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ABSTRACT: A theoretical and computational framework is
presented for the parameters h; and h, that appear in the
rotational Hamiltonian for molecules subject to the Jahn—
Teller effect. Expressions that relate h; and h, to first and
second moments of the degenerate normal coordinates as well
as derivatives of the inertia tensor are presented in detail for
both cylindrical and Cartesian coordinate systems. The
method is demonstrated for three situations in which
experimental information about h; (and/or h,) is available:
the ground “E{ and ’E states of the cyclopentadienyl (CsH;)
and methoxy (CH;0) radicals, respectively, and the excited
E” state of the nitrate (NO;) radical. Results for i, and h,

parametrized by ab initio calculations exhibit good agreement with measured values, and they are demonstrably superior to
those obtained with an approach based on first-order perturbation theory. The computational technology developed for h, and
h, can be used to benchmark quantum chemistry calculations for molecules with Jahn—Teller effects and facilitate the analysis

of their spectra.

1. INTRODUCTION

Conical intersections (CIs) on potential energy surfaces
play an important role in molecules, affecting many aspects of
their behavior that range from reaction dynamics to
spectroscopic signatures.”> While it was once thought that
CIs dictated by symmetry (those which epitomize the Jahn—
Teller (JT) effect) were far more common than those resulting
from accidental degeneracies, it is now widely appreciated that
intersections of two or more electronic states are ubiquitous.
The last few decades have witnessed many advances made in
the study of CIs, and this is now known to be a field of great
relevance.

Studies of CIs are made from both the experimental and
theoretical viewpoints. In the former area, the short passage
time through the CI region in dynamical processes limits what
can be learned from experiment, a consequence of the time-
energy uncertainty principle. Theoretical calculations are also
difficult, as the electronic problem must be solved in a
multidimensional space, a fact that compromises the ability of
standard single-reference quantum chemical methods (MP2,
CCSD(T), etc.) to perform as they do for simpler problems.

The venerable Jahn—Teller problem,’ where the CI is
present because of symmetry, and for which the relatively low-
energy dynamics tend to take place in the vicinity of the CI, is
a convenient and appropriate case for the development and
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testing of theoretical and experimental methods for character-
izing CIs. There is a long history of these studies, and many
advances have been made in both theory and experiment.”” "

Experimental studies of the JT effect that provide
information about the Cls are generally based on electronic
spectroscopy. The levels measured experimentally can be fit by
effective Hamiltonians (typically those characterized by linear
and quadratic JT models). These Hamiltonians contain
information about the adiabatic potential energy surfaces
(PES) that comprise the CI, and also allow the prediction of
other level positions that are not observed experimentally, due
either to selection rules or to intrinsically weak transitions.
Quantum chemical calculations can also be used to determine
properties of Cls. Once an appropriate treatment of the
electronic Hamiltonian is found (such as methods based on
equation-of-motion coupled-cluster (EOM-CC)"*~'* or those
based on complete active space self-consistent-field (CASSCF)
calculations'”), the adiabatic surfaces can be computed
directly, and properties of the CI such as the JT stabilization
energy (JTSE) (the energy difference between the minimum
along the CI seam and the global minima of the JT-distorted
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molecule) and pseudorotation barriers are easily obtained.
With more effort, quantum chemical calculations can be used
to parametrize the aforementioned effective Hamiltonians,
which can subsequently be diagonalized to obtain eigenvalues
and eigenfunctions, the energy differences between the former
giving frequencies in spectra and the latter characterizing the
nature of the states involved.

Both experimental and theoretical studies of the JT effect are
difficult, and it is desirable to find a way in which these
distinctly different approaches can reinforce each other. It is
interesting that even a very logical first step in this process—
the calibration of theoretical calculations by comparison to
experimental results—has turned out to be somewhat
problematic. Specifically, it transpires that potential energy
surface measures such as the JTSE and pseudorotation barriers
that have been inferred from experimental level positions via
the effective Hamiltonian approach sometimes agree quite
poorly with those obtained directly by sophisticated quantum
chemical calculations. While this is the expected result if the
model Hamiltonian approach is unable to fit the experimental
levels well, a recent work'® by some of us shows that model
Hamiltonian fits can provide quite poor representations of the
computed adiabatic potential energy surfaces even when they
provide excellent fits to level positions obtained from vibronic
structure in spectra.

In this work, we explore how rotational structure in spectra
can be used to compare experimental studies of JT molecules
with theoretical calculations. The JT effect lowers the
symmetry of a molecule by distorting its PES, which leads to
the well-known departure of its vibrational (vibronic) structure
from that of a typical harmonic oscillator model with small
anharmonicities. The molecule’s geometry at the PES
minimum can be significantly distorted from its high symmetry
configuration, which leads to rotational structure markedly
different from that expected from the symmetric-top model
appropriate to the highly symmetric geometry of the CL

JT effects on the rotational structure of molecules were first
considered by Child and co-workers.'”'® Subsequently,
Hougenlg introduced two parameters, denoted h; and h,,
that characterize the effect of JT distortion on the rotational
structure. While seminal, his analysis was strictly based on
group theory, and therefore, it provided no physical
explanation of the parameters and hence no basis for
interpreting their experimental values or their calculation by
quantum chemistry.

Shortly after Hougen’s work, Watson provided a physical
explanation of two parameters comparable to h; and h, and
correspondingly provided an approximate method for their
calculation. His approach was very important in that it derived
an effective rotational Hamiltonian that reflected the JT
distortion of the PES. Not unexpectedly, given the era of
Watson’s work, his approach for computing the parameters has
significant limitations. Specifically, his results are limited to a
linear JT effect, which, moreover, has to be small since his
approach was effectively a first order perturbation calculation,
which would result in, at best, uncertain vibronic eigenfunc-
tions if the JT distortions are significant. In addition, the power
series expansion of the distortion parameters was truncated at
first order. Finally, his work provided an approximate formula
appropriate only for the zero-point level of the molecule.

Obviously tremendous computational advances have
occurred in the meantime. As indicated earlier, vibronic
eigenfunctions can now be determined using information from
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quantum chemistry calculations of the PES. It is the purpose of
this paper to develop a procedure for predicting values of the
h, and h, parameters from calculated vibronic Hamiltonians
and to test the method against experimental results for several
JT active molecules.

To accomplish this, we review the effective rotational
Hamiltonian for JT active molecules and derive an approach to
compute h; and h, from the results of quantum chemistry
calculations. There have been spectral analyses™”' yielding
values of h; and/or h, for several JT-active molecules, among
these being cyclopentadienyl (CH;), methoxy (CH;0), and
nitrate (NOj;) radicals. Here, we calculate parameters for these
molecules and compare them to the experimental measure-
ments. We also use our computational results to elucidate
some general characteristics of h; and h, and relate these to the
nature of the vibronic eigenfunctions.

The computational technology developed and described
herein to compute h; and h, has significant potential for
helping to calibrate the quality of theoretical calculations of the
JT effect. Provided accurate experimental determination of the
parameters is achieved (which however is not a trivial
undertaking), then the quality of the calculated values can be
unambiguously assessed, since they correspond precisely to
what is measured. Thus, a comparison of calculated and
experimental values of h; and h, is meaningful; in a sense,
apples are being compared to apples and oranges to oranges.
Historically, this is not the way that quantum chemical
calculations of the JT effect have been benchmarked. It has
rather been the de facto standard to compute potential energy
surfaces and then compare these to properties of these surfaces
(specifically the JTSE and pseudorotation barriers) extracted
from experimentally based vibronic Hamiltonians. This is
clearly a less straightforward comparison, as the surfaces are
what is calculated but not really what is “measured” in the
experiments and what goes on between the measurement of
the energy levels and the construction (and necessary
truncation) of the vibronic Hamiltonian can strongly under-
mine the fidelity of the resulting surface, as has recently been
demonstrated.

