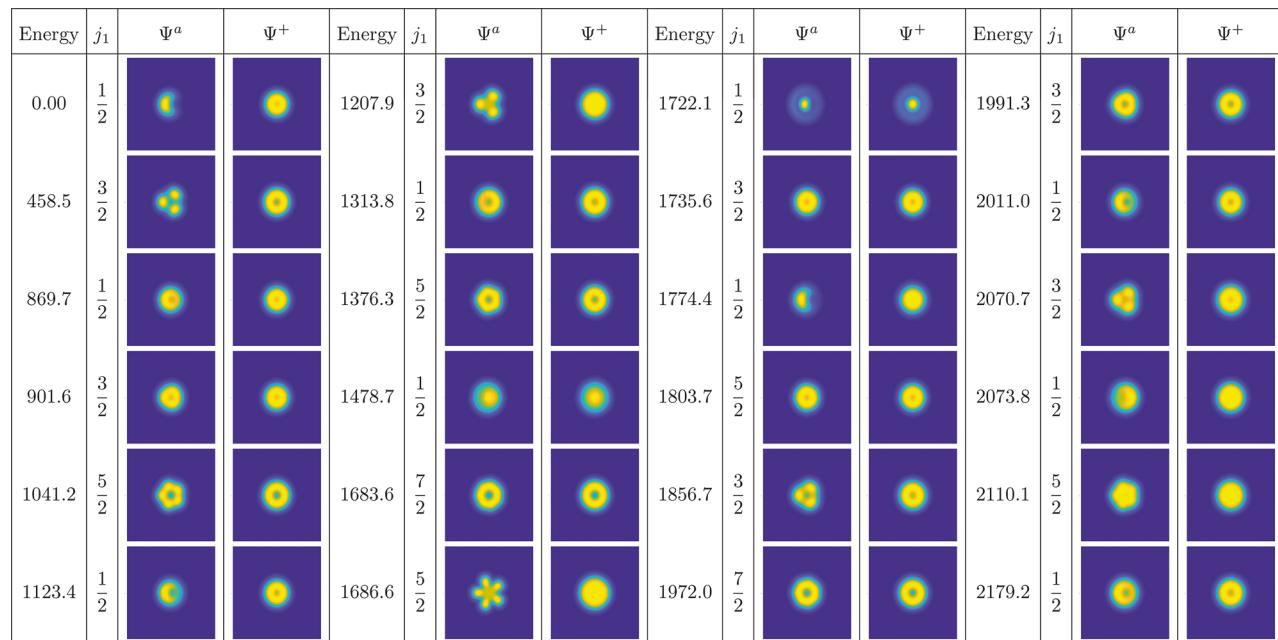
|                           | eigenfunction source             |                                            |
|---------------------------|----------------------------------|--------------------------------------------|
|                           | electronic structure calculation | analysis of vibronic spectrum <sup>a</sup> |
| $h_1'$ <sup>b</sup>       | 60.5                             | -190                                       |
| $h_1''$ <sup>b</sup>      | -8.0                             | 24                                         |
| $ h_1' $ <sup>b</sup>     | 52.5                             | 166                                        |
| $h_1' = h_1$ <sup>c</sup> | 467                              | 385                                        |
| $ h_1 (\text{exp})$       |                                  | $\leq 75$ <sup>d</sup>                     |

<sup>a</sup>Reference 69. <sup>b</sup>Vibronic calculation. <sup>c</sup>Watson calculation. <sup>d</sup>Experimental upper limit for  $h_1$  determined for the  $2^1\text{e}'$  vibronic level of the  $\tilde{\text{A}}$  state, which, to the level of theory in the calculation, is the same as the vibrationless level.

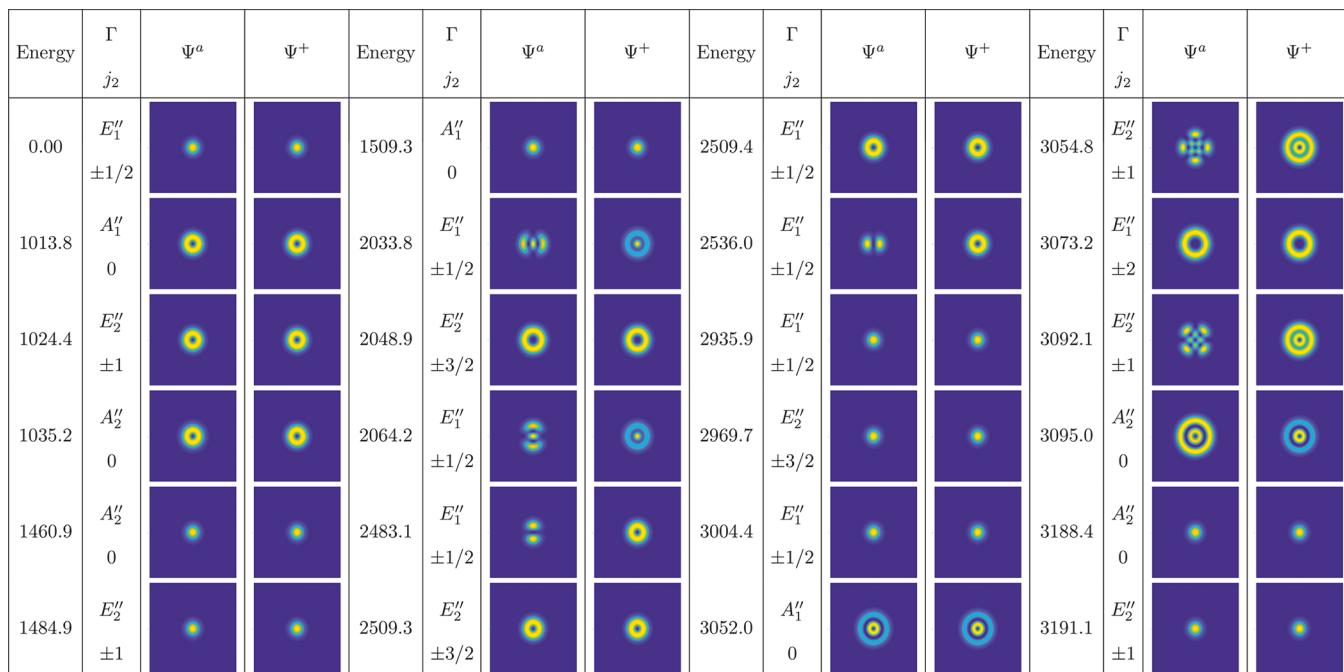
$h_1$  have been reported for the  $\tilde{\text{B}}$  state of  $\text{NO}_3$ , although it is also JT-active, due at least in part to an extremely complicated  $\tilde{\text{B}}$ – $\tilde{X}$  spectrum. Of course  $h_2 = 0$  in both states due to planarity.)

