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Abstract

Singular value decompositions of matrices are widely used in numerical lin-
ear algebra with many applications. In this paper, we extend the notion of
singular value decompositions to finite complexes of vector spaces. We pro-
vide two methods to compute them and present several applications.

1 Introduction
For a matrix A ∈ Rm×k, a singular value decomposition (SVD) of A is

A = U · Σ · V t

where U ∈ Rm×m and V ∈ Rk×k are orthogonal and Σ ∈ Rm×k is diagonal
with nonnegative real numbers on the diagonal. The diagonal entries of Σ, say
σ1 ≥ · · · ≥ σmin{m,k} ≥ 0 are called the singular values of A and the num-
ber of nonzero singular values is equal to the rank of A. Extensions to matrices
in Cm×k simply involve replacing orthogonal with unitary and transpose with Her-
mitian transpose (conjugate transpose). Singular value decomposition is used to
solve many problems in numerical linear algebra such as pseudoinversion, least
squares solving, and low-rank matrix approximation. For example, the Eckart-
Young theorem [EY36] shows that for r = 0, . . . ,min{m, k} − 1, σr+1 is the
2-norm distance between A and the set of matrices of rank at most r. In fact,

Ar = U · diag(σ1, . . . , σr, 0, . . . , 0)m×k · V t
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has rank at most r with σr+1 = ‖A− Ar‖2 and solves

(1) min
B∈Rm×k

{‖A− B‖2 | rankB ≤ r}.

A matrix A ∈ Rm×k defines a linear map A : Rk → Rm via x 7→ Ax denoted

Rm �A Rk.

Geometrically, the singular values of A are the lengths of the semi-axes of the
ellipsoid arising as the image of the unit sphere under this map defined by A.

Matrix multiplication simply corresponds to function composition. For exam-
ple, if B ∈ R`×m, then B ◦ A : Rk → R` is defined by x 7→ BAx denoted

R` �B Rm �A Rk.

If B ◦ A = 0, then this composition forms a complex denoted

0 � R` �B Rm �A Rk � 0.

In general, a finite complex of finite-dimensional R-vector spaces

0 � C0
�A1

C1
�A2

. . . �
An−1

Cn−1
�An

Cn
� 0

consists of vector spaces Ci
∼= Rci and differentials given by matrices Ai so that

Ai ◦ Ai+1 = 0. We denote such a complex by C• and its ith homology group as

Hi = Hi(C•) =
kerAi

imageAi+1

with hi = dimHi. Complexes are standard tools that occur in many areas of
mathematics including differential equations, e.g. [AFW06, AFW10]. One of the
reasons for developing a singular value decomposition of complexes is to compute
the dimensions hi efficiently and robustly via numerical methods when each Ai is
only known approximately, say Bi. For example, if the rank of each Ai is known,
say ri, then each hi can easily be computed via

hi = ci − (ri + ri+1).

One option would be to compute the singular value decomposition of each Bi in
order to compute the rank of Ai since the singular value decomposition is an ex-
cellent rank-revealing numerical method. However, simply decomposing each Bi

ignores the important information that the underlying matricesAi form a complex.
The key point of this paper is that we can utilize information about the complex

to provide more specific information that reflects the structure it imposes.
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Theorem 1.1 (Singular value decomposition of complexes). Let A1, . . . , An with
Ai ∈ Rci−1×ci , ri = rankAi, and hi = ci − (ri + ri+1) be a sequence of matri-
ces which define a complex C•, i.e., Ai ◦ Ai+1 = 0. Then, there exists sequences
U0, . . . , Un and Σ1, . . . ,Σn of orthogonal and diagonal matrices, respectively,
such that

(2) U t
i−1 ◦ Ai ◦ Ui =


ri ri+1 hi

ri−1 0 0 0
ri Σi 0 0
hi−1 0 0 0


where all diagonal entries of Σi are strictly positive. Moreover, if every ri > 0
and at least one hi > 0, then the orthogonal matrices Ui can be chosen such that
detUi = 1, i.e., each Ui is a special orthogonal matrix.

The diagonal entries of Σ1, . . . ,Σn are the singular values of the complex which
are described in Remark 4.3. Just as with matrices, singular value decomposi-
tion of complexes naturally extends to complexes involving entries with complex
numbers by simply replacing orthogonal with unitary and transpose with Hermi-
tian transpose (conjugate transpose). However, such an extension is not needed
for the applications in this article.