2. THEORETICAL BACKGROUND AND
DEVELOPMENT

2.1. Microscopic Rotational Hamiltonian. Since we are
dealing with modification of rotational structure by the JT
effect, a good starting place for our analysis is the general
expression for the rotational kinetic energy of a nonrigid
molecule, Hy, which is given as'?

Baa Baﬁ Bom' Ra
Hy = [Ry R; R,]|Bs, By By |lRy
B, B6ﬂ B, || R, (1)

The components of the rotational constant tensor, B, are a
function of nuclear coordinates (Ry ). The nuclear coordinates
can be described in terms of a reference geometry (R,) and
normal mode coordinates (qy) with gy = 0 at R,. R is the
rotational angular momentum, defined as

R=J-L-G-S=N-L-G )

where N = J — §, with J and S being the total angular
momentum of the molecule (excluding nuclear spin) and the
electron spin, respectively. The electronic (L) and the
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vibrational (G) angular momenta are conventionally combined
to form the “vibronic” angular momentum

=L+ G (3)

The components @, 3, and ¢ in eq 1, can be expressed in
Cartesian coordinates (x, y and z) or cylindrical coordinates
(+ = re™ = x + iy and z = z) which are related by a
transformation matrix U,

1 1
-~ =0
1i 0 22
U=|1 —i o] U'= LI
00 1 2 2
0 0 1 (4)

The components of the inertia tensor are quadratic functions
of the coordinates and therefore transform contravariantly

1 .

Z(B’”‘ - B, —i(B, +B
B, B_ B,

1 ‘
B, B._ B_|= Z(B"x + B, +i(B
BZ+ z— zz 1

E(Bzx — iB,)

The inverse relationship is

B(x, y,z) = UB(+, —, z2)U (7)

The rotational Hamiltonian in eq 1 can be recast in terms of
raising and lowering operators

N=N il ®

)

Using eqs 1—3 and these operators, we can rewrite Hy as

m =7, *im,

Hy = (N — 7)'B(N — 7) = N'BN — (N"Bz + n'BN)
+ n'Bx = HY + Hy + Hj (10)
where

+ B n_~x

Hg =B_,x_m + B, _w_m + B__71'+2 3, T_TT,

+ B, ,x_n, + B_rr, + B, nx, + Bufzrz2 + B, +71:_2

(11)

Hy = —2B_ Nz, — B__Nx_— B__N_m_— B,_N,z_

- B _Nm—B_Nn_ —B / Nn —B N

- Bz+N—”z - B—zNz”+ - Bz—Nzn+ - B—ZNFﬂz

—~ B, Nz, — 2B, ,N_n_—2B__Nnx, (12)
H:=B_,N.N, + B_N>+ B,_N_N, + B, N’

+ B——N-i + B+ZN—Nz + Bz+N—Nz + B—zNi—Nz

+ B, NN, (13)

The first term, HY, in the rovibronic Hamiltonian is clearly
independent of N, while the second, Hy, and third, Hz, contain
operators that are linear and quadratic in N, respectively. HY
does not contribute directly to the rotational spectrum and is

)

yx Bxy))
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(same as the coordinate system). The rotational tensor
transforms as the inverse of the inertial tensor and hence
covariantly. Therefore, the rotational tensor is transformed
from Cartesian to cylindrical coordinates via

h
B(+, —, z) =
( ) 8x

B} I(+; Iyl z)_l
[4

(52)
= I (Ui(x, y, U
81’ e (5b)
= U I, y, 27U
87’ n (5¢)
= (U ) B(x,y, 2)U™" (5d)
Explicitly
! B B i(B B ! B iB —
Z( xx+ yy+l( Xy yx)) E( xz_lyz)
1 ) 1 )
Z(B"" - B, +i(B, + B,)) E(sz +iB,,)
1 .
_(Bzx + ley) Bzz
2 (6)

ignored. The terms linear in N constitute the Coriolis coupling
terms. The part of the Hamiltonian upon which we will
concentrate in this paper is the one quadratic in N, which is the
most significantly affected by JT interactions and gives rise to
the distortion parameters h; and h,.

2.2. Spin-Vibronic and Rotational Basis Sets. A
judicious choice of basis set is extremely helpful both to
minimize the computational effort and to provide the best
physical picture of the mechanisms responsible for observed
effects in spectra resulting from JT interactions. We will refer
to the overall basis set as rotational spin vibronic IRSV), i.e.

IRSV) = ISV)IR) (14)

For the purposes of this paper, where the molecules are
subject to nonzero JT interactions, the explicit rotational basis
function is taken as a symmetric top with suitable extension for
nonrigidity since both require a proper or improper rotational
symmetry axis of order three or higher.”” (While a spherical
top is also possible, its rotational basis functions can be trivially
derived from those of the symmetric top.)

The coupling of the electronic spin to the rotational angular
momentum can be described by either of two conventional
models referred to as Hund’s case a and case b. The former has
good quantum numbers [JPSX). The total angular momentum,
J, of the molecule has a projection, P, along the z axis. The
projection, P, of § upon the same axis is . The case b like
basis functions can be written [JSNK) in which the total
angular is ] = N + S and K is the projection of N along the
symmetric top (z) axis. As will be explained in more detail
below, generally the better choice for large spin—orbit coupling
is case a while case b is preferable for small coupling. Of course
the case a or b sets span the same space, and they are related to
one another by a unitary transformation:**

DOI: 10.1021/acs.jpca.9b03360
J. Phys. Chem. A 2019, 123, 4990—5004


http://dx.doi.org/10.1021/acs.jpca.9b03360

The Journal of Physical Chemistry A

mey:Z(qf“”NMN+1V N
P —K

P

S ]
- Z

For a doublet state, and Hund’s case b basis functions, this
relationship condenses to,

‘]:Ni l,SKN> = w‘]szi l>
2 2]+ 1 2

IJPSE)

‘Sz=il>i 4]+K+1/2‘JP=K11>
2/ T\ 2+ 2
1
‘SZ_+E> (16)

It is important to pair ISV) and IR) basis functions
appropriately and to do that we need to characterize the
spin-vibronic basis functions by considering the Hamiltonian

0

Hp=H, + Hy + Hgy (17)

In the absence of JT-type vibronic interactions, i.e., H; = 0,
H® can be taken to have diabatic eigenfunctions, at fixed R,
which we write as |A;) where A, is a signed integer that denotes

their rotational transformation property, e"*?, (8 = 2771), about

the highest symmetry axis, z, of order n.

