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ABSTRACT: A theoretical and computational framework is
presented for the parameters h1 and h2 that appear in the
rotational Hamiltonian for molecules subject to the Jahn−
Teller effect. Expressions that relate h1 and h2 to first and
second moments of the degenerate normal coordinates as well
as derivatives of the inertia tensor are presented in detail for
both cylindrical and Cartesian coordinate systems. The
method is demonstrated for three situations in which
experimental information about h1 (and/or h2) is available:
the ground 2E1″ and 2E states of the cyclopentadienyl (C5H5)
and methoxy (CH3O) radicals, respectively, and the excited
2E″ state of the nitrate (NO3) radical. Results for h1 and h2
parametrized by ab initio calculations exhibit good agreement with measured values, and they are demonstrably superior to
those obtained with an approach based on first-order perturbation theory. The computational technology developed for h1 and
h2 can be used to benchmark quantum chemistry calculations for molecules with Jahn−Teller effects and facilitate the analysis
of their spectra.

1. INTRODUCTION

Conical intersections (CIs) on potential energy surfaces1−3

play an important role in molecules, affecting many aspects of
their behavior that range from reaction dynamics to
spectroscopic signatures.4,5 While it was once thought that
CIs dictated by symmetry (those which epitomize the Jahn−
Teller (JT) effect) were far more common than those resulting
from accidental degeneracies, it is now widely appreciated that
intersections of two or more electronic states are ubiquitous.
The last few decades have witnessed many advances made in
the study of CIs, and this is now known to be a field of great
relevance.
Studies of CIs are made from both the experimental and

theoretical viewpoints. In the former area, the short passage
time through the CI region in dynamical processes limits what
can be learned from experiment, a consequence of the time-
energy uncertainty principle. Theoretical calculations are also
difficult, as the electronic problem must be solved in a
multidimensional space, a fact that compromises the ability of
standard single-reference quantum chemical methods (MP2,
CCSD(T), etc.) to perform as they do for simpler problems.
The venerable Jahn−Teller problem,6 where the CI is

present because of symmetry, and for which the relatively low-
energy dynamics tend to take place in the vicinity of the CI, is
a convenient and appropriate case for the development and

testing of theoretical and experimental methods for character-
izing CIs. There is a long history of these studies, and many
advances have been made in both theory and experiment.7−11

Experimental studies of the JT effect that provide
information about the CIs are generally based on electronic
spectroscopy. The levels measured experimentally can be fit by
effective Hamiltonians (typically those characterized by linear
and quadratic JT models). These Hamiltonians contain
information about the adiabatic potential energy surfaces
(PES) that comprise the CI, and also allow the prediction of
other level positions that are not observed experimentally, due
either to selection rules or to intrinsically weak transitions.
Quantum chemical calculations can also be used to determine
properties of CIs. Once an appropriate treatment of the
electronic Hamiltonian is found (such as methods based on
equation-of-motion coupled-cluster (EOM-CC)12−14 or those
based on complete active space self-consistent-field (CASSCF)
calculations15), the adiabatic surfaces can be computed
directly, and properties of the CI such as the JT stabilization
energy (JTSE) (the energy difference between the minimum
along the CI seam and the global minima of the JT-distorted
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molecule) and pseudorotation barriers are easily obtained.
With more effort, quantum chemical calculations can be used
to parametrize the aforementioned effective Hamiltonians,
which can subsequently be diagonalized to obtain eigenvalues
and eigenfunctions, the energy differences between the former
giving frequencies in spectra and the latter characterizing the
nature of the states involved.
Both experimental and theoretical studies of the JT effect are

difficult, and it is desirable to find a way in which these
distinctly different approaches can reinforce each other. It is
interesting that even a very logical first step in this process
the calibration of theoretical calculations by comparison to
experimental resultshas turned out to be somewhat
problematic. Specifically, it transpires that potential energy
surface measures such as the JTSE and pseudorotation barriers
that have been inferred from experimental level positions via
the effective Hamiltonian approach sometimes agree quite
poorly with those obtained directly by sophisticated quantum
chemical calculations. While this is the expected result if the
model Hamiltonian approach is unable to fit the experimental
levels well, a recent work16 by some of us shows that model
Hamiltonian fits can provide quite poor representations of the
computed adiabatic potential energy surfaces even when they
provide excellent fits to level positions obtained from vibronic
structure in spectra.
In this work, we explore how rotational structure in spectra

can be used to compare experimental studies of JT molecules
with theoretical calculations. The JT effect lowers the
symmetry of a molecule by distorting its PES, which leads to
the well-known departure of its vibrational (vibronic) structure
from that of a typical harmonic oscillator model with small
anharmonicities. The molecule’s geometry at the PES
minimum can be significantly distorted from its high symmetry
configuration, which leads to rotational structure markedly
different from that expected from the symmetric-top model
appropriate to the highly symmetric geometry of the CI.
JT effects on the rotational structure of molecules were first

considered by Child and co-workers.17,18 Subsequently,
Hougen19 introduced two parameters, denoted h1 and h2,
that characterize the effect of JT distortion on the rotational
structure. While seminal, his analysis was strictly based on
group theory, and therefore, it provided no physical
explanation of the parameters and hence no basis for
interpreting their experimental values or their calculation by
quantum chemistry.
Shortly after Hougen’s work, Watson20 provided a physical

explanation of two parameters comparable to h1 and h2 and
correspondingly provided an approximate method for their
calculation. His approach was very important in that it derived
an effective rotational Hamiltonian that reflected the JT
distortion of the PES. Not unexpectedly, given the era of
Watson’s work, his approach for computing the parameters has
significant limitations. Specifically, his results are limited to a
linear JT effect, which, moreover, has to be small since his
approach was effectively a first order perturbation calculation,
which would result in, at best, uncertain vibronic eigenfunc-
tions if the JT distortions are significant. In addition, the power
series expansion of the distortion parameters was truncated at
first order. Finally, his work provided an approximate formula
appropriate only for the zero-point level of the molecule.
Obviously tremendous computational advances have

occurred in the meantime. As indicated earlier, vibronic
eigenfunctions can now be determined using information from

quantum chemistry calculations of the PES. It is the purpose of
this paper to develop a procedure for predicting values of the
h1 and h2 parameters from calculated vibronic Hamiltonians
and to test the method against experimental results for several
JT active molecules.
To accomplish this, we review the effective rotational

Hamiltonian for JT active molecules and derive an approach to
compute h1 and h2 from the results of quantum chemistry
calculations. There have been spectral analyses4,21 yielding
values of h1 and/or h2 for several JT-active molecules, among
these being cyclopentadienyl (C5H5), methoxy (CH3O), and
nitrate (NO3) radicals. Here, we calculate parameters for these
molecules and compare them to the experimental measure-
ments. We also use our computational results to elucidate
some general characteristics of h1 and h2 and relate these to the
nature of the vibronic eigenfunctions.
The computational technology developed and described

herein to compute h1 and h2 has significant potential for
helping to calibrate the quality of theoretical calculations of the
JT effect. Provided accurate experimental determination of the
parameters is achieved (which however is not a trivial
undertaking), then the quality of the calculated values can be
unambiguously assessed, since they correspond precisely to
what is measured. Thus, a comparison of calculated and
experimental values of h1 and h2 is meaningful; in a sense,
apples are being compared to apples and oranges to oranges.
Historically, this is not the way that quantum chemical
calculations of the JT effect have been benchmarked. It has
rather been the de facto standard to compute potential energy
surfaces and then compare these to properties of these surfaces
(specifically the JTSE and pseudorotation barriers) extracted
from experimentally based vibronic Hamiltonians. This is
clearly a less straightforward comparison, as the surfaces are
what is calculated but not really what is “measured” in the
experiments and what goes on between the measurement of
the energy levels and the construction (and necessary
truncation) of the vibronic Hamiltonian can strongly under-
mine the fidelity of the resulting surface, as has recently been
demonstrated.

