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Abstract

Traditionally, learning has been modeled as passively obtaining information or actively explor-

ing the environment. Recent research has introduced models of learning from teachers that involve

reasoning about why they have selected particular evidence. We introduce a computational frame-

work that takes a critical step toward unifying active learning and teaching by recognizing that

meta-reasoning underlying reasoning about others can be applied to reasoning about oneself. The

resulting Self-Teaching model captures much of the behavior of information-gain-based active

learning with elements of hypothesis-testing-based active learning and can thus be considered as a

formalization of active learning within the broader teaching framework. We present simulation

experiments that characterize the behavior of the model within three simple and well-investigated

learning problems. We conclude by discussing such theory-of-mind-based learning in the context

of core cognition and cognitive development.
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1. Introduction

We learn by interacting with the world, by choosing what to look at and what to do.

Through these actions, we accumulate knowledge about the world. We also learn from
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other people. Sometimes these people are knowledgeable about the world and demon-

strate actions with the intent to foster learning, as is the case with informal notions of

teaching (Shafto, Goodman, & Griffiths, 2014). Other times, people may not be fully

knowledgeable but may nevertheless select demonstrations that we observe (Shafto,

Eaves, Navarro, & Perfors, 2012). Indeed, in some teaching contexts, teachers may be no

more knowledgeable than ourselves, in which case their actions may be no better than

uninformed choices of our own (Markant & Gureckis, 2014). To understand learning in

realistic contexts, we must understand actions that are chosen for learning as in active
learning, actions that are chosen for others and their implications for learners as in teach-
ing, as well as integrating both active learning and teaching into a singular experience.

The literatures on active learning and teaching are not wellintegrated despite having

been the subject of extensive independent and joint research. For instance, there is a

robust debate in the educational psychology literature regarding the relative merits of

direct instruction and exploratory learning, which are the analogs of formal models of

teaching and active learning (Bruner, 1961; Kirschner, Sweller, & Clark, 2006; Tobias &

Duffy, 2009). Research has focused on identifying which of these is more effective for

promoting learning, with mixed evidence in favor of exploration (Steffe & Gale, 1995),

direct instruction (Kirschner et al., 2006), and rough equivalence (Klahr & Nigam, 2004).

There has also been extensive research into formalizing active learning and teaching as

different kinds of computational models. Early computational models of active learning

date back to early work by Bruner, Goodnow, and Austin (1956), and sustained recent

attention in this area has resulted in a variety of computational models which converge

around the idea that people choose examples that reduce some globally defined notion of

uncertainty over possible hypotheses (Coenen, Nelson, & Gureckis, 2017; Crupi, Nelson,

Meder, Cevolani, & Tentori, 2018; Nelson, 2005). Similarly, recent modeling has formal-

ized teaching and learning from teaching as a form of recursive reasoning between a tea-

cher and a learner (Frank, 2014; Shafto & Goodman, 2008; Shafto, Goodman, & Frank,

2012; Shafto et al., 2014). These models characterize this form of social learning as a

joint inference about the true hypothesis and the process by which the teacher selects data

(Shafto & Goodman, 2008; Shafto et al., 2014). Although the problems of active learning

and teaching are of common interest to many researchers, to our knowledge, no work has

attempted to synthesize both kinds of learning as a common formal framework in which

we may understand both from a singular learning mechanism.

In this paper, we explore a unified approach to modeling active learning and teaching.

The goal of both active learning and teaching is for the learner to infer the true hypothe-

sis. The defining feature of active learning is that the learner can intervene the world;

however, he or she likes to discover that hypothesis. However, because the learner does

not know the true hypothesis, he or she learns by choosing interventions based on an

intermediate objective. The literature on computational models of active learning reveals

two relatively distinct sets of phenomena summarized by two kinds of objectives. One

objective is that people select interventions with the goal of information gain or minimiz-

ing uncertainty (Crupi et al., 2018; Nelson, 2005; Yang, Lengyel, & Wolpert, 2016). The

other objective is that people select interventions to test hypotheses with a bias toward
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confirmation (Bramley, Dayan, Griffiths, & Lagnado, 2017; Coenen et al., 2017; Klayman

& Ha, 1987; Navarro & Perfors, 2011; Wason, 1960).

