
Brief Announcement: How Fast Reads Affect Multi-Valued
Register Simulations

Soma Chaudhuri
Iowa State University
chaudhur@iastate.edu

Reginald Frank
Texas A&M University

reginaldfrank77@tamu.edu

Jennifer L. Welch
Texas A&M University
welch@cse.tamu.edu

ABSTRACT

We consider the problem of simulating a k-valued register in a wait-

free manner using binary registers as building blocks, where k > 2.

We show that for any simulation using atomic binary base registers

to simulate a safe k-valued register in which the read algorithm

takes the optimal number of steps (log2 k), the write algorithm

must take at least log2 k steps in the worst case. A fortiori, the same

lower bound applies when the simulated register should be regular.

Previously known algorithms show that both these lower bounds

are tight. We also show that in order to simulate an atomic k-valued

register for two readers, the optimal number of steps for the read

algorithm must be strictly larger than log2 k .

CCS CONCEPTS

· Theory of Computation → Concurrency.

KEYWORDS

register simulations, wait-freedom

ACM Reference Format:

Soma Chaudhuri, Reginald Frank, and Jennifer L. Welch. 2019. Brief An-

nouncement: How Fast Reads Affect Multi-Valued Register Simulations. In

2019 ACM Symposium on Principles of Distributed Computing (PODC ’19),

July 29-August 2, 2019, Toronto, ON, Canada. ACM, New York, NY, USA,

3 pages. https://doi.org/10.1145/3293611.3331580

1 INTRODUCTION

We consider the problem of how to use a collection of shared read-

write registers with certain properties to simulate a shared read-

write register with stronger properties in a wait-free manner. Each

simulated read or write operation can access some of the building

block, or łbasež, registers. In a wait-free simulation, each simulated

operation terminates in a finite number of steps by the invoking

process, regardless of the behavior of the other processes, which

may be arbitrarily fast, or arbitrarily slow, or even crash. Lam-

port formalized the notions of safe, regular, and atomic registers,

proposed a formal model, and provided numerous algorithms for

simulating certain kinds of registers out of other kinds [6].

Simulating a k-valued register using binary base registers, where

k > 2, has been studied in, e.g., [3, 4, 6, 8], while generalizations for

simulating large registers out of small registers appear in [1, 2, 7].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6217-7/19/07.
https://doi.org/10.1145/3293611.3331580

Regardless of the consistency conditions of the simulated register

and the base registers, the number of steps taken by the simulated

read must be at least log2 k [4]. However, little work has been done

in exploring tradeoff results in the optimal number of base registers

or the optimal number of steps taken by the simulated write when

the simulated read is limited to log2 k steps. The only previous work

we are aware of is an asymptotic result that, for the regular case, if

the simulated read takes O(logk) steps, then the simulated write

must take Ω(logk) steps [5].

In this paper we consider what happens when the simulated

read is limited to log2 k steps. In the safe and regular cases, we

show that this restriction results in a lower bound of log2 k on the

number of steps that the simulated write must take. These lower

bounds are tight due to algorithms in [6] for the safe case and [4]

for the regular case. In the atomic case we show that, if there are

at least two readers, no such algorithm is possible, thus giving a

lower bound of 1 + log2 k on the number of steps by the simulated

read. This bound is not tight as the best known upper bound is

1 + 2 · log2 k [5].

2 MODEL AND DEFINITIONS

The goal is to simulate a k-valued register X, with value set V ,

|V | = k > 2, that supports n readers and one writer. We assume

k is a power of 2. When the i-th reader invokes a Read on X, a

read process, denoted RPi , 1 ≤ i ≤ n, performs some computation

and eventually outputs a Return with a value in V to the reader.

Similarly, when the writer invokes aWrite with a value in V on

X, the write process, denoted WP, performs some computation

and eventually outputs an Ack to the writer. The read and write

processes communicate with other through a finite set B of atomic

base registers, each with a binary value set. Since the base registers

are atomic, we model the read and write operations on them as

occurring instantaneously. The values appearing in the Returns

should satisfy one of the following consistency conditions [6]: safety

(each simulated read that does not overlap a simulated write must

return the value of the latest preceding simulated write), regular-

ity (each simulated read must return the value of an overlapping

simulated write or of the latest preceding simulated write), or atom-

icity (it should appear as if each simulated operation takes place

instantaneously at some point between its invocation and response).