2. THEORETICAL BACKGROUND AND
DEVELOPMENT
2.1. Microscopic Rotational Hamiltonian. Since we are

dealing with modification of rotational structure by the JT
effect, a good starting place for our analysis is the general
expression for the rotational kinetic energy of a nonrigid
molecule, HR, which is given as19

H R R R

B B B

B B B

B B B

R

R

R
R = [ ]α β σ

αα αβ ασ

βα ββ βσ

σα σβ σσ

α

β

σ (1)

The components of the rotational constant tensor, B, are a
function of nuclear coordinates ( N). The nuclear coordinates
can be described in terms of a reference geometry ( 0) and
normal mode coordinates (qN) with qN = 0 at 0. R is the
rotational angular momentum, defined as

R J L G S N L G≡ − − − = − − (2)

where N ≡ J − S, with J and S being the total angular
momentum of the molecule (excluding nuclear spin) and the
electron spin, respectively. The electronic (L) and the
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vibrational (G) angular momenta are conventionally combined
to form the “vibronic” angular momentum

L Gπ ≡ + (3)

The components α, β, and σ in eq 1, can be expressed in
Cartesian coordinates (x, y and z) or cylindrical coordinates
(± = re±iθ = x ± iy and z = z) which are related by a
transformation matrix U,

U U
i
i i i

1 0
1 0
0 0 1

1
2

1
2

0

2 2
0

0 0 1

1= − = −
−

(4)

The components of the inertia tensor are quadratic functions
of the coordinates and therefore transform contravariantly

(same as the coordinate system). The rotational tensor
transforms as the inverse of the inertial tensor and hence
covariantly. Therefore, the rotational tensor is transformed
from Cartesian to cylindrical coordinates via

B z I z
h
c

( , , )
8

( , , )2
1

π
+ − = + − −

(5a)

UI x y z U
h
c8
( ( , , ) )T2

1

π
= −

(5b)

U I x y z U
h
c8
( ) ( , , )T

2
1 1 1

π
= − − −

(5c)

U B x y z U( ) ( , , )T1 1= − −
(5d)

Explicitly

B B B

B B B

B B B

B B B B B B B B B B

B B B B B B B B B B

B B B B B

i i i

i i i

i i

1
4
( ( ))

1
4
( ( ))

1
2
( )

1
4
( ( ))

1
4
( ( ))

1
2
( )

1
2
( )

1
2
( )

z

z

z z zz

xx yy yx xy xx yy xy yx xz yz

xx yy yx xy xx yy yx xy xz yz

zx zy zx zy zz

=

− − + + + − −

+ + − − + + +

− +

++ +− +

−+ −− −

+ −

(6)

The inverse relationship is

B x y z U B z U( , , ) ( , , )T= + − (7)

The rotational Hamiltonian in eq 1 can be recast in terms of
raising and lowering operators

N N Nix y= ±± (8)

ix yπ π π= ±± (9)

Using eqs 1−3 and these operators, we can rewrite HR as

H N B N N BN N B BN

B H H H

( ) ( ) ( )R

R R R

T T T T

T 0 1 2

π π π π
π π

= − − = − +
+ = + + (10)

where

H B B B B

B B B B B
R z z

z z z z z z zz z

0 2

2 2

π π π π π π π
π π π π π π π π

= + + +
+ + + + +

−+ − + +− − + −− + + −

+ − − + − + ++ −
(11)

H B N B N B N B N

B N B N B N B N

B N B N B N B N

B N B N B N

2

2 2

R zz z z

z z z z z z

z z z z z z z z

z z

1 π π π π
π π π π
π π π π

π π π

= − − − −
− − − −
− − − −
− − −

−+ + − −+ − + +− + −

+− − + + − + − + −

+ − − + − + − +

− + ++ − − −− + + (12)

H B N N B N B N N B N

B N B N N B N N B N N

B N N

R zz z

z z z z z z

z z

2 2 2

2

= + + +
+ + + +
+

−+ − + +− − + ++ −

−− + + − + − − +

− + (13)

The first term, HR
0, in the rovibronic Hamiltonian is clearly

independent of N, while the second, HR
1, and third, HR

2, contain
operators that are linear and quadratic in N, respectively. HR

0

does not contribute directly to the rotational spectrum and is

ignored. The terms linear in N constitute the Coriolis coupling
terms. The part of the Hamiltonian upon which we will
concentrate in this paper is the one quadratic in N, which is the
most significantly affected by JT interactions and gives rise to
the distortion parameters h1 and h2.

2.2. Spin-Vibronic and Rotational Basis Sets. A
judicious choice of basis set is extremely helpful both to
minimize the computational effort and to provide the best
physical picture of the mechanisms responsible for observed
effects in spectra resulting from JT interactions. We will refer
to the overall basis set as rotational spin vibronic |RSV⟩, i.e.

RSV SV R| ⟩ = | ⟩| ⟩ (14)

For the purposes of this paper, where the molecules are
subject to nonzero JT interactions, the explicit rotational basis
function is taken as a symmetric top with suitable extension for
nonrigidity since both require a proper or improper rotational
symmetry axis of order three or higher.22 (While a spherical
top is also possible, its rotational basis functions can be trivially
derived from those of the symmetric top.)
The coupling of the electronic spin to the rotational angular

momentum can be described by either of two conventional
models referred to as Hund’s case a and case b. The former has
good quantum numbers |JPSΣ⟩. The total angular momentum,
J, of the molecule has a projection, P, along the z axis. The
projection, Ps, of S upon the same axis is Σ. The case b like
basis functions can be written |JSNK⟩ in which the total
angular is J = N + S and K is the projection of N along the
symmetric top (z) axis. As will be explained in more detail
below, generally the better choice for large spin−orbit coupling
is case a while case b is preferable for small coupling. Of course
the case a or b sets span the same space, and they are related to
one another by a unitary transformation:23
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JSNK N
J N S

P K

JPS

( 1) 2 1
P

J P S

,

2∑| ⟩ = − +
− − Σ

| Σ⟩
Σ

− + +

(15)

For a doublet state, and Hund’s case b basis functions, this
relationship condenses to,

J N SKN
J K

J
JP K

S
J K

J
JP K

S

1
2
,

1/2
2 1

1
2

1
2

1/2
2 1

1
2

1
2

= ± = + +
+

= ±

Σ = ± ± + +
+

= ∓

Σ = ∓
(16)

It is important to pair |SV⟩ and |R⟩ basis functions
appropriately and to do that we need to characterize the
spin-vibronic basis functions by considering the Hamiltonian

H H H HT e JT SO
0= + + (17)

In the absence of JT-type vibronic interactions, i.e., HJT = 0,
He

0 can be taken to have diabatic eigenfunctions, at fixed 0,
which we write as |Λi⟩ where Λi is a signed integer that denotes
their rotational transformation property, eiΛθ, (

n
2θ = π ), about

the highest symmetry axis, z, of order n.
The Hamiltonian, HJT, has been studied in great detail.24,25

For a doubly degenerate state, HJT can be represented as a 2 ×
2 matrix in the electronic basis, with the harmonic, vibrational
basis projected on each Λ state26

H
T

T

V V

V V

0

0JT
N

N

A A

A A
= +

̃ ̃

̃ ̃

+ +−

−+ − (18)

Here TN is the nuclear kinetic energy, excluding rotation,
and (through quadratic terms)

V V

V q q q d q
1
2

1
2i

f

i i
i f

f g

i i i
i

f

i i

A A

0
1

2

1 1

∑ ∑ ∑ω ω

=

= + + +

̃ ̃

= = +

+

+ −
=

+ −

(19a)

The form of VÃ+−
depends on the symmetry of the electronic

state. We give results later for 2E electronic states of C3v and
D3h symmetry for which

V k q g q g q q

b q q

i f

f g

i i
i f

f g

ii i
i f

f g

j i

f g

ij i j

i

f

j f

f g

ij i j

A
1 1

2

1

1

1

1 1

∑ ∑ ∑ ∑

∑ ∑

= + +

+

̃
= +

+

−
= +

+

+
= +

+ −

= +

+

+ +

= = +

+

−

+−

(19b)

and for the 2E1″ state of D5h, for which

V k q g q g q q

b q q

i f

f g

i i
i f

f g

ii i
i f

f g

j i

f g

ij i j

i

f

j f

f g

ij i j

A
1 1

2

1

1

1

1 1

∑ ∑ ∑ ∑

∑ ∑

= + +

+

̃
= +

+

+
= +

+

−
= +

+ −

= +

+

− −

= = +

+

+

+−

(19c)

In the above, f is the total number of nondegenerate modes
and g is the total number of degenerate modes ( f + 2g = 3N −
6). V0 is the (degenerate) eigenenergy of He which can be
dropped. We express the other parameters in terms of
derivatives of the adiabatic electronic potential energy surface
(PES) with respect to the normal coordinates in cylindrical
form. The expansion has been carried out to the second power,
and the explicit parameter definitions are found in Table 1. It is
of note that di is nonzero only for totally symmetric modes and
only if the expansion is carried out at a nonstationary point of
the diabatic potential.