The Hamiltonian, Hj;, has been studied in great detail >**°
For a doubly degenerate state, Hjy can be represented as a 2 X
2 matrix in the electronic basis, with the harmonic, vibrational
basis projected on each A state’®
Vi

\

Vf\,+

Vi

\

Vi

Ty 0

H.. =
T o

(18)

Here Ty is the nuclear kinetic energy, excluding rotation,
and (through quadratic terms)

Vi = Vi
f f+g f
1 , 1
= ‘/0 + = Z wiqi + = z wqu_qi_ + z diqi
2 i=1 2 i=f+1 i=1

(19a)
The form of VA+, depends on the symmetry of the electronic

state. We give results later for E electronic states of Cs, and
Ds;, symmetry for which

f+g f+g fte-1 f+g
2
Va_= Z k"qi— + z 8y T 2 8idi+ 9+
i=f+1 i=f+1 i=f+1 j=i+l1
foof+e
+ Z bij iqj—
i=1 j=f+1 (19b)
and for the ?E{ state of Dy, for which
f+e f+e fte-1 f+g
2
VA+_ = Z kqu. + Z giiqi— + Z Z gijqi—qj—
i=f+1 i=f+1 i=f+1 j=i+l1
fooftg
+ Z bijqiq/‘+
i=1 j=f+1 (19¢)
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In the above, fis the total number of nondegenerate modes
and g is the total number of degenerate modes (f + 2g = 3N —
6). V, is the (degenerate) eigenenergy of H, which can be
dropped. We express the other parameters in terms of
derivatives of the adiabatic electronic potential energy surface
(PES) with respect to the normal coordinates in cylindrical
form. The expansion has been carried out to the second power,
and the explicit parameter definitions are found in Table 1. It is
of note that d; is nonzero only for totally symmetric modes and
only if the expansion is carried out at a nonstationary point of
the diabatic potential.

Table 1. Harmonic Frequency and Jahn Teller Coupling
Parameters in Cylindrical Coordinates®

Symbols Definition

Description

gradient along symmetric mode

d
a—i(</\¢lﬂl/\i>)

Ro

2
k; linear JT coupling constant $(<A1|7{E|A¢>)
i+
* Ro
2
2 harmpnic force constant for JT 9 (AJHIA)
! active mode dq, ,0q,
y L= RO
pe
2 ha'rmor'lic force constant for JT — ((AJHIAY)
i inactive mode dq’
1 RO
P
i quadratic JT coupling constant 0‘12 (<A1|7_{3|A1>)
i+
* R
2
g cross-quadratic JT coupling 9 (AJHIALY)
g constant 0% 4
= djx Ro
pe
b; bilinear JT coupling constant W(U\il?ﬁ/\;))
i %o

YAIHJA') is the electronic potential at the symmetric configuration
denoted by Ry, which includes Coulomb interaction, exchange
interaction etc.

The effective Hamiltonian Hg, for spin—orbit interaction
can be written with sufficient generality as**

1

Hy, =a,lS, + EaL(LJrS_ +L_S,) (20)

It is worthwhile to note that a, and a,, like the rotational
parameters, B,,, are operators in the vibronic space. Hg, may
be combined with Hj; or incorporated into the rotational
Hamiltonian, typically depending upon its relative magnitude
compared to Hjr and Hp.

In the absence of Hgo, Hjr can be represented in a direct-
product, vibronic basis, |Dp)i, where

f ftg
D), =1A) @ [T, ® [T Wi busd
m=1 m=f+1 (21)

The matrix elements of the operators in eq 19 in this basis
are presented in the Supporting Information. The Hamiltonian
matrix is truncated by limiting the vibrational part of the basis
to a reasonable value (v,,,,), and the Lanczos algorithm is used
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to calculate its eigenvalues and eigenvectors. The details for
truncation of the matrix and convergence of eigenvalues are
different for each molecule and are discussed subsequently.
The eigenvectors of the Hamiltonian are a linear combination
of basis functions and are further characterized on the basis of
symmetry. The vibronic eigenfunction, 1V), can be uniquely
labeled by its spatial symmetry, Ef, (see the Supporting
Information), and energy position, denoted by n starting at
zero for the lowest energy state and increasing monotonically,
i.e.

f It
|V> = |1’l, ESKi> = Z C,'nlA,'> H Iy, H mt’ ml
i m=1 m=f+1

(22)

For small Hg,, it can be included in the rotational
Hamiltonian and the V) basis is paired with a case b like
rotational basis [JSNK) which incorporates the spin S and its
space-fixed projection P, = M,.

If Hgo is comparable or larger than Hjy, the appropriate
combination is a case a [JPSZ) rotational basis with a complete
spin-vibronic basis, i.e. ISV) = In, E’;_r, %), where now P, = ¥,
the spin’s projection on the molecule’s symmetry axis. The
eigenfunction In, Ef, ) of (Hjr + Hgp) transforms as an
irreducible representation of the symmetry group EX, of the
molecule including electron spin, & depicting the two Kramers
components of a degenerate vibronic level. The spin-vibronic
eigenstates are

ISV) = ¥ = In, B,

£) = ). ChIA)ISE)

ik

f+g f
H U ks lm,k> H Ivm k>
m=p+1 m=1 (23)

In either case, the coeflicients, C", of the eigenkets can be
obtained from our spin—orbit coupling Jahn—Teller
(SOCJT2) software””*® assuming suitable values are input
for the JT and SO parameters (zero for the latter in case b).
These eigenvectors are used to calculate h; and h,, as described
in Section 2.3.

2.3. The JT Parameters, h, and h,, in the Effective
Rovibronic Hamiltonian. To obtain an effective rotational
Hamiltonian for a given spin-vibronic level, we need to expand
the rotational tensor components of Hg (eq 13) in terms of the
normal coordinates. The inertial tensor, and therefore the
rotational tensor (eq S), is a function of the nuclear
coordinates, R. The matrix elements of the rotational tensor
component B, in the vibronic basis (eq 21):

f+g
(B ﬁ|¢>—<A|H< U TT s Byl
m=1 m=f+1
f f+g
HI > H mt’ mx
m=1 m=f+1 (24)

are treated as follows. In the diabatic representations, the
electronic basis functions (IA;)) are fixed (to those at R,) and
only the vibrational part has R dependence.
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f+g f
(BB glh) =6, . H< U TT s itBog TT 10
m=1 m=f+1 m=1
ftg 4 f+g
IT Wi b =oaniBy| TI6,... I 6.
m=f+1 R m=1 m=f+1
aB f+g
Z Z H < mt H ( m i’ mt
j=1r=+,— ,r m=f+1
f f+g
H l > H m i’ mt
m=1 m=f+1
f
+ - Z Z Z Z H <Vm1
jook>i r=+— n=4+- q], qk e N m=1
f+g f+g
I1 oo tia;, qk,kl'[l > T W 1) + -]
m=f+1 m=1 m=f+1

(23)

We have omitted the sum over contributions involving
nondegenerate modes as their nonlinear contribution to A
tends to be negligible, but an extension of this expansion to
include nondegenerate modes is trivial.

Be definition, in the principal axis system (PAS) the values
of the components of the rigid-rotor rotational tensor at R are
nonzero only for the diagonal terms, B, which define the
rotational constants for the effective Hamiltonian. The
expansion of the other elements of the rotational tensor, B,y
both diagonal and off-diagonal, start with the term linear in q.

In the Supporting Information, we derive the symmetry
properties of the various terms of Hy and the rotational
eigenfunctions. Only the operators B,,, B,_, and B_, transform
as the totally symmetric representation of the molecular
symmetry group and have nonvanishing contributions in the
“standard” symmetric top rotational Hamiltonian model. This
is because these are the only operators that have nonvanishing
matrix elements within the + or - components of a degenerate
vibronic level, ie., [E},).