For  $\text{NO}_3$ , the vibronic calculation included three modes:  $\nu_1$ , which is a nondegenerate mode, and  $\nu_3$  and  $\nu_4$ , which are JT-active degenerate modes. The vibronic basis set is truncated at  $\nu_{\max} = 10$  for all three modes. The Lanczos algorithm is run for 1200 iterations to get the converged eigenvalues and eigenvectors. Nonzero bilinear coupling between  $\nu_1$  and the degenerate modes is also included in the calculation.

Table 5 shows the values of  $h_1$  for the zero-point level calculated from the vibronic eigenkets using the same procedures as previously described for  $\text{C}_5\text{H}_5$  and  $\text{CH}_3\text{O}$ . Corresponding values for JT coupling parameters, matrix elements of the normal coordinates, values of rotational tensor component derivatives, and  $h_1$  values for higher levels are given in Tables S29–S37 of the Supporting Information. As one can see from Table 5, the calculated value of  $h_1$  is somewhat smaller than the experimentally observed upper limit and is therefore consistent with it. One can also note that, for  $\text{NO}_3$ , the calculated value of  $h_1''$  is not very small compared to  $h_1'$ , in contrast to both  $\text{C}_5\text{H}_5$  and  $\text{CH}_3\text{O}$ . This is clearly consistent with the strong JT effect in  $\text{NO}_3$ . Furthermore, we note the calculation of  $h_1$  by the Watson method is clearly inconsistent



**Figure 1.** Plots of vibronic density,  $|\Psi^a|^2$  and  $|\Psi^+|^2$ , for the normal mode polar coordinates  $\rho_9$  and  $\theta_9$  for the lowest vibronic levels of  $C_5H_5$ . The two densities are integrated over the electronic component and other vibrational components as described in section S5.1 of the [Supporting Information](#). The  $\rho_9$  is the distance from origin and varies from 0 to 10 at the corner in reduced (dimensionless) normal coordinates, which are related to the standard mass-weighted normal coordinates as  $Q_i = \frac{10.9726694787\hbar}{\sqrt{\omega_i}}$ , where  $Q_i$  is in (amu) $^{1/2}$ bohr and  $\omega$  is the harmonic frequency of the mode in  $\text{cm}^{-1}$  (for more detail see footnote 53 of ref 30).  $\theta_9$  is the angle with the  $x$ -axis in the anticlockwise direction and varies from 0 to  $2\pi$ . The color scale indicates the magnitude of the density, with yellow the maximum. The individual plots are labeled by vibronic eigenenergy and its value of  $j_1$ .



**Figure 2.** Plots of vibronic density,  $|\Psi^a|^2$  and  $|\Psi^+|^2$ , for the normal mode polar coordinates  $\rho_7$  and  $\theta_7$  for the lowest vibronic levels of  $C_5H_5$ . The rest of the information is the same as given in the caption for **Figure 1**. The individual plots are labeled by vibronic eigenenergy and its value of  $j_2$ .

with the experimental result as well as the vibronic calculation, reflecting a failure of first-order perturbation theory in this case where the JT coupling is extremely strong.

**Table 5** makes one other comparison. As discussed in the **Introduction**, the JT parameters can also be extracted from an analysis of the experimental vibronic spectra, which as **Table**

**S29** shows, are (considerably) larger than the calculated ones. The value of  $h_1$  calculated with these parameters is therefore larger, as seen in **Table 5**, and indeed is significantly larger than the experimental upper limit for  $h_1$ , which further suggests that the experimentally inferred potential is flawed as has been discussed previously.<sup>16</sup> Indeed, a virtue of  $h_1$  and  $h_2$  is that they

allow the benchmarking of low-order terms in the JT expansion calculated by theory. Should higher order terms, e.g.,  $h_i''$ , be required to make calculations and experiment agree, it is indicative that a higher order JT expansion is necessary.

#### 4. DISCUSSION

We have derived a method for predicting  $h_i$  values from vibronic eigenfunctions based on the results of quantum chemistry calculations, and we have demonstrated that this approach yields predictions in good agreement with experimental values for representative examples. It is useful to apply our computational approach to look more generally at the characteristics of the  $h_i$  distortion parameters.

The symmetry properties of the vibronic eigenfunctions are important for the values of the  $h_i$  and indeed many other molecular parameters. One symmetry property that has long been known is that  $h_2$  vanishes for a planar molecule. This property derives from the fact that  $h_2$  is proportional to a rotational tensor component that is inversely proportional to the  $z$  displacement of the nuclei, which transforms antisymmetrically with respect to reflection in the plane. However, the direct product of the vibronic eigenkets always transforms symmetrically, and hence the vibronic matrix elements in [eqs 29](#) and [30](#) must vanish through first order. This result has been previously obtained but based on consideration of the symmetry of  $H_{JT}$  alone. If spin-orbit coupling is considered, the spin-double-group irreducible representations are still symmetric for the bra-ket direct product, while the rotational tensor components still transform antisymmetrically. Hence,  $h_2$  vanishes for planar molecules, whether or not spin-orbit coupling is considered.

More information about the  $h_i$  can be obtained for particular molecules, and the Cp radical is a particularly convenient example to consider. Since it is planar,  $h_2$  vanishes. The Cp radical has vibrational modes of one symmetry,  $e'_2$ , that have a linear-only JT effect and others,  $e'_1$ , that have a quadratic-only JT effect. The interaction between modes of these two symmetries is negligible and indeed has been omitted from our calculations on Cp as mentioned earlier. The values of  $h'_1$  that we have calculated are given in [Table S17](#) for  $e'_2$  levels and  $h''_1$  in [Table S18](#) for  $e'_1$  levels. As noted from those tables, all values of  $h'_1$  and  $h''_1$  vanish for the  $e'_2$  and  $e'_1$  modes, respectively. This follows from the fact that the linear and quadratic JT effects vanish for  $e'_1$  and  $e'_2$  modes respectively, and hence  $h'_1$  and  $h''_1$  must correspondingly vanish. However, what we found surprising is that in [Table S17](#) many other values of  $h'_1$  also vanish for  $e'_2$  vibrational modes as do values for  $h''_1$  in [Table S18](#) for  $e'_1$  vibrational modes.

To investigate the situation in more detail, we have plotted vibronic densities of the Cp radical in [Figures 1](#) and [2](#). The method used to calculate the densities follows from that reported by Ichino et al.,<sup>36</sup> and details of our implementation are given in the [Supporting Information](#). These plots are constructed using the same vibronic eigenfunctions that were used to calculate the  $h_i$  values for each molecule. The plots in the figures are for the normal mode of the given molecule that best illustrates the characteristics of the vibronic density, usually the one that has the strongest linear JT interaction.