The effective Hamiltonian HSO for spin−orbit interaction
can be written with sufficient generality as24

H a L S a L S L S
1
2

( )SO z z z= + +⊥ + − − + (20)

It is worthwhile to note that az and a⊥, like the rotational
parameters, Bαα, are operators in the vibronic space. HSO may
be combined with HJT or incorporated into the rotational
Hamiltonian, typically depending upon its relative magnitude
compared to HJT and HR.
In the absence of HSO, HJT can be represented in a direct-

product, vibronic basis, |Dp⟩i, where

D v v l,p i i
m

f

m i
m f

f g

m i m i
1

,
1

, ,∏ ∏| ⟩ = |Λ ⟩ ⊗ | ⟩ ⊗ | ⟩
= = +

+

(21)

The matrix elements of the operators in eq 19 in this basis
are presented in the Supporting Information. The Hamiltonian
matrix is truncated by limiting the vibrational part of the basis
to a reasonable value (vmax), and the Lanczos algorithm is used

Table 1. Harmonic Frequency and Jahn Teller Coupling
Parameters in Cylindrical Coordinatesa

Symbols Description Definition

di gradient along symmetric mode q
( )
i

e

R0

∂
∂

Λ Λ± ±

ki linear JT coupling constant q
( )

i
e

R,
0

∂
∂

Λ Λ
±

± ∓

λi
harmonic force constant for JT
active mode q q

( )
i i

e

R

2

, ,
0

∂
∂ ∂

Λ Λ
+ −

± ±

λi′
harmonic force constant for JT
inactive mode q

( )
i

e

R

2

2

0

∂
∂

Λ Λ± ±

gii quadratic JT coupling constant q
( )

i
e

R

2

,
2

0

∂
∂

Λ Λ
±

± ∓

gij
cross-quadratic JT coupling
constant q q

( )
i j

e

R

2

, ,
0

∂
∂ ∂

Λ Λ
± ±

± ∓

bij bilinear JT coupling constant q q
( )

i j
e

R

2

,
0

∂
∂ ∂

Λ Λ
±

± ∓

a
e⟨Λ| |Λ′⟩ is the electronic potential at the symmetric configuration

denoted by R0, which includes Coulomb interaction, exchange
interaction etc.
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to calculate its eigenvalues and eigenvectors. The details for
truncation of the matrix and convergence of eigenvalues are
different for each molecule and are discussed subsequently.
The eigenvectors of the Hamiltonian are a linear combination
of basis functions and are further characterized on the basis of
symmetry. The vibronic eigenfunction, |V⟩, can be uniquely
labeled by its spatial symmetry, Es±

κ (see the Supporting
Information), and energy position, denoted by n starting at
zero for the lowest energy state and increasing monotonically,
i.e.

V n E C v v l, ,s
i

i
n

i
m

f

m i
m f

f g

m i m i
1

,
1

, ,∑ ∏ ∏| ⟩ = | ⟩ = |Λ ⟩ | ⟩ | ⟩κ
±

= = +

+

(22)

For small HSO, it can be included in the rotational
Hamiltonian and the |V⟩ basis is paired with a case b like
rotational basis |JSNK⟩ which incorporates the spin S and its
space-fixed projection Ps = Ms.
If HSO is comparable or larger than HJT, the appropriate

combination is a case a |JPSΣ⟩ rotational basis with a complete
spin-vibronic basis, i.e. |SV⟩ = |n, Ẽs±

κ , Σ⟩, where now Ps = Σ,
the spin’s projection on the molecule’s symmetry axis. The
eigenfunction |n, Ẽs±

κ , Σ⟩ of (HJT + HSO) transforms as an
irreducible representation of the symmetry group Ẽs±

κ of the
molecule including electron spin, ± depicting the two Kramers
components of a degenerate vibronic level. The spin-vibronic
eigenstates are

n E C S

v l v

SV , ,

,

SV
s

i k
i k
n

i

m p

f g

m k m k
m

f

m k

,
,

1
, ,

1
,

∑

∏ ∏

| ⟩ ≡ Ψ ≡ | ̃ Σ⟩ = |Λ ⟩| Σ⟩

| ⟩ | ⟩

κ
±

= +

+

= (23)

In either case, the coefficients, Cn, of the eigenkets can be
obtained from our spin−orbit coupling Jahn−Teller
(SOCJT2) software27,28 assuming suitable values are input
for the JT and SO parameters (zero for the latter in case b).
These eigenvectors are used to calculate h1 and h2, as described
in Section 2.3.
2.3. The JT Parameters, h1 and h2, in the Effective

Rovibronic Hamiltonian. To obtain an effective rotational
Hamiltonian for a given spin-vibronic level, we need to expand
the rotational tensor components of HR

2 (eq 13) in terms of the
normal coordinates. The inertial tensor, and therefore the
rotational tensor (eq 5), is a function of the nuclear
coordinates, . The matrix elements of the rotational tensor
component Bαβ in the vibronic basis (eq 21):

B Bv v l

v v l

,

,

i i i
m

f

m i
m f

f g

m i m i i

m

f

m i
m f

f g

m i m i

1
,

1
, ,

1
,

1
, ,

∏ ∏

∏ ∏

ϕ ϕ⟨ ⟨ | ⟩ = ⟨Λ | ⟨ | ⟨ | |Λ ⟩

| ⟩ | ⟩

αβ αβ′ ′
=

′
= +

+

′ ′

= = +

+

(24)

are treated as follows. In the diabatic representations, the
electronic basis functions (|Λi⟩) are fixed (to those at 0) and
only the vibrational part has dependence.

B B

q

q q

v v l v

v l B

B

q
v v l

v v l

B

q q
v

v l v v l

,

,

,

,

1
2

, , ...

j r

j r k r

i i
m

f

m i
m f

f g

m i m i
m

f

m i

m f

f g

m i m i R m

g

v v
m f

f g

l l

j

f

r j r R
m

f

m i
m f

f g

m i m i

m

f

m i
m f

f g

m i m i

j k i r r j r k r
R

m

f

m i

m f

f g

m i m i
m

f

m i
m f

f g
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We have omitted the sum over contributions involving
nondegenerate modes as their nonlinear contribution to hi
tends to be negligible, but an extension of this expansion to
include nondegenerate modes is trivial.
Be definition, in the principal axis system (PAS) the values

of the components of the rigid-rotor rotational tensor at 0 are
nonzero only for the diagonal terms, Bαα, which define the
rotational constants for the effective Hamiltonian. The
expansion of the other elements of the rotational tensor, Bαβ,
both diagonal and off-diagonal, start with the term linear in q.
In the Supporting Information, we derive the symmetry

properties of the various terms of HR
2 and the rotational

eigenfunctions. Only the operators Bzz, B+−, and B−+ transform
as the totally symmetric representation of the molecular
symmetry group and have nonvanishing contributions in the
“standard” symmetric top rotational Hamiltonian model. This
is because these are the only operators that have nonvanishing
matrix elements within the + or - components of a degenerate
vibronic level, i.e., |Es±

κ ⟩.
Group theoretically, the remaining terms of HR

2 may have
nonzero off-diagonal matrix elements between the components
of a vibronic level of the molecule considered. B±± transforms
as E2±′ for C5H5 and therefore has nonzero matrix elements of
the form ⟨E1±′|B±±|E1∓′⟩. Similarly, for NO3 and CH3O, B±±
transforms as E±