We develop two methods that utilize the structure of the complex C• to com-
pute a singular value decomposition of C•. The successive projection method
described in Algorithm 3.1 uses the orthogonal projection

Pi−1 : Ci−1 → kerAi−1

together with the singular value decomposition of the matrix Pi−1◦Ai. The second
method, described in Algorithm 3.3, is based on using each Laplacian

∆i = At
i ◦ Ai + Ai+1 ◦ At

i+1.

Both of these methods can be applied to numerical approximations Bi of Ai.
The organization of this paper is as follows. Section 2 proves Theorem 1.1

and collects a number of basic facts along with defining the pseudoinverse of
a complex. Section 3 describes the algorithms mentioned above and illustrates
them on an example. Section 4 considers projecting an arbitrary sequence of
matrices onto a complex. Section 5 provides an application to computing Betti
numbers of minimal free resolutions of graded modules over the polynomial ring
Q[x0, . . . , xn] which combines our method with ideas from [EMSS16].
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2 Basics
We first prove our main theorem on singular value decomposition of complexes.

Proof of Theorem 1.1. For convenience, let A0 = An+1 = 0 compliment the ma-
trices A1, . . . , An that describe the complex C•. By the homomorphism theorem,

(kerAi)
⊥ ∼= imageAi.

The singular value decomposition for a complex follows by applying singular
value decomposition to this isomorphism and extending an orthonormal basis of
these spaces to an orthonormal basis of Rci−1 and Rci . Since imageAi+1 ⊂ kerAi,
we have an orthogonal direct sum

(kerAi)
⊥ ⊕ imageAi+1 ⊂ Rci

with

Hi := ((kerAi)
⊥ ⊕ imageAi+1)⊥ = kerAi ∩ imageA⊥i+1

∼=
kerAi

imageAi+1

.

With respect to these subspaces, we can decompose Ai as


(kerAi)

⊥ imageAi+1 Hi

(kerAi−1)⊥ 0 0 0
imageAi Σi 0 0
Hi−1 0 0 0

.
Indeed, Ai has no component mapping to (imageAi)

⊥, which explains six of the
zero blocks, and kerAi = (kerAi)

⊥⊥ = imageAi+1 ⊕Hi explains the remaining
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two. TakeUi to be the orthogonal matrix whose column vectors form the orthonor-
mal basis of the spaces (kerAi)

⊥ and imageAi+1 induced from the singular value
decomposition of (kerAi)

⊥ → imageAi and (kerAi+1)⊥ → imageAi+1 ex-
tended by an orthogonal basis of Hi in the decomposition

(kerAi)
⊥ ⊕ imageAi+1 ⊕Hi = Rci .

The linear mapAi has, in terms of these bases, the description U t
i−1◦Ai◦Ui which

has the desired shape.
Finally, to achieve detUi = 1, we may, for 1 ≤ k ≤ ri, change signs of

the kth column in Ui and (ri−1 + k)th column of Ui−1 without changing the result
of the conjugation. If hi > 0, then changing the sign of any of the last hi columns
of Ui does not affect the result either. Thus, this gives us enough freedom to reach
detUi = 1 for all i = 0, . . . , n.

The singular values of a matrix A are the square roots of the eigenvalues
of At ◦ A. The following generalizes this relationship to singular values of a com-
plex and eigenvalues of the Laplacians.

Corollary 2.1 (Repetition of eigenvalues). Suppose that A1, . . . An define a com-
plex with A0 = An+1 = 0. Let ∆i = At

i ◦ Ai + Ai+1 ◦ At
i+1 be the corresponding

Laplacians. Then, using the orthonormal bases described by the Ui’s from Theo-
rem 1.1, the Laplacians ∆i have the shape


ri ri+1 hi

ri Σ2
i 0 0

ri+1 0 Σ2
i+1 0

hi 0 0 0

.
In particular,

1. ker ∆i = Hi;

2. if ri = rankAi and σi
1 ≥ σi

2 ≥ . . . ≥ σi
ri
> 0 are the singular values of Ai,

then each (σi
k)2 is an eigenvalue of both ∆i and ∆i−1.

Proof. The structure of ∆i follows immediately from the structure described in
Theorem 1.1. The remaining assertions are immediate consequences.

Let A+
i denote the Moore-Penrose pseudoinverse of the Ai. Thus, a singular

value decomposition

Ai = Ui−1 ◦

 0 0 0
Σi 0 0
0 0 0

 ◦ U t
i yields A+

i = Ui ◦

0 Σ−1
i 0

0 0 0
0 0 0

 ◦ U t
i−1.

