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1 | INTRODUCTION

Abstract

The purpose of this work is to lower the computational cost of predicting charge
mobilities in organic semiconductors, which will benefit the screening of candidates
for inexpensive solar power generation. We characterize efforts to minimize the num-
ber of expensive quantum chemical calculations we perform by training machines to
predict electronic couplings between monomers of poly-(3-hexylthiophene). We test
five machine learning techniques and identify random forests as the most accurate,
information-dense, and easy-to-implement approach for this problem, achieving
mean-absolute-error of 0.02 [x 1.6 x 10~ J], R? = 0.986, predicting electronic cou-
plings 390 times faster than quantum chemical calculations, and informing zero-field
hole mobilities within 5% of prior work. We discuss strategies for identifying small
effective training sets. In sum, we demonstrate an example problem where machine
learning techniques provide an effective reduction in computational costs while help-
ing to understand underlying structure-property relationships in a materials system

with broad applicability.
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computer simulations can be performed at a lower cost and in less

time, but does not wholly alleviate the time burden. Here we focus on

Finding a needle in a haystack is hard because of all the hay:
Inspecting each straight, pointy object drawn from a large haystack
rarely reveals needles and it is impractical to inspect all the pointy
objects. Searching haystacks is analogous to finding optima in large
problem spaces—such as the identification of the best ingredients for
high-efficiency, low-cost organic photovoltaics (OPVs) for sustainable
power generation, in which, progress is hindered by the experimental
and computational expense of enumerating the combination of fac-
tors that govern a candidate's viability. Replacing experiments with

computer simulations increases the rate of candidate inspection, as

strategies for further increasing the rate at which candidates can be
inspected by lowering the computational cost of connecting OPV
structure to its performance.

OPVs are a focus of sustainable energy development because
devices with 15% power conversion efficiency (PCE) are theorized as
sufficient for one-day energy-pay-back times,® which would circum-
vent economic barriers to widespread deployment. A key difficulty in
mass-producing high PCE devices is controlling the self-assembled
active-layer morphology (the spontaneously forming microstructure

within the electricity generating portion of the device). The majority
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of active layers are primarily composed of two components: An
electron-donating and an electron-accepting species, and the micro-
structural order of these two components determine the device's
overall efficiency.? Recent developments in new OPV ingredients
have demonstrated power conversion efficiencies in excess of 15%,%4
however mass-produced OPVs still fall below the efficiencies required
for widespread commercial viability, and the precise origins of the
higher efficiencies are not fully understood. To make OPVs with one-
day payback times a reality, a fundamental understanding of how
ingredient chemistry and processing determines the active layer mor-
phology and how the resulting features influence PCE is needed.

Here we describe machine learning (ML) efforts toward speeding
calculations linking OPV morphology to the mobility of charges
through it, which in turn determines the fill factor and PCE > of OPV
devices. To validate our approach, we focus on the benchmark donor
polymer poly-(3-hexylthiophene) (P3HT), which is the archetype for
linking the self-assembled morphology to efficiency ¢ due to its solu-
tion processability and history in breakthrough (in 2006, 5% PCE)
OPVs.2 In P3HT devices, faster charge movement (which corresponds
to better PCE) can be obtained by creating devices that maximize the
degree of crystalline order, * which can be accomplished by using high
regioregularity 1° and shorter polymer chains.1*1? Time-of-flight mea-
surements of hole mobility in P3HT experiments range from
u=1x107° to 1 x 1073 cm?/Vs.3¢ Computational work has hel-
ped to explain the role of thiophene ring orientation on charge

transport,*’”

and kinetic Monte Carlo (KMC) simulations of charge
transport have predicted mobilities ranging from x = 1x 107 to
0.6 cm?/Vs,*822 depending on the degree of ordering in of the P3HT
morphologies. These experimental and computational predictions of
mobility provide references for validation: Calculated hole mobilities
in P3HT should fall between i = 1 x 10~* to 0.6 cm?/Vs and increase
with increasing P3HT crystallinity.