κ and E± respectively, which leads to nonzero
matrix elements of the form ⟨E∓′|B±±|E±′⟩ and ⟨E∓|B±±|E±⟩ for
the two molecules. Bz± and B±z transform as E1±″ for C5H5 and
E±″ for NO3 and has no nonvanishing matrix elements. This
leads to vanishing of h2 for such molecules. On the other hand,
for CH3O, B±z and Bz± transform as E± and have nonvanishing
matrix elements of the form ⟨E±|Bz±|E∓⟩ = ⟨E∓|B∓z|E±⟩.
Application of these principles leads to explicit equations for
the first (h′i) and second (hi″) contributions to h1 and h2, i.e., hi
= h′i + hi″, in terms of their expectation values over specific
(spin-) vibronic eigenkets. We can express the matrix elements
of h1 in terms of degenerate vibronic eigenfunctions which are
of the following form:

E C v l,s
i

i i
m

p

m i m i
1

, ,∑ ∏| ⟩ = |±Λ ⟩ | ± ⟩κ
±

= (26)
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Therefore, we can write the first order contribution to h1
(h1′) as
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The rotational constant derivatives are evaluated at the fixed
nuclear configuration 0.
Correspondingly
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Similarly for h2′
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and for h2″
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In the above, the kets (bras) |Es±
κ ⟩ apply to the case where

HSO is included with HR. If HSO is included with HJT,|n, Es±
κ ⟩

should be replaced by the spin-vibronic eigenket |n, Ẽs±
κ , Σ⟩. In

the next section, we detail how to obtain the derivatives of the
rotational constant tensor components. In section S1 of the
Supporting Information, we provide the symmetry properties
for the derivatives of the rotational tensor. In section S2 of the
Supporting Information, we provide some equivalent defi-
nitions of h1 and h2 in terms of the Cartesian basis, which will
be useful to those who choose to work in these coordinates.
The calculation of the values of the hi is discussed in more
detail in section S3 of the Supporting Information.
2.4. Computational Procedures. The components of the

electronic state can be chosen to transform as distinct
representation, in some Abelian subgroup ( ) of the molecular
symmetry group ( ). The two states are labeled here as Γ1 and
Γ2. Table 2 lists the transformation properties of components

of the degenerate state in the Abelian subgroup for C5H5, NO3,
and CH3O. The adiabatic potential energy surfaces (PES) of
Γ1 and Γ2 are determined using equation of motion-coupled
cluster singles and doubles theory (EOMIP-CCSD) using the
CFOUR package. The reference state for these EOMIP-CCSD
calculations is taken to be the corresponding anion. The
adiabatic, electronic eigenfunctions, ψΓ1

and ψΓ2
, which are

calculated, are related to the previously defined basis functions
|Λ = ± 1⟩ by

i1
1
2
( )

1 2
ψ ψ|Λ = ± ⟩ = | ⟩ ± | ⟩Γ Γ (31)

The various coefficients of the Jahn−Teller Hamiltonian (eq
19) are obtainable in terms of first and second derivatives of
the adiabatic PES of Γ1 and Γ2, in terms of dimensionless
normal coordinates. Of course a quantum chemistry package
produces derivatives with respect to the Cartesian displace-
ments of the atoms, but the transformation of these to
dimensionless normal coordinates is straightforward.29 In the
work discussed here, done in the rectilinear normal coordinate
representation, each degenerate normal mode (qi ∀ f + 1 ≤ i ≤
f + g) has two components, qia and qib, which are chosen such
that qia transforms as the totally symmetric representation of
the Abelian subgroup ( ). The first and second derivatives of
the adiabatic PES of Γk, where k = 1 or 2, with respect to
dimensionless normal coordinate, qi (or qia and qib for a
degenerate mode), are

f
E
qi
k

i q

k

0

= ∂
∂

Γ

(32)

f
E

q qij
k

i j q

2
k

0

= ∂
∂ ∂

Γ

(33)

where Ek is the energy of the kth adiabatic state. The
relationship between the Cartesian components and the
cylindrical representation used in eq 19 is given by

q q iqi ia ib= ±± (34)

For a JT system, the derivatives of the diabatic PES with
respect to totally symmetric (in ) normal coordinate, qia, are
identical to those of the adiabatic PES of Γ1 and Γ2.

16,30

Therefore, the parameters in Table 1, defined in terms of the
matrix elements of e

̂ , are related to linear and quadratic force
constants ( f) involving nondegenerate modes (qi ∀ 1 ≤ i ≤ f)
and the totally symmetric component of degenerate modes (qia
∀ f + 1 ≤ i ≤ f + g) as

k f fi ia ia
1 2= = −Γ Γ

(35)

d f fi i i
1 2= =Γ Γ

(36)

Table 2. Transformation Properties of Components of the
Degenerate State in the Abelian Subgroup

molecule state components in Abelian subgroup

C5H5 D5h C2v X̃2E1″ 2A2 and
2B1

NO3 D3h C2v Ã2E1″ 2A2 and
2B1

CH3O C3v Cs X̃2E 2A′ and 2A″
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f f
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( )i iaia iaia

1 2λ = +Γ Γ
(37)

f fi ii ii
1 2λ ′ = =Γ Γ

(38)

g f f
1
2
( )ii iaia iaia

1 2= −Γ Γ
(39)

b f fij ija ija
1 2= = −Γ Γ

(40)

g f f
1
2
( )ij iaja iaja

1 2= −Γ Γ
(41)

These relations are obtained using eq 31 and eq 34 together
with relatively simple symmetry relations and are consistent
with Table 1 of ref 16. Tables giving values of these parameters
for C5H5, CH3O, and NO3 are provided in the Supporting
Information. Using these values, we can now solve the
Hamiltonian in eq 17. One needs to emphasize here that
while we use EOMIP-CCSD to obtain these parameters, any
quantum chemical method can be useful for this calculation, as
long as it provides a proper treatment of the degenerate states
and satisfies the associated symmetry properties.
To obtain numerical values for the rotational tensor

components, we note that the rotational tensor, B (in cm−1),
is related to the inertial tensor (I) by

B I
h
c8 2

1

π
= −

(42)

where c is the speed of light and I is written in the molecular
frame (x, y, z) and has the form
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(43)

The sum is taken over all atoms of the molecule with xi, yi, zi
being the Cartesian coordinates of each atom. Derivatives of
the inertial tensor with respect to dimensionless normal
coordinates are calculated numerically using finite differences.
The first and second derivatives of the rotational tensor are
calculated using the derivative of inertial tensor as follows:
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These equations are used to calculate the derivatives in
Cartesian coordinates, which are then transformed to
cylindrical coordinates. The methodology for converting
them to cylindrical coordinates and complete set of values
for the derivatives of rotational and inertial tensor for C5H5,
NO3, and CH3O are included in the Supporting Information.

3. RESULTS

To benchmark our theoretical calculations, we have selected
three radicals, cyclopentadienyl (Cp), C5H5; methoxy, CH3O;
and nitrate, NO3; each of which have been extensively studied
experimentally. All three contain a relatively small number of
atoms, so they should be amenable to quantum chemistry
calculations of relatively high quality. These same character-
istics are ideal for spectroscopic study, and experimental values
of hi of relatively high precision are available for them.
As eqs 27−30 show, the rotational distortion parameters h1

and h2 depend upon the derivatives of the components of the
rotational tensor, whose values are in the Supporting
Information. The hi parameters also critically depend upon
the spin-vibronic eigenfunctions. These eigenfunctions, specif-
ically the coefficients in the basis functions expansions of eqs
22 and 23, are obtained by diagonalizing the Hamiltonian
matrix, HV (+HSO), which in turn depends upon the JT (and
spin) parameters contained in the spin-vibronic Hamiltonian
of eqs 19a, 19b, 19c, and 20. As noted before, we use our
SOCJT2 software to obtain these eigenvalues and functions.
The parameters in HJT and HSO can be obtained by one of

two general ways. As explained in Section 2.4, they can be
determined directly from the derivatives (see Table 1) of the
calculated electronic PES. The second approach is to fit these
parameters to the difference of the spin- vibronic eigenvalues
determined spectroscopically. While the spectroscopically fit
values are usually of relatively high precision, limitations to the
availability of sufficient experimental data often dictate rather
severe truncations of the Hamiltonian and correspondingly
may introduce some bias into the parameters.16 Of course all
of the terms of the quadratic JT Hamiltonian may readily be
determined via quantum chemistry calculations, but those of
HSO may not be available in some computation packages.