5



Proposition 2.2. Suppose thatA1, . . . , An define a complex withA0 = An+1 = 0.
Then, A+

i+1 ◦ A+
i = 0 and

idRci − (A+
i ◦ Ai + Ai+1 ◦ A+

i+1)

defines the orthogonal projection of Rci onto the homology Hi.

Proof. We know thatA+
i ◦Ai defines the projection onto (kerAi)

⊥ andAi+1◦A+
i+1

defines the projection onto imageAi+1. The result follows immediately since
these spaces are orthogonal and Hi = ((kerAi)

⊥ ⊕ imageAi+1)⊥.

For a complex C• with

0 � Rc0 �A1 Rc1 �A2
. . . �

An Rcn � 0,

the pseudoinverse complex, denoted C+
• , is

0 - Rc0
A+

1- Rc1
A+

2- . . .
A+

n- Rcn - 0.

Remark 2.3. If the matrices Ai have entries in a subfield K ⊂ R, then the pseu-
doinverse complex is also defined over K. This follows since the pseudoinverse
is uniquely determined by the Penrose relations [Pen55]:

Ai ◦ A+
i ◦ Ai = Ai, Ai ◦ A+

i = (Ai ◦ A+
i )t,

A+
i ◦ Ai ◦ A+

i = A+
i , A+

i ◦ Ai = (A+
i ◦ Ai)

t,

which form an algebraic system of equations for the entries of A+
i with a unique

solution whose coefficients are in K. In particular, this holds for K = Q.
If the entries of the matrices are in the finite field Fq, the pseudoinverse of Ai

is well defined over Fq with respect to the dot-product on Fci
q and Fci−1

q if

kerAi ∩ (kerAi)
⊥ = 0 ⊂ Fci

q and imageAi ∩ (imageAi)
⊥ = 0 ⊂ Fci−1

q .

We have implemented the computation of the pseudoinverse complex for dou-
ble precision floating-point numbers R53, the rationals Q, and finite fields Fq in
our Macaulay2 package SVDComplexes.

6

http://macaulay2.com/doc/Macaulay2/share/doc/Macaulay2/SVDComplexes/html/


3 Algorithms
We present two algorithms for computing a singular value decomposition of a
complex followed by some examples.

Algorithm 3.1 (Successive projection method).
INPUT: Sequence A1, . . . , An of real matrices forming a complex C•.
OUTPUT: Integers r1, . . . , rn, orthogonal matrices U0, . . . , Un and diagonal ma-
trices Σ1, . . . ,Σn forming a singular value decomposition of C•.

1. Set r0 = 0, Q0 = 0, and P0 = idC0 .

2. For i = 1, . . . , n

a. Compute the (ci−1 − ri−1)× ci matrix Ãi = Pi−1 ◦ Ai.

b. Compute a singular value decomposition of Ãi, say Ãi = Ũi ◦ Σ̃i ◦ Ṽ t
i .

c. Set ri = rank Σ̃i.

d. Decompose

Ṽ t
i =

(
Qi

Pi

)
into submatrices consisting of the first ri and last ci − ri rows of Ṽ t

i .

e. Compute

U t
i−1 =

(
Qi−1

Ũ t
i−1 ◦ Pi−1

)
.

f. If i = n, set Un = Ṽ t
n and then compute Σ1, . . . ,Σn satisfying (2).

3. Return r1, . . . , rn, U0, . . . , Un, and Σ1, . . . ,Σn.

Proof of correctness. By induction on i, we will see that Pi defines the orthogonal
projection Ci → kerAi. Since V t

i is orthogonal,(
Qi

Pi

)
◦
(
Qt

i P t
i

)
=

(
idri 0
0 idci−ri

)
where idk denotes a k× k identity matrix, we additionally conclude that Qi is the
orthogonal projection Ci → (kerAi)

⊥. This is trivially true for A0 = 0.
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For the induction step, imageAi ⊂ kerAi−1 implies that Qi−1 ◦ Ai = 0.
Hence, Ai and Pi−1 ◦ Ai = Ãi have the same nonzero singular values. From

Ãi = Ũi ◦ Σ̃i ◦ Ṽ t
i and Ṽ t

i =

(
Qi

Pi

)
,

we see that Pi defines the orthogonal projection Ci → kerAi. Moreover,

U t
i−1 ◦ Ai ◦ Ui =

(
Qi−1

Ũ t
i−1 ◦ Pi−1

)
◦ Ai ◦

(
Qt

i P t
i ◦ Ũi

)
=

(
0

Ũ t
i−1 ◦ Ãi

)
◦
(
Qt

i P t
i ◦ Ũi

)
=

 0

Ũ t
i−1 ◦ Ũi−1 ◦ Σ̃i ◦

(
Qi

Pi

) ◦ (Qt
i P t

i ◦ Ũi

)

=

 0

Σ̃i ◦
(

idri 0

0 idci−riŨi

)
=

 0 0
Σi 0
0 0



since

Σ̃i ◦
(

0
idci−ri

)
= 0.