To understand the vibronic density plots shown in the figures for Cp, it is useful to introduce the quantum number,  $j_k$ , which is a function of  $l$  and  $\Lambda$ , with its detailed form depending on the molecule's symmetry group and the irreducible

representations according to which the electronic  $\psi_{\pm|\Lambda|}^e$  and vibrational  $\psi_{\nu_l}$  wave functions transform. Child and Longuet-Higgins<sup>17</sup> first used  $j_1$  (therein called just  $j$ ), and its definition was extended to  $j_k$  in the review by Barckholtz and Miller.<sup>4</sup> As shown therein,  $j_k$  is a good quantum number for  $\Psi^{SV}$  if there is only a single order of JT interaction; i.e., for a linear JT interaction,  $k = 1$ , for a quadratic interaction,  $k = 2$ , etc. Since  $\Lambda$  and  $l$  can assume both positive and negative values,  $j$  can also have positive and negative values, and we denote the corresponding eigenfunctions as  $\Psi^{SV}(\pm j_k)$ , which can be taken as the two components of the degenerate vibronic eigenvalue. Generically, these eigenfunctions are referred to as  $\Psi^\pm$  regardless of whether  $j_k$  is a good quantum number.

Of course, for a given  $j_k$ , a linear combination of  $\Psi^{SV}(\pm j_k)$  remains an eigenfunction of the vibronic Hamiltonian. However, if we want also to diagonalize the  $h_i$  operators to first order, we need to take a form like

$$\Psi^a(|j|) = \frac{1}{\sqrt{2}}[\Psi^{SV}(j) + \Psi^{SV}(-j)] \quad (47)$$

$$\Psi^b(|j|) = \frac{i}{\sqrt{2}}[\Psi^{SV}(-j) - \Psi^{SV}(j)] \quad (48)$$

since the  $h_i$  are defined in terms of matrix elements *between* the degenerate components  $\Psi^{SV}(j)$  and  $\Psi^{SV}(-j)$ .

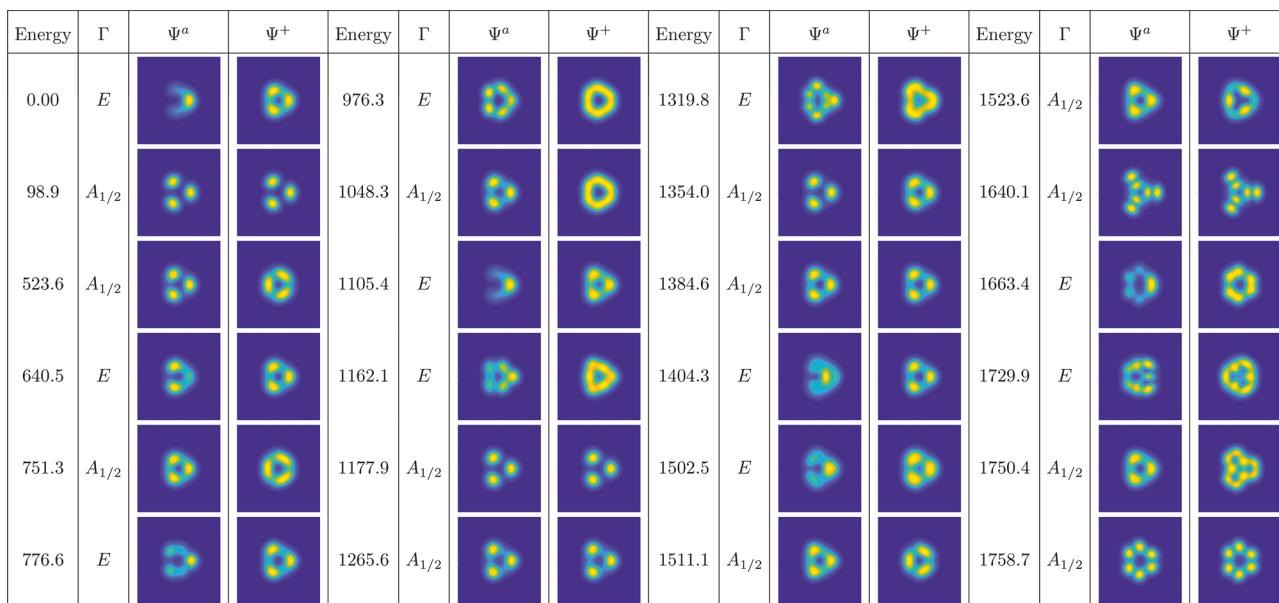
In the [Supporting Information](#), we show that for these eigenfunctions the vibronic density can be written

$$\begin{aligned} |\Psi^{a/b}(|j|)|^2 &= \frac{1}{2} \int [|\Psi^{SV}(j)|^2 + |\Psi^{SV}(-j)|^2 \pm \Psi^{SV*}(j)\Psi^{SV}(-j) \\ &\quad \pm \Psi^{SV*}(-j)\Psi^{SV}(j)] \, d\epsilon = \mathcal{F}_0^k \mathcal{G}_0^k(\rho) \\ &\quad \pm \mathcal{F}_1^k(\theta) \mathcal{G}_1^k(\rho) \end{aligned} \quad (49)$$

The  $\mathcal{G}_0^k(\rho)$  and  $\mathcal{G}_1^k(\rho)$  are functions only of  $\rho$  and consist of sums over products of the associated Legendre polynomials and the mixing coefficients in the vibronic eigenfunction, which are outputs of SOCJT2. Correspondingly  $\mathcal{F}_0^k(\theta)$  and  $\mathcal{F}_1^k(\theta)$  are functions of  $\theta$  only.

In [Figure 1](#) we have plotted  $|\Psi^a|^2$  and  $|\Psi^+|^2$  for a number of the lower eigenvalues of the  $e'_2 \nu_9$  vibration of Cp, which is JT active only for a linear JT interaction, and hence,  $j_1$  is a good quantum number. The plots of  $|\Psi^a|^2$  and  $|\Psi^+|^2$  are stunning in terms of variety, complexity, and, in many cases, high symmetry. An examination of the  $|\Psi^a|^2$  plots shows that they contain axes of rotation, from one to many-fold. [Figure 1](#) shows one symmetry axis for  $j = \frac{1}{2}$ , 3 axes for  $j = \frac{3}{2}$  levels, 5 axes for  $j = \frac{5}{2}$  and so on, which must be attributable to  $\mathcal{F}_1^k(\theta)$ . For any of the  $e'_2$  modes of the ground state of Cp, we show in the [Supporting Information](#) that  $\mathcal{F}_1^1(\theta) = \cos(2j_1)$ , which is consistent with the plots of  $|\Psi^a(|j|)|^2$ . However,  $\mathcal{F}_0^k(\theta)$  has no  $\theta$  dependence, which explains the lack of structure in the plots of  $|\Psi^+|^2$ . Nonetheless the existence of both  $\mathcal{F}_0^k \mathcal{G}_0^k(\rho)$  and  $\mathcal{F}_1^k(\theta) \mathcal{G}_1^k(\rho)$  are important since the plots of  $|\Psi^a(|j|)|^2$  are a sum or difference of them. If there is no JT-effect, then the sums involving  $C_{\nu_l}^\pm$  reduce to a single term of unity and  $\mathcal{G}_1^k(\rho)$  vanishes making the vibronic density independent of  $\theta$ .