Furthermore, as long as any particular process keeps taking steps,

it should provide responses to the invocations on X no matter how

the other processes are scheduled.

All bounds are worst-case.

3 SAFE AND REGULAR: STEP LOWER

BOUND FORWRITE WHEN READ IS FAST

An easy extension to a result in [4] shows:

Session 4 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

215

Theorem 3.1. For any wait-free simulation of a safe k-valued

register using atomic binary registers, the number of steps in the

simulated read is at least log2 k .

The main result of the section is next.

Theorem 3.2. For any wait-free simulation of a safe k-valued

register using atomic binary registers, if the simulated read uses at

most log2 k reads, then the simulated write uses at least log2 k writes.

Proof. Let A be any such simulation and V be the value set of

the simulated register, |V | = k .

For each i , 1 ≤ i ≤ n, we recursively define the decision tree of

read process RPi , denoted Ti , as follows. The purpose is to capture

which base registers are read during the first simulated read that

RPi executes in any execution. Each vertex in Ti is labeled with

either a base register or a value inV . The basis step defines the root

of Ti as a vertex labeled with the first base register read in the first

simulated read performed by RPi . For the inductive step, let x be a

vertex inTi labeled with register r . If the code tells RPi to read base

register s next after reading 0 (resp., 1) from r , then give x a vertex

as its left (resp., right) child labeled with s . If the code tells RPi to

do Return(v) next after reading 0 (resp., 1) from r , then give x a

vertex as its left (resp., right) child labeled with v . Continue until

all leaves of Ti are labeled with values.

For each v ∈ V and each i , 1 ≤ i ≤ n, define σ iv as the execution

of A in which a simulated write of v is performed byWP followed

by a simulated read by RPi . By correctness (i.e., safety) of A, the

simulated read must return v .

Lemma 3.3. For each i , 1 ≤ i ≤ n, Ti is a complete binary tree

with exactly k leaves in which every leaf is at depth log2 k and every

root-to-leaf path π corresponds to the sequence of base registers read

during the simulated read in σ iv , where v is is the label of the leaf in

π .

Proof. Fix i , 1 ≤ i ≤ n. The existence of σ iv for each v ∈ V

implies that Ti must have at least k leaves. By the assumption that

the step complexity of the simulated read is at most log2 k , every

root-to-leaf path in Ti has at most log2 k internal vertices. Since

Ti is a binary tree, basic facts from graph theory imply that Ti has

exactly k leaves and each leaf is at depth exactly log2 k . Thus the

root-to-leaf path π ending at the leaf labeled v corresponds to the

sequence of base registers read during the simulated read in σ iv . �

Note that the first simulated read by each RPi is invisible, i.e.,

contains no writes to base registers, since it must have log2 k reads

in it and we assume that the step complexity is at most log2 k .

Lemma 3.4. Let π be any root-to-leaf path inTi , for any i , 1 ≤ i ≤

n. Then every internal node on π has a unique register label.

Proof. Fix i , 1 ≤ i ≤ n. Suppose in contradiction some root-

to-leaf path π has two occurrences of the register label r , say at

distances a and b from the root, with a < b. The tree vertex repre-

senting the b-th read in π has two children, since Ti is complete by

Lemma 3.3, one of which is on π . Let π ′ be a root-to-leaf path inTi
that is the same as π through the b-th read but then diverges. By

Lemma 3.3, π corresponds to execution σ
i
v for some v ∈ V and π ′

corresponds to execution σ
i

v ′ for some v ′ ∈ V with v ′
, v .

However, it is not possible for σ iv and σ i
v ′ to read different values

from r at the b-th read since the only process that is taking steps

during the simulated reads is RPi : even if RPi writes to r during

the simulated read, it will write the same value in σ
i
v as in σ

i

v ′ ,

as nothing differs in those two executions until reaching the b-th

read. �

Now we can finish the proof of the theorem. Without loss of

generality, assume that the initial value of every base register is

0. Consider the rightmost root-to-leaf path in the decision tree T1.

By Lemma 3.3, in the corresponding execution σ
1
v , the reader RP1

reads 1 from a base register log2 k times during the simulated read.

