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Abstract

Singular value decompositions of matrices are widely used in numerical lin-
ear algebra with many applications. In this paper, we extend the notion of
singular value decompositions to finite complexes of vector spaces. We pro-
vide two methods to compute them and present several applications.

1 Introduction
For a matrix A € R™**, a singular value decomposition (SVD) of A is
A=U -2V

where U € R™™ and V € R*** are orthogonal and ¥ € R™** is diagonal
with nonnegative real numbers on the diagonal. The diagonal entries of 3., say
01 > -+ 2 Omin{mgk} = 0 are called the singular values of A and the num-
ber of nonzero singular values is equal to the rank of A. Extensions to matrices
in C™** simply involve replacing orthogonal with unitary and transpose with Her-
mitian transpose (conjugate transpose). Singular value decomposition is used to
solve many problems in numerical linear algebra such as pseudoinversion, least
squares solving, and low-rank matrix approximation. For example, the Eckart-
Young theorem [EY36] shows that for » = 0,...,min{m,k} — 1, 0, is the
2-norm distance between A and the set of matrices of rank at most r. In fact,

A, =U -diag(oy,...,0,,0,...,0)mxr - V"



has rank at most r with 0,1 = ||A — A,||2 and solves

(1) min {[|A — B||2 | rank B < r}.

BeRmxk
A matrix A € R™** defines a linear map A : R¥ — R™ via x — Az denoted
R™ L RF,
Geometrically, the singular values of A are the lengths of the semi-axes of the
ellipsoid arising as the image of the unit sphere under this map defined by A.
Matrix multiplication simply corresponds to function composition. For exam-
ple,if B € R>™ then B o A : RF — R¢ is defined by x — B Az denoted

R 5 R A RE

If B o A = 0, then this composition forms a complex denoted

0 R 2R RE 0.

In general, a finite complex of finite-dimensional R-vector spaces

A Az An—1 A

Cho1+—Cp«~——0

0 Co 4

consists of vector spaces C; = R% and differentials given by matrices A; so that
A; o A1 = 0. We denote such a complex by C, and its i*" homology group as

ker Al

H;=H;(Co) = ————
(Ce) image A; 1

with h; = dim H;. Complexes are standard tools that occur in many areas of
mathematics including differential equations, e.g. [AFW06, AFW10]. One of the
reasons for developing a singular value decomposition of complexes is to compute
the dimensions h; efficiently and robustly via numerical methods when each A; is
only known approximately, say B;. For example, if the rank of each A; is known,
say r;, then each h; can easily be computed via

hi = c; — (ri + rig1).

One option would be to compute the singular value decomposition of each B; in
order to compute the rank of A; since the singular value decomposition is an ex-
cellent rank-revealing numerical method. However, simply decomposing each B;
ignores the important information that the underlying matrices A; form a complex.

The key point of this paper is that we can utilize information about the complex
to provide more specific information that reflects the structure it imposes.

2



Theorem 1.1 (Singular value decomposition of complexes). Let Ay, ..., A, with
A; € Re—1%¢ r; = rank A;, and h; = ¢; — (r; + riy1) be a sequence of matri-
ces which define a complex C,, i.e., A; 0 A;y1 = 0. Then, there exists sequences
Uo,..., U, and >, ..., %, of orthogonal and diagonal matrices, respectively,
such that

Ti—1 0 0 0
(2) Uit_l e} Az ®) Uz = T; Ez 0 0
hi-1\ 0 0 0

where all diagonal entries of Y; are strictly positive. Moreover, if every r; > 0
and at least one h; > 0, then the orthogonal matrices U; can be chosen such that
detU; = 1, i.e., each U; is a special orthogonal matrix.

The diagonal entries of X1, ..., X, are the singular values of the complex which
are described in Remark 4.3. Just as with matrices, singular value decomposi-
tion of complexes naturally extends to complexes involving entries with complex
numbers by simply replacing orthogonal with unitary and transpose with Hermi-
tian transpose (conjugate transpose). However, such an extension is not needed
for the applications in this article.

