Session 4

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

Brief Announcement: How Fast Reads Affect Multi-Valued
Register Simulations

Soma Chaudhuri

Iowa State University
chaudhur@iastate.edu

ABSTRACT

We consider the problem of simulating a k-valued register in a wait-
free manner using binary registers as building blocks, where k > 2.
We show that for any simulation using atomic binary base registers
to simulate a safe k-valued register in which the read algorithm
takes the optimal number of steps (log, k), the write algorithm
must take at least log, k steps in the worst case. A fortiori, the same
lower bound applies when the simulated register should be regular.
Previously known algorithms show that both these lower bounds
are tight. We also show that in order to simulate an atomic k-valued
register for two readers, the optimal number of steps for the read
algorithm must be strictly larger than log, k.

CCS CONCEPTS

« Theory of Computation — Concurrency.

KEYWORDS
register simulations, wait-freedom

ACM Reference Format:

Soma Chaudhuri, Reginald Frank, and Jennifer L. Welch. 2019. Brief An-
nouncement: How Fast Reads Affect Multi-Valued Register Simulations. In
2019 ACM Symposium on Principles of Distributed Computing (PODC ’19),
Fuly 29-August 2, 2019, Toronto, ON, Canada. ACM, New York, NY, USA,
3 pages. https://doi.org/10.1145/3293611.3331580

1 INTRODUCTION

We consider the problem of how to use a collection of shared read-
write registers with certain properties to simulate a shared read-
write register with stronger properties in a wait-free manner. Each
simulated read or write operation can access some of the building
block, or “base”, registers. In a wait-free simulation, each simulated
operation terminates in a finite number of steps by the invoking
process, regardless of the behavior of the other processes, which
may be arbitrarily fast, or arbitrarily slow, or even crash. Lam-
port formalized the notions of safe, regular, and atomic registers,
proposed a formal model, and provided numerous algorithms for
simulating certain kinds of registers out of other kinds [6].
Simulating a k-valued register using binary base registers, where
k > 2, has been studied in, e.g., [3, 4, 6, 8], while generalizations for
simulating large registers out of small registers appear in [1, 2, 7].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6217-7/19/07.

https://doi.org/10.1145/3293611.3331580

Reginald Frank
Texas A&M University
reginaldfrank77@tamu.edu

215

Jennifer L. Welch
Texas A&M University
welch@cse.tamu.edu

Regardless of the consistency conditions of the simulated register
and the base registers, the number of steps taken by the simulated
read must be at least log, k [4]. However, little work has been done
in exploring tradeoff results in the optimal number of base registers
or the optimal number of steps taken by the simulated write when
the simulated read is limited to log, k steps. The only previous work
we are aware of is an asymptotic result that, for the regular case, if
the simulated read takes O(log k) steps, then the simulated write
must take Q(log k) steps [5].

In this paper we consider what happens when the simulated
read is limited to log, k steps. In the safe and regular cases, we
show that this restriction results in a lower bound of log, k on the
number of steps that the simulated write must take. These lower
bounds are tight due to algorithms in [6] for the safe case and [4]
for the regular case. In the atomic case we show that, if there are
at least two readers, no such algorithm is possible, thus giving a
lower bound of 1 + log, k on the number of steps by the simulated
read. This bound is not tight as the best known upper bound is
1+2-log, k [5].

2 MODEL AND DEFINITIONS

The goal is to simulate a k-valued register X, with value set V,
|V| = k > 2, that supports n readers and one writer. We assume
k is a power of 2. When the i-th reader invokes a READ on X, a
read process, denoted RP;, 1 < i < n, performs some computation
and eventually outputs a RETURN with a value in V to the reader.
Similarly, when the writer invokes a WRITE with a value in V on
X, the write process, denoted WP, performs some computation
and eventually outputs an Ack to the writer. The read and write
processes communicate with other through a finite set B of atomic
base registers, each with a binary value set. Since the base registers
are atomic, we model the read and write operations on them as
occurring instantaneously. The values appearing in the RETURNS
should satisfy one of the following consistency conditions [6]: safety
(each simulated read that does not overlap a simulated write must
return the value of the latest preceding simulated write), regular-
ity (each simulated read must return the value of an overlapping
simulated write or of the latest preceding simulated write), or atom-
icity (it should appear as if each simulated operation takes place
instantaneously at some point between its invocation and response).
Furthermore, as long as any particular process keeps taking steps,
it should provide responses to the invocations on X no matter how
the other processes are scheduled.
All bounds are worst-case.