In contrast to computational models of active learning, the defining feature of formal

models of teaching is that learners receive demonstrations of an intervention from a

knowledgeable teacher rather than choosing it themselves. Moreover, since demonstra-

tions are chosen by a teacher who knows the true hypothesis, the teacher will therefore

choose demonstrations that he or she thinks will best help the learner infer the true

hypothesis after observing the demonstrations. We explore the idea that models of teach-

ing can be transformed to perform active learning by assuming that the correct hypothesis

is unknown to the teacher. This has the virtue of preserving the core structural element of

theory of mind but applying it reflexively when only a single learner is present. In this

paper, we mathematically derive this form of self-teaching and show through simulations

that the Self-Teaching model exhibits a range of active learning behaviors, favoring inter-

ventions that effectively reduce uncertainty in some cases and those that test for hypothe-

sis in other cases. Thus, self-teaching not only unifies the phenomena of active learning

and teaching, but may also offer insight into how the different phenomena of active

learning can be explained.

The differences between Self-Teaching and standard models of active learning, such as

Expected Information Gain (EIG), derive from different methods of computing which

example to choose next (Fig. 1).1 In this example, we consider one case (Fig. 1, top row)

where the predictions of the Self-Teaching and EIG models exhibit the same ordering of

preferences for which intervention to select, while the other case (Fig. 1, bottom row) is

an instance where the two models exhibit different preferences. Both models make use of

the learner’s posterior but in different ways. The Self-Teaching model takes the sums of

the marginal distributions over hypotheses and observations to determine its response,

while the EIG model calculates the concentration of posterior mass across different

hypotheses as the information gain. A key component of the Self-Teaching model is the

inverse of the marginal probabilities of the hypotheses, which we call distinctiveness. The
distinctiveness of a hypothesis indicates how unlikely a learner would be to infer that

hypothesis if all interventions and observations are equally likely to occur. Equivalently,

from a teacher’s perspective, it indicates how difficult it would be to learn the hypothesis

if the teacher were to uniformly randomly choose an intervention and observation. The

Self-Teaching model has a tendency toward discovering hypotheses with high distinctive-

ness. From the simulations, we see that the distinctiveness of each hypothesis determines

whether the two models will have the same preference or not. When the hypotheses are

all of the same level of distinctiveness as seen in the bottom row of Fig. 1, then the

behavior of the Self-Teaching model differs from EIG.

The rest of the paper will be devoted to formalizing and exploring active learning as a

form of self-teaching. In Section 2, we introduce the mathematical models of EIG and Self-

Teaching. In Section 3.1, we describe the simulation of the learning tasks. In Section 3.2,

we present the simulation results which characterize the behavior of the Self-Teaching

model relative to active learning models. In Section 4, we revisit the potential implications

of a unified model of teaching and active learning and describe open questions.
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2. Theory

To bridge the gap between these two modes of learning, the focus of this theory sec-

tion is to modify the teaching model (Shafto & Goodman, 2008; Shafto et al., 2014) in

two stages to demonstrate how teaching may be reduced to a form of active learning. In

Self-Teaching
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Fig. 1. An illustrative comparison between the Self-Teaching model and Expected Information Gain (EIG)

model. Panels (a) and (b) show a case where the two models begin with the same learner’s posterior and

yield the same most favorable intervention (the starred intervention). In contrast, panels (c) and (d) show a

case where the two models differ in the most favorable choice: The Self-Teaching model favors the second

and third interventions equally, whereas the EIG model predominantly favors the second one. Both models

start with the learner’s posterior, the probability that an agent infers a hypothesis h to be the underlying truth

after seeing an intervention x and the corresponding observation y. The posterior probabilities are represented

in gray scale (black = 1; white = 0). In the Self-Teaching model as shown in panels (a) and (c), a “distinc-

tiveness” is computed for each hypothesis from the learner’s posterior (downward arrows). A hypothesis is

less distinctive if it is on average less likely to be inferred across interventions and observations (i.e., a small

column sum). The learner’s posterior is weighted by the distinctiveness vector to yield the teacher’s posterior.