A molecule with a 3-fold or greater proper or improper symmetry axis must be a symmetric (or spherical) top. The converse of this is that a molecule with less than a 3-fold axis is an asymmetric top. The geometry of the molecule, and hence



**Figure 3.** Plots of vibronic density,  $|\Psi^a|^2$  and  $|\Psi^+|^2$ , for the normal mode polar coordinates  $\rho_3$  and  $\theta_3$  for the lowest vibronic levels of  $\text{NO}_3$ . The rest of the information is the same as given in the caption for Figure 1.

its symmetry, is usually determined by the equilibrium positions of the nuclei as defined by expectation values over the electronic eigenfunction. This definition can be extended to include distortions from vibronic coupling, by defining the molecule's inertial tensor to be determined by its expectation value over the vibronic eigenfunction. If that symmetry is 3-fold or greater, the molecule rotationally behaves like a symmetric top. (The statement assumes that the vibrational motion is sufficiently rapid to average the molecular rotations over a vibrational period. If the vibrational motion is not sufficiently rapid, one must correct this picture by taking into account rotation–vibration coupling between different vibronic levels.) From the form of  $\mathcal{F}_1^k(\theta)$ , the only value of  $j_1$  that has less than a 3-fold axis is  $j_1 = \frac{1}{2}$ . Hence  $j_1 = \frac{1}{2}$  levels will be the only ones to distort from the symmetric top geometry of the non-JT-perturbed configuration, and therefore, only those vibronic states have nonvanishing values of  $h_1$ . Another consistent, but less physical, argument is that  $h_1$  must vanish, except for  $j = \pm \left| \frac{1}{2} \right|$  levels, is to note that  $h_1$  contains the matrix element of the normal coordinate which has a selection rule of  $\Delta l = \pm 1$ . To have a nonzero  $h_1$  within a degenerate vibronic state, the values of  $j$  connected by the matrix must be equal in magnitude and opposite in sign. Only the values of  $j = \pm \frac{1}{2}$  satisfy this criterion, and thereby, we observe the many zero values of  $h_1$  in Table S17.

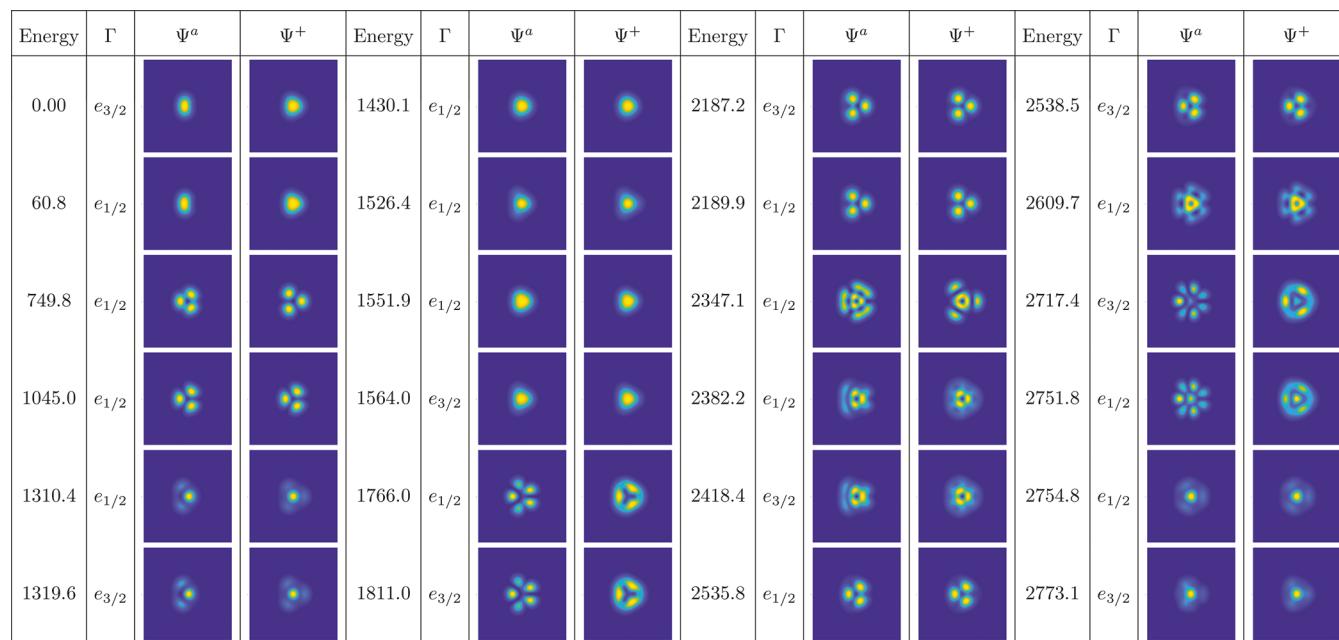
While Figure 1 is very informative, it is important to remember that so far we have focused on the  $e'_2$  vibrational levels of  $\text{Cp}$  which show only a linear JT effect. Figure 2 shows comparable vibronic density plots for the  $e'_1 \nu_7$  mode which is only quadratically JT active. For these levels,  $j_2$  becomes the good quantum number, and we see from the Supporting Information that  $\mathcal{F}_1^2(\theta) = \cos(4j_2)$ . As expected, the plots of Figure 2 show angular dependence consistent with  $\mathcal{F}_1^2(\theta)$ . The figure also shows that  $j_2$  takes on both half odd integer and integer values. Only the former states show vibronic densities with less than a 3-fold axis. While there are a number of

degenerate  $e$  vibronic states with integer  $j_2$ , the vibronic densities are all of 3-fold or higher symmetry and should be symmetric tops. This result is confirmed in Table S18, which shows that  $h_1$  vanishes for these states, even if they are of  $e$  symmetry.