In our own prior work, we predict charge transport through P3HT
by first predicting PSHT morphologies at ~350 processing state
points 2% (Supporting Information Section 1), then calculating charge
mobility through ~100 of these structures?! using KMC simulations.
Doing so requires hopping rates between P3HT chromophores, which
we calculate with Marcus semi-classical hopping theory?* using quan-
tum chemical ZINDO/S 2°2¢ calculations to obtain the electronic
transfer integrals between chromophores (couplings, J;j), which
describe the amount of frontier molecular orbital overlap between
pairs chromophores. Completely connecting all the neighbors in a rep-
resentative system requires ~2 x 10° ZINDO/S calculations per mor-
phology, corresponding to about 26 CPU hours of computation time.
We aim to determine the efficacy of using ML to predict J;; and
bypass the numerous, expensive ZINDO/S calculations required to
characterize the charge transport properties of a morphology. We
take inspiration from recent studies in which ML based on first-
principle calculations has been used to accelerate the development of
organic light-emitting diodes,?” OPV candidate compounds,?® and
electronic predictions based on coarse-grained sites.2? The use of ML
to accelerate materials discovery has grown recently due to advances

in enabling hardware, algorithms, and open-source libraries.*®3? The

Jij prediction problem approached here is well-suited to supervised
learning algorithms where ample data can inform classification or
regression schemes relating inputs features to output properties,
especially if discerning these relations would be difficult or tedious for

a human.3%3¢

2 | METHODS

We compare two ways of generating electronic transfer integrals (J;)
in P3HT; the control case of quantum chemical ZINDO/S calculations
using ORCA,*” as in Reference 19, and the present test case of
machine learning methods trained to predict transfer integrals. Trans-

fer integral generation is required to link morphologies to mobility.

1. Sample OPV morphologies using molecular simulations.

2. Generate transfer integrals between chromophores in each mor-
phologies (with ORCA as in Reference 19 and ML here).

3. Predict charge mobilities from transfer integrals using KMC simulations.

In prior work, we describe combining these steps into the
MorphCT 28 software pipeline, the details of said implementation,*’
and applications to P3HT.?!

To determine charge mobilities with kinetic Monte Carlo (KMC)
simulations, morphologies are treated as a weighted network in which
each P3HT monomer is considered an electronically active chromo-
phore and charges may hop to neighboring chromophores as defined
by neighboring cells from a Voronoi tessellation of thiophene ring cen-

ters of mass. We calculate electronic transfer integrals between chro-

mophores using the energy-splitting-in-dimer method (ESD):*?4°
L 2 ’
hi=5 (Evomo ~Eromo-1)” - (AEi;)”, @

where the magnitude of the splitting of the highest occupied molecu-
lar orbital to a new Ejomo and Ejomo-1 in the dimer state is com-
pared to the difference in HOMO level of the isolated, individual
chromophores:

AEij = Enomo,j ~ Enomo, i- (2)

ZINDOY/S requires atom positions and types of each chromophore
to calculate (EHOMO - EHOMO-l) and AEiJ.
The rate at which a charge is able to hop from chromophore i to

jis given by an adaptation of the semi-classical Marcus theory:?*

il = i _(aE,-2)°
ki= e ()ee (et ) )

where r;; is the center-of-mass distance between chromophore thio-
phene rings, # Planck's reduced constant, A is the reorganization
energy, kg is Boltzmann's constant, and T = 293 K is the temperature

of the KMC simulation, which is chosen for room temperature. We
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also include an additional exponential term in the hopping rate equa-
tion originating from Mott's variable range hopping theory, which is
often used in polymers, with a = 0.2 nm here. The material-specific
reorganization energy, 4, the energy required to polarize and depolar-
ize a single monomer of P3HT in response to a charge hopping from
itoj, is a constant at 0.306 (x 1.6 x 10~ J).4

KMC proceeds by stochastically generating a sequence of events
and tracking total elapsed time by summing the times associated with
the event sequence. In the case of charge motion on P3HT networks
considered here, this is implemented by considering the hopping rates
ki; for a located on chromophore i, where j is the index of a neighboring
chromophore. A uniformly distributed random number x is generated

on [0,1) for each possible hop, and is used to calculate hopping times

i (4)

from which the fastest event is selected and performed. Note that this
amounts to an importance sampling of possible hops for each event,
not a naive sampling of largest k;;.