An intermediate step that marginalizes the teacher’s posterior over the hypotheses for each intervention-obser-

vation (x, y) pair is shown. A further marginalization over the observations yields the Self-Teaching probabil-

ities. In the EIG model in panels (b) and (d), the information gain and predictive probability of each (x, y)
pair are calculated from the learner’s posterior. The information gain of an (x, y) pair is high if the learner’s

posterior is concentrated across the hypotheses for that pair. The EIG of an intervention is calculated by

weighting the information gains with the predictive probabilities and marginalizing out the observations.
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the first stage, we modify the teaching model from providing both features and labels to

just providing instruction on which feature to select (from the top part to the middle part

of Fig. 2b). Mathematically, this involves marginalization over the possible outcomes (la-

bels), which are no longer under the teacher’s control. In the second stage, we further

modify the teaching model so that the teacher no longer knows the true hypothesis, and

averages over his or her own uncertainty when teaching. Mathematically, this involves

marginalization over the possible hypotheses. This kind of teaching is formally equivalent

to a learner simulating a teacher to determine how to teach oneself, hence the term self-
teaching (from the middle part to the bottom of Fig. 2b).

Because the learner selects interventions for herself in self-teaching, it is a form of

active learning. Nevertheless, it is different from information-gain-based active learning

in that the single architecture for meta-reasoning underlies learning for oneself through

active learning, and learning from others through teaching. From a formal perspective,

this reflects a difference in the objective being optimized for. As will be discussed in the

following subsection, the Self-Teaching model shares the goal of choosing interventions

to help inferring the correct hypothesis with the teaching models, but having no access to

the truth. It expresses this goal as a bias to confirm whether the true hypothesis is one

that is difficult to learn if intervention–observation pairs are to occur uniformly at random

(see Fig. 1 and related text). This is in contrast with formalizations of active learning

such as the EIG model. The history of active learning models has been focused on perfor-

mance. From this perspective, maximizing long-run reward—the posterior probability on

the true hypothesis—is optimal, and uncertainty reduction is a well-accepted heuristic.

Here, we take a drastically different perspective by presenting a framework where the

selection of data and inference from data are consistent across teaching and active learn-

ing. In other words, the Self-Teaching model is not motivated by an optimization con-

straint on a performance-related quantity; rather, it is made to satisfy a consistency

constraint of keeping the inference from data and selection of data the same in active

learning and teaching. After introducing the EIG and Self-Teaching models more for-

mally in this section, we highlight both similarities and differences in the predictions of

the two models in Section 3.2.

2.1. Notation for inference

In this section, we formalize learning as Bayesian inference and the associated nota-

tion. The learner’s goal is to infer, from among all possible hypotheses, the true hypothe-

sis. We denote a hypothesis by h, the true hypothesis by h∗ and the space of all

hypotheses by H. Each hypothesis is characterized by a particular set of features and

labels. We denote a feature and a label by x and y, respectively, and the space of possible

features and labels by X and Y, respectively.
Initially, the learner has a prior over hypotheses PL (h), where the hypotheses refer

to either concepts in the concept learning tasks or graphs in the causal learning task

(Section 3.1). For all tasks, the prior is set to be uniform. After observing a feature,

label pair (x, y), the learner updates his or her beliefs in accordance with Bayes’ rule:
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PL(h|x, y) / P(y|x, h)PL(h). After the learner has observed a data point, the new learner’s

prior PL (h) is set to be the current learner’s posterior PL(h|x, y), without loss of generality.