We develop two methods that utilize the structure of the complex C to com-
pute a singular value decomposition of C,. The successive projection method
described in Algorithm 3.1 uses the orthogonal projection

Pi_ll Ci—l — ker Ai—l

together with the singular value decomposition of the matrix F;,_;0A;. The second
method, described in Algorithm 3.3, is based on using each Laplacian

Ai:A§OAi+Ai+1OA§+1'

Both of these methods can be applied to numerical approximations B; of A;.

The organization of this paper is as follows. Section 2 proves Theorem 1.1
and collects a number of basic facts along with defining the pseudoinverse of
a complex. Section 3 describes the algorithms mentioned above and illustrates
them on an example. Section 4 considers projecting an arbitrary sequence of
matrices onto a complex. Section 5 provides an application to computing Betti
numbers of minimal free resolutions of graded modules over the polynomial ring
Q[zo, . .., x,] which combines our method with ideas from [EMSS16].
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2 Basics

We first prove our main theorem on singular value decomposition of complexes.

Proof of Theorem 1.1. For convenience, let Ag = A, 1 = 0 compliment the ma-
trices Ay, ..., A, that describe the complex C,. By the homomorphism theorem,

(ker A;)* = image A;.

The singular value decomposition for a complex follows by applying singular
value decomposition to this isomorphism and extending an orthonormal basis of
these spaces to an orthonormal basis of R%-* and R%. Since image A; 1 C ker A;,
we have an orthogonal direct sum

(ker A;)* @ image A, C R
with

ker A;

H; := ((ker 4;)" & A1)t =ker A; Ni Ay & ———.
((ker A;)™ ® image A; ;1) er MAge i image A; 41

With respect to these subspaces, we can decompose A; as

(ker A;)t  image A;y1  H;

(ker Ai— 1 ) + 0 0 0
image A; )IP 0 0
H; 4 0 0 0

Indeed, A; has no component mapping to (image A4;)*, which explains six of the
zero blocks, and ker A; = (ker 4;)** = image A;,1 @® H; explains the remaining
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two. Take U; to be the orthogonal matrix whose column vectors form the orthonor-
mal basis of the spaces (ker A;)* and image A;; induced from the singular value
decomposition of (ker A;)* — image A; and (ker A4;;1)t — image A;;1 ex-
tended by an orthogonal basis of /; in the decomposition

(ker 141)L D image Ai+1 D Hz = R%.

The linear map A; has, in terms of these bases, the description Uit_1 o A;oU; which
has the desired shape.

Finally, to achieve det U; = 1, we may, for 1 < k < r;, change signs of
the k' column in U; and (r;_; + k)*™® column of U;_; without changing the result
of the conjugation. If 2; > 0, then changing the sign of any of the last h; columns
of U; does not affect the result either. Thus, this gives us enough freedom to reach
detU; =1forall: =0,...,n. O

The singular values of a matrix A are the square roots of the eigenvalues
of A’ o A. The following generalizes this relationship to singular values of a com-
plex and eigenvalues of the Laplacians.

Corollary 2.1 (Repetition of eigenvalues). Suppose that Ay, ... A, define a com-
plex with Ag = Apy1 =0. Let A; = Alo Aj + Aj 0 AﬁH be the corresponding
Laplacians. Then, using the orthonormal bases described by the U;’s from Theo-
rem 1.1, the Laplacians A; have the shape

rio risr Ml
rin| 0 X, 0
h; 0 0 0
In particular,
1. ker Az = Hi;
2. ifr; =rank A; and 0} > o} > ... > ol > 0 are the singular values of A;,
then each (o})? is an eigenvalue of both A; and A;_.
Proof. The structure of A, follows immediately from the structure described in

Theorem 1.1. The remaining assertions are immediate consequences. [

Let A" denote the Moore-Penrose pseudoinverse of the A;. Thus, a singular
value decomposition

0 00 0 %t o
Ai=Ui 103 0 0|oU} yields Af=Uo[0 0 0]oU,.
0 00 0 0 0



Proposition 2.2. Suppose that Ay, . .., A, define a complex with Ay = A1 = 0.
Then, Af,, o A7 = 0and

idRCi - (A;r o) Az + A/L'Jrl o A:Ci-l)
defines the orthogonal projection of R% onto the homology H,.