Group theoretically, the remaining terms of Hg may have
nonzero off-diagonal matrix elements between the components
of a vibronic level of the molecule considered. B, , transforms
as E,,’ for C;H; and therefore has nonzero matrix elements of
the form (E,.'|B,,|E,;’). Similarly, for NO; and CH;O, B,
transforms as Ef and E, respectively, which leads to nonzero
matrix elements of the form (E.'IB,,|E,’) and (E.IB,,|E,) for
the two molecules. B,, and B, transform as E{, for C;H; and
E} for NO; and has no nonvanishing matrix elements. This
leads to vanishing of h, for such molecules. On the other hand,
for CH;0, B, and B_, transform as E, and have nonvanishing
matrix elements of the form (E,IB,,IE.) (E-IB. IE.).
Application of these principles leads to explicit equations for
the first (1’;) and second (k') contributions to h; and h,, i.e., h;
= h'; + h{, in terms of their expectation values over specific
(spin-) vibronic eigenkets. We can express the matrix elements
of h; in terms of degenerate vibronic eigenfunctions which are
of the following form:

ES) =) C| A)Hlm,,_ml

(26)
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Therefore, we can write the first order contribution to h,;

(hy') as
1r|E5K>
i r=+4,— 1,7 R,
- Z Z _lqi,rlEsk"'>
e Sy, (27)

The rotational constant derivatives are evaluated at the fixed
nuclear configuration R,
Correspondingly

IDNNE

ij r=+= =4
i<j

XY Y |

2

9’ B++
0q,

jot

”
hl

2 (Eilg, g, |EC)

lf
RL)

|q,',r‘_qj‘rl_|EsK+>

Lj r= += =+ zr qj,rv
i<j )
(28)
Similarly for h,’
0B_,
=% T Bl (g e
i r=+,— 17 R,
= Z o (Eflq, |ES)
b g, (29)
and for hj
1 0°B_
== > ———| (BN, .4 1ES)
2 Pyl aqmaqur/ 1)1
i<j Ro
1
=32 X X go| (BB
bon=t - =t ],r/
i<j Ro
(30)

In the above, the kets (bras) IEL,) apply to the case where
Hgo is included with Hy. If Hgg is included with Hjpln, Ef.)
should be replaced by the spin-vibronic eigenket In, E,, X). In
the next section, we detail how to obtain the derivatives of the
rotational constant tensor components. In section S1 of the
Supporting Information, we provide the symmetry properties
for the derivatives of the rotational tensor. In section S2 of the
Supporting Information, we provide some equivalent defi-
nitions of h; and h, in terms of the Cartesian basis, which will
be useful to those who choose to work in these coordinates.
The calculation of the values of the h; is discussed in more
detail in section S3 of the Supporting Information.

2.4. Computational Procedures. The components of the
electronic state can be chosen to transform as distinct
representation, in some Abelian subgroup (g) of the molecular
symmetry group (G ). The two states are labeled here as I'; and

I',. Table 2 lists the transformation properties of components
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Table 2. Transformation Properties of Components of the
Degenerate State in the Abelian Subgroup

molecule G g state components in Abelian subgroup
C4H; Dy, Cy X?E/ 2A, and ?B,
NO, Dy, G, A’E} ?A, and ’B,
CH,;0 Cs, C, X’E A’ and A"

of the degenerate state in the Abelian subgroup for C;H;, NO;,
and CH;O. The adiabatic potential energy surfaces (PES) of
I') and I'; are determined using equation of motion-coupled
cluster singles and doubles theory (EOMIP-CCSD) using the
CFOUR package. The reference state for these EOMIP-CCSD
calculations is taken to be the corresponding anion. The
adiabatic, electronic eigenfunctions, yr, and y, which are

calculated, are related to the previously defined basis functions
IA=+1) by

1

A ==+1) = f(h/’H) + "‘/’r)) (31)

The various coefficients of the Jahn—Teller Hamiltonian (eq
19) are obtainable in terms of first and second derivatives of
the adiabatic PES of I'; and I',, in terms of dimensionless
normal coordinates. Of course a quantum chemistry package
produces derivatives with respect to the Cartesian displace-
ments of the atoms, but the transformation of these to
dimensionless normal coordinates is stmightforward.29 In the
work discussed here, done in the rectilinear normal coordinate
representation, each degenerate normal mode (q; Vf+1<i<
f + g) has two components, g;, and g;;, which are chosen such
that g, transforms as the totally symmetric representation of
the Abelian subgroup (g). The first and second derivatives of
the adiabatic PES of I',, where k = 1 or 2, with respect to
dimensionless normal coordinate, gq; (or g, and gq; for a
degenerate mode), are

f‘n — %
i aq
" lg (32)
L _ OE
7 0q,0q,

(33)

where E; is the energy of the kth adiabatic state. The
relationship between the Cartesian components and the
cylindrical representation used in eq 19 is given by

9. =9, * 14, (34)

For a JT system, the derivatives of the diabatic PES with
respect to totally symmetric (in g) normal coordinate, q;,, are
identical to those of the adiabatic PES of I', and I,.'®*°
Therefore, the parameters in Table 1, defined in terms of the

9o

matrix elements of H,, are related to linear and quadratic force
constants (f) involving nondegenerate modes (g, V 1 < i < f)
and the totally symmetric component of degenerate modes (g,

Vi+1<i<f+g) as
k_fza __fil;z

= (35)
d = fiﬂ firz

(36)
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_ 1. r L
A" - _(fiat'a +fia?a)

2 (37)
A =fiirl =fi? (38)
_lgn _m
gii - 2 (fiaia fiaia) (39)
—sh — (b
bi;' =1, ija f ija (40)
_Len _m
gij - 2 (fiaja fiaja) (41)

These relations are obtained using eq 31 and eq 34 together
with relatively simple symmetry relations and are consistent
with Table 1 of ref 16. Tables giving values of these parameters
for CsH;, CH;0, and NO; are provided in the Supporting
Information. Using these values, we can now solve the
Hamiltonian in eq 17. One needs to emphasize here that
while we use EOMIP-CCSD to obtain these parameters, any
quantum chemical method can be useful for this calculation, as
long as it provides a proper treatment of the degenerate states
and satisfies the associated symmetry properties.

To obtain numerical values for the rotational tensor
components, we note that the rotational tensor, B (in cm™),
is related to the inertial tensor (I) by

h

!
8¢

B

(42)

where ¢ is the speed of light and I is written in the molecular
frame (x, y, z) and has the form

Z Qi.z +z0)m, — 2 xym
- Z Jxim; Z (xiz + Ziz)mi - Z Jzim,
- Z Zxim, - Z zym; Z (xiz + sz)mf

i

XiZim;

(43)

The sum is taken over all atoms of the molecule with x;, y, z;
being the Cartesian coordinates of each atom. Derivatives of
the inertial tensor with respect to dimensionless normal
coordinates are calculated numerically using finite differences.
The first and second derivatives of the rotational tensor are
calculated using the derivative of inertial tensor as follows:

Bk

4o
—=-—T 1
aqi 87[ ¢ aql (443)
2 2
1 14 T
OB _ b |0l 0 0
aqidq]_ 87°c q, 6q}_ dqi()qj
+ 1‘13—11‘12—11‘1
95 % (44b)

These equations are used to calculate the derivatives in
Cartesian coordinates, which are then transformed to
cylindrical coordinates. The methodology for converting
them to cylindrical coordinates and complete set of values
for the derivatives of rotational and inertial tensor for CsHj,
NOj;, and CH;O are included in the Supporting Information.
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3. RESULTS

To benchmark our theoretical calculations, we have selected
three radicals, cyclopentadienyl (Cp), CsHs; methoxy, CH;0;
and nitrate, NO3; each of which have been extensively studied
experimentally. All three contain a relatively small number of
atoms, so they should be amenable to quantum chemistry
calculations of relatively high quality. These same character-
istics are ideal for spectroscopic study, and experimental values
of h; of relatively high precision are available for them.