Hence, Algorithm 3.1 computes a singular value decomposition of C•.

Remark 3.2. Algorithm 3.1 was presented using exact input data A1, . . . , An for
the complex C• and exact computations. When using numerical approximations
B1, . . . , Bn for the matrices A1, . . . , An, this algorithm can be easily modified
to use floating-point arithmetic to produce a good numerical approximation of a
singular value decomposition for C• provided that:

i) the approximations B1, . . . , Bn of A1, . . . , An are sufficiently accurate,

ii) the correct rank is identified in Step 2c, and

iii) floating-point arithmetic using sufficiently high precision is utilized.
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We can alter Step 2c when using floating-point arithmetic to obtain more confi-
dence in the correctness of the computation of r1, . . . , rn. One natural approach
is to start with two approximations B1, . . . , Bn and B′1, . . . , B

′
n in different pre-

cisions and determine r1, . . . rn as the number of stable singular values, i.e., the
singular values which have approximately the same value in both computations.
Moreover, since orthogonal matrices have unit condition number, they maintain
lengths so that the rank ri can be reliably computed in Step 2c for all i = 1, . . . , n.

The second method for computing a singular value decomposition is based
on using the Laplacians and Corollary 2.1 which generalizes the description of
singular values of a matrix A as the square roots of the eigenvalues of At ◦ A.

Algorithm 3.3 (Laplacian method).
INPUT: Sequence A1, . . . , An of real matrices forming a complex C•.
OUTPUT: Integers r1, . . . , rn, orthogonal matrices U0, . . . , Un and diagonal ma-
trices Σ1, . . . ,Σn forming a singular value decomposition of C•.

1. Compute an eigendecomposition of ∆0 = A1 ◦At
1, i.e., compute an orthogonal

matrix U0 ∈ Rc0×c0 and diagonal matrix D0 ∈ Rc0×c0 where the diagonal
entries are listed in decreasing order such that

∆0 = U0 ◦D0 ◦ U t
0.

2. Let r1 be the number of nonzero diagonal entries of D0, Ṽ1 be the first r1

columns of U0, Σ1 ∈ Rr1×r1 be the diagonal matrix with (Σ1)jj =
√

(D0)jj ,
and Ũ1 = At

1 ◦ Ṽ1 ◦ Σ−1
1 .

3. For i = 1, . . . , n− 1:

a. Extend Ũi to an orthogonal matrix Ui ∈ Rci×ci forming a eigenbasis for
∆i = At

i−1 ◦ Ai−1 + Ai ◦ At
i such that

∆i = Ui ◦Di ◦ U t
i

where Di ∈ Rci×ci is a diagonal matrix of the form

Di =

(
Σ2

i

Λi

)
and the diagonal entries in Λi are listed in decreasing order.
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b. Let ri+1 be the number of nonzero diagonal entries of Λi, Ṽi+1 be the
ri + 1, . . . , ri + ri+1 columns of Ui, Σi+1 ∈ Rri+1×ri+1 be the diagonal ma-
trix with (Σi+1)jj =

√
(Λi)jj , and Ũi+1 = At

i+1 ◦ Ṽi+1 ◦ Σ−1
i+1.

c. If i = n− 1, extend Ũn to an orthogonal matrix Un ∈ Rcn×cn .

4. Return r1, . . . , rn, U0, . . . , Un, and Σ1, . . . ,Σn.

Proof of correctness. Since each ∆i is symmetric, it is diagonlizable, i.e., has an
orthonormal basis consisting of eigenvectors. By construction, the first ri columns
of Ui form a basis for (kerAi)

⊥, the next ri+1 columns of Ui form a basis for
imageAi+1 and the last hi = ci − (ri + ri+1) columns of Ui form a basis for
Hi. By the homomorphism theorem, (kerAi)

⊥ ∼= imageAi means that we can
reuse ri columns from Ui−1 which form a basis for imageAi as the first ri columns
of Ui forming a basis for (kerAi)

⊥. This immediately yields that

U t
i−1 ◦ Ai ◦ Ui =

 0 0 0
Σi 0 0
0 0 0


thereby computing a singular value decomposition for C•.