Proof. We know that A; 0 A; defines the projection onto (ker 4;)* and A; 10 A},
defines the projection onto image A;,;. The result follows immediately since
these spaces are orthogonal and H; = ((ker A;)* @ image A;, ). O

For a complex C, with

Ay As An
0 R R e R 0,
the pseudoinverse complex, denoted C', is
0—wRo Mg M, M pe

Remark 2.3. If the matrices A; have entries in a subfield X' C R, then the pseu-
doinverse complex is also defined over K. This follows since the pseudoinverse
is uniquely determined by the Penrose relations [Pen55]:

A;jo Af o A; = A, Ajo Af = (Aio AT,
At o A0 A = AF, Af 0 A; = (A} o Ay,

which form an algebraic system of equations for the entries of A;" with a unique
solution whose coefficients are in K. In particular, this holds for K = Q.

If the entries of the matrices are in the finite field I, the pseudoinverse of A;
is well defined over IF, with respect to the dot-product on I’ and Fg'™~" if

ker A4, (ker A" = 0 CF¢' and image A; O (image A)" = 0 C Fy.

We have implemented the computation of the pseudoinverse complex for dou-
ble precision floating-point numbers Rj3, the rationals Q, and finite fields [, in
our Macaulay?2 package SVDComplexes.


http://macaulay2.com/doc/Macaulay2/share/doc/Macaulay2/SVDComplexes/html/

3 Algorithms

We present two algorithms for computing a singular value decomposition of a
complex followed by some examples.

Algorithm 3.1 (Successive projection method).

INPUT: Sequence Ay, ..., A, of real matrices forming a complex C,.
OUTPUT: Integers 71, ..., r,, orthogonal matrices Uy, ..., U, and diagonal ma-
trices X1, . .., 2, forming a singular value decomposition of Cl.

1. Setro :0, Qo :0, and PO :idCO.
2. Fori=1,...,n

a. Compute the (¢;_; — 7;_1) X ¢; matrix A =P oA,
b. Compute a singular value decomposition of A, say A, =U; 0%, 0 ‘7}.
c. Setr; = rank ii.

d. Decompose

into submatrices consisting of the first r; and last ¢; — r; rows of Vit.

t - _ Qi—l
Vicn = (Uf_l o P) |

f. Ifi=n,setlU, = 177{/ and then compute >4, ..., X, satisfying (2).

e. Compute

3. Returnry,...,r,, Uy, ..., Uy, and Xq, ..., 2.

Proof of correctness. By induction on 7, we will see that P; defines the orthogonal
projection C; — ker A;. Since V' is orthogonal,

Qi t t) _ idn‘ 0
(R) e} (Qz Pz) _ ( 0 idq-ﬁ-)

where idy denotes a k£ x k identity matrix, we additionally conclude that @); is the
orthogonal projection C; — (ker A;)*. This is trivially true for Ay = 0.



For the induction step, image A; C ker A;_; implies that Q;_; o A; = 0.
Hence, A; and P;_; o A; = A, have the same nonzero singular values. From

A —DoSol ad 7= (%),

we see that P; defines the orthogonal projection C; — ker A;. Moreover,

Uiy0AiolU;= (ﬁf, ?;},_1) oA;o (Qf Pfo ﬁz)

(0 5) e (@t o)

0
e _ N ' . o
N (UZI olU;_10X;0 (Q’) © (Qz P o Uz)
P;
0
=5 id,, 0
)P i _
lo ( 0 idci—riUi)
0 0
0 0
since
S 0
Yo <idci—ri) = 0.
Hence, Algorithm 3.1 computes a singular value decomposition of Cl. O