The plots in Figures 1 and 2 for  $\text{Cp}$  allow us to make some general observations about the vibronic density  $|\Psi^a|^2$ . It is important to note that the density is the sum or difference between two terms. The first one of these is  $\mathcal{F}_0^k(\theta)\mathcal{G}_0^k(\rho)$ , which is independent of  $\theta$  so long as  $j_k$  is a good quantum number. The second of these,  $\mathcal{F}_1^k(\theta)\mathcal{G}_1^k(\rho)$ , depends on a cosine function of  $\theta$ . However, this latter term vanishes if there is no JT effect and correspondingly is much smaller than the former for small JT coupling but increases at the expense of the former as the coupling grows.

Overall the vibronic density serves as a powerful tool to identify the characteristics of a particular eigenstate. If the density has 3-fold or higher symmetry, the state behaves as a symmetric top and the  $h_i$  vanish. For either a linear-only or quadratic-only JT effect the  $j_k$  of a given quantum state can be assigned by noting the characteristic patterns of  $\cos(2j_1\theta)$  or  $\cos(2j_2\theta)$  in the plots. This can be used to definitively identify a particular eigenstate in a region of dense energy level structure. Moreover the contribution of a particular normal mode can be readily ascertained qualitatively by the relative magnitude of the deviation of the density plot from cylindrical symmetry in the coordinate space  $(\rho_i, \theta_i)$  of the JT-active normal mode, e.g., for the  $e'_2$  vibration modes,  $i = 8–11$ , of  $\text{Cp}$ .

Many molecules also have a significant linear and quadratic effect in the same mode, and one of these is  $\text{NO}_3$ , whose  $h_1$  values are given in Table S28 with a corresponding plot of the density of the vibronic eigenfunctions in Figure 3. Of course,  $j$  is no longer a good quantum number for  $\text{NO}_3$ , and the vibronic eigenfunctions contain multiple, but not unrestricted, values of  $j$ . However, the  $D_{3h}$  symmetry designations of  $e'$  or  $a'$  ( $a'_1$  or  $a'_2$ ) still apply and the eigenfunctions for  $e$  levels contain only basis functions,  $j = \frac{1}{2} + 3n$ . Only  $e'$  levels have  $|\Psi^a|^2$  with less than a 3-fold axis and so can support a nonzero



**Figure 4.** Plots of vibronic density,  $|\Psi^a|^2$  and  $|\Psi^+|^2$ , for the normal mode polar coordinates  $\rho_6$  and  $\theta_6$  for the lowest vibronic levels of  $\text{CH}_3\text{O}$ . The rest of the information is the same as given in the caption for Figure 1.

value of  $h_1$ , as Table S37 clearly shows. However, for  $\text{NO}_3$ , unlike  $\text{Cp}$ , all the degenerate levels have finite values for  $h_1$ . We note that  $\mathcal{F}_0^1(\theta)$  is no longer  $\theta$  independent due to cross-terms therein involving different  $j$  values which leads to a  $\theta$  dependence with 3-fold symmetry for  $|\Psi^+|^2$  in the plots.

Finally, we turn to Figure 4 for  $\text{CH}_3\text{O}$  which has both linear and quadratic coupling in its e vibrational modes. Correspondingly the plots in Figure 4 for both  $|\Psi^a|^2$  and  $|\Psi^+|^2$  show structure similar to those for  $\text{NO}_3$ . Again, the nominally e states alone show less than a 3-fold symmetry axis and support nonzero  $h_i$  values. There is additionally a significant spin-orbit coupling in  $\text{CH}_3\text{O}$  that is lacking in  $\text{NO}_3$ . This leads to spin-orbit pairs of states in Figure 3 with structure that is indistinguishable at the resolution of the plots, even though small differences in the  $h_i$  values are calculated for them.

## 5. CONCLUSIONS

The importance of CIs in chemistry is now widely recognized despite the challenges they pose for characterization experimentally or via electronic structure calculations. While CIs of electronic PESs are ubiquitous, those associated with the JT effect are the ones most extensively characterized experimentally. The rotational distortion parameters,  $h_1$  and  $h_2$ , are examples of the molecular parameters that can be measured accurately by high resolution spectroscopy and are quite sensitive to the PES containing the JT induced CI.

We have formulated the basic theory necessary to relate measured  $h_1$  and  $h_2$  values to those derived from a quantum chemistry calculation of the PES. On the basis of this theory, we have developed computational technology to obtain numerical values for  $h_1$  and  $h_2$ , which is easily extended to the computation of other molecular parameters of JT-active systems.

This technology enables computation of values for the  $h_1$  and  $h_2$  parameters of the JT-active  $\tilde{\text{X}}^2\text{E}'$  state of  $\text{C}_5\text{H}_5$ , the  $\tilde{\text{X}}^2\text{E}$  state of  $\text{CH}_3\text{O}$ , and the  $\tilde{\text{A}}^2\text{E}'$  state of  $\text{NO}_3$ . Excellent agreement between the calculated and observed values of the

$h_i$  parameters are obtained for  $\text{C}_5\text{H}_5$  and  $\text{CH}_3\text{O}$ . In the case of  $\text{NO}_3$ , the calculated value of  $h_1$  is just below its experimentally measured upper limit.

These computational techniques can be applied to determine general properties of the  $h_1$  and  $h_2$  parameters. These parameters can exhibit vanishing values for particular vibronic levels even if a substantial JT effect and corresponding geometric distortion is present. If the vibronic density shows a 3-fold or higher rotational symmetry axis, the  $h_i$  parameters vanish in that state. However, if the vibronic density has less than 3-fold symmetry its magnitude for a particular mode is not directly correlated with that state's observed values of  $h_1$  and  $h_2$  since they reflect the distortion from all modes. Nonetheless, the vibronic density plots do readily reflect whether the JT interaction is linear, quadratic, or both.

## ■ ASSOCIATED CONTENT

### S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: [10.1021/acs.jpca.9b03360](https://doi.org/10.1021/acs.jpca.9b03360).

$h_1 - h_2$  calculations and results (PDF)

## ■ AUTHOR INFORMATION

### Corresponding Authors

\*(K.S.) E-mail: [sharma.754@osu.edu](mailto:sharma.754@osu.edu).

\*(T.A.M.) E-mail: [tamiller@chemistry.ohio-state.edu](mailto:tamiller@chemistry.ohio-state.edu).

### ORCID

Terry A. Miller: [0000-0003-0731-8006](https://orcid.org/0000-0003-0731-8006)

John F. Stanton: [0000-0003-2345-9781](https://orcid.org/0000-0003-2345-9781)

### Present Address

<sup>†</sup>Department of Chemistry, University of California, Berkeley, CA 94720

### Notes

The authors declare no competing financial interest.