Remark 3.4. If all of the eigenvalues of all of the Laplacians are distinct, then
every eigenvector of length one is defined uniquely up to sign. Hence, one can
compute eigendecompositions of the ∆i’s independently, e.g., using parallel com-
putations. A singular value decomposition can then be computed by simply rear-
ranging and changing signs on the eigenvectors as needed.

Remark 3.5. The comments in Remark 3.2 in reference to Algorithm 3.1 related
to using numerical approximations hold for Algorithm 3.3 modulo identifying the
correct rank in Steps 2 and 3b. The key aspect is to use sufficiently high precision
to distinguish between small nonzero and zero eigenvalues due to the squaring of
the singular values.

Example 3.6. We consider the complex

0 � R3 �A1 R5 �A2 R5 �A3 R3 � 0

where the matrices A1, A2, A3, respectively, are

14 −4 16 3 −9
14 −5 20 9 1
4 1 −4 −12 −24

 ,


−43 −50 −27 −51 9
12 −24 36 0 −12
35 34 27 39 −9
−3 −10 3 −6 −1
−11 −10 −9 −12 3

 ,


−8 −16 −12
−5 −1 −15
−1 13 −14
12 12 28
−1 25 −24

 .
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Printed with 4 digits only, the orthogonal matrices U0, . . . , U3, respectively, are

−0.6553 0.2393 −0.7165
−0.7549 −0.1745 0.6322
0.0262 0.9551 0.2950

 ,


−0.5694 0.1646 −0.7702 −0.1318 0.1950
0.1862 0.0303 0.0679 −0.9710 0.1301
−0.7448 −0.1213 0.6010 −0.0706 0.2537
−0.2631 −0.4289 −0.0790 −0.1821 −0.8411
0.1309 −0.8794 −0.1862 0.0404 0.4162

 ,


0.5019 −0.1770 0.2288 0.5338 0.6160
0.5257 0.6126 0.3335 0.1127 −0.4738
0.3586 −0.7250 0.3461 −0.3015 −0.3677
0.5735 0.0970 −0.5972 −0.5061 0.2210
−0.1195 0.2417 0.6000 −0.5961 0.4604

 ,

−0.2525 −0.2843 −0.9249
0.1813 −0.9528 0.2434
−0.9505 −0.1062 0.2921


Hence, for i = 1, 2, 3, the matrices Σi = U t

i−1 ◦ Ai ◦ Ui are

34.489 0 0 0 0
0 28.714 0 0 0
0 0 0 0 0

 ,


0 0 0 0 0
0 0 0 0 0

114.08 0 0 0 0
0 47.193 0 0 0
0 0 0 0 0

 ,


0 0 0
0 0 0

45.993 0 0
0 35.209 0
0 0 0


showing that ri = rankAi = 2 and hi = dimHi = 1 for i = 1, 2, 3. In particular,
the following diagram commutes:

0 R3oo R5A1oo R5A2oo R3A3oo 0oo

0 R3oo

U0

OO

R5

Σ1

oo

U1

OO

R5

Σ2

oo

U2

OO

R3

Σ3

oo

U3

OO

0oo

One can use this singular value decomposition to compute the pseudoinverse
complex. For example, A+

1 , printed with 6 decimal places is
0.012191 0.011463 0.005043
−0.003285 −0.004260 0.001150

0.013141 0.017040 −0.004601
0.001425 0.008366 −0.014466
−0.009815 0.002481 −0.029152


which is a numerical approximation of the exact matrix

5978/490373 5621/490373 2473/490373
−1611/490373 −2089/490373 564/490373

6444/490373 8356/490373 −2256/490373
699/490373 8205/980746 −14187/980746

−4813/490373 2433/980746 −28591/980746

 .
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Moreover, this simple example is fairly stable against errors. For example, the
algorithms predict the dimension of the homology groups correctly upon perturb-
ing the entries of the matrices Ai on the order of ≤ 10−3 and using a threshold
of 10−2 to compute the ranks, e.g., see SVDComplexes.

Example 3.7. We compared Algorithms 3.1 and 3.3 for verifying the dimension of
homology groups for randomly generated complexes of various sizes with known
homology group dimensions. Table 1 compares the timings of these algorithms.

c0 c1 c2 c3 h0 h1 h2 h3 Alg. 3.1 (sec) Alg. 3.3 (sec)
7 21 28 14 2 3 2 1 0.00211 0.0110
8 27 35 17 3 6 4 2 0.00225 0.0182
9 33 42 20 4 9 6 3 0.00254 0.0294
10 39 49 23 5 12 8 4 0.00291 0.0647
11 45 56 26 6 15 10 5 0.00355 0.1090
12 51 63 29 7 18 12 6 0.00442 0.1150

Table 1: Comparison of timings using Algorithms 3.1 and 3.3.