Remark 3.2. Algorithm 3.1 was presented using exact input data A, ..., A, for
the complex C, and exact computations. When using numerical approximations
By, ..., B, for the matrices Ay,...,A,, this algorithm can be easily modified
to use floating-point arithmetic to produce a good numerical approximation of a
singular value decomposition for C provided that:

i) the approximations By, ..., B, of Ay, ..., A, are sufficiently accurate,
ii) the correct rank is identified in Step 2c, and

ii1) floating-point arithmetic using sufficiently high precision is utilized.
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We can alter Step 2¢ when using floating-point arithmetic to obtain more confi-
dence in the correctness of the computation of 74, ..., r,. One natural approach
is to start with two approximations By, ..., B, and B, ..., B!, in different pre-
cisions and determine 74, ... 7, as the number of stable singular values, i.e., the
singular values which have approximately the same value in both computations.
Moreover, since orthogonal matrices have unit condition number, they maintain
lengths so that the rank r; can be reliably computed in Step 2c forall: = 1,...,n.

The second method for computing a singular value decomposition is based
on using the Laplacians and Corollary 2.1 which generalizes the description of
singular values of a matrix A as the square roots of the eigenvalues of A’ o A.

Algorithm 3.3 (Laplacian method).

INPUT: Sequence Ay, ..., A, of real matrices forming a complex C,.
OUTPUT: Integers 74, ..., r,, orthogonal matrices Uy, ..., U, and diagonal ma-
trices X1, .. ., 2, forming a singular value decomposition of Cl.

1. Compute an eigendecomposition of Ay = A; o A}, i.e., compute an orthogonal
matrix Uy € R%*% and diagonal matrix Dy € R“*% where the diagonal
entries are listed in decreasing order such that

AOZUQODOOUS.

2. Let r; be the number of nonzero diagonal entries of D, 171 be the first r;
columns of U, 31 € R™*"™ be the diagonal matrix with (£1),; = 1/(Do)j;>
and U, = A oV o X071,

3. Fori=1,...,n—1:

a. Extend (7@ to an orthogonal matrix U; € R%*% forming a eigenbasis for
A; = Al oA+ A; o Al such that

Ai:UiODZ’OUit

where D; € R%*¢ is a diagonal matrix of the form

>
=(7)

and the diagonal entries in A; are listed in decreasing order.
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b. Let r;,; be the number of nonzero diagonal entries of A;, ‘7;'+1 be the
ri +1,...,7i + 7141 columns of U;, 3,y € R7+17+1 be the diagonal ma-
trix with (2i+1>jj = 4/ (Ai)jj9 and Ui+1 = A§+1 o ‘/i+1 o 2;_11

c. Ifi =n —1, extend [7“ to an orthogonal matrix U,, € R*“,

4. Returnry,...,r,, Ug, ..., U,,and X, ..., 2.

Proof of correctness. Since each A; is symmetric, it is diagonlizable, i.e., has an
orthonormal basis consisting of eigenvectors. By construction, the first r; columns
of U; form a basis for (ker Ai)L, the next ;1 columns of U; form a basis for
image A;;1 and the last h; = ¢; — (r; + r;41) columns of U; form a basis for
H;. By the homomorphism theorem, (ker Ai)l 2 image A; means that we can
reuse r; columns from U;_; which form a basis for image A; as the first r; columns
of U; forming a basis for (ker A;)*. This immediately yields that

0 00
Uit_l o Az o) Ul = Ez 0 0
0 00
thereby computing a singular value decomposition for Cs. [l

Remark 3.4. If all of the eigenvalues of all of the Laplacians are distinct, then
every eigenvector of length one is defined uniquely up to sign. Hence, one can
compute eigendecompositions of the A;’s independently, e.g., using parallel com-
putations. A singular value decomposition can then be computed by simply rear-
ranging and changing signs on the eigenvectors as needed.

Remark 3.5. The comments in Remark 3.2 in reference to Algorithm 3.1 related
to using numerical approximations hold for Algorithm 3.3 modulo identifying the
correct rank in Steps 2 and 3b. The key aspect is to use sufficiently high precision
to distinguish between small nonzero and zero eigenvalues due to the squaring of
the singular values.