3.1. Ground X̃2E1″ State of Cyclopentadienyl (Cp),
C5H5, Radical. Cyclopentadienyl (Cp), C5H5, is a relatively
small hydrocarbon radical that has been studied extensively,
both experimentally and computationally. Cp is a good
candidate for studying JT effects in that it has five equivalent
C and H atoms and belongs to the symmetry group, D5h. Its
ground electronic X̃ state is doubly degenerate (2E1″) and
possesses several JT-active vibrations. Group theoretically, e′2
vibrations are linearly JT-active only, whereas e′1 vibrations are
quadratically Jahn−Teller active only. This fact is convenient
for determining h1′ and h1″, as h1′ only has contributions from
modes which are linearly JT-active, whereas h1″ only has
contributions from quadratically active Jahn−Teller modes. In
addition, Cp has a plane of symmetry, so h2′ vanishes as is
shown subsequently.
The spectroscopy of Cp has been studied for more than 50

years, with its electron paramagnetic resonance spectrum
(EPR) observed in 196331 and electronic absorption spectrum
first observed32 in 1970. Subsequently, photodetachment
(PD), and rotationally and/or vibrationally resolved laser-
induced fluorescence (LIF), and laser excited dispersed
fluorescence (LEDF) spectroscopic methods have all been
utilized to probe geometric distortions from the predicted
equilibrium structure with D5h symmetry. Recent spectroscopic
experiments at low temperature include jet-cooled LIF,33,34

LEDF,35 PD36 of C5H5
−, and mid-IR absorption of Cp in He

droplets.37 These papers cite the numerous experiments
performed in the intervening years.
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Early quantum chemistry calculations on Cp appeared in
1956(!)38 and 1960,39 and numerous calculations followed
thereafter. The most recent calculations relevant to the JT
effect in Cp were published36,40 in the early 21st Century and
cite most of the quantum chemistry calculations in the
intervening years.
Following the procedures outlined in Section 2.4, quantum

chemistry calculations were carried out on Cp with the
EOMIP-CCSD method using the ground electronic state of
the anion as the reference. Table S5 of the Supporting
Information list the symmetries and harmonic vibrational
frequencies resulting from the calculation. It tabulates the
linear and quadratic JT coupling constants in terms of ki and gii
which are contained in the Hamiltonian in eqs 19a, 19b, and
19c, and it also provides the conventional JT experimental
parameters Di and Ki, which are used as input to SOCJT2.
Table S6 provides the bilinear and cross-quadratic JT coupling
constants.
Using SOCJT2 to solve the complete vibronic Hamiltonian

for C5H5 is impossible because of the huge size basis set that
would be needed for the computation given the large number
of linear and quadratic JT-active vibrational modes. To
alleviate this problem, we ignore the cross quadratic coupling
between the linear (e′2) and quadratic (e′1) modes. This
allows us to do separate calculations for the four e2′ (ν8, ν9, ν10
and ν11) and three e1′ modes (ν5, ν6 and ν7). For the e2′-mode-
only calculation, the vibronic basis set is truncated at vmax = 8
except for ν8 which is truncated at vmax = 4. The Lanczos
algorithm is run for 1000 iterations to get the converged
eigenvalues and eigenvectors. For the e1′ mode only
calculation, the vibronic basis set is truncated at vmax = 10
and the Lanczos algorithm is run for 800 iterations to get the
eigenvalues and eigenvectors.
The outputs of SOCJT2 are vibronic eigenenergies and

eigenkets. The latter are used to calculate matrix elements of
the linear and bilinear combinations of the normal coordinates
given in Tables S7 and S8, which as eqs 23 and 28 show, are
necessary to calculate values for h1. These equations also
require the derivatives of the components of the rotational
tensor. As outlined in Section 2.4, these are obtained from the
derivatives of the inertial tensor. The resulting values are
tabulated in Tables S9−S16. Tables S17−S18 contain
respectively the resulting h1′ values and h1″ values for the
vibronic levels of C5H5 with energies less than 2200 cm−1.
The rotationally resolved spectrum of the Ã2A1″−X̃2E1″ origin

transition has been observed and analyzed, yielding an
experimental value of |h1|= 211.8(3) MHz for the zero-point
level of the Cp X̃ state.33,34 Referring to Table 3, we see that
the calculated value of h1 is 207.4 MHz. While this agreement

is somewhat fortuitous in that it certainly exceeds the expected
accuracy of the procedure and quantum chemistry treatment
used here, it also tends to affirm the computational method.
We also see from Table 3 that, for practical purposes, h1″ is
negligible compared to h1′ for Cp.
In the Introduction we noted that in his early work, Watson

introduced an approximate, perturbative formula for comput-
ing parameters directly related to the hi. Those formulas yield
the following relations for the hi

h D
B
q

2
i

i
xx

ia
1 ∑≈ ∂

∂ (45)

and

h D
B
q

2
i

i
xz

ia
2 ∑≈ ∂

∂ (46)

where i refers to the JT active doubly degenerate normal
modes and qia denotes the totally symmetric component in the
Abelian subgroup. Such simple relations are obtainable from
eqs 27−30 by assuming only a linear JT interaction
parametrized by Di and treating its effect via perturbation
theory.
Table 3 shows that using the Watson formulation we

calculate h1 = h1′ = 247.9 MHz. This is a good estimate for h1
but, as one might expect, less so than the one from the vibronic
calculation. Since we know that the quadratic contribution to
the power series expansion of the rotational derivative is
negligible, the limitation of the Watson approach for C5H5 is
likely to be the treatment by perturbation theory.

3.2. Ground X̃2E State of Methoxy, CH3O, Radical. The
X̃2E state of methoxy radical, CH3O, is perhaps the most
studied example of the JT effect, both theoretically and
experimentally. Moreover, it provides an example with
significant spin−orbit coupling. With C3v symmetry, methoxy
has 3a1 and 3e vibrations, with the latter being JT active. The
X̃2E state of methoxy has been characterized experimentally by
PD spectra41,42 from the anion, and by numerous optical
techniques: emission,43 laser paramagnetic resonance
(LMR),44,45 and LIF,46−50 LEDF,51 and stimulated emission
pumping (SEP),52−54 via its Ã2A1 − X̃2E electronic transition.
In addition, IR absorption55 and microwave rotational
spectra56,57 in the X̃ state have been observed. Both h1 and
h2 values have been measured in the zero-point level of each
the 2E1/2 and 2E3/2 (spin−orbit) components of its X̃ state.
The highest precision values of h1 and h2 are a result of fits

54 to
combined microwave and LIF data.
Methoxy has also been a subject of numerous theoretical

studies,58−64 some of these combining experimental with
computational work. However, none has addressed the
calculation of h1 and h2. Following the approach of Section
2.4, we have performed an EOMIP calculation on methoxy
with the anion as the reference state. Table S19 of the
Supporting Information lists the symmetric harmonic vibra-
tional frequencies and JT parameters resulting from this
calculation. These parameters and the spin−orbit coupling
parameters are required as input to SOCJT2. For the spin−
orbit coupling, we use the value42 of a∥ = 133 cm−1 consistent
with the value previously computed and which approximately
yields the observed quenched spin−orbit coupling, which was
previously measured54 at 61.495 cm−1. Our calculations show
that the bilinear and cross-quadratic couplings for CH3O are
negligible and are not included in the SOCJT2 analysis.