Example 3.8. We constructed a series of examples from Stanley-Reisner simpli-
cial complexes ofN randomly chosen squarefree monomial ideals in a polynomial
ring with k variables. The results are summarized in Table 2.

4 Projection
One application of using the singular value decomposition of a complex is to
compute the pseudoinverse complex as described in Section 2. The following
projects a sequence of matrices onto a complex.

Algorithm 4.1 (Projection to a complex).
INPUT: A sequence B1, . . . , Bn of ci−1 × ci matrices and a sequence h0, . . . , hn
of desired dimension of homology groups.
OUTPUT: If possible, a sequence A1, . . . , An of matrices which define a complex
with desired homology.

1. Set r0 = 0 and compute r1, . . . , rn+1 from hi = ci− (ri + ri+1) recursively.
If ri < 0 or ri > rankBi for some i or rn+1 6= 0, then return the error
message: “The desired dimension of homology groups cannot be satisfied.”
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k N c0 c1 c2 . . . Alg 3.1
h0 h1 h2 . . . (sec)

8 20 8 27 44 30
1 0 0 1 0.0019

9 21 9 35 74 85 46
1 0 0 0 0 0.0036

10 23 10 45 118 190 173 69
1 0 0 0 3 0 0.0198

11 26 11 55 165 326 431 361 156 19
1 0 0 0 0 0 2 0 0.2410

12 30 12 66 218 474 694 664 375 101
1 0 0 0 0 0 2 0 1.29

13 35 13 78 286 712 1253 1553 1291 639 141
1 0 0 0 0 0 0 6 1 39.7

14 41 14 91 364 996 1948 2741 2687 677 559 75
1 0 0 0 0 0 0 7 0 0 355.

Table 2: Comparison of timings using Algorithm 3.1.

2. Set Q0 = 0 and P0 = idC0 .

3. For i = 1, . . . , n

a. Compute the (ci−1 − ri−1)× ci matrix B̃i = Pi−1 ◦Bi.

b. Compute the singular value decomposition

B̃i = Ũi−1 ◦ Σ̃i ◦ Ṽ t
i .

c. Compute

Σi =


ri ri+1 hi

ri−1 0 0 0
ri Σi 0 0
hi−1 0 0 0


as a block matrix where Σi is a diagonal matrix whose entries are the
largest ri singular values of B̃i.

d. Decompose

Ṽ t
i =

(
Qi

Pi

)
into submatrices consisting of the first ri and last ci − ri rows of Ṽ t

i .
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e. Compute

U t
i−1 =

(
Qi−1

Ũ t
i−1 ◦ Pi−1

)
.

f. If i = n, then set Un = Ṽ t
n .

4. Set Ai = Ui−1 ◦ Σi ◦ U t
i and return A1, . . . , An.

Proof of correctness. It is clear that the construction of the Ai’s yields a complex
presented in the form of (2).

Example 4.2. In our package RandomComplexes, we have implemented several
methods to produce complexes over the integers. The first function randomChain-
Complex takes as input sequences h1, . . . , hn and r1, . . . , rn of desired dimension
of homology groups and ranks of the matrices, respectively. It uses the LLL al-
gorithm [LLL82] to produce examples of desired moderate height. It runs fast for
complexes with ci ≤ 100 but is slow for larger examples because of the use of the
LLL-algorithm. Example 3.6 was produced this way.

For a given a complex, only allowing one homology group to change provides
a description of its singular values. This is summarized in the following.

Remark 4.3. For a matrix A ∈ Rm×k, σr+1 is the distance between A and set of
matrices of rank at most r via (1). Singular values of a complex have a similar
description. In particular, if A1, . . . , An define a complex C• with Ai ∈ Rci−1×ci ,
ri = rankAi, and A0 = An+1 = 0, then, for r = 0, . . . , ri − 1, the (r + 1)st

singular value of Ai, namely σi
r+1, is equal to

(3) min
B∈Rci−1×ci

{‖Ai − B‖2 | rankB ≤ r, Ai−1 ◦B = 0, B ◦ Ai+1 = 0}

which one can view as the distance between the complex C• and the set of com-
plexes consisting of matrices A1, . . . , Ai−1, B,Ai+1, . . . , An where rankB ≤ r.
Moreover, one can solve (3) using a singular value decomposition forC• with, say,
orthogonal matrices U0, . . . , Un and diagonal matrices Σ1, . . . ,Σn. In particular,
with Σi = diag(σi