Example 3.6. We consider the complex

A1 AQ A3

0 R? R? R® R? 0
where the matrices Ay, Ay, A3, respectively, are
—43 —-50 —-27 -—51 9 -8 —-16 —12
14 —4 16 3 -9 12 —-24 36 0 —12 -5 -1 -15
14 -5 20 9 1], 35 34 27 39 -9 -1 13 —14
4 1 -4 —-12 —-24 -3 -10 3 -6 -1 12 12 28
—11 -10 -9 —-12 3 -1 25 —24
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Printed with 4 digits only, the orthogonal matrices Uy, . . ., Us, respectively, are

—-0.5694  0.1646 —0.7702 —0.1318  0.1950

—0.6553  0.2393 —0.7165 0.1862 0.0303  0.0679 —-0.9710  0.1301
—0.7549 —0.1745 0.6322 | , | —0.7448 —0.1213  0.6010 —0.0706  0.2537
0.0262 0.9551 0.2950 —0.2631 —0.4289 —0.0790 —0.1821 —0.8411
0.1309 —-0.8794 —0.1862 0.0404  0.4162

0.5019 —-0.1770  0.2288  0.5338  0.6160

0.5257  0.6126  0.3335  0.1127 —0.4738 —0.2525 —0.2843 —0.9249

0.3586 —0.7250  0.3461 -0.3015 —0.3677 |, 0.1813 —0.9528  0.2434

0.5735  0.0970 -0.5972 —0.5061 0.2210 —-0.9505 -0.1062  0.2921
—-0.1195  0.2417  0.6000 —0.5961 0.4604

Hence, for i = 1, 2, 3, the matrices 3; = Ul ;o0 A;oU;are

0 0 0 0 0 0 0 0

34.489 0 0 0 0 0 0 0 0 0 0 0 0
0 28.714 0 0 O}, | 114.08 0 0 0 O, |[45993 0 0

0 0 0 0 0 0 47193 0 0 O 0 35.209 0

0 0 0 0 0 0 0 0

showing that r; = rank A; = 2 and h; = dim H; = 1 for ¢ = 1, 2, 3. In particular,
the following diagram commutes:

0 R3 <A RS A2 RS A 3 0

S R A

0 R~ R~ R~ R? 0

D3] pID 33

One can use this singular value decomposition to compute the pseudoinverse
complex. For example, A, printed with 6 decimal places is

0.012191  0.011463  0.005043
—0.003285 —0.004260  0.001150
0.013141  0.017040 —0.004601
0.001425  0.008366 —0.014466
—0.009815  0.002481 —0.029152

which is a numerical approximation of the exact matrix

5978/490373  5621/490373 2473/490373
—1611/490373 —2089/490373 564 /490373
6444/490373  8356/490373  —2256,/490373
699/490373  8205/980746 —14187/980746
—4813/490373  2433/980746 —28591/980746
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Moreover, this simple example is fairly stable against errors. For example, the
algorithms predict the dimension of the homology groups correctly upon perturb-
ing the entries of the matrices A; on the order of < 1072 and using a threshold
of 1072 to compute the ranks, e.g., see SVDComplexes.

Example 3.7. We compared Algorithms 3.1 and 3.3 for verifying the dimension of
homology groups for randomly generated complexes of various sizes with known
homology group dimensions. Table 1 compares the timings of these algorithms.

co ¢ ¢ c3 | hyg hy ho hg| Alg 3.1 (sec) | Alg. 3.3 (sec)
7 21 28 14,2 3 2 1 0.00211 0.0110
8 27 35 173 6 4 2 0.00225 0.0182
9 33 42 2014 9 6 3 0.00254 0.0294
10 39 49 23|5 12 8 4 0.00291 0.0647
11 45 56 26| 6 15 5 0.00355 0.1090
12 51 63 29| 7 18 6 0.00442 0.1150

Table 1: Comparison of timings using Algorithms 3.1 and 3.3.