Table 3. Calculated and Experimental Values (MHz) of |h1|
a

for the Vibrationless level of the X̃2E1″ of C5H5

vibrational mode symmetry h1′ h1″
e′2 (linear JT) −207.1 0
e1′ (quadratic JT) 0 −0.3
vibronic calculation |h1| 207.1 0.3
Watson calculation |h1| 247.9
experimental |h1| 211.8(3)

aNote that while relative signs of h1′ and h2″, as well the contributions
to them from individual modes, are determined, their overall sign is
not as it depends on an arbitrary phase factor.
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For CH3O, the vibronic calculation included the three
modes (ν4, ν5 and ν6) which are JT active. The vibronic basis
set is truncated at vmax = 10 for all three modes. The SOCJT2
input parameters for CH3O are given in Table S19. The
eigenket output is used to calculate the matrix elements of the
normal coordinates that appear in the definitions of the hi and
whose values are given in Table S20. In addition, first and
second derivatives of the elements of the rotational tensor are
listed in Tables S21−S26. The resulting h1 and h2 values for
methoxy for vibrational levels up to 2000 cm−1 above the zero-
point X̃ state level are given in Tables S27 and S28.
In Table 4, we compare the experimental values of h1 and h2

with the calculated results. As the table shows, once again there

is good agreement between calculated and experimental values
of the h1. Considering the experimental uncertainties (see
below) the agreement for h2 is also good, albeit not as
spectacular as that for h1. The methoxy results tend to confirm
the validity of the calculation even when spin orbit coupling is
present with a magnitude comparable to JT distortion.
For h1, it is clear that h1″ is small compared to h1′. However,

due to the larger magnitude of h2, the same is more true for h2″
relative to h2′. Finally, we note that the vibronic calculation and
Watson approximation agree fairly well for h1, but the more
rigorous vibronic calculation agrees significantly better with
experiment for h2.
Before closing the discussion on methoxy, it is worthwhile to

note a few points about the comparison between calculated
and experimental values. Reference 54 provides a table with the
experimental parameters of CH3O determined with four
different combinations of data. Generally speaking, all the
parameters are consistent within their statistical errors, which
in turn are reflective of the overall size and precision of the
respective data sets. It is, however, worth noting that the
standard deviation of the hi among the four sets is 0.50 MHz
for h1 and 53 MHz for h2. Clearly the statistical error for h1 and
its deviation among sets is comparable, while the deviation for
h2 among data sets is much greater and possibly indicates less
reliability for the experimental value of h2 than its statistical
error indicates.
There is another interesting point. Theoretically one would

expect h1 and h2 to vary modestly between spin components as
is indeed shown by the calculated values. Nonetheless, and
understandably, the fit to the experimental spectra constrained
the hi values to be equal for both spin components. This
possibly contributes to the relatively poor agreement among
the h2 values obtained from different data sets.
3.3. Excited Ã2E″ State of Nitrate, NO3, Radical. The

three lowest electronic states, X̃2A2′, Ã2E″, and B̃2E′, of the
nitrate radical, NO3, have long been explored spectroscopically

and investigated by quantum chemistry methods. The X̃ and B̃
states have been most studied and considerable interest in
them remains. The Ã state has been less studied, principally
because transitions between it and the ground X̃ state are
electronically forbidden for electric dipole radiation. Nonethe-
less, in recent years, weak vibronically allowed and magnetic
dipole transitions have been observed by cavity ringdown
spectroscopy (CRDS).65−69 The Ã state has also been studied
experimentally by PD spectroscopy.70 These experiments have
further stimulated interest from quantum chemis-
try.66,67,69,71−75

Our focus here is on the Ã state, which transforms as E″ in
the D3h point group. It has one a1′, one a2″, and two e′
vibrational modes, with the latter two being JT-active. In
addition, PJT coupling exists in first or second order between
all three states, with X̃−B̃ linear coupling being particularly
strong and ultimately responsible for the great complexity of
the NO3 molecule.
Rotationally resolved spectra have been observed for several

bands of the jet-cooled Ã−X̃ CRDS spectrum. None of the
observed bands show definitive evidence of the effect of h1, and
an upper limit for |h1| of less than 75 MHz for the zero-point
level can be established as is reflected in Table 5. (No values of

h1 have been reported for the B̃ state of NO3, although it is also
JT-active, due at least in part to an extremely complicated B̃−X̃
spectrum. Of course h2 = 0 in both states due to planarity.)
For NO3, the vibronic calculation included three modes: ν1,

which is a nondegenerate mode, and ν3 and ν4, which are JT-
active degenerate modes. The vibronic basis set is truncated at
vmax = 10 for all three modes. The Lanczos algorithm is run for
1200 iterations to get the converged eigenvalues and
eigenvectors. Nonzero bilinear coupling between ν1 and the
degenerate modes is also included in the calculation.
Table 5 shows the values of h1 for the zero-point level

calculated from the vibronic eigenkets using the same
procedures as previously described for C5H5 and CH3O.
Corresponding values for JT coupling parameters, matrix
elements of the normal coordinates, values of rotational tensor
component derivatives, and h1 values for higher levels are given
in Tables S29−S37 of the Supporting Information. As one can
see from Table 5, the calculated value of h1 is somewhat
smaller than the experimentally observed upper limit and is
therefore consistent with it. One can also note that, for NO3,
the calculated value of h1″ is not very small compared to h1′, in
contrast to both C5H5 and CH3O. This is clearly consistent
with the strong JT effect in NO3. Furthermore, we note the
calculation of h1 by the Watson method is clearly inconsistent

Table 4. Values (MHz) of h1 and h2 in the 2E1/2 and
2E3/2

Spin Components of the Vibrationless Level of the X̃2E
State of CH3O

|h1| |h2|

method E3/2 E1/2 E3/2 E1/2

vibronic calculation 72.22a 77.61b 1208c 1301(26)d

vibronic calculation (av.) 74.91 1268
Watson calculation (av.) 86 1587
experimental 75.45(26) 1331(3)

ah1′ = −64.58; h1″ = −7.63. bh1′ = −69.24; h1″ = −8.36. ch2′ =
−1199.2; h2″ = −9.3. dh2′ = −1315.7; h2″ = −10.2.

Table 5. Values (MHz) of h1 for the Vibrationless Level of
the Ã2E State of NO3

eigenfunction source

electronic structure calculation analysis of vibronic spectruma

h1′b 60.5 −190
h1″b −8.0 24
|h1′|b 52.5 166
h1′ = h1

c 467 385
|h1|(exp) ≤75d

aReference 69. bVibronic calculation. cWatson calculation. dExper-
imental upper limit for h1 determined for the 21 e′ vibronic level of the
Ã state, which, to the level of theory in the calculation, is the same as
the vibrationless level.

The Journal of Physical Chemistry A Article

DOI: 10.1021/acs.jpca.9b03360
J. Phys. Chem. A 2019, 123, 4990−5004

4998

http://pubs.acs.org/doi/suppl/10.1021/acs.jpca.9b03360/suppl_file/jp9b03360_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpca.9b03360/suppl_file/jp9b03360_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpca.9b03360/suppl_file/jp9b03360_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpca.9b03360/suppl_file/jp9b03360_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpca.9b03360/suppl_file/jp9b03360_si_001.pdf
http://dx.doi.org/10.1021/acs.jpca.9b03360


with the experimental result as well as the vibronic calculation,
reflecting a failure of first-order perturbation theory in this case
where the JT coupling is extremely strong.
Table 5 makes one other comparison. As discussed in the

Introduction, the JT parameters can also be extracted from an
analysis of the experimental vibronic spectra, which as Table

S29 shows, are (considerably) larger than the calculated ones.
The value of h1 calculated with these parameters is therefore
larger, as seen in Table 5, and indeed is significantly larger than
the experimental upper limit for h1, which further suggests that
the experimentally inferred potential is flawed as has been
discussed previously.16 Indeed, a virtue of h1 and h2 is that they

Figure 1. Plots of vibronic density, |Ψa|2 and |Ψ+|2, for the normal mode polar coordinates ρ9 and θ9 for the lowest vibronic levels of C5H5. The two
densities are integrated over the electronic component and other vibrational components as described in section S5.1 of the Supporting
Information. The ρ9 is the distance from origin and varies from 0 to 10 at the corner in reduced (dimensionless) normal coordinates, which are

related to the standard mass-weighted normal coordinates as Q i
10.9726694787 i

i
= ρ

ω , where Qi is in (amu)1/2bohr and ω is the harmonic frequency of

the mode in cm−1 (for more detail see footnote 53 of ref 30). θ9 is the angle with the x-axis in the anticlockwise direction and varies from 0 to 2π.
The color scale indicates the magnitude of the density, with yellow the maximum. The individual plots are labeled by vibronic eigenenergy and its
value of j1.