By Lemma 3.4, none of the base registers read during the simulated

read is a repeat. Thus during the simulated write in σ
1
v , the writer

WP writes 1 to the each of the log2 k base registers that are read

during the simulated read. �

Since regularity is stronger than safety, we have the following

corollary to the preceding theorem:

Corollary 3.5. For any wait-free simulation of a regulark-valued

register using atomic binary registers, if the simulated read uses at

most log2 k reads, then the simulated write uses at least log2 k writes.

4 ATOMIC: STEP LOWER BOUND FOR READ

Now we consider the atomic case. We show that when there are

two read processes, then it is impossible to simulate a k-valued

register if the simulated read takes only log2 k steps. The key to the

proof is showing that, if the simulated read takes only log2 k steps,

then the first simulated read by each of the read processes must

start by reading the same binary register first. We use the concept

of decision tree and Lemmas 3.3 and 3.4 from inside the proof of

Theorem 3.1.

Theorem 4.1. No wait-free simulation of an atomic k-valued

register using atomic binary registers can have a simulated read that

takes at most log2 k steps, assuming there are at least two readers.

Proof. Assume in contradiction there is such a simulation A,

with readers RP1 and RP2. We already observed that their first

simulated reads are invisible (contain no writes to base registers).

LetTi be the decision tree of the first simulated read by RPi , i = 1, 2.

Lemma 4.2. T1 and T2 have the same root register.

Proof. Suppose in contradiction the root r1 ofT1 is not equal to

the root r2 ofT2. Let z be a value whose root-to-leaf path inT2 does

not include r1. Such a value must exist since r1 is not the root ofT2.

Without loss of generality, suppose z appears in the right half of

the leaf level of T1. Let a be a value that appears in the left half of

the leaf level of T1.

Consider an execution e consisting of two simulated writes,

W0(a) followed byW1(z). AfterW0, r1 must equal 0, as it’s possible

that RP1’s first simulated read is immediately afterW0, in which

case it must return a and thus must see 0 in r1. A similar argument

shows that afterW1, r1 must equal 1. ThusW1 must contain a write

of 1 to r1.

Consider adding two simulated reads to e to make execution e
′:

immediately after the first write of 1 to r1 inW1, insert RP1’s first

simulated read R1, immediately followed by RP2’s first simulated

Session 4 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

216

read R2. By regularity, R1 must return either a or z and since R1
observes 1 in r1, it must return z. Then by atomicity, R2 must return

z as well.

Consider execution e
′′ which is obtained from e

′ by moving R1
to appear immediately before the first write of 1 to r1 inW1 and

moving R2 to appear immediately before R1. The only difference in

the registers during the execution of R2 in e
′′ versus e ′ is the value

of r1. But r1 does not lie on the root-to-leaf path in T2 leading to z,

and thus R2 will behave the same in e ′′ as it does in e ′ and return z.

Consider the occurrence ofR1 in e
′′. By atomicity,R1 must return

z, but R1 reads 0 in r1 and thus cannot return z, a contradiction. �

By Lemma 4.2, T1 and T2 have the same root, call it register r .

Let a and b be two łsiblingž values that are in the left half of the

leaf level ofT1, with a to the left of b, and z be a value that is in the

right half of the leaf level of T1. Since T1 and T2 have the same root

r , a and b are also in the left half of the leaf level of T2 and z is also

in the right half of the leaf level of T2. Let x be the register that is

the parent of a and b in T1.

Consider an execution e consisting of three simulated writes:

W0(a) followed byW1(z), followed byW2(b). Wemake the following

observations:

• AfterW0 finishes, r = x = 0. The reason is that it is possible

that RP1 does its first simulatd read betweenW0 andW1,

which must return a by safety and thus T1 must have r =

x = 0.

• AfterW1 finishes, r = 1. The reason is that it is possible that

RP1 does its first simulated read betweenW1 andW2, which

must return z by safety and thus T1 must have r = 1. So

duringW1 there must be at least one write of 1 to r .

• AfterW2 finishes, r = 0 and x = 1. The reason is that it is

possible that RP1 does its first simulated read afterW2, which

must return b by safety and thus T1 must have r = 0 and

x = 1. So duringW2 there must be at least one write of 0 to r

duringW2. Also, there must be at least one write of 1 to x in

the interval between the beginning ofW1 and the end ofW2.