Example 3.8. We constructed a series of examples from Stanley-Reisner simpli-
cial complexes of N randomly chosen squarefree monomial ideals in a polynomial
ring with £ variables. The results are summarized in Table 2.

4 Projection

One application of using the singular value decomposition of a complex is to
compute the pseudoinverse complex as described in Section 2. The following
projects a sequence of matrices onto a complex.

Algorithm 4.1 (Projection to a complex).

INPUT: A sequence By, ..., B, of ¢;_; X ¢; matrices and a sequence hg, ..., h,
of desired dimension of homology groups.

OUTPUT: If possible, a sequence Ay, . .., A, of matrices which define a complex
with desired homology.

1. Setro = 0 and compute 7y, ..., 7,1 from h; = ¢; — (r; + r;41) recursively.
If r, < 0 orr; > rank B; for some ¢ or r,,1 # 0, then return the error
message: ‘“The desired dimension of homology groups cannot be satisfied.”
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N Co C1 (&) . Alg 3.1
h(] h1 h2 e (SCC)
200 8 27 44 30
1 0 0 1 0.0019
21 9 3 74 85 46
1 0 0 0 0 0.0036
23 | 10 45 118 190 173 69
0 0 0 3 0 0.0198
26 |11 55 165 326 431 361 156 19
0 0 0 0 0 2 0 0.2410
3012 66 218 474 694 664 375 101
1 0 0 0 0 0 2 0 1.29
35113 78 286 712 1253 1553 1291 639 141
1 0 0 0 0 0 0 6 1 39.7
41 114 91 364 996 1948 2741 2687 677 559 75
1 0 0 0 0 0 0 7 0 0| 35%.

Table 2: Comparison of timings using Algorithm 3.1.

. Set Qp = 0and Py = id¢y,.
.Fori=1,....,n

a. Compute the (¢;_1 — 1;_1) X ¢; matrix EZ = P,_,0B,.

b. Compute the singular value decomposition

B;i=U;_10 iz © ‘N/it-

c. Compute
ri Tigr i
Ti—1 0 0 0
i= Ty % 0 0
hi—1\ 0 0 0

as a block matrix where %; is a diagonal matrix whose entries are the
largest r; singular values of B;.

Nl

d. Decompose

into submatrices consisting of the first r; and last ¢; — r; rows of ‘7;.
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e. Compute

t - _ Qi—l
Ui—l - (Ut_l o _F)i_1> .

f. Ifi = n, thenset U,, = 175
4. Set A; = U;_10o%;0U! andreturn Ay, ..., A,.

Proof of correctness. 1t is clear that the construction of the A;’s yields a complex
presented in the form of (2). L]

Example 4.2. In our package RandomComplexes, we have implemented several
methods to produce complexes over the integers. The first function randomChain-
Complex takes as input sequences hq, ..., h, and rq, ..., r, of desired dimension
of homology groups and ranks of the matrices, respectively. It uses the LLL al-
gorithm [LLL82] to produce examples of desired moderate height. It runs fast for
complexes with ¢; < 100 but is slow for larger examples because of the use of the

LLL-algorithm. Example 3.6 was produced this way.

For a given a complex, only allowing one homology group to change provides
a description of its singular values. This is summarized in the following.

Remark 4.3. For a matrix A € R™**, 5, is the distance between A and set of
matrices of rank at most r via (1). Singular values of a complex have a similar
description. In particular, if Ay, ..., A, define a complex C, with A; € R%-1%¢,
r; = rank A;, and Ay = A1 = 0, then, forr = 0,...,r; — 1, the (r + 1)
singular value of A;, namely 0!, ,, is equal to

3) min  {||A; — Bl | rank B<r, A, ;0B =0, BoA;;; =0}

BeR®i—1%¢i

which one can view as the distance between the complex C, and the set of com-

plexes consisting of matrices Ay, ..., A;_1, B, A1, ..., A, where rank B < r.
Moreover, one can solve (3) using a singular value decomposition for C, with, say,
orthogonal matrices Uy, . .., U, and diagonal matrices >.q, ..., >,. In particular,
with &; = diag(ol, ..., 0% )r,xr,, the matrix

0 00

Bl =U;10[ A 0 0 |oU!