As eqs 27—30 show, the rotational distortion parameters h;
and h, depend upon the derivatives of the components of the
rotational tensor, whose values are in the Supporting
Information. The h; parameters also critically depend upon
the spin-vibronic eigenfunctions. These eigenfunctions, specif-
ically the coeflicients in the basis functions expansions of eqgs
22 and 23, are obtained by diagonalizing the Hamiltonian
matrix, Hy (+Hgp), which in turn depends upon the JT (and
spin) parameters contained in the spin-vibronic Hamiltonian
of eqs 19a, 19b, 19¢, and 20. As noted before, we use our
SOCJT2 software to obtain these eigenvalues and functions.

The parameters in Hjr and Hg, can be obtained by one of
two general ways. As explained in Section 2.4, they can be
determined directly from the derivatives (see Table 1) of the
calculated electronic PES. The second approach is to fit these
parameters to the difference of the spin- vibronic eigenvalues
determined spectroscopically. While the spectroscopically fit
values are usually of relatively high precision, limitations to the
availability of sufficient experimental data often dictate rather
severe truncations of the Hamiltonian and correspondingly
may introduce some bias into the parameters.'® Of course all
of the terms of the quadratic JT Hamiltonian may readily be
determined via quantum chemistry calculations, but those of
Hgo may not be available in some computation packages.

3.1. Ground )~(2E§' State of Cyclopentadienyl (Cp),
CsHs, Radical. Cyclopentadienyl (Cp), CsHs, is a relatively
small hydrocarbon radical that has been studied extensively,
both experimentally and computationally. Cp is a good
candidate for studying JT effects in that it has five equivalent
C and H atoms and belongs to the symmetry group, Dy, Its
ground electronic X state is doubly degenerate (*E{) and
possesses several JT-active vibrations. Group theoretically, e,
vibrations are linearly JT-active only, whereas e’; vibrations are
quadratically Jahn—Teller active only. This fact is convenient
for determining h," and h{, as h," only has contributions from
modes which are linearly JT-active, whereas h{ only has
contributions from quadratically active Jahn—Teller modes. In
addition, Cp has a plane of symmetry, so h,’ vanishes as is
shown subsequently.

The spectroscopy of Cp has been studied for more than 50
years, with its electron paramagnetic resonance spectrum
(EPR) observed in 1963*" and electronic absorption spectrum
first observed®” in 1970. Subsequently, photodetachment
(PD), and rotationally and/or vibrationally resolved laser-
induced fluorescence (LIF), and laser excited dispersed
fluorescence (LEDF) spectroscopic methods have all been
utilized to probe geometric distortions from the predicted
equilibrium structure with Ds;, symmetry. Recent spectroscopic
experiments at low temperature include jet-cooled LIF,****
LEDE,* PD*® of C;Hj, and mid-IR absorption of Cp in He
droplets.”” These papers cite the numerous experiments
performed in the intervening years.
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Early quantum chemistry calculations on Cp appeared in
1956(1)** and 1960,” and numerous calculations followed
thereafter. The most recent calculations relevant to the JT
effect in Cp were published®**” in the early 21st Century and
cite. most of the quantum chemistry calculations in the
intervening years.

Following the procedures outlined in Section 2.4, quantum
chemistry calculations were carried out on Cp with the
EOMIP-CCSD method using the ground electronic state of
the anion as the reference. Table S5 of the Supporting
Information list the symmetries and harmonic vibrational
frequencies resulting from the calculation. It tabulates the
linear and quadratic JT coupling constants in terms of k; and g
which are contained in the Hamiltonian in eqs 19a, 19b, and
19¢, and it also provides the conventional JT experimental
parameters D; and K, which are used as input to SOCJT2.
Table S6 provides the bilinear and cross-quadratic JT coupling
constants.

Using SOCJT2 to solve the complete vibronic Hamiltonian
for CiHy is impossible because of the huge size basis set that
would be needed for the computation given the large number
of linear and quadratic JT-active vibrational modes. To
alleviate this problem, we ignore the cross quadratic coupling
between the linear (e’,) and quadratic (e’;) modes. This
allows us to do separate calculations for the four e,’ (vg, vy, 1
and vy,) and three e,” modes (vs, U5 and v-). For the e,’-mode-
only calculation, the vibronic basis set is truncated at v,,,, = 8
except for vg which is truncated at v, = 4. The Lanczos
algorithm is run for 1000 iterations to get the converged
eigenvalues and eigenvectors. For the ¢, mode only
calculation, the vibronic basis set is truncated at v, = 10
and the Lanczos algorithm is run for 800 iterations to get the
eigenvalues and eigenvectors.

The outputs of SOCJT2 are vibronic eigenenergies and
eigenkets. The latter are used to calculate matrix elements of
the linear and bilinear combinations of the normal coordinates
given in Tables S7 and S8, which as eqs 23 and 28 show, are
necessary to calculate values for h,. These equations also
require the derivatives of the components of the rotational
tensor. As outlined in Section 2.4, these are obtained from the
derivatives of the inertial tensor. The resulting values are
tabulated in Tables S9—S16. Tables S17—S18 contain
respectively the resulting h," values and h{ values for the
vibronic levels of CsHg with energies less than 2200 cm™".

The rotationally resolved spectrum of the A*A{—X?E{ origin
transition has been observed and analyzed, yielding an
experimental value of Ih;l= 211.8(3) MHz for the zero-point
level of the Cp X state.””** Referring to Table 3, we see that
the calculated value of h; is 207.4 MHz. While this agreement

Table 3. Calculated and Experimental Values (MHz) of ||
for the Vibrationless level of the X’E{ of CsH,

vibrational mode symmetry hy' h{
e/, (linear JT) —207.1 0
e, (quadratic JT) 0 -0.3
vibronic calculation Ikl 207.1 0.3
Watson calculation i 247.9

experimental |h,] 211.8(3)

“Note that while relative signs of i," and h5, as well the contributions
to them from individual modes, are determined, their overall sign is
not as it depends on an arbitrary phase factor.

is somewhat fortuitous in that it certainly exceeds the expected
accuracy of the procedure and quantum chemistry treatment
used here, it also tends to affirm the computational method.
We also see from Table 3 that, for practical purposes, hj is
negligible compared to h;’ for Cp.

In the Introduction we noted that in his early work, Watson
introduced an approximate, perturbative formula for comput-
ing parameters directly related to the h;. Those formulas yield
the following relations for the h;

OB
hy ~ 2D, —=
1 2 V20 oq,, (45)
and
OB
h, ~ 2D, —=
’ Z V2D oq,, (46)

where i refers to the JT active doubly degenerate normal
modes and g;, denotes the totally symmetric component in the
Abelian subgroup. Such simple relations are obtainable from
eqs 27—30 by assuming only a linear JT interaction
parametrized by D; and treating its effect via perturbation
theory.