The rest of the proof has two cases, depending on whether the

first write of 1 to x between the beginning ofW1 and the end of

W2 occurs before or after the first write of 0 to r inW2; if before,

we will show that atomicity is violated; if after, that regularity is

violated.

Case 1: The first write of 1 to x occurs before the first write of 0

to r inW2.

Now consider another execution e1 in which we add a simulated

read R1 by RP1 and a simulated read R2 by RP2 to execution e . Since

simulated reads are invisible, their existence does not affect the

behavior of the simulated writes in e .

Suppose R1 starts afterW0 ends and reads r through the parent

of x in T1 beforeW1 begins. Then R1 reads x immediately after the

first write of 1 to x (which occurs in eitherW1 orW2), and thus sees

x = 1. So R1 returns b, as indicated by its decision tree T1.

Now suppose R2 starts after R1 ends and reads r beforeW2’s

first write of 0 to r , and thus sees r = 1. By definition of atomicity,

the only legal value that R2 can return is b, but by the structure

of its decision tree T2 it will not return b, since it read 1 from r .

Contradiction.

Case 2: The first write of 1 to x occurs after the first write of 0 to

r inW2.

Now consider another execution e2 in which we add a simulated

readR1 byRP1 to execution e . As in Case 1, since simulated reads are

invisible, its existence does not affect the behavior of the simulated

writes in e .

Suppose R1 starts and reads r immediately after the first write of

0 to r inW2, seeing r = 0, and then R1 completes all its reads before

the first write of 1 to x inW2. The structure of the decision tree T1
implies that R1 cannot return z, since R1 read 0 in r , and R1 cannot

return b, since R1 read 0 in x . But b and z are the only valid return

values that satisfy atomicity (or even regularity for that matter).

Contradiction. �

The same impossibility holds with only one read process as-

suming that its first two simulated reads start by reading the same

binary register.

5 CONCLUSION

We have shown how having a fast read algorithm affects the speed

of the write algorithm when simulating a safe or regular k-valued

register and that the read algorithm must be slower in the atomic

case than in the safe and regular cases. Open questions include

getting rid of the need for two readers to show the 1 + log2 k lower

bound on the read algorithm step complexity in the atomic case.

More generally, we would like to close the gap between the upper

bound of 1 + 2 · log2 k on this measure due to [5] and the lower

bound.

ACKNOWLEDGMENTS

This work was supported in part by NSF grant 1816922.

REFERENCES
[1] Zahra Aghazadeh, Wojciech M. Golab, and Philipp Woelfel. Making objects

writable. In ACM Symposium on Principles of Distributed Computing, pages 385ś
395, 2014.

[2] Alon Berger, Idit Keidar, and Alexander Spiegelman. Integrated bounds for dis-
integrated storage. In 32nd International Symposium on Distributed Computing,
pages 11:1ś11:18, 2018.

[3] Soma Chaudhuri, Martha J. Kosa, and Jennifer L. Welch. One-write algorithms for
multivalued regular and atomic registers. Acta Inf., 37(3):161ś192, 2000.

[4] Soma Chaudhuri and Jennifer L. Welch. Bounds on the costs of multivalued
register implementations. SIAM J. Comput., 23(2):335ś354, 1994.

[5] Tian Ze Chen and Yuanhao Wei. Step optimal implementations of large single-
writer registers. In 20th International Conference on Principles of Distributed Systems
(OPODIS), pages 32:1ś32:16, 2016.

[6] Leslie Lamport. On interprocess communication. Part II: Algorithms. Distributed
Computing, 1(2):86ś101, 1986.

[7] Gary L. Peterson. Concurrent reading while writing. ACM Trans. Program. Lang.
Syst., 5(1):46ś55, 1983.

[8] K. Vidyasankar. Converting Lamport’s regular register to atomic register. Inf.
Process. Lett., 28(6):287ś290, 1988.

Session 4 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

217

	Abstract
	1 Introduction
	2 Model and Definitions
	3 Safe and Regular: Step Lower Bound for Write when Read is Fast
	4 Atomic: Step Lower Bound for Read
	5 Conclusion
	Acknowledgments
	References