By iterating millions of hopping events, a charge's trajectory
through the morphology can be followed and the total displacement
determined. The systems utilized in this investigation are cubic with a
side of length ~15 nm. However, we use periodic boundary conditions
to allow the charge to move through the same morphology many times,
resulting in a total displacement of hundreds of nanometers. Carriers
are permitted to hop for a simulation run time, t, at which point the
mean squared displacement (MSD) is calculated, and the charge is
removed from the system. A new charge is then triggered at a random-
ized start location and a new trajectory determined. The MSDs are
averaged over 10,000 carriers with 1 ns < t < 10 ns. The gradient of the

MSD as a function of t provides the carrier diffusivity, D:

1 dMSD

Do dt )

where n = 3 is the number of dimensions. D can then be related to the

mobility, u, through the three-dimensional Einstein-Smoluchowki
relation:

ho= . (6)

where q is the unit charge. The relation shown in Equation 5 is com-

monly employed in charge transport studies, and provides an upper-

bound for charge carrier diffusivity in the absence of an external driving

force. We treat our charges as being isolated, that is, no Coulombic

interactions with other charges or electric fields. The mobilities reported,

therefore, represent the “best case” zero-field charge mobilities, uo, and

are analogous to experimental time-of-flight measurements.

2.1 | Machine learning

To predict J;; using any machine learning approach we select input
features that are then related to J;; calculated by ZINDO/S. Because

AICBE RNAL—L 2"

ZINDO/S requires only atom types and positions, we select nine spa-
tial features that we expect to be predictors of J;;, between P3HT

monomers.

1. Whether the monomers are chemically bonded to each other
(“Bonded”).

2. The distance between their thiophene ring centers of mass

(COM-COM).

The relative “pitch” between thiophene rings (Figure 1, Y-rot).

The relative “roll” between thiophene rings (X-rot).

The distance between sulfur atoms on the thiophene rings (S-S).

o v AW

The x-component of the thiophene ring center separations

(X-dist).

7. The y-component of the thiophene ring center separations
(Y-dist).

8. The z-component of the thiophene ring center separations (Z-dist).

9. Energy difference between the chromophores AE;;.

Note that the “yaw” angle about the thiophene's local z-axis is
missing from this list of features as preliminary work has shown that
its effect on the transfer integral is negligible. This is expected as the
electron density is delocalized above and below the plane of the thio-
phene ring, so rotations around the local z-axis do not affect the
amount of molecular orbital overlap. We aim to limit the chemical
specificity of the features used here, and look toward other machine
learning techniques that might help automate feature identification in
the future.®* We test ordinary least squares (OLS), support vector
machines (SVM), K-nearest neighbors (KNN), artificial neural networks
(ANN), and random forests (RF) as machine learning implementations
for predicting J;; from the above nine features. The review article of
Reference 31 provides a comprehensive overview of ML techniques
in soft matter, and is a recommended starting place for understanding
the taxonomy of ML techniques. Briefly, OLS determines coefficients
for linear combinations of input features by minimizing error on a
training data set; SVM classifies possible outcomes based on hyper-
planes dividing the feature space of a training set; KNN uses deter-
mines “proximity” in feature-space between elements of a training set
and predicts J;; based on members of clusters that emerge from this
grouping. ANN are composed of “layer” matrices that transform inputs

into outputs through matrix multiplication, with iterative re-weighting

y
C1

C2

FIGURE 1 Reference thiophene ring and local coordinate axes
used to determine relative spatial features between PSHT monomers.
The thiophene ring center of mass is used as the origin of the local
coordinates. A thiophene ring's rotation about its local y-axis relative
to another thiophene ring in the reference frame is used to calculate
“pitch.” A thiophene's rotation about its local x-axis relative to the
reference ring defines “roll” [Color figure can be viewed at
wileyonlinelibrary.com]
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matrix elements performed by gradient descent optimization using a
training set of known features and J;;. The ANN is implemented in the
Python package Tensorflow 42 (version 1.9.0, see Supporting Informa-
tion Section 2 for ANN details), and all other methods are conducted
with the package Scikit-Learn (version 0.19.1) with the default argu-
ment values.*®> The code used in this study is available at Reference
44 and the data set at Reference 45.