0 00

solves (3) where AL = diag(o},...,0.,0,...,0).x, and 0%, = ||A; — B
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Measuring distances between two sequences of matrices where only one ma-
trix is different can be viewed as equivalent to simply measuring the distance
between the only differing matrices. Remark 4.3 uses this to describe the singular
values of complex. Algorithm 4.1 also uses this idea via a greedy approach at
each step in its construction. In general, one can construct equivalent norms on
sequences of matrices by building from the norms of the individual entries of the
matrices. Given a sequence of matrices By, ..., B, and constants «;, 5; > 0, then

ZaiHBiHQ and max{G;||Bill2|i=1,...,n}
=1

are easily seen to be equivalent norms. Therefore, given a norm on a sequence
of matrices, we leave it as an open problem to compute the nearest complex with
desired homology group dimensions to a given sequence of matrices.

5 Application to syzygies

We conclude with an application concerning the computation of Betti numbers
in free resolutions. Let S = K|[xy,...,z,| be the standard graded polynomial
ring and M a finitely generated graded S-module. Then, by Hilbert’s syzygy
theorem, M has a finite free resolution:

0 M Fy <2 <2 < F, 0

by free graded S-modules F; = >, S(—i —j)% of length ¢ < n+ 1. Here S(—/)
denotes the free S-module with generator in degree .

If we choose in each step a minimal number of homogenous generators, i.e.,
if p;(F;) C (wo,...x,)F;_1, then the free resolution is unique up to an isomor-
phism. In particular, the Betti numbers b;; of a minimal resolution are numerical
invariants of M. On the other hand, for basic applications of free resolutions such
as the computation of Ext and Tor-groups, any resolution can be used.

Starting with a reduced Grobner basis of the submodule oy (F}) C Fj there is,
after some standard choices on orderings, a free resolution such that at each step
the columns of ;. form a reduced Grobner basis of ker ¢;. This resolution is
uniquely determined however, in most cases, highly nonminimal. An algorithm to
compute this standard nonminimal resolution was developed in [EMSS16] which
turned out to be much faster than the computation of a minimal resolution by
previous methods.

The following forms the examples which we use as test cases.
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Proposition 5.1 (Graded Artinian Gorenstein Algebras). Let f € Q|xo, ..., ;)
be a homogeneous polynomial of degree d. In S = Q|0y, ..., 0,], consider the
ideal I = (D € S | D(f) = 0) of constant differential operators which annihi-
late f. Then, A+ := S/I is an artinian Gorenstein Algebra with socle in degree d.

For more information on this topic see, e.g., [RS00].

Example 5.2. Let f = (} + ... + {1y € Qxg,...,z7] be the sum of 4*" pow-
ers of 18 sufficiently general chosen linear forms ¢,. The Betti numbers b;; of
the minimal resolution M = AJ% as an S-module are zero outside the range
1=20,...,8,7 =0,...,4. In this range, they take the values:

j\il0 1 2 3 4 5 6 7 8
0O (1 . .
1 18 42 . . . .
2 10 63 288 420 288 63 10
3 42 18
4 1

which, for example, says that F, = S(—3)% @ S(—4)%. We note that the sym-
metry of the table is a well-known consequence of the Gorenstein property.