## ACKNOWLEDGMENTS

J.F.S. acknowledges the support of this work by the National Science Foundation via Grant CHE 1664325. KS gratefully acknowledges a Terry A. Miller Postdoctoral Fellowship from The Ohio State University. T.A.M. acknowledges support for S.G. via a Henry and Camille Dreyfus Foundation Senior Scientist Mentor Program Award for Undergraduate Research and support from the Ohio Supercomputer via Project PAS0540. We also gratefully acknowledge contributions to this work by Henry Tran in its early stages.

## REFERENCES

- (1) Herzberg, G.; Longuet-Higgins, H. Intersection of potential energy surfaces in polyatomic molecules. *Discuss. Faraday Soc.* **1963**, *35*, 77–82.
- (2) Mead, C. A.; Truhlar, D. G. On the determination of Born–Oppenheimer nuclear motion wave functions including complications due to conical intersections and identical nuclei. *J. Chem. Phys.* **1979**, *70*, 2284–2296.
- (3) Yarkony, D. R. Diabolical conical intersections. *Rev. Mod. Phys.* **1996**, *68*, 985.
- (4) Barckholtz, T. A.; Miller, T. A. Quantitative insights about molecules exhibiting Jahn-Teller and related effects. *Int. Rev. Phys. Chem.* **1998**, *17*, 435–524.
- (5) Barckholtz, T. A.; Miller, T. A. The calculation of spectroscopic Jahn-Teller parameters by *ab initio* methods. *J. Phys. Chem. A* **1999**, *103*, 2321–2336.
- (6) Jahn, H. A.; Teller, E. Stability of polyatomic molecules in degenerate electronic states—I—Orbital degeneracy. *Proc. R. Soc. London, A* **1937**, *161*, 220–235.
- (7) Levine, B. G.; Martínez, T. J. Isomerization through conical intersections. *Annu. Rev. Phys. Chem.* **2007**, *58*, 613–634.
- (8) Levine, B. G.; Coe, J. D.; Martínez, T. J. Optimizing conical intersections without derivative coupling vectors: Application to multistate multireference second-order perturbation theory (MS-CASPT2). *J. Phys. Chem. B* **2008**, *112*, 405–413.
- (9) Wörner, H. J.; Merkt, F. Jahn–Teller effects in molecular cations studied by photoelectron spectroscopy and group theory. *Angew. Chem., Int. Ed.* **2009**, *48*, 6404–6424.
- (10) Signorell, R.; Merkt, F. PFI-ZEKE photoelectron spectra of the methane cation and the dynamic Jahn–Teller effect. *Faraday Discuss.* **2000**, *115*, 205–228.
- (11) Bersuker, I. B. Modern aspects of the Jahn–Teller effect theory and applications to molecular problems. *Chem. Rev.* **2001**, *101*, 1067–1114.
- (12) Monkhorst, H. J. Calculation of properties with the coupled-cluster method. *Int. J. Quantum Chem.* **1977**, *12*, 421–432.
- (13) Stanton, J. F.; Bartlett, R. J. The equation of motion coupled-cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties. *J. Chem. Phys.* **1993**, *98*, 7029–7039.
- (14) Stanton, J. F. Coupled-cluster theory, pseudo-Jahn–Teller effects and conical intersections. *J. Chem. Phys.* **2001**, *115*, 10382–10393.
- (15) Eisfeld, W.; Morokuma, K. A detailed study on the symmetry breaking and its effect on the potential surface of NO 3. *J. Chem. Phys.* **2000**, *113*, 5587–5597.
- (16) Tran, H. K.; Stanton, J. F.; Miller, T. A. Quantifying the effects of higher order coupling terms on fits using a second order Jahn–Teller Hamiltonian. *J. Mol. Spectrosc.* **2018**, *343*, 102–115.
- (17) Child, M. S.; Longuet-Higgins, H. C. Studies of the Jahn-Teller effect III. The rotational and vibrational spectra of symmetric-top molecules in electronically degenerate states. *Philos. Trans. R. Soc., A* **1961**, *254*, 259–294.
- (18) Child, M. S.; Strauss, H. L. Causes of *l*-type doubling in the  $3\rho(E'')$  rydberg state of ammonia. *J. Chem. Phys.* **1965**, *42*, 2283–2292.
- (19) Hougen, J. T. Double group considerations, Jahn-Teller induced rovibronic effects, and the nuclear spin-electron spin hyperfine Hamiltonian for a molecule of symmetry  $C_{3v}$  in an electronic  $^2E$  state. *J. Mol. Spectrosc.* **1980**, *81*, 73–92.
- (20) Watson, J. K. G. Jahn-Teller and L-uncoupling effects on rotational energy levels of symmetric and spherical top molecules. *J. Mol. Spectrosc.* **1984**, *103*, 125–146.
- (21) Herzberg, G.; Lew, H.; Sloan, J. J.; Watson, J. K. G. The electronic emission spectrum of triatomic hydrogen. III. Infrared perpendicular bands near  $3600\text{ cm}^{-1}$ . *Can. J. Phys.* **1981**, *59*, 428–440.
- (22) Bernath, P. F. *Spectra of atoms and molecules*; Oxford University Press: New York, 2005.
- (23) Hirota, E. *High-resolution spectroscopy of transient molecules*; Springer-Verlag: New York, 1985.
- (24) Barckholtz, T. A.; Miller, T. A. Quantitative insights about molecules exhibiting Jahn-Teller and related effects. *Int. Rev. Phys. Chem.* **1998**, *17*, 435–524.
- (25) Bersuker, I. B. *The Jahn-Teller effect*; Cambridge University Press: Cambridge, U.K., 2006.
- (26) Stanton, J. F. On the vibronic level structure in the  $\text{NO}_3$  radical. I. The ground electronic state. *J. Chem. Phys.* **2007**, *126*, 134309.
- (27) Stakhursky, V. L. *Vibronic structure and rotational spectra of radicals in degenerate electronic state. Case of  $\text{CH}_3\text{O}$  and asymmetrically deuterated isotopomers ( $\text{CHD}_2\text{O}$  and  $\text{CH}_2\text{DO}$ )*. Ph.D. Thesis, The Ohio State University, 2005.
- (28) Codd, T. J. Spectroscopic studies of the  $\tilde{\Lambda}^2\text{E}''$  state of  $\text{NO}_3$ . Ph.D. Thesis, The Ohio State University, 2014.
- (29) Boatz, J. A.; Gordon, M. S. Decomposition of normal-coordinate vibrational frequencies. *J. Phys. Chem.* **1989**, *93*, 1819–1826.
- (30) Stanton, J. F. On the vibronic level structure in the  $\text{NO}_3$  radical. I. The ground electronic state. *J. Chem. Phys.* **2007**, *126*, 134309.
- (31) Liebling, G. R.; McConnell, H. M. Study of molecular orbital degeneracy in  $\text{C}_5\text{H}_5$ . *J. Chem. Phys.* **1965**, *42*, 3931–3934.
- (32) Engleman, R.; Ramsay, D. A. Electronic absorption spectrum of the cyclopentadienyl radical ( $\text{C}_5\text{H}_5$ ) and its deuterated derivatives. *Can. J. Phys.* **1970**, *48*, 964–969.
- (33) Yu, L.; Foster, S. C.; Williamson, J. M.; Heaven, M. C.; Miller, T. A. Rotationally resolved electronic spectrum of jet-cooled cyclopentadienyl radical. *J. Phys. Chem.* **1988**, *92*, 4263–4266.
- (34) Yu, L.; Williamson, J. M.; Miller, T. A. Rotationally resolved electronic spectrum of jet-cooled deuterated cyclopentadienyl radical. *Chem. Phys. Lett.* **1989**, *162*, 431–436.
- (35) Applegate, B. E.; Beazant, A. J.; Miller, T. A. The Jahn-Teller and related effects in the cyclopentadienyl radical, part II: Vibrational analysis of the  $\tilde{\Lambda}^2\text{A}_2'' - \tilde{\chi}^2\text{E}_1''$  electronic transition. *J. Chem. Phys.* **2001**, *114*, 4869–4882.
- (36) Ichino, T.; Wren, S. W.; Vogelhuber, K. M.; Gianola, A. J.; Lineberger, W. C.; Stanton, J. F. The vibronic level structure of the cyclopentadienyl radical. *J. Chem. Phys.* **2008**, *129*, 084310.
- (37) Leicht, D.; Kaufmann, M.; Schwaab, G.; Havenith, M. Infrared spectroscopy of the helium solvated cyclopentadienyl radical in the CH stretch region. *J. Chem. Phys.* **2016**, *145*, 074304.
- (38) Liehr, A. D. On the stability of cyclobutadiene, cyclopentadienyl radical, and the benzene plus one ion: A comparison of the molecular orbital and valence bond predictions. *Z. Phys. Chem.* **1956**, *9*, 338–354.
- (39) Snyder, L. C. Jahn-Teller distortions in cyclobutadiene, cyclopentadienyl radical, and benzene positive and negative ions. *J. Chem. Phys.* **1960**, *33*, 619–621.
- (40) Applegate, B. E.; Miller, T. A.; Barckholtz, T. A. The Jahn-Teller and related effects in the cyclopentadienyl radical, part I: The *ab initio* calculation of spectroscopically observable parameters. *J. Chem. Phys.* **2001**, *114*, 4855–4868.
- (41) Nee, M. J.; Osterwalder, A.; Zhou, J.; Neumark, D. M. Slow electron velocity-map imaging photoelectron spectra of the methoxide anion. *J. Chem. Phys.* **2006**, *125*, 014306.