We explain RFs in more detail, due to their focus in the discussion
that follows. RFs are an ensemble technique in which the prediction
from many decision trees are combined into an output. A decision
tree operates by partitioning the data, based on the features and their
values, into progressively smaller subgroups to determine an average
outcome (y) for the group. The decision tree implementation in Scikit-
Learn “® is based on the classification and regression tree (CART) algo-
rithm, which creates a binary split based on a threshold (t;) for a fea-
ture (f) at a “leaf,” creating two “branches”:

Left Branch if fy < t;
= { Right Branch if f, > t;’ @)

in which dg, signifies the branch decision for sample x. The threshold

t; is determined by minimizing the cost function:

n Ny
C(dr) = ;flft Ejeft(df) + %mEright(df), (8)

where niest and nyigne are the number of samples on each branch (based
on the decision dg), N is the total number samples on the leaf, and Eest,
right(ds) is the error from assigning the samples to the left and right bra-

nches. This error is measured as the mean-squared error:
E(dr) == (vi-y)%, (9)

where y; is the true output and n,, is the number of samples in the left
or right branch. This process is repeated further with additional cut-offs,
thereby growing the tree and partitioning the data into smaller and
smaller partitions, reducing the error on each leaf, until a stopping
criteria (such as a maximum depth) is met. RFs avoid over-fitting by pro-
viding each tree with a different subset of the total training data, then
taking the ensemble average over each tree “voting” on the outcome.
Here we draw training set chromophore pairs from one
“disordered,” one “semi-crystalline,” and one “crystalline” morphology
from prior work.?! The degree of crystallinity is reported using ' as in
Reference 21, with “disordered,” “semi-crystalline,” and “crystalline”
corresponding to v’ of 0.17, 0.25, and 0.33, respectively. v’ is a quan-
tification of fraction of thiophene rings composed into “large” clusters
and the deviations in the aliphatic bond lengths. A description of the
origins and implementation of y/ is included in Supporting Information
Section 5 and References 21 and 23. Each morphology is composed
of 15,000 P3HT repeat units, giving about 230,000 chromophore
pairs (as defined by the Voronoi tessellation around thiophene cen-

ters). The ML techniques are trained against some or all of these

700,000 chromophore pairs and their associated ZINDO/S calcula-
tions of J;;. The ML techniques are tested against 6.48 million chromo-
phore pairs from 9 additional “disordered,” 9 “semi-crystalline,” and

9 “crystalline” morphologies.

3 | RESULTS AND DISCUSSION

In this section, we first summarize the accuracy of five machine learn-
ing techniques for correlating our nine chosen structural features with
Jij calculated using ZINDO/S. We show that Random Forests are the
optimal choice here for their ease of implementation and accuracy.
We then evaluate the KMC charge mobility calculations from the RF-
predicted J;;. We discuss the time saved through using RFs in place of
ZINDO/S. Finally, we determine which features matter most for J;;
and investigate the relationship between the training set population
and RF's prediction capabilities to understand the minimal information
needed for accurate RF training.

3.1 | Comparison of ML techniques

Prediction accuracies of OLS, KNN, SVM, ANN, and RF techniques
are shown in Figure 2. We orient the reader to two regions in each
accuracy plot: There is a cluster of bonded chromophore pairs with
0.6 < J;j;< 1.1 and a cluster of nonbonded pairs with J;; < 0.5. The
more test pairs that are not on the diagonal line indicating perfect
agreement between predicted and actual J;;, and the further their dis-
tance from the diagonal line of agreement, the worse the method. The
poor predictive capabilities of OLS (Figure 2a), despite the surprisingly
high R? = 0.96, suggests nonlinear relationships between features
determines J;;. SVM accurately predicts bonded J;; but fails when the
chromophores are nonbonded (yellow region near [Actual = O,
Predicted = 0.4]). This results in a large number of Jj; ~ 0.4 [x
1.6 x 1077 J] predictions for hops that should have zero coupling,
leading to a low R? value and high mean-absolute-error (MAE). KNN
provides predictions that are more accurate than OLS and SVMs and
with better predictions of nonbonded pairs, but with over-prediction
of bonded interactions, which can be seen as a “tail” extending
(Actual = 0.6,
Predicted = 0.8x 1.6 x 107 J). Both the RF and the ANN
outperform the aforementioned techniques, with RF slightly