Table 3 shows that using the Watson formulation we
calculate hy = h," = 247.9 MHz. This is a good estimate for h,
but, as one might expect, less so than the one from the vibronic
calculation. Since we know that the quadratic contribution to
the power series expansion of the rotational derivative is
negligible, the limitation of the Watson approach for C{Hj is
likely to be the treatment by perturbation theory.

3.2. Ground XZE State of Methoxy, CH;0, Radical. The
X’E state of methoxy radical, CH;O, is perhaps the most
studied example of the JT effect, both theoretically and
experimentally. Moreover, it provides an example with
significant spin—orbit coupling. With C;, symmetry, methoxy
has 3a, and 3e vibrations, with the latter being JT active. The
X?E state of methoxy has been characterized experimentally by
PD spectra*"** from the anion, and by numerous optical
techniques: emission,”® laser aramagnetic resonance
(LMR),*** and LIF,**>° LEDF,”" and stimulated emission
pumping (SEP),**** via its A’A; — X’E electronic transition.
In addition, IR absorption®> and microwave rotational
spectra®®’ in the X state have been observed. Both h; and
h, values have been measured in the zero-point level of each
the “E,,, and ’E;/, (spin—orbit) components of its X state.
The highest precision values of h; and h, are a result of fits>* to
combined microwave and LIF data.

Methoxy has also been a subject of numerous theoretical
studies,”* " some of these combining experimental with
computational work. However, none has addressed the
calculation of h; and h,. Following the approach of Section
2.4, we have performed an EOMIP calculation on methoxy
with the anion as the reference state. Table S19 of the
Supporting Information lists the symmetric harmonic vibra-
tional frequencies and JT parameters resulting from this
calculation. These parameters and the spin—orbit coupling
parameters are required as input to SOCJT2. For the spin—
orbit coupling, we use the value** of a; = 133 cm™" consistent
with the value previously computed and which approximately
yields the observed csluenched spin—orbit coupling, which was
previously measured™ at 61.495 cm™. Our calculations show
that the bilinear and cross-quadratic couplings for CH;O are
negligible and are not included in the SOCJT?2 analysis.
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For CH;0, the vibronic calculation included the three
modes (v,, v and 1) which are JT active. The vibronic basis
set is truncated at v,,,, = 10 for all three modes. The SOCJT2
input parameters for CH;O are given in Table S19. The
eigenket output is used to calculate the matrix elements of the
normal coordinates that appear in the definitions of the h; and
whose values are given in Table S20. In addition, first and
second derivatives of the elements of the rotational tensor are
listed in Tables S21—S26. The resulting h, and h, values for
methoxy for vibrational levels up to 2000 cm™" above the zero-
point X state level are given in Tables $27 and S$28.

In Table 4, we compare the experimental values of h; and h,
with the calculated results. As the table shows, once again there

Table 4. Values (MHz) of h, and h, in the ’E,,, and E3 1
Spin Components of the Vibrationless Level of the X’E
State of CH;0

I, Iyl
method E;) Eif E;) Eip
vibronic calculation 7222 77.61° 1208 1301(26)¢
vibronic calculation (av.) 74.91 1268
Watson calculation (av.) 86 1587
experimental 75.45(26) 1331(3)
' = —64.58; h] = —7.63. "h,’ = —69.24; h] = —836. h,’ =
—1199.2; h§ = =9.3. 9h,’ = —1315.7; h§ = —10.2.

is good agreement between calculated and experimental values
of the h;. Considering the experimental uncertainties (see
below) the agreement for h, is also good, albeit not as
spectacular as that for h;. The methoxy results tend to confirm
the validity of the calculation even when spin orbit coupling is
present with a magnitude comparable to JT distortion.

For hy, it is clear that h{ is small compared to h,". However,
due to the larger magnitude of h,, the same is more true for hj
relative to h,’. Finally, we note that the vibronic calculation and
Watson approximation agree fairly well for hj, but the more
rigorous vibronic calculation agrees significantly better with
experiment for h,.

Before closing the discussion on methoxy, it is worthwhile to
note a few points about the comparison between calculated
and experimental values. Reference 54 provides a table with the
experimental parameters of CH3;0O determined with four
different combinations of data. Generally speaking, all the
parameters are consistent within their statistical errors, which
in turn are reflective of the overall size and precision of the
respective data sets. It is, however, worth noting that the
standard deviation of the h; among the four sets is 0.50 MHz
for hy and 53 MHz for h,. Clearly the statistical error for /; and
its deviation among sets is comparable, while the deviation for
h, among data sets is much greater and possibly indicates less
reliability for the experimental value of h, than its statistical
error indicates.

There is another interesting point. Theoretically one would
expect h; and h, to vary modestly between spin components as
is indeed shown by the calculated values. Nonetheless, and
understandably, the fit to the experimental spectra constrained
the h; values to be equal for both spin components. This
possibly contributes to the relatively poor agreement among
the h, values obtained from different data sets.

3.3. Excited A%E” State of Nitrate, NO,, Radical. The
three lowest electronic states, XZAZ, A’E”, and B’E/, of the
nitrate radical, NO;, have long been explored spectroscopically
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and investigated by quantum chemistry methods. The X and B
states have been most studied and considerable interest in
them remains. The A state has been less studied, principally
because transitions between it and the ground X state are
electronically forbidden for electric dipole radiation. Nonethe-
less, in recent years, weak vibronically allowed and magnetic
dipole transitions have been observed by cavity ringdown
spectroscopy (CRDS).* "% The A state has also been studied
experimentally by PD spectroscopy.”” These experiments have
further stimulated interest from quantum chemis-
try S6/6769,71=75

Our focus here is on the A state, which transforms as E” in
the Dj, point group. It has one a;’, one aj, and two e’
vibrational modes, with the latter two being JT-active. In
addition, PJT coupling exists in first or second order between
all three states, with X—B linear coupling being particularly
strong and ultimately responsible for the great complexity of
the NO; molecule.

Rotationally resolved spectra have been observed for several
bands of the jet-cooled A—X CRDS spectrum. None of the
observed bands show definitive evidence of the effect of h;, and
an upper limit for Ih| of less than 75 MHz for the zero-point
level can be established as is reflected in Table 5. (No values of

Table S. Values (MHz) of h, for the Vibrationless Level of
the A’E State of NO,

eigenfunction source

electronic structure calculation analysis of vibronic spectrum®

h't 60.5 -190
b —-8.0 24
Ih/1 52.5 166
h' =h¢ 467 385
Iy (exp) <754

“Reference 69. "Vibronic calculation. “Watson calculation. dExper-
imental upper limit for /; determined for the 2 ¢’ vibronic level of the
A state, which, to the level of theory in the calculation, is the same as
the vibrationless level.

hy have been reported for the B state of NO;, although it is also
JT-active, due at least in part to an extremely complicated B—X
spectrum. Of course h, = 0 in both states due to planarity.)

For NO;, the vibronic calculation included three modes: vy,
which is a nondegenerate mode, and v; and v,, which are JT-
active degenerate modes. The vibronic basis set is truncated at
Vipax = 10 for all three modes. The Lanczos algorithm is run for
1200 iterations to get the converged eigenvalues and
eigenvectors. Nonzero bilinear coupling between v, and the
degenerate modes is also included in the calculation.