2.2. The Expected Information Gain model

In the problem of active learning, a learner must determine how to efficiently intervene

and sample from the environment for effective learning. One approach is to choose which

pieces of information would be most helpful at reducing the uncertainty about the true

hypothesis, known as information gain (MacKay, 1992; Nelson, 2005).2 Using the EIG

criterion, the basis for selecting which feature to intervene on is determined by how much

(a) (b)

Fig. 2. Comparison of active learning using either (a) the Expected Information Gain (EIG) model or (b) the

Self-Teaching model (and how it can be derived from teaching). In each subfigure, the learner is depicted on the

left (in red) and teacher (if it exists) is shown on the right (in blue when performing “Teaching-by-Interven-

tion,” and in green when performing “Teaching-by-Instruction”), and the position of the object indicates how

either person interacts with it. In the EIG model (left), the learner determines which feature x to select on the

object by calculating the EIG of choosing each feature. The learner performs a query on a particular feature (as

shown by the downward arrow) and receives a set of observations (represented by the different colors on the cir-

cles in the box). On the right, we first illustrate the Teaching-by-Intervention model (top right), where the tea-

cher demonstrates a feature-label pair (x, y) to the learner. By marginalizing over the possible labels y, this
produces the Teaching-by-Instruction model (middle right), where the teacher instructs the learner which feature

x to select (as depicted by the feature shown in purple). Finally, by marginalizing over the hypotheses g, we
show how the Self-Teaching model is a form of active learning. Here, the learner simulates a self-teacher (using

the Teaching-by-Instruction equations) and marginalizes over all hypotheses to determine which feature to

select. In this case, the Self-Teacher ends up performing the same query as the EIG model.
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information the learner would gain on average if he or she intervened on that particular

feature. In order words, the learner selects the feature that maximizes the reduction in

uncertainty about the true hypothesis.

In order to calculate the EIG, we first define the learner’s prior entropy by the Shannon

entropy over possible hypotheses as follows:

HðhÞ ¼
X
h2H

PLðhÞlog 1

PLðhÞ : ð1Þ

After a learner makes an intervention and observes a feature-label pair (x, y), he or she

updates his or her beliefs via Bayes’ rule to obtain a posterior distribution over hypotheses,

PL(h|x, y). From this, we can calculate the learner’s posterior entropy after observing a data

point (x, y):

Hðhjx; yÞ ¼
X
h2H

PLðhjx; yÞlog 1

PLðhjx; yÞ : ð2Þ

We can then calculate the information gain of intervening on a particular feature

x 2 X produced a particular label y 2 Y, as follows:

IGðx; yÞ ¼ HðhÞ � Hðhjx; yÞ: ð3Þ
However, since the set of possible labels that could be observed contains uncertainty,

the EIG is calculated by weighting the posterior entropy by the probability of observing

particular labels given a particular feature as follows:

EIGðxÞ ¼ HðhÞ �
X
y2Y

PLðyjxÞHðhjx; yÞ; ð4Þ

where PLðyjxÞ ¼
P

h2H Pðyjx; hÞPLðhÞ is the predictive distribution over labels. Once the

learner has calculated the EIG using Eq. 4, he or she can choose to select the feature with

the highest EIG. However, research has shown that people do not always prefer to maxi-

mize information gain, and they may instead elect to select features probabilistically in

accordance to the EIG following a softmax choice rule (Sutton & Barto, 1998).

2.3. Teaching models

To unify the phenomena of teaching and active learning, we begin with the pedagogi-

cal model introduced by Shafto and Goodman (2008) and Shafto et al. (2014), which we

call Teaching-by-Intervention here. This model outputs a teaching probability, PT(x, y|h),
which is the probability that the teacher will demonstrate a feature-label pair (x, y) to

teach an underlying hypothesis h to a learner. To move from Teaching-by-Intervention to

our Self-Teaching model of active learning, we perform a number of marginalizations

over possibilities. Each of these marginalizations produces a different kind of teaching
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model: marginalizing out y gives what we call the Teaching-by-Instruction model with

output PT(x|h) that depends only on x and h (Yang & Shafto, 2017); further marginalizing

out h produces the Self-Teaching model with output PT(x), where the probability of

selecting a feature is independent of any particular hypothesis. The objective of the Self-

Teaching model is to favor x that confirms whether the true hypothesis is distinctive—un-

likely to be identified with random observation—and is different from objectives based

on information gain.