above the perfect match diagonal around

outperforming ANN. Because the ANN has a larger number of hyper-
parameters to tune (number of hidden layers, neurons per layer, acti-
vation function type, optimization method [See Supporting Informa-

tion]) and is less accurate than RF, we focus on RFs henceforth.

3.2 | Mobility predictions

The predicted Jij's from the random forest closely track the actual
values, with an R? value of 0.986 and a MAE of 0.020 (x
1.6 x 1077 )), though there exist outliers (Figure 2e). For example,
the predicted average nonbonded J;; value is slightly higher (0.0015
[x 1.6 x 10717 J]) than the actual mean (<0.001 [x 1.6 x 1077 J]) (see
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FIGURE 2  Accuracy of predictions of ZINDO/S J;; from (a) OLS, (b) KNN, (c) SVM, (d) ANN, and (e) RF. The x-axes of each plot describe J;;
calculated with ZINDO/S and the y-axis corresponds to the predicted J;; for a ML technique, with each chromophore pair from the training set
occupying one pixel on these axes. The number of chromophore pairs at a particular location is represented by the purple-to-yellow color bar. (f)
The mobilities from RF J;; are commensurate with those using ZINDO/S Jj;. In the disordered morphology case, the RF-informed mobilities are
~5% higher than ZINDO/S-informed mobilities. Error bars show the standard error of the mobility calculations [Color figure can be viewed at
wileyonlinelibrary.com]

Supporting Information Section 3). With the ultimate goal of deter- Jij with ZINDO/S for one morphology, and the frequency of calculat-
mining the efficacy of ML in predicting overall charge carrier mobil- ing J;; for multiple morphologies. Applying a trained RF to a represen-
ities through a morphology, we test the significance of these tative system of ~200,000 chromophore pairs (with unknown energy
deviations by using predicted J;; values in KMC simulations to calcu- levels and transfer integrals) requires 4 min on an Intel Haswell CPU,
late the final hole mobility for the system (Figure 2f). The mobilities compared to ~26 CPU hours using Intel Xeon CPUs with ZINDO/S
calculated from the RF predictions are slightly higher than those calculations. This factor of 390x speedup for a single simulation snap-
determined with ZINDO/S for the disordered system. We hypothe- shot is multiplied in ensemble sampling studies: It is gained for each of
size this over-prediction stems from our features incompletely the independent samples in an equilibrated simulation trajectory. This
describing structural perturbations that occur more frequently in dis- transferability of RFs trained across disordered, semi-crystalline and
ordered systems. For example, it is known that the dihedral angle crystalline P3HT demonstrates that a single RF can be used to accu-
between two chromophores will affect the charge transport along the rately infer ensemble charge mobilities across hundreds of state
chain,” so trying out explicit dihedral angle features rather than the points, each with hundreds of morphology snapshots. Using RFs,
present combinations of rotations may provide marginal accuracy therefore, enables such screening studies, replacing 1.08 x 10* CPU-

gains. Despite the small over-prediction of disordered P3HT mobility, days of ZINDO/S calculations with 28 CPU-days of RF lookups.
the resultant mobilities are close (within 5% of ZINDO/S-informed
mobilities), and follow the expected trend of increasing mobility with