3 SAFE AND REGULAR: STEP LOWER
BOUND FOR WRITE WHEN READ IS FAST

An easy extension to a result in [4] shows:

Session 4

THEOREM 3.1. For any wait-free simulation of a safe k-valued
register using atomic binary registers, the number of steps in the
simulated read is at least log, k.

The main result of the section is next.

THEOREM 3.2. For any wait-free simulation of a safe k-valued
register using atomic binary registers, if the simulated read uses at
most log, k reads, then the simulated write uses at least log, k writes.

ProOF. Let A be any such simulation and V be the value set of
the simulated register, |V| = k.

For each i, 1 < i < n, we recursively define the decision tree of
read process RP;, denoted T;, as follows. The purpose is to capture
which base registers are read during the first simulated read that
RP; executes in any execution. Each vertex in T; is labeled with
either a base register or a value in V. The basis step defines the root
of T; as a vertex labeled with the first base register read in the first
simulated read performed by RP;. For the inductive step, let x be a
vertex in T; labeled with register r. If the code tells RP; to read base
register s next after reading 0 (resp., 1) from r, then give x a vertex
as its left (resp., right) child labeled with s. If the code tells RP; to
do RETURN(v) next after reading 0 (resp., 1) from r, then give x a
vertex as its left (resp., right) child labeled with v. Continue until
all leaves of T; are labeled with values.

For eachv € V and each i, 1 < i < n, define O'L as the execution
of A in which a simulated write of v is performed by WP followed
by a simulated read by RP;. By correctness (i.e., safety) of A, the
simulated read must return v.

LEMMA 3.3. Foreachi, 1 < i < n, T; is a complete binary tree
with exactly k leaves in which every leaf is at depth log, k and every
root-to-leaf path & corresponds to the sequence of base registers read
during the simulated read in o, where v is is the label of the leaf in
TT.

Proor. Fix i, 1 < i < n. The existence of O'L foreachv € V
implies that T; must have at least k leaves. By the assumption that
the step complexity of the simulated read is at most log, k, every
root-to-leaf path in T; has at most log, k internal vertices. Since
T; is a binary tree, basic facts from graph theory imply that T; has
exactly k leaves and each leaf is at depth exactly log, k. Thus the
root-to-leaf path 7 ending at the leaf labeled v corresponds to the
sequence of base registers read during the simulated read in o/, O

Note that the first simulated read by each RP; is invisible, i.e.,
contains no writes to base registers, since it must have log, k reads
in it and we assume that the step complexity is at most log, k.

LEMMA 3.4. Let it be any root-to-leaf path in T;, for anyi, 1 < i <
n. Then every internal node on m has a unique register label.

Proor. Fix i, 1 < i < n. Suppose in contradiction some root-
to-leaf path 7 has two occurrences of the register label r, say at
distances a and b from the root, with a < b. The tree vertex repre-
senting the b-th read in 7 has two children, since T; is complete by
Lemma 3.3, one of which is on 7. Let 7’ be a root-to-leaf path in T;
that is the same as & through the b-th read but then diverges. By
Lemma 3.3, 7 corresponds to execution o{, for some v € V and 7’/
corresponds to execution azi), for some v’ € V with v’ # v.

216

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

However, it is not possible for crzi, and O'zi) , to read different values
from r at the b-th read since the only process that is taking steps
during the simulated reads is RP;: even if RP; writes to r during
the simulated read, it will write the same value in O'zi} as in 0'7") -
as nothing differs in those two executions until reaching the b-th
read. O

Now we can finish the proof of the theorem. Without loss of
generality, assume that the initial value of every base register is
0. Consider the rightmost root-to-leaf path in the decision tree Tj.
By Lemma 3.3, in the corresponding execution o}, the reader RP;
reads 1 from a base register log, k times during the simulated read.
By Lemma 3.4, none of the base registers read during the simulated
read is a repeat. Thus during the simulated write in o), the writer
WP writes 1 to the each of the log, k base registers that are read
during the simulated read. O

Since regularity is stronger than safety, we have the following
corollary to the preceding theorem:

COROLLARY 3.5. For any wait-free simulation of a regular k-valued
register using atomic binary registers, if the simulated read uses at
most log, k reads, then the simulated write uses at least log, k writes.