1, . . . , σ
i
ri

)ri×ri , the matrix

Bi
r = Ui−1 ◦

 0 0 0
Λi

r 0 0
0 0 0

 ◦ U t
i

solves (3) where Λi
r = diag(σi

1, . . . , σ
i
r, 0, . . . , 0)ri×ri and σi

r+1 = ‖Ai − Bi
r‖2.
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Measuring distances between two sequences of matrices where only one ma-
trix is different can be viewed as equivalent to simply measuring the distance
between the only differing matrices. Remark 4.3 uses this to describe the singular
values of complex. Algorithm 4.1 also uses this idea via a greedy approach at
each step in its construction. In general, one can construct equivalent norms on
sequences of matrices by building from the norms of the individual entries of the
matrices. Given a sequence of matrices B1, . . . , Bn and constants αi, βi > 0, then

n∑
i=1

αi‖Bi‖2 and max {βi‖Bi‖2 | i = 1, . . . , n}

are easily seen to be equivalent norms. Therefore, given a norm on a sequence
of matrices, we leave it as an open problem to compute the nearest complex with
desired homology group dimensions to a given sequence of matrices.

5 Application to syzygies
We conclude with an application concerning the computation of Betti numbers
in free resolutions. Let S = K[x0, . . . , xn] be the standard graded polynomial
ring and M a finitely generated graded S-module. Then, by Hilbert’s syzygy
theorem, M has a finite free resolution:

0 � M � F0
�ϕ1

F1
�ϕ2

. . . �
ϕc

Fc
� 0

by free graded S-modules Fi =
∑

j S(−i− j)bij of length c ≤ n+1. Here S(−`)
denotes the free S-module with generator in degree `.

If we choose in each step a minimal number of homogenous generators, i.e.,
if ϕi(Fi) ⊂ (x0, . . . xn)Fi−1, then the free resolution is unique up to an isomor-
phism. In particular, the Betti numbers bij of a minimal resolution are numerical
invariants of M . On the other hand, for basic applications of free resolutions such
as the computation of Ext and Tor-groups, any resolution can be used.

Starting with a reduced Gröbner basis of the submodule ϕ1(F1) ⊂ F0 there is,
after some standard choices on orderings, a free resolution such that at each step
the columns of ϕi+1 form a reduced Gröbner basis of kerϕi. This resolution is
uniquely determined however, in most cases, highly nonminimal. An algorithm to
compute this standard nonminimal resolution was developed in [EMSS16] which
turned out to be much faster than the computation of a minimal resolution by
previous methods.

The following forms the examples which we use as test cases.
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Proposition 5.1 (Graded Artinian Gorenstein Algebras). Let f ∈ Q[x0, . . . , xn]
be a homogeneous polynomial of degree d. In S = Q[∂0, . . . , ∂n], consider the
ideal I = 〈D ∈ S | D(f) = 0〉 of constant differential operators which annihi-
late f . Then, A⊥f := S/I is an artinian Gorenstein Algebra with socle in degree d.

For more information on this topic see, e.g., [RS00].

Example 5.2. Let f = `4
1 + . . . + `4

18 ∈ Q[x0, . . . , x7] be the sum of 4th pow-
ers of 18 sufficiently general chosen linear forms `s. The Betti numbers bij of
the minimal resolution M = A⊥f as an S-module are zero outside the range
i = 0, . . . , 8, j = 0, . . . , 4. In this range, they take the values:

j \ i 0 1 2 3 4 5 6 7 8
0 1 . . . . . . . .
1 . 18 42 . . . . . .
2 . 10 63 288 420 288 63 10 .
3 . . . . . . 42 18 .
4 . . . . . . . . 1

which, for example, says that F2 = S(−3)42 ⊕ S(−4)63. We note that the sym-
metry of the table is a well-known consequence of the Gorenstein property.

On the other hand the Betti numbers of the uniquely determined nonminimal
resolution are much larger:

j \ i 0 1 2 3 4 5 6 7 8
0 1 . . . . . . . .
1 . 18 55 75 54 20 3 . .
2 . 23 145 390 580 515 273 80 10
3 . 7 49 147 245 245 147 49 7
4 . 1 7 21 35 35 21 7 1

To deduce from this resolution the Betti numbers of the minimal resolution, we
can use the formula

bij = dim TorSi (M,Q)i+j.