. ) . . ) 3.4 | RF training requirements
increasing crystallinity. These agreements are encouraging, as mobil-

ities can vary by several orders-of-magnitude for different chemistries We consider here the minimal training set (the fewest ZINDO/S cal-
and processing conditions, and suggest that RF-predicted transfer culations) needed for accurate RF prediction of J;j, helping to gauge
integrals are an effective replacement for the relatively expensive what “plenty of data to train against” means for the present problem.
ZINDOY/S calculations. We evaluate the performance of several RFs, calibrated with different

sizes of training data. In each case, the number of samples was
. selected randomly from the complete database of ~700,000 samples.
3.3 | Performance benefit ) 5 ) .
Figure 3a shows that R“ and MAE converge exponentially to high and
To quantify the computational burden alleviated by using random for- low values, respectively, with as few as 100 training samples. The fast

ests we consider representative times for training the RF, generating convergence is due to the algorithm quickly learning that bonded
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(a) Dependence of the R? and MAE on number of training examples shows that prediction accuracy converges around tens-of-

thousands of pairs. (b-d) Despite relatively “good” R? and MAE values, significant deviations from the diagonal of perfect prediction are seen
below ~100,000 training samples [Color figure can be viewed at wileyonlinelibrary.com]

chromophores typically result in high J;; (>0.7 [x 1.6 x 1077 J]) and
nonbonded chromophores resulting in low J;; (<0.3 [x 1.6 x 1077 J]).

Although convergence to a fairly accurate prediction (R? ~ 0.977)
is quickly achieved based on bonded/nonbonded chromophores, it
can be seen in Figure 3 that with 1 x 10° samples, the distribution
between bonded/nonbonded transfer integrals is bimodal, with high
nonbonded J;; and low bonded J;; that occur in the range (0.4, 0.7) (x
1.6 x 1077 J) being missed. When 1 x 10% samples are used, the (0.4,
0.7) (x 1.6 x 1077 J) gap begins to fill in (Figure 3c), but it is not until
1 x 10° samples are used that the high/low nonbonded/bonded are
correctly captured by the RF (Figure 3d). Extracting and training on
these features from a simulation takes a negligible amount of time
(~2 min for extracting, 14 s for training on 1 x 10° samples). The most
expensive part of the process will be conducting the ZINDO/S calcu-

lations to train on these 1 x 10° samples (~13 hr).

3.5 | Feature comparison

We compare the relative importance of the nine features we currently
use in predicting J;j, relying on the RF's advantage of feature transpar-
ency. Specifically, we use permutation importance, which compares
the accuracy of the RF (R? value) on a validation set with true values
and when the features’ values have been shuffled. The importance is
then the difference in R? caused by permuting that feature. The per-
mutation mechanism is more computationally expensive than the
mean decrease in impurity (or Gini importance) which is built into
Scikit-Learn's RF algorithm but is more reliable. We note that the X, Y,
and Z displacements are permuted in aggregate, that is, in testing
the X, Y, and Z importances, all three columns are permuted at the
same time so that their importance relative the COM-COM feature
can be better distinguished. The calculated feature importances, nor-
malized to sum to one, are shown in Figure 4. By far, the most impor-
tant feature in predicting J;; is whether or not two chromophores are
directly bonded to each other. This is due to charges being delocalized
over neighboring chromophores, which result in very high J;; values.
When the “bonded” feature is missing, many low, bonded J;; are over-
predicted and high nonbonded J;; are under-predicted.

In Figure 5, we summarize the prediction accuracies of RFs

trained, but with select features omitted from the training sets. The

Bonded
COM-COM
Y-rot

S-S

X-rot
XIY[Z-dist
AE

0.0 0.2 0.4 0.6
Normalized Feature Importances

FIGURE 4 The feature importances for the RF algorithm. The X,
Y, and Z distances are all combined into one feature importance
[Color figure can be viewed at wileyonlinelibrary.com]

biggest deviation from champion accuracy (R? = 0.9858) is observed
when the bonded feature is omitted, as expected. Removing the
COM-COM feature results in an over-prediction of the “bonded” J;;
values-transfer integrals in the 0.8-1.0 (x 1.6 x 10~ J) region are
shifted closer to 1.0 (x 1.6 x 1077 J) (Figure 5b). The importance of
having close chromophores is somewhat unsurprising as the transfer
integrals decrease rapidly as the two chromophores move away from
each other.1”*%4¢47 We note that the COM-COM feature is directly
dependent on the X, Y, and Z displacements as it is the square-root of
the squared-sums of the X, Y, and Z offsets. Although it is a composite
feature, explicitly training on the COM-COM distance is very impor-
tant for predicting the J;;. The individual X-, Y-, and Z-dist features
have negligible feature importance, even when permuted in aggregate
(Figure 4). This is likely to be due to the small size and relative symme-
try of the thiophene ring, and the nonlinear relationship between the
individual features and the aggregate COM-COM feature. If larger or
asymmetric chromophores were used, such as a coronene or a
perylene derivative, the displacements along the different axes are
likely to dominate and increase relative feature importance (see
Figure 5¢).%”