4 ATOMIC: STEP LOWER BOUND FOR READ

Now we consider the atomic case. We show that when there are
two read processes, then it is impossible to simulate a k-valued
register if the simulated read takes only log, k steps. The key to the
proof is showing that, if the simulated read takes only log, k steps,
then the first simulated read by each of the read processes must
start by reading the same binary register first. We use the concept
of decision tree and Lemmas 3.3 and 3.4 from inside the proof of
Theorem 3.1.

THEOREM 4.1. No wait-free simulation of an atomic k-valued
register using atomic binary registers can have a simulated read that
takes at most log, k steps, assuming there are at least two readers.

ProOF. Assume in contradiction there is such a simulation A,
with readers RP; and RP,. We already observed that their first
simulated reads are invisible (contain no writes to base registers).
Let T; be the decision tree of the first simulated read by RP;, i = 1, 2.

LEmMMA 4.2. Ty and Ty have the same root register.

PROOF. Suppose in contradiction the root r1 of T; is not equal to
the root ry of T5. Let z be a value whose root-to-leaf path in T» does
not include r;. Such a value must exist since ry is not the root of T5.
Without loss of generality, suppose z appears in the right half of
the leaf level of T1. Let a be a value that appears in the left half of
the leaf level of T;.

Consider an execution e consisting of two simulated writes,
Wo(a) followed by Wi(z). After Wy, r1 must equal 0, as it’s possible
that RP;’s first simulated read is immediately after Wy, in which
case it must return a and thus must see 0 in r;. A similar argument
shows that after W, r; must equal 1. Thus W; must contain a write
of 1tory.

Consider adding two simulated reads to e to make execution e’:
immediately after the first write of 1 to r{ in Wi, insert RP;’s first
simulated read Ry, immediately followed by RP,’s first simulated

Session 4

read Ry. By regularity, Ry must return either a or z and since R;
observes 1 in ry, it must return z. Then by atomicity, Ry must return
z as well.

Consider execution e’’ which is obtained from e’ by moving Ry
to appear immediately before the first write of 1 to r; in W; and
moving Ry to appear immediately before R;. The only difference in
the registers during the execution of Ry in e”” versus e’ is the value
of r1. But r; does not lie on the root-to-leaf path in T leading to z,
and thus R, will behave the same in e’/ as it does in e’ and return z.

Consider the occurrence of Ry in e”’. By atomicity, Ry must return
z, but Ry reads 0 in r; and thus cannot return z, a contradiction. 0O

By Lemma 4.2, T; and T have the same root, call it register r.
Let a and b be two “sibling” values that are in the left half of the
leaf level of Ty, with a to the left of b, and z be a value that is in the
right half of the leaf level of Ty. Since T and T, have the same root
r, a and b are also in the left half of the leaf level of T, and z is also
in the right half of the leaf level of Ta. Let x be the register that is
the parent of a and b in T.

Consider an execution e consisting of three simulated writes:
Wo(a) followed by Wi (z), followed by Wa(b). We make the following

observations:

o After Wy finishes, r = x = 0. The reason is that it is possible
that RP; does its first simulatd read between Wy and Wy,
which must return a by safety and thus T; must have r =
x =0.

o After Wi finishes, r = 1. The reason is that it is possible that
RP; does its first simulated read between Wy and W5, which
must return z by safety and thus T; must have r = 1. So
during W, there must be at least one write of 1 to r.

e After W, finishes, r = 0 and x = 1. The reason is that it is
possible that RP; does its first simulated read after Wy, which
must return b by safety and thus T; must have r = 0 and
x = 1. So during W, there must be at least one write of 0 to r
during W5. Also, there must be at least one write of 1 to x in
the interval between the beginning of W; and the end of W;.