(42) Weichman, M. L.; Cheng, L.; Kim, J. B.; Stanton, J. F.; Neumark, D. M. Low-lying vibronic level structure of the ground state of the methoxy radical: Slow electron velocity-map imaging (SEVI) spectra and Köppel-Domcke-Cederbaum (KDC) vibronic Hamiltonian calculations. *J. Chem. Phys.* **2017**, *146*, 224309.

(43) Style, D. W. G.; Ward, J. C. Fluorescent spectra from ethyl nitrate. Part I. - Supposed emissions from alkoxy radicals and  $\text{NO}_2$ . *Trans. Faraday Soc.* **1953**, *49*, 999–1002.

(44) Radford, H. E.; Russell, D. K. Spectroscopic detection of methoxy ( $\text{CH}_3\text{O}$ ). *J. Chem. Phys.* **1977**, *66*, 2222–2224.

(45) Russell, D. K.; Radford, H. E. Analysis of the LMR spectra of methoxy,  $\text{CH}_3\text{O}$ . *J. Chem. Phys.* **1980**, *72*, 2750–2759.

(46) Ohbayashi, K.; Akimoto, H.; Tanaka, I. Emission spectra of  $\text{CH}_3\text{O}$ ,  $\text{C}_2\text{H}_5\text{O}$ , and *i*- $\text{C}_3\text{H}_7\text{O}$  radicals. *J. Phys. Chem.* **1977**, *81*, 798–802.

(47) Inoue, G.; Akimoto, H.; Okuda, M. Spectroscopy of the  $\text{CH}_3\text{O}$   $\text{A}^2\text{A}_1\text{X}^2\text{E}$  system by laser-excited fluorescence method. *J. Chem. Phys.* **1980**, *72*, 1769–1775.

(48) Carrick, P. G.; Brossard, S. D.; Engelking, P. C. Experimental observation of the spin-orbit splitting in methoxy. *J. Chem. Phys.* **1985**, *83*, 1995–1996.

(49) Foster, S. C.; Misra, P.; Lin, T. Y. D.; Damo, C. P.; Carter, C. C.; Miller, T. A. The free jet-cooled laser-induced fluorescence spectrum of methoxy. Part I: Vibronic analysis of the  $\tilde{\text{A}}$  and  $\tilde{\text{X}}$  states. *J. Phys. Chem.* **1988**, *92*, 5914–5921.

(50) Powers, D. E.; Pushkarsky, M. B.; Miller, T. A. Rovibronic analysis of laser induced fluorescence excitation spectrum of the jet-cooled methoxy radical. *J. Chem. Phys.* **1997**, *106*, 6863–6877.

(51) Liu, X.; Damo, C. P.; Lin, T.-Y.; Foster, S. C.; Misra, P.; Yu, L.; Miller, T. A. The free jet-cooled laser-induced fluorescence spectrum of methoxy. Part II: Rotational analysis of the  $\tilde{\text{A}}^2\text{A}_1 \leftrightarrow \tilde{\text{X}}^2\text{E}$  electronic transition. *J. Phys. Chem.* **1989**, *93*, 2266–2275.

(52) Geers, A.; Kappert, J.; Temps, F.; Wiebrecht, J. Rotation-vibration state resolved unimolecular dynamics of highly vibrationally excited  $\text{CH}_3\text{O}$  ( $\text{X}^2\text{E}$ ). I. Observed stimulated emission pumping spectra. *J. Chem. Phys.* **1994**, *101*, 3618–3633.

(53) Geers, A.; Kappert, A. G. J.; Temps, F.; Wiebrecht, J. Rotation-vibration state resolved unimolecular dynamics of highly vibrationally excited  $\text{CH}_3\text{O}$  ( $\text{X}^2\text{E}$ ). II. Intramolecular vibrational dynamics of excited "C-O stretch" states. *J. Chem. Phys.* **1994**, *101*, 3634–3648.