Figure 2. Plots of vibronic density, |Ψa|2 and |Ψ+|2, for the normal mode polar coordinates ρ7 and θ7 for the lowest vibronic levels of C5H5. The rest
of the information is the same as given in the caption for Figure 1. The individual plots are labeled by vibronic eigenenergy and its value of j2.
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allow the benchmarking of low-order terms in the JT
expansion calculated by theory. Should higher order terms,
e.g., hi‴, be required to make calculations and experiment
agree, it is indicative that a higher order JT expansion is
necessary.

4. DISCUSSION
We have derived a method for predicting h1 values from
vibronic eigenfunctions based on the results of quantum
chemistry calculations, and we have demonstrated that this
approach yields predictions in good agreement with exper-
imental values for representative examples. It is useful to apply
our computational approach to look more generally at the
characteristics of the hi distortion parameters.
The symmetry properties of the vibronic eigenfunctions are

important for the values of the hi and indeed many other
molecular parameters. One symmetry property that has long
been known is that h2 vanishes for a planar molecule. This
property derives from the fact that h2 is proportional to a
rotational tensor component that is inversely proportional to
the z displacement of the nuclei, which transforms antisym-
metrically with respect to reflection in the plane. However, the
direct product of the vibronic eigenkets always transforms
symmetrically, and hence the vibronic matrix elements in eqs
29 and 30 must vanish through first order. This result has been
previously obtained but based on consideration of the
symmetry of HJT alone. If spin−orbit coupling is considered,
the spin-double-group irreducible representations are still
symmetric for the bra-ket direct product, while the rotational
tensor components still transform antisymmetrically. Hence, h2
vanishes for planar molecules, whether or not spin−orbit
coupling is considered.
More information about the hi can be obtained for particular

molecules, and the Cp radical is a particularly convenient
example to consider. Since it is planar, h2 vanishes. The Cp
radical has vibrational modes of one symmetry, e′2, that have a
linear-only JT effect and others, e′1, that have a quadratic-only
JT effect. The interaction between modes of these two
symmetries is negligible and indeed has been omitted from our
calculations on Cp as mentioned earlier. The values of h′1 that
we have calculated are given in Table S17 for e′2 levels and h1″
in Table S18 for e′1 levels. As noted from those tables, all
values of h1″ and h′1 vanish for the e′2 and e′1 modes,
respectively. This follows from the fact that the linear and
quadratic JT effects vanish for e′1 and e′2 modes respectively,
and hence h′1 and h1″ must correspondingly vanish. However,
what we found surprising is that in Table S17 many other
values of h′1 also vanish for e′2 vibrational modes as do values
for h1″ in Table S18 for e′1 vibrational modes.
To investigate the situation in more detail, we have plotted

vibronic densities of the Cp radical in Figures 1 and 2. The
method used to calculate the densities follows from that
reported by Ichino et al.,36 and details of our implementation
are given in the Supporting Information. These plots are
constructed using the same vibronic eigenfunctions that were
used to calculate the hi values for each molecule. The plots in
the figures are for the normal mode of the given molecule that
best illustrates the characteristics of the vibronic density,
usually the one that has the strongest linear JT interaction.
To understand the vibronic density plots shown in the

figures for Cp, it is useful to introduce the quantum number, jk,
which is a function of l and Λ, with its detailed form depending
on the molecule’s symmetry group and the irreducible

representations according to which the electronic ψ±|Λ|
e and

vibrational ψv,l wave functions transform. Child and Longuet-
Higgins17 first used j1 (therein called just j), and its definition
was extended to jk in the review by Barckholtz and Miller.4 As
shown therein, jk is a good quantum number for ΨSV if there is
only a single order of JT interaction; i.e., for a linear JT
interaction, k = 1, for a quadratic interaction, k = 2, etc. Since
Λ and l can assume both positive and negative values, j can also
have positive and negative values, and we denote the
corresponding eigenfunctions as ΨSV(±jk), which can be
taken as the two components of the degenerate vibronic
eigenvalue. Generically, these eigenfunctions are referred to as
Ψ± regardless of whether jk is a good quantum number.
Of course, for a given jk, a linear combination of ΨSV(±jk)

remains an eigenfunction of the vibronic Hamiltonian.
However, if we want also to diagonalize the hi operators to
first order, we need to take a form like

j j j( )
1
2

( ) ( )a SV SVΨ | | = [Ψ + Ψ − ]
(47)

j
i

j j( )
2

( ) ( )b SV SVΨ | | = [Ψ − − Ψ ]
(48)

since the hi are defined in terms of matrix elements between the
degenerate components ΨSV(j) and ΨSV(−j).
In the Supporting Information, we show that for these

eigenfunctions the vibronic density can be written

j j j j

j j j

( )
1
2

( ) ( ) ( )

( ) ( ) ( ) d ( )

( ) ( )

a b SV SV SV SV

SV SV k k

k k

/ 2 2 2

0 0

1 1

∫
ρ

θ ρ

|Ψ | | | = [|Ψ | + |Ψ − | ± Ψ Ψ

− ± Ψ − Ψ ] ϵ =
±

*

*

(49)

The ( )k
0 ρ and ( )k

1 ρ are functions only of ρ and consist of
sums over products of the associated Leguerre polynomials and
the mixing coefficients in the vibronic eigenfunction, which are
outputs of SOCJT2. Correspondingly ( )k

0 θ and ( )k
1 θ are

functions of θ only.
In Figure 1 we have plotted |Ψa|2 and |Ψ+|2 for a number of

the lower eigenvalues of the e′2 ν9 vibration of Cp, which is JT
active only for a linear JT interaction, and hence, j1 is a good
quantum number. The plots of |Ψa|2 and |Ψ+|2 are stunning in
terms of variety, complexity, and, in many cases, high
symmetry. An examination of the |Ψa|2 plots shows that they
contain axes of rotation, from one to many-fold. Figure 1
shows one symmetry axis for j 1

2
= , 3 axes for j 3

2
= levels, 5

axes for j 5
2

= and so on, which must be attributable to ( )k
1 θ .

For any of the e′2 modes of the ground state of Cp, we show in
the Supporting Information that ( )1

1 θ = cos(2j1), which is

consistent with the plots of |Ψa(|j|)|2. However, ( )k
0 θ has no θ

dependence, which explains the lack of structure in the plots of
|Ψ+|2. Nonetheless the existence of both ( )k k

0 0 ρ and

( ) ( )k k
1 1θ ρ are important since the plots of |Ψa(|j|)|2 are a

sum or difference of them. If there is no JT-effect, then the
sums involving Cv,l

± reduce to a single term of unity and ( )k
1 ρ

vanishes making the vibronic density independent of θ.
A molecule with a 3-fold or greater proper or improper

symmetry axis must be a symmetric (or spherical) top. The
converse of this is that a molecule with less than a 3-fold axis is
an asymmetric top. The geometry of the molecule, and hence
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its symmetry, is usually determined by the equilibrium
positions of the nuclei as defined by expectation values over
the electronic eigenfunction. This definition can be extended
to include distortions from vibronic coupling, by defining the
molecule’s inertial tensor to be determined by its expectation
value over the vibronic eigenfunction. If that symmetry is 3-
fold or greater, the molecule rotationally behaves like a
symmetric top. (The statement assumes that the vibrational
motion is sufficiently rapid to average the molecular rotations
over a vibrational period. If the vibrational motion is not
sufficiently rapid, one must correct this picture by taking into
account rotation−vibration coupling between different vi-
bronic levels.) From the form of ( )k

1 θ , the only value of j1
that has less than a 3-fold axis is j1

1
2

= . Hence j1
1
2

= levels

will be the only ones to distort from the symmetric top
geometry of the non-JT-perturbed configuration, and there-
fore, only those vibronic states have nonvanishing values of h1.
Another consistent, but less physical, argument is that h1 must

vanish, except for j 1
2

= ± levels, is to note that h1 contains

the matrix element of the normal coordinate which has a
selection rule of Δl = ±1. To have a nonzero h1 within a
degenerate vibronic state, the values of j connected by the
matrix must be equal in magnitude and opposite in sign. Only
the values of j 1