2.3.1. Teaching-by-intervention
The standard set-up in a teaching model involves both a teacher and a learner. We

assume that the teacher knows the true underlying hypothesis and gives the learner (x, y)
pairs as an intervention demonstration to help the learner infer the true hypothesis. The

learner’s and teacher’s reasoning under this kind of pedagogical setting can be formalized

as follows (Shafto & Goodman, 2008; Shafto et al., 2014):

PLðhjx; yÞ _ PTðx; yjhÞPLðhÞ; ð5aÞ

PTðx; yjhÞ _ PLðhjx; yÞPTðx; yÞ: ð5bÞ

The term PT(x, y) is set to be uniform because the teacher is indifferent to teaching

any particular data points a priori. To solve this coupled system of equations, one typi-

cally begins by computing the learner’s posterior with the observation likelihood:

PL0 (h | x, y) / P(y | x, h)PL(h). This posterior is then fed into Eq. 5b to obtain an esti-

mate PT0 (x, y|h). Then, this estimate PT0 (x, y|h) is fed into Eq. 5a to obtain an updated

estimate PL1 (h|x, y), which again is fed into Eq. 5b to obtain an updated estimate of

PT1 (x, y|h). This recursion proceeds until the distributions PLn(h|x, y) and PTn(x, y|h) have
converged. What this coupled process describes is that the teacher’s objective is to select

(x, y) so that the learner can correctly infer h, and that the learner knows that the teacher

is providing demonstrations to them for this purpose.

Once this process has converged, and since the teacher knows the true hypothesis h∗,
he or she can then provide a demonstration (x, y) to the learner according to PT(x, y|h

∗),

which is the distribution of demonstrations conditioned on the true hypothesis h∗. Simi-

larly, as the learner knows that the teacher is attempting to provide demonstrations (x, y)
based on the knowledge of h∗, the learner can identify which of the hypotheses is the true

hypothesis h∗ by examining the specific demonstration provided by the teacher. This

recursive and cooperative inference involving a knowledgeable teacher makes the learn-

ing the true hypothesis more efficient than active learning (Yang & Shafto, 2017).

2.3.2. Teaching-by-instruction
The next step to bring us closer to Self-Teaching model, in which the learner actively

selects examples, is to consider the Teaching-by-Instruction model. In this model, rather

than demonstrate to the learner the data point (x, y), the teacher simply instructs the lear-

ner about which feature to intervene upon. We introduce this model for purely
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pedagogical purposes here, although it could be of independent interest in other contexts.

Formally, we modify Eqs. 5b and 6b to

PLðhjx; yÞ _ Pðyjx; hÞPTðxjhÞPLðhÞ; ð6aÞ

PTðxjhÞ ¼
X
y2Y

PTðx; yjhÞ _
X
y2Y

PLðhjx; yÞPTðx; yÞ; ð6bÞ

where we have rewritten the distribution PT(x, y|h) as P(y|x, h) PT(x|h) via the chain rule

and dropped the subscript T from P(y|x, h) because the label is now provided by the

world. The teacher’s choice of x now involves marginalization over possible labels y in

PT(x, y|h), resulting in PT(x|h). In the same manner as Eqs. 5a and 5b, these equations

are iterated until convergence, and then the teacher samples x from the converged

PT(x|h
∗). Eqs. 5b and 6b differ only in the marginalization of the label, y.

2.3.3. Knowledgeability
So far, we have assumed that the teacher has perfect knowledge of the true hypothesis. In

order to have a model of self-teaching, and instead capture the learner’s lack of knowledge,

we must relax this assumption. To do this, we introduce the concept of knowledgeability,
which is modeled by the factor P(g|h), where g 2 H is the probability the teacher thinks g is

the true hypothesis, assuming that h is the true hypothesis. More concretely, P(gj|hi) = a
says that if the true hypothesis is hi, then the teacher thinks the true hypothesis is hj with
probability a.3 A teacher with perfect knowledge of the true hypothesis is described by the

teacher’s knowledgeability d(g|h), where d(gj|hi) = 1 when j = i and is 0 otherwise. This

means that when the true hypothesis is hi, the teacher thinks that gi is the true hypothesis

with probability 1, and this is true for all hypotheses. Using this