(54) Liu, J.; Chen, M.-W.; Melnik, D.; Yi, J. T.; Miller, T. A. The spectroscopic characterization of the methoxy radical (Part I): Rotationally resolved  $\tilde{\text{A}}^2\text{A}_1 - \tilde{\text{X}}^2\text{E}$  electronic spectra of  $\text{CH}_3\text{O}$ . *J. Chem. Phys.* **2009**, *130*, 074302.

(55) Han, J.; Hu, S.; Chen, H.; Utkin, Y.; Brown, J. M.; Curl, R. F. Jet-cooled infrared spectrum of methoxy in the CH stretching region. *Phys. Chem. Chem. Phys.* **2007**, *9*, 3725–3734.

(56) Momose, T.; Endo, Y.; Hirota, E.; Shida, T. The submillimeter-wave spectrum of the  $^{13}\text{CH}_3\text{O}$  radical. *J. Chem. Phys.* **1988**, *88*, 5338–5343.

(57) Endo, Y.; Saito, S.; Hirota, E. The microwave spectrum of the methoxy radical  $\text{CH}_3\text{O}$ . *J. Chem. Phys.* **1984**, *81*, 122–135.

(58) Marenich, A. V.; Boggs, J. E. A model spin-vibronic Hamiltonian for twofold degenerate electron systems: A variational ab initio study of  $\tilde{\text{X}}^2\text{E}$   $\text{CH}_3\text{O}^-$ . *J. Chem. Phys.* **2005**, *122*, 024308.

(59) Marenich, A. V.; Boggs, J. E. Equation-of-motion coupled-cluster study of Jahn-Teller effect in  $\text{X}^2\text{E}$   $\text{CF}_3\text{O}^-$  and  $\text{CF}_3\text{S}^-$ . *Int. J. Quantum Chem.* **2006**, *106*, 2609–2616.

(60) Marenich, A. V.; Boggs, J. E. The molecular structure, spin-vibronic energy levels, and thermochemistry of  $\text{CH}_3\text{O}$ . *J. Mol. Struct.* **2006**, *780*, 163–170.

(61) Nagesh, J.; Sibert, E. L. Vibrational dynamics around the conical intersection: A study of methoxy vibrations on the  $\tilde{\text{X}}^2\text{E}$  surface. *Phys. Chem. Chem. Phys.* **2010**, *12*, 8250–8259.

(62) Dillon, J.; Yarkony, D. R. Nonadiabatic effects in substitutional isomers of Jahn-Teller molecules: The strange case of hydroxymethoxy. *J. Chem. Phys.* **2012**, *137*, 154315.

(63) Johnson, B. A.; Sibert, E. L. Assigning the low lying vibronic states of  $\text{CH}_3\text{O}$  and  $\text{CD}_3\text{O}$ . *J. Chem. Phys.* **2017**, *146*, 174112.

(64) Shao, Z.; Mo, Y. Jahn-Teller effect in  $\text{CH}_2\text{DO}/\text{CHD}_2\text{O}(\tilde{\text{X}}^2\text{E})$ : Vibronic coupling of all vibrational modes. *J. Chem. Phys.* **2013**, *138*, 244309.

(65) Deev, A.; Sommar, J.; Okumura, M. Cavity ringdown spectrum of the forbidden  $\tilde{\text{A}}^2\text{E}^- \leftarrow \tilde{\text{X}}^2\text{A}_2$  transition of  $\text{NO}_3^-$ : Evidence for static Jahn-Teller distortion in the  $\tilde{\text{A}}$  state. *J. Chem. Phys.* **2005**, *122*, 224305.

(66) Okumura, M.; Stanton, J. F.; Deev, A.; Sommar, J. New insights into the Jahn-Teller effect in  $\text{NO}_3^-$  via the dark  $\tilde{\text{A}}^2\text{E}^-$  state. *Phys. Scr.* **2006**, *73*, C64–C70.

(67) Stanton, J. F.; Okumura, M. On the vibronic level structure in the  $\text{NO}_3^-$  radical part III. Observation of intensity borrowing via ground state mixing. *Phys. Chem. Chem. Phys.* **2009**, *11*, 4742–4744.

(68) Takematsu, K.; Eddingsaas, N. C.; Robichaud, D. J.; Okumura, M. Spectroscopic studies of the Jahn-Teller effect in the  $\tilde{\text{A}}^2\text{E}^-$  state of the nitrate radical  $\text{NO}_3^-$ . *Chem. Phys. Lett.* **2013**, *555*, 57–63.

(69) Codd, T.; Chen, M.-W.; Roudjane, M.; Stanton, J. F.; Miller, T. A. Jet cooled cavity ringdown spectroscopy of the  $\tilde{\text{A}}^2\text{E}^- \leftarrow \tilde{\text{X}}^2\text{A}'_2$  transition of the  $\text{NO}_3^-$  radical. *J. Chem. Phys.* **2015**, *142*, 184305.

(70) Weaver, A.; Arnold, D. W.; Bradforth, S. E.; Neumark, D. M. Examination of the  $^2\text{A}'_2$  and  $^2\text{E}^-$  states of  $\text{NO}_3^-$  by ultraviolet photoelectron spectroscopy of  $\text{NO}_3^-$ . *J. Chem. Phys.* **1991**, *94*, 1740–1751.

(71) Eisfeld, W.; Morokuma, K. *Ab Initio* investigation of the vertical and adiabatic excitation spectrum of  $\text{NO}_3^-$ . *J. Chem. Phys.* **2001**, *114*, 9430–9440.

(72) Eisfeld, W.; Vieuxmaire, O.; Viel, A. Full-dimensional diabatic potential energy surfaces including dissociation: The  $^2\text{E}$  state of  $\text{NO}_3^-$ . *J. Chem. Phys.* **2014**, *140*, 224109.

(73) Faraji, S.; Köppel, H.; Eisfeld, W.; Mahapatra, S. Towards a higher-order description of Jahn-Teller coupling effects in molecular spectroscopy: The  $\tilde{\text{A}}^2\text{E}^-$  state of  $\text{NO}_3^-$ . *Chem. Phys.* **2008**, *347*, 110–119.

(74) Mahapatra, S.; Eisfeld, W.; Koeppel, H. Effects of multimode Jahn-Teller coupling on the photodetachment spectrum of nitrate anion ( $\text{NO}_3^-$ ). *Chem. Phys. Lett.* **2007**, *441*, 7–15.

(75) Stanton, J. F. On the vibronic level in the  $\text{NO}_3^-$  radical: II. Adiabatic calculation of the infrared spectrum. *Mol. Phys.* **2009**, *107*, 1059–1075.