2
= ± satisfy this criterion, and thereby, we

observe the many zero values of h1′ in Table S17.
While Figure 1 is very informative, it is important to

remember that so far we have focused on the e′2 vibrational
levels of Cp which show only a linear JT effect. Figure 2 shows
comparable vibronic density plots for the e1′ ν7 mode which is
only quadratically JT active. For these levels, j2 becomes the
good quantum number, and we see from the Supporting
Information that j( ) cos(4 )1

2
2θ = . As expected, the plots of

Figure 2 show angular dependence consistent with ( )1
2 θ . The

figure also shows that j2 takes on both half odd integer and
integer values. Only the former states show vibronic densities
with less than a 3-fold axis. While there are a number of

degenerate e vibronic states with integer j2, the vibronic
densities are all of 3-fold or higher symmetry and should be
symmetric tops. This result is confirmed in Table S18, which
shows that h1 vanishes for these states, even if they are of e
symmetry.
The plots in Figures 1 and 2 for Cp allow us to make some

general observations about the vibronic density |Ψa|2. It is
important to note that the density is the sum or difference
between two terms. The first one of these is ( ) ( )k k

0 0θ ρ ,
which is independent of θ so long as jk is a good quantum
number. The second of these, ( ) ( )k k

1 1θ ρ , depends on a
cosine function of θ. However, this latter term vanishes if there
is no JT effect and correspondingly is much smaller than the
former for small JT coupling but increases at the expense of the
former as the coupling grows.
Overall the vibronic density serves as a powerful tool to

identify the characteristics of a particular eigenstate. If the
density has 3-fold or higher symmetry, the state behaves as a
symmetric top and the hi vanish. For either a linear-only or
quadratic-only JT effect the jk of a given quantum state can be
assigned by noting the characteristic patterns of cos(2j1θ) or
cos(2j2θ) in the plots. This can be used to definitively identify
a particular eigenstate in a region of dense energy level
structure. Moreover the contribution of a particular normal
mode can be readily ascertained qualitatively by the relative
magnitude of the deviation of the density plot from cylindrical
symmetry in the coordinate space (ρi,θi) of the JT-active
normal mode, e.g., for the e2′ vibration modes, i = 8−11, of Cp.
Many molecules also have a significant linear and quadratic

effect in the same mode, and one of these is NO3, whose h1
values are given in Table S28 with a corresponding plot of the
density of the vibronic eigenfunctions in Figure 3. Of course, j
is no longer a good quantum number for NO3, and the
vibronic eigenfunctions contain multiple, but not unrestricted,
values of j. However, the D3h symmetry designations of e′ or a′
(a1′ or a2′) still apply and the eigenfunctions for e levels
contain only basis functions, j n31

2
= + . Only e′ levels have

|Ψa|2 with less than a 3-fold axis and so can support a nonzero

Figure 3. Plots of vibronic density, |Ψa|2 and |Ψ+|2, for the normal mode polar coordinates ρ3 and θ3 for the lowest vibronic levels of NO3. The rest
of the information is the same as given in the caption for Figure 1.
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value of h1, as Table S37 clearly shows. However, for NO3,
unlike Cp, all the degenerate levels have finite values for h1. We
note that ( )0

1 θ is no longer θ independent due to cross-terms
therein involving different j values which leads to a θ
dependence with 3-fold symmetry for |Ψ+|2 in the plots.
Finally, we turn to Figure 4 for CH3O which has both linear

and quadratic coupling in its e vibrational modes. Correspond-
ingly the plots in Figure 4 for both |Ψa|2 and |Ψ+|2 show
structure similar to those for NO3. Again, the nominally e
states alone show less than a 3-fold symmetry axis and support
nonzero hi values. There is additionally a significant spin−orbit
coupling in CH3O that is lacking in NO3. This leads to spin−
orbit pairs of states in Figure 3 with structure that is
indistinguishable at the resolution of the plots, even though
small differences in the hi values are calculated for them.

5. CONCLUSIONS

The importance of CIs in chemistry is now widely recognized
despite the challenges they pose for characterization
experimentally or via electronic structure calculations. While
CIs of electronic PESs are ubiquitous, those associated with
the JT effect are the ones most extensively characterized
experimentally. The rotational distortion parameters, h1 and h2,
are examples of the molecular parameters that can be measured
accurately by high resolution spectroscopy and are quite
sensitive to the PES containing the JT induced CI.
We have formulated the basic theory necessary to relate

measured h1 and h2 values to those derived from a quantum
chemistry calculation of the PES. On the basis of this theory,
we have developed computational technology to obtain
numerical values for h1 and h2, which is easily extended to
the computation of other molecular parameters of JT-active
systems.
This technology enables computation of values for the h1

and h2 parameters of the JT-active X̃2E1″ state of C5H5, the X̃
2E

state of CH3O, and the Ã2E″ state of NO3. Excellent
agreement between the calculated and observed values of the

hi parameters are obtained for C5H5 and CH3O. In the case of
NO3, the calculated value of h1 is just below its experimentally
measured upper limit.
These computational techniques can be applied to

determine general properties of the h1 and h2 parameters.
These parameters can exhibit vanishing values for particular
vibronic levels even if a substantial JT effect and corresponding
geometric distortion is present. If the vibronic density shows a
3-fold or higher rotational symmetry axis, the hi parameters
vanish in that state. However, if the vibronic density has less
than 3-fold symmetry its magnitude for a particular mode is
not directly correlated with that state’s observed values of h1
and h2 since they reflect the distortion from all modes.
Nonetheless, the vibronic density plots do readily reflect
whether the JT interaction is linear, quadratic, or both.
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Rotationally resolved Ã2A1 − X̃2E electronic spectra of CH3O. J.
Chem. Phys. 2009, 130, 074302.
(55) Han, J.; Hu, S.; Chen, H.; Utkin, Y.; Brown, J. M.; Curl, R. F.
Jet-cooled infrared spectrum of methoxy in the CH stretching region.
Phys. Chem. Chem. Phys. 2007, 9, 3725−3734.
(56) Momose, T.; Endo, Y.; Hirota, E.; Shida, T. The submillimeter-
wave spectrum of the 13CH3O radical. J. Chem. Phys. 1988, 88, 5338−
5343.
(57) Endo, Y.; Saito, S.; Hirota, E. The microwave spectrum of the
methoxy radical CH3O. J. Chem. Phys. 1984, 81, 122−135.
(58) Marenich, A. V.; Boggs, J. E. A model spin-vibronic
Hamiltonian for twofold degenerate electron systems: A variational
ab initio study of X̃2E CH3O·. J. Chem. Phys. 2005, 122, 024308.
(59) Marenich, A. V.; Boggs, J. E. Equation-of-motion coupled-
cluster study of Jahn-Teller effect in X2E CF3O

· and CF3S
·. Int. J.

Quantum Chem. 2006, 106, 2609−2616.
(60) Marenich, A. V.; Boggs, J. E. The molecular structure, spin-
vibronic energy levels, and thermochemistry of CH3O. J. Mol. Struct.
2006, 780, 163−170.
(61) Nagesh, J.; Sibert, E. L. Vibrational dynamics around the
conical intersection: A study of methoxy vibrations on the X̃2E
surface. Phys. Chem. Chem. Phys. 2010, 12, 8250−8259.
(62) Dillon, J.; Yarkony, D. R. Nonadiabatic effects in substitutional
isomers of Jahn-Teller molecules: The strange case of hydroxyme-
thoxy. J. Chem. Phys. 2012, 137, 154315.
(63) Johnson, B. A.; Sibert, E. L. Assigning the low lying vibronic
states of CH3O and CD3O. J. Chem. Phys. 2017, 146, 174112.

(64) Shao, Z.; Mo, Y. Jahn-Teller effect in CH2DO/CHD2O(X̃
2E):

Vibronic coupling of all vibrational modes. J. Chem. Phys. 2013, 138,
244309.
(65) Deev, A.; Sommar, J.; Okumura, M. Cavity ringdown spectrum
of the forbidden Ã2E″ ← X̃2A2 transition of NO3: Evidence for static
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