Table S shows the values of h; for the zero-point level
calculated from the vibronic eigenkets using the same
procedures as previously described for C;Hy and CH,;O
Corresponding values for JT coupling parameters, matrix
elements of the normal coordinates, values of rotational tensor
component derivatives, and h, values for higher levels are given
in Tables $29—S37 of the Supporting Information. As one can
see from Table 5, the calculated value of h; is somewhat
smaller than the experimentally observed upper limit and is
therefore consistent with it. One can also note that, for NO;,
the calculated value of h{ is not very small compared to h,’, in
contrast to both C;Hg and CH;O. This is clearly consistent
with the strong JT effect in NO;. Furthermore, we note the
calculation of h; by the Watson method is clearly inconsistent
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Figure 1. Plots of vibronic density, I'¥*|* and [¥*I?, for the normal mode polar coordinates py and 6 for the lowest vibronic levels of CsHs. The two
densities are integrated over the electronic component and other vibrational components as described in section SS.1 of the Supporting

Information. The py is the distance from origin and varies from 0 to 10 at the corner in reduced (dimensionless) normal coordinates, which are
10.9726694787p,

e
the mode in cm™" (for more detail see footnote 53 of ref 30). 6, is the angle with the x-axis in the anticlockwise direction and varies from 0 to 2.
The color scale indicates the magnitude of the density, with yellow the maximum. The individual plots are labeled by vibronic eigenenergy and its
value of j.

related to the standard mass-weighted normal coordinates as Q ; = , where Q; is in (amu)'/?bohr and @ is the harmonic frequency of
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Figure 2. Plots of vibronic density, '*I* and [¥*%, for the normal mode polar coordinates p, and 6, for the lowest vibronic levels of CsHs. The rest
of the information is the same as given in the caption for Figure 1. The individual plots are labeled by vibronic eigenenergy and its value of j,.

with the experimental result as well as the vibronic calculation, $29 shows, are (considerably) larger than the calculated ones.
reflecting a failure of first-order perturbation theory in this case The value of h; calculated with these parameters is therefore
where the JT coupling is extremely strong. larger, as seen in Table 5, and indeed is significantly larger than
Table 5 makes one other comparison. As discussed in the the experimental upper limit for &, which further suggests that
Introduction, the JT parameters can also be extracted from an the experimentally inferred potential is flawed as has been
analysis of the experimental vibronic spectra, which as Table discussed previously.'® Indeed, a virtue of h; and h, is that they
4999 DOI: 10.1021/acs.jpca.9b03360
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allow the benchmarking of low-order terms in the JT
expansion calculated by theory. Should higher order terms,
e.g., h", be required to make calculations and experiment
agree, it is indicative that a higher order JT expansion is
necessary.

4. DISCUSSION

We have derived a method for predicting h; values from
vibronic eigenfunctions based on the results of quantum
chemistry calculations, and we have demonstrated that this
approach yields predictions in good agreement with exper-
imental values for representative examples. It is useful to apply
our computational approach to look more generally at the
characteristics of the h; distortion parameters.

The symmetry properties of the vibronic eigenfunctions are
important for the values of the h; and indeed many other
molecular parameters. One symmetry property that has long
been known is that h, vanishes for a planar molecule. This
property derives from the fact that h, is proportional to a
rotational tensor component that is inversely proportional to
the z displacement of the nuclei, which transforms antisym-
metrically with respect to reflection in the plane. However, the
direct product of the vibronic eigenkets always transforms
symmetrically, and hence the vibronic matrix elements in eqs
29 and 30 must vanish through first order. This result has been
previously obtained but based on consideration of the
symmetry of Hyr alone. If spin—orbit coupling is considered,
the spin-double-group irreducible representations are still
symmetric for the bra-ket direct product, while the rotational
tensor components still transform antisymmetrically. Hence, h,
vanishes for planar molecules, whether or not spin—orbit
coupling is considered.

More information about the h; can be obtained for particular
molecules, and the Cp radical is a particularly convenient
example to consider. Since it is planar, h, vanishes. The Cp
radical has vibrational modes of one symmetry, e’,, that have a
linear-only JT effect and others, e}, that have a quadratic-only
JT effect. The interaction between modes of these two
symmetries is negligible and indeed has been omitted from our
calculations on Cp as mentioned earlier. The values of h’; that
we have calculated are given in Table S17 for e’, levels and hY
in Table S18 for e’; levels. As noted from those tables, all
values of h{ and h’; vanish for the e’, and e’; modes,
respectively. This follows from the fact that the linear and
quadratic JT effects vanish for e’; and e’, modes respectively,
and hence h'; and hj must correspondingly vanish. However,
what we found surprising is that in Table S17 many other
values of h’| also vanish for e’, vibrational modes as do values
for h{ in Table S18 for e’ vibrational modes.

To investigate the situation in more detail, we have plotted
vibronic densities of the Cp radical in Figures 1 and 2. The
method used to calculate the densities follows from that
reported by Ichino et al.,** and details of our implementation
are given in the Supporting Information. These plots are
constructed using the same vibronic eigenfunctions that were
used to calculate the h; values for each molecule. The plots in
the figures are for the normal mode of the given molecule that
best illustrates the characteristics of the vibronic density,
usually the one that has the strongest linear JT interaction.

To understand the vibronic density plots shown in the
figures for Cp, it is useful to introduce the quantum number, j,
which is a function of  and A, with its detailed form depending
on the molecule’s symmetry group and the irreducible
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representations according to which the electronic %, and
vibrational y,; wave functions transform. Child and Longuet-
Higgins'’ first used j; (therein called just j), and its definition
was extended to j, in the review by Barckholtz and Miller.* As
shown therein, j; is a good quantum number for ¥ if there is
only a single order of JT interaction; ie., for a linear JT
interaction, k = 1, for a quadratic interaction, k = 2, etc. Since
A and | can assume both positive and negative values, j can also
have positive and negative values, and we denote the
corresponding eigenfunctions as W*V(+j,), which can be
taken as the two components of the degenerate vibronic
eigenvalue. Generically, these eigenfunctions are referred to as
W= regardless of whether j, is a good quantum number.

Of course, for a given jj, a linear combination of ¥*"(+j,)
remains an eigenfunction of the vibronic Hamiltonian.
However, if we want also to diagonalize the h; operators to
first order, we need to take a form like

a1 Nz N

Pe(ljl) = 5 [P () + ¥ (=)] (47)
by SVi_ N _ wSVy(;

(i) =5 RCHER 20O) (48)

since the h; are defined in terms of matrix elements between the
degenerate components W*"(j) and ¥5'(—j).

In the Supporting Information, we show that for these
eigenfunctions the vibronic density can be written

()R = % JUET G+ (P G

(=) £ ¥V ()P ()] de = FGE(p)
+ F1(0)Gy(p)

The Q’S(p) and glf(p) are functions only of p and consist of
sums over products of the associated Leguerre polynomials and
the mixing coeflicients in the vibronic eigenfunction, which are

outputs of SOCJT2. Correspondingly 7 5(0) and F5(0) are
functions of & only.