Relative rotation around the Y-axis (“pitch”) is the third most
important feature, and is more important than rotation around the X-
axis (“roll”; Figure 5d). This is likely because rotations around Y move
the sulfur atom in the ring, as opposed to rotations around X in which
the sulfur is stationary. The importance of the relative sulfur positions
is further highlighted by the S-S distance being the fourth most
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(a) Removing the bonded feature results in a high number of outliers as both bonded and nonbonded J;; values are under and over

predicted. (b) Removing the COM-COM constraint results in a flattening and broadening of the “bonded” J;; distribution. (c) If both the COM-
COM and S-S distances are removed (and therefore only the displacements along the X, Y, and Z axes are considered) the distribution of J;; is
much more split between “bonded” and “nonbonded.” (d, €) Removing the rotation around Y and the S-S distance create more noise. (f) The X, Y,
and Z displacements and the AE;; can all be omitted in training and result in high accuracies [Color figure can be viewed at wileyonlinelibrary.com]

important feature, and this feature is responsible for obtaining correct
predictions for high nonbonded J;; and low bonded J;; (Figure 5e). This
indicates that in order to have high J;;, electronegative atoms within
the chromophores must be proximal in order to act as bridges
between the two chromophores.

The AE;; feature in this experiment is unimportant for predicting
Jij- This unimportance is not surprising as the MD simulations repre-
sent the thiophene ring with a rigid-body, which means the relative
positions of all the atoms in the ring are fixed throughout the simula-
tion. With this model, differences in energies can only arise based on
conformational differences of the aliphatic tails. The effect of these
tails on energy is likely to be small, and many studies omit the tails as
a way to reduce computational burden and still obtain correct results.
Consequently, if AE;; is small compared to the HOMO and HOMO-1
splitting in Equation 1, it becomes negligible for J;;. If flexible thio-
phene rings were used, the importance of the AE;; feature would
increase (although thiophene ring perturbations are still likely to be
small because of the aromatic structure of the ring). Despite the insig-
nificance of AE;; in predicting J;;, we do not argue that AE;; will be
unimportant for predicting mobility values as Equation 3 explicitly
considers AE;; within an exponential and it will likely still have non-
negligible effects on the hopping rate. Here, we show that omitting
the X-Y-Z displacements and AE;; features entirely has a negligible
effect on the accuracy of only our J;; predictions (Figure 5f).

3.6 | Curating a training set

Here we consider the possibility of curating a “universal” training set of

chromophore pairs that inform an RF with predictive capabilities for

P3HT morphologies with disparate degrees of order. This experiment is
motivated by (a) the above observation that only 10*-10° sufficient for
the present work, and (b) knowing that ML methods excel when there is
an abundance of training data. So, is it possible to curate a minimal set
of chromophore pairs that will work on the present morphologies, be
transferable to other morphologies with different distributions of chro-
mophore positions, and be straightforward to create? If it is possible,
then generating libraries of chromophore positions could be a general
strategy for speeding the calculation of mobilities in new materials:
Quantum chemical calculations on monomers can be performed once
and used in novel blends of materials, and transfer integrals usable for
many morphologies can be calculated before the first MD simulation is
performed, saving time. To curate the training data, we duplicate a chro-
mophore (parent) to create a child chromophore, resulting in all AE
values being O. The child chromophore is then moved along each axis (<
0.5 nm) and rotated around the x- and y-axes (< z) resulting in 1 x 10*
training pairs. The child movement and rotation is done in two ways: At
distinct steps, for example, steps of 0, 0.1, 0.2 nm and uniformly distrib-
uted over the range (shown in Figure 6). For each offset, we apply the
constraint that the COM-COM distance must be greater than 0.3 nm,
as COM-COM distances shorter than this are unphysical. With this uni-
form sampling of positions and orientations, close packings and large
separations observed in simulations are underrepresented (Figure 6a),
as are aligned and anti-aligned orientations of thiophene rings
(Figure 6b). We expect that the undersampling of pi-stacked configura-
tions will most negatively impact accuracy, as J;; is negligible for large
separations. This data curation generates COM-COM and S-S distribu-
tions similar in shape around 0.5 nm, though missing pairs separated at