The rest of the proof has two cases, depending on whether the
first write of 1 to x between the beginning of W; and the end of
W, occurs before or after the first write of 0 to r in Wh; if before,
we will show that atomicity is violated; if after, that regularity is
violated.

Case 1: The first write of 1 to x occurs before the first write of 0
to rin Wa.

Now consider another execution e; in which we add a simulated
read Ry by RP; and a simulated read Rz by RP; to execution e. Since
simulated reads are invisible, their existence does not affect the
behavior of the simulated writes in e.

Suppose R; starts after Wy ends and reads r through the parent
of x in Ty before W begins. Then R; reads x immediately after the
first write of 1 to x (which occurs in either Wy or W3), and thus sees
x = 1. So Ry returns b, as indicated by its decision tree T7.

Now suppose Ry starts after R; ends and reads r before Wy’s
first write of 0 to r, and thus sees r = 1. By definition of atomicity,
the only legal value that Rz can return is b, but by the structure
of its decision tree T, it will not return b, since it read 1 from r.
Contradiction.

217

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada

Case 2: The first write of 1 to x occurs after the first write of 0 to
rin Wa.

Now consider another execution ey in which we add a simulated
read Ry by RP; to execution e. As in Case 1, since simulated reads are
invisible, its existence does not affect the behavior of the simulated
writes in e.

Suppose R; starts and reads r immediately after the first write of
0 to r in Wh, seeing r = 0, and then R; completes all its reads before
the first write of 1 to x in W5. The structure of the decision tree T}
implies that Ry cannot return z, since R; read 0 in r, and Ry cannot
return b, since Ry read 0 in x. But b and z are the only valid return
values that satisfy atomicity (or even regularity for that matter).
Contradiction.]

The same impossibility holds with only one read process as-
suming that its first two simulated reads start by reading the same
binary register.

5 CONCLUSION

We have shown how having a fast read algorithm affects the speed
of the write algorithm when simulating a safe or regular k-valued
register and that the read algorithm must be slower in the atomic
case than in the safe and regular cases. Open questions include
getting rid of the need for two readers to show the 1 + log, k lower
bound on the read algorithm step complexity in the atomic case.
More generally, we would like to close the gap between the upper
bound of 1 + 2 - log, k on this measure due to [5] and the lower
bound.

ACKNOWLEDGMENTS
This work was supported in part by NSF grant 1816922.

REFERENCES

[1] Zahra Aghazadeh, Wojciech M. Golab, and Philipp Woelfel. Making objects
writable. In ACM Symposium on Principles of Distributed Computing, pages 385—
395, 2014.

Alon Berger, Idit Keidar, and Alexander Spiegelman. Integrated bounds for dis-
integrated storage. In 32nd International Symposium on Distributed Computing,
pages 11:1-11:18, 2018.

Soma Chaudhuri, Martha J. Kosa, and Jennifer L. Welch. One-write algorithms for
multivalued regular and atomic registers. Acta Inf,, 37(3):161-192, 2000.

Soma Chaudhuri and Jennifer L. Welch. Bounds on the costs of multivalued
register implementations. SIAM J. Comput., 23(2):335-354, 1994.

Tian Ze Chen and Yuanhao Wei. Step optimal implementations of large single-
writer registers. In 20th International Conference on Principles of Distributed Systems
(OPODIS), pages 32:1-32:16, 2016.

Leslie Lamport. On interprocess communication. Part II: Algorithms. Distributed
Computing, 1(2):86-101, 1986.

Gary L. Peterson. Concurrent reading while writing. ACM Trans. Program. Lang.
Syst., 5(1):46-55, 1983.

K. Vidyasankar. Converting Lamport’s regular register to atomic register. Inf.
Process. Lett., 28(6):287-290, 1988.

	Abstract
	1 Introduction
	2 Model and Definitions
	3 Safe and Regular: Step Lower Bound for Write when Read is Fast
	4 Atomic: Step Lower Bound for Read
	5 Conclusion
	Acknowledgments
	References