In Figure 1 we have plotted I¥** and [¥*I* for a number of
the lower eigenvalues of the e’, vy vibration of Cp, which is JT
active only for a linear JT interaction, and hence, j, is a good
quantum number. The plots of [¥“* and ¥*I* are stunning in
terms of variety, complexity, and, in many cases, high
symmetry. An examination of the ¥ plots shows that they
contain axes of rotation, from one to many-fold. Figure 1

(49)

shows one symmetry axis for j = %, 3 axes for j = % levels, §

axes for j = % and so on, which must be attributable to ?f(e).
For any of the e’, modes of the ground state of Cp, we show in
the Supporting Information that F1(0) = cos(2j,), which is
consistent with the plots of ['¥*(ljl)I>. However, ?5(9) has no 6
dependence, which explains the lack of structure in the plots of
I¥*%. Nonetheless the existence of both ngg(p) and

Tlf(e)glf(p) are important since the plots of IW*(ljl)I* are a
sum or difference of them. If there is no JT-effect, then the

sums involving C;; reduce to a single term of unity and Q’f(p)
vanishes making the vibronic density independent of 6.

A molecule with a 3-fold or greater proper or improper
symmetry axis must be a symmetric (or spherical) top. The
converse of this is that a molecule with less than a 3-fold axis is
an asymmetric top. The geometry of the molecule, and hence
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of the information is the same as given in the caption for Figure 1.

its symmetry, is usually determined by the equilibrium
positions of the nuclei as defined by expectation values over
the electronic eigenfunction. This definition can be extended
to include distortions from vibronic coupling, by defining the
molecule’s inertial tensor to be determined by its expectation
value over the vibronic eigenfunction. If that symmetry is 3-
fold or greater, the molecule rotationally behaves like a
symmetric top. (The statement assumes that the vibrational
motion is sufficiently rapid to average the molecular rotations
over a vibrational period. If the vibrational motion is not
sufficiently rapid, one must correct this picture by taking into
account rotation—vibration coupling between different vi-

bronic levels.) From the form of Tlf(ﬂ), the only value of j,
that has less than a 3-fold axis is j = % Hence j = % levels

will be the only ones to distort from the symmetric top
geometry of the non-JT-perturbed configuration, and there-
fore, only those vibronic states have nonvanishing values of 4.
Another consistent, but less physical, argument is that 4, must

vanish, except for j = i‘%| levels, is to note that h; contains

the matrix element of the normal coordinate which has a
selection rule of Al = +1. To have a nonzero h; within a
degenerate vibronic state, the values of j connected by the
matrix must be equal in magnitude and opposite in sign. Only

i% satisfy this criterion, and thereby, we
observe the many zero values of h," in Table S17.

While Figure 1 is very informative, it is important to
remember that so far we have focused on the e’, vibrational
levels of Cp which show only a linear JT effect. Figure 2 shows
comparable vibronic density plots for the e,” v, mode which is
only quadratically JT active. For these levels, j, becomes the
good quantum number, and we see from the Supporting

Information that 77(6) = cos(4j, ). As expected, the plots of

the values of j =

Figure 2 show angular dependence consistent with F3(8). The
figure also shows that j, takes on both half odd integer and
integer values. Only the former states show vibronic densities
with less than a 3-fold axis. While there are a number of
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degenerate e vibronic states with integer j,, the vibronic
densities are all of 3-fold or higher symmetry and should be
symmetric tops. This result is confirmed in Table S18, which
shows that h; vanishes for these states, even if they are of e
symmetry.

The plots in Figures 1 and 2 for Cp allow us to make some
general observations about the vibronic density [P It is
important to note that the density is the sum or difference

between two terms. The first one of these is Tg(ﬁ)gg(p),
which is independent of 6 so long as ji is a good quantum

number. The second of these, ¥(0)G*(p), depends on a
cosine function of 8. However, this latter term vanishes if there
is no JT effect and correspondingly is much smaller than the
former for small JT coupling but increases at the expense of the
former as the coupling grows.

Overall the vibronic density serves as a powerful tool to
identify the characteristics of a particular eigenstate. If the
density has 3-fold or higher symmetry, the state behaves as a
symmetric top and the h; vanish. For either a linear-only or
quadratic-only JT effect the j, of a given quantum state can be
assigned by noting the characteristic patterns of cos(2j,0) or
cos(2j,0) in the plots. This can be used to definitively identify
a particular eigenstate in a region of dense energy level
structure. Moreover the contribution of a particular normal
mode can be readily ascertained qualitatively by the relative
magnitude of the deviation of the density plot from cylindrical
symmetry in the coordinate space (p,0;) of the JT-active
normal mode, e.g,, for the e,’ vibration modes, i = 8—11, of Cp.

Many molecules also have a significant linear and quadratic
effect in the same mode, and one of these is NO;, whose h,
values are given in Table 528 with a corresponding plot of the
density of the vibronic eigenfunctions in Figure 3. Of course, j
is no longer a good quantum number for NO;, and the
vibronic eigenfunctions contain multiple, but not unrestricted,
values of j. However, the D, symmetry designations of e’ or a’
(a," or a,’) still apply and the eigenfunctions for e levels

contain only basis functions, j = % + 3n. Only e’ levels have

IP“I*> with less than a 3-fold axis and so can support a nonzero
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value of h;, as Table S37 clearly shows. However, for NO;,
unlike Cp, all the degenerate levels have finite values for h,. We
note that F4(6) is no longer @ independent due to cross-terms
therein involving different j values which leads to a 6
dependence with 3-fold symmetry for [¥*I* in the plots.
Finally, we turn to Figure 4 for CH;O which has both linear
and quadratic coupling in its e vibrational modes. Correspond-
ingly the plots in Figure 4 for both |¥** and I¥'I* show
structure similar to those for NO;. Again, the nominally e
states alone show less than a 3-fold symmetry axis and support
nonzero h; values. There is additionally a significant spin—orbit
coupling in CH;O that is lacking in NOj;. This leads to spin—
orbit pairs of states in Figure 3 with structure that is
indistinguishable at the resolution of the plots, even though
small differences in the h; values are calculated for them.

5. CONCLUSIONS

The importance of Cls in chemistry is now widely recognized
despite the challenges they pose for characterization
experimentally or via electronic structure calculations. While
CIs of electronic PESs are ubiquitous, those associated with
the JT effect are the ones most extensively characterized
experimentally. The rotational distortion parameters, h; and h,,
are examples of the molecular parameters that can be measured
accurately by high resolution spectroscopy and are quite
sensitive to the PES containing the JT induced CL

We have formulated the basic theory necessary to relate
measured h; and h, values to those derived from a quantum
chemistry calculation of the PES. On the basis of this theory,
we have developed computational technology to obtain
numerical values for h, and h,, which is easily extended to
the computation of other molecular parameters of JT-active
systems.

This technology enables computation of values for the h;
and h, parameters of the JT-active X’E{ state of CsHy, the X°E
state of CH;O, and the A’E” state of NO; Excellent
agreement between the calculated and observed values of the
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h; parameters are obtained for C;Hg and CH;O. In the case of
NO;, the calculated value of h, is just below its experimentally
measured upper limit.

These computational techniques can be applied to
determine general properties of the h; and h, parameters.
These parameters can exhibit vanishing values for particular
vibronic levels even if a substantial JT effect and corresponding
geometric distortion is present. If the vibronic density shows a
3-fold or higher rotational symmetry axis, the h; parameters
vanish in that state. However, if the vibronic density has less
than 3-fold symmetry its magnitude for a particular mode is
not directly correlated with that state’s observed values of h;
and h, since they reflect the distortion from all modes.
Nonetheless, the vibronic density plots do readily reflect
whether the JT interaction is linear, quadratic, or both.
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