For example, to deduce b3,2 = 288, we have to show that the 5th constant strand
of the nonminimal resolution

0 � Q1 � Q49 � Q390 � Q54 � 0

has homology only in one position.
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The matrices defining the differential in the nonminimal resolution have poly-
nomial entries whose coefficients in Q can have very large height such that the
computation of the homology of the strands becomes infeasible. There are two
options, how we can get information about the minimal Betti numbers:

• Pick a prime number p which does not divide any numerator of the nor-
malized reduced Gröbner basis and then reduce modulo p yielding a mod-
uleM(p) with the same Hilbert function asM . Moreover, for all but finitely
many primes p, the Betti numbers of M as an Q[x0, . . . , xn]-module and
of M(p) as Fp[x0, . . . , xn]-module coincide.

• Pass from a normalized reduced Gröbner basis of ϕ1(F1) ⊂ F0 to a floating-
point approximation of the Gröbner basis. Since in the algorithm for the
computation of the uniquely determined nonminimal resolution [EMSS16],
the majority of ground field operations are multiplications, we can hope that
this computation is numerically stable and that the singular value decompo-
sitions of the linear strands will detect the minimal Betti numbers correctly.

Example 5.3. We experimented with artinian graded Gorenstein algebras con-
structed from randomly chosen forms f ∈ Q[x0, . . . , x7] in 8 variables which
were the sum of n 4th powers of linear forms where 11 ≤ n ≤ 20. This ex-
periment showed that roughly 95% of the Betti table computed via floating-point
arithmetic coincided with one computed over a finite field. The reason for this was
that the current implementation uses only double precision floating-point compu-
tations which caused difficulty in detecting zero singular values correctly. This
could be improved following Remark 3.2 using higher precision arithmetic.

We now consider a series of examples related to the famous Green’s conjecture
on canonical curves which was proved in a landmark paper [Voi05] for generic
curves. In S = Q[x0, . . . , xa, y0, . . . , yb], consider the homogeneous ideal Je gen-
erated by the 2× 2 minors of(

x0 x1 . . . xa−1

x1 x2 . . . xa

)
and

(
y0 y1 . . . yb−1

y1 y2 . . . yb

)
together with the entries of the (a− 1)× (b− 1) matrix

x0 x1 x2

x1 x2 x3
...

...
...

xa−2 xa−1 xa


0 0 e2

0 −e1 0
1 0 0

y0 y1 . . . yb−2

y1 y2 . . . yb−1

y2 y3 . . . yb


17



for some parameters e1, e2 ∈ Q. Then, by [ES18], Je is the homogeneous ideal
of an arithmetically Gorenstein surface Xe(a, b) ⊂ Pa+b+1 with trivial canonical
bundle. Moreover, the generators of Je form a Gröbner basis. To verify the generic
Green’s conjecture for curves of odd genus g = 2a + 1, it suffices to prove, for
some values e = (e1, e2) ∈ Q2, that Xe(a, a) has a “natural” Betti table, i.e., for
each k there is at most one pair (i, j) with i + j = k and bij(Xe(a, a)) 6= 0. For
special values of e = (e1, e2), e.g., e = (0,−1), it is known that the resolution is
not natural, see [ES18].

Example 5.4. For a = b = 6, our implementation computes the following Betti
numbers for the nonminimal resolution: as

| 0 1 2 3 4 5 6 7 8 9 10 11

| 1 . . . . . . . . . . .
| . 55 320 930 1688 2060 1728 987 368 81 8 .
| . . 39 280 906 1736 2170 1832 1042 384 83 8
| . . . 1 8 28 56 70 56 28 8 1

For e = (2,−1) and e = (0,−1), our implementation correctly computes the
following Betti numbers, respectively, of the minimal resolutions:

| 0 1 2 3 4 5 6 7 8 9 10 11

| 1 . . . . . . . . . . .
| . 55 320 891 1408 1155 . . . . . .
| . . . . . . 1155 1408 891 320 55 .
| . . . . . . . . . . . 1

| 1 . . . . . . . . . . .
| . 55 320 900 1488 1470 720 315 80 9 . .
| . . 9 80 315 720 1470 1488 900 320 55 .
| . . . . . . . . . . . 1

Each of these computations took several minutes and the results agree with
those presented in [ES18] using exact methods which took several hours. To
consider larger examples, more efficient algorithms and/or implementations for
computing the singular value decomposition of a complex are needed.
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