larger distances that are observed in simulations (Figure 6c and d).
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FIGURE 6 The normalized distributions of the training features in the curated set (blue) and in the simulation (orange). (a) Displacements and
(b) rotations are determined based on a uniform distribution along each axis; O < distance <0.5 nm for displacements along the axes and

0 < rotation < z for rotations and show that a uniform distribution fails to capture more energetically favorable close configurations and similar
alignments. (c) COM-COM and (d) S-S distances are then calculated based on the displacements along the various axes. The curated training set
does a poor job of predicting J;; whether (e) the curated set is used to evaluate all chromophore pairs or (f) the chromophore pairs that lie within
the range of the curated set [Color figure can be viewed at wileyonlinelibrary.com]

Though these larger spacings are prevalent in the simulated structures,
we find they contribute negligibly to charge transport.

We train the RF using this curated training set and validate it against
the simulation produced J;;. As is seen in Figure ée, the RF trained on the
curated set does a poor job of predicting J;;. The largest error in the pre-
dictions arises from the over-prediction of the low (<0.2 [x 1.6 x 10~%7 J])
J;j in the system. This error can be reduced somewhat by considering
only chromophore pairs that lie within the range of the curated dataset
(within 0.5 nm along each axis). This restriction of the validation data
improves the R? value (0.5 — 0.7) while the MAE decreases slightly (both
~0.2 [x 1.6 x 1077 J]), however, will come at the cost of missing long-
range pairs or inflating/diluting the training set with pairs that are likely
to be negligibly small. Despite the small improvement, these curated data
provide low predictive utility (Figure 6f). This failure of the curated set
serves as a reminder that equilibrium simulations efficiently perform
importance samplings of configurations, and that a uniform sampling of
configurations in a similar range is an insufficient proxy for those configu-
rations that matter most. Related, if training samples are selected from
only a single simulation snapshot, it is best here to select them from crys-
talline morphologies because the relative absence of high J;; in other
morphologies disproportionately lowers the RF prediction accuracy

(Supporting Information Section 4).

4 | CONCLUSION

The expensive quantum chemical calculation of electronic couplings (J;;)
between P3HT chromophores need not be repeated if a representative

training set of chromophores is used to train a machine to infer the

couplings from chromophore features. We have shown that artificial
neural networks and random forests are sufficiently predictive of J;j,
resulting in expected charge mobilities. Here, random forests are rec-
ommended over artificial neural networks because we begin with a
physical intuition for the features salient to J;;, so the RF ability to trans-
parently rank feature importances and the ease of implementing RFs in
Scikit-Learn give benefits at no added cost. We show that J;; is obtained
~390x faster when the RF is used to look up ZINDO/S calculations,
and we identify chromophore bonding, distance, “pitch,” and sulfur-
separation between chromophores to be the strongest predictors. Two
conclusions arose from our investigations into minimal training sets:
(a) The failure to accurately predict J;; from a training set curated on
chromophore separations and rotations informed by the ranked feature
importance highlights the importance of drawing training data from a
thermodynamic simulation method in which importance samplings of
configurations are performed, and (b) Training sets as small as 1 x 10°
chromophore pairs are sufficient to generate J;; and resultant mobilities
in agreement with prior work.2! In sum, this work demonstrates one
example of where significant computational speedups can be gained in
exchange for a small amount of machine learning tuning. In future work,
we look toward identifying other bottlenecks where RFs and ANNs will
provide similar speedups, toward the automatic identification of molec-
ular descriptors that allow the prediction of AE;;, and extending this
work to additional chemistries.
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