On the other hand the Betti numbers of the uniquely determined nonminimal
resolution are much larger:

j\i |0 1 2 3 4 5 6 7 8
0o |1 . . . . . .
1 18 55 75 54 20 3 . .
2 23 145 390 580 515 273 80 10
3 7 49 147 245 245 147 49 7
4 1 7 21 35 35 21 7 1

To deduce from this resolution the Betti numbers of the minimal resolution, we
can use the formula

bz’j = dim TOT?(M, Q)i-l—j'

For example, to deduce b3 2 = 288, we have to show that the 5" constant strand
of the nonminimal resolution

0 Ql Q49 QSQO Q54 0

has homology only in one position.
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The matrices defining the differential in the nonminimal resolution have poly-
nomial entries whose coefficients in Q can have very large height such that the
computation of the homology of the strands becomes infeasible. There are two
options, how we can get information about the minimal Betti numbers:

e Pick a prime number p which does not divide any numerator of the nor-
malized reduced Grobner basis and then reduce modulo p yielding a mod-
ule M (p) with the same Hilbert function as M. Moreover, for all but finitely
many primes p, the Betti numbers of M as an Q|xo, ..., z,|-module and
of M(p) as F[zo, . .., x,]-module coincide.

e Pass from a normalized reduced Grobner basis of 1 (F}) C Fj to a floating-
point approximation of the Grobner basis. Since in the algorithm for the
computation of the uniquely determined nonminimal resolution [EMSS16],
the majority of ground field operations are multiplications, we can hope that
this computation is numerically stable and that the singular value decompo-
sitions of the linear strands will detect the minimal Betti numbers correctly.

Example 5.3. We experimented with artinian graded Gorenstein algebras con-
structed from randomly chosen forms f € Q[zo, ..., x7] in 8 variables which
were the sum of n 4" powers of linear forms where 11 < n < 20. This ex-
periment showed that roughly 95% of the Betti table computed via floating-point
arithmetic coincided with one computed over a finite field. The reason for this was
that the current implementation uses only double precision floating-point compu-
tations which caused difficulty in detecting zero singular values correctly. This
could be improved following Remark 3.2 using higher precision arithmetic.

We now consider a series of examples related to the famous Green’s conjecture
on canonical curves which was proved in a landmark paper [Voi05] for generic

curves. In S = Q[zo, ..., X4, Yo, - - - , Y], consider the homogeneous ideal J, gen-
erated by the 2 x 2 minors of

To T1 ... Ta-1 and Yo Y1 -+ Y1

r1 T2 ... Lq Y1 Yz ... Yp

together with the entries of the (¢ — 1) x (b — 1) matrix

To Ty T2

1 To X3 0 0 e Yo Y1 - Yp—2
0 —e;r O Y Y2 - Y1
1 0 0 Yo Ys .- W

Tg—2 Tg-1 Tq



for some parameters e1,e; € Q. Then, by [ES18], J. is the homogeneous ideal
of an arithmetically Gorenstein surface X,(a,b) C P! with trivial canonical
bundle. Moreover, the generators of J, form a Grobner basis. To verify the generic
Green’s conjecture for curves of odd genus g = 2a + 1, it suffices to prove, for
some values ¢ = (e, e9) € Q?, that X,(a,a) has a “natural” Betti table, i.e., for
each k£ there is at most one pair (¢, j) with ¢ + j = k and b;;(X.(a,a)) # 0. For
special values of e = (eq, e3), e.g., e = (0, —1), it is known that the resolution is
not natural, see [ES18].

Example 5.4. For a = b = 6, our implementation computes the following Betti
numbers for the nonminimal resolution: as

| 0 1 2 3 4 5 6 7 8 9 10 11
... .

| . 55 320 930 1688 2060 1728 987 368 81 8

|

!

39 280 906 1736 2170 1832 1042 384 83 8
1 8 28 56 70 56 28 8 1

For e = (2,—1) and e = (0, —1), our implementation correctly computes the
following Betti numbers, respectively, of the minimal resolutions:

0o 1 2 3 4 5 6 7 8 9 10 11
.. . .
| . 55 320 891 1408 1155
|

|

1155 1408 891 320 55

... .
\ 55 320 900 1488 1470 720 315 80 9 .
| . . 9 80 315 720 1470 1488 900 320 55
| S 1

Each of these computations took several minutes and the results agree with
those presented in [ES18] using exact methods which took several hours. To
consider larger examples, more efficient algorithms and/or implementations for
computing the singular value decomposition of a complex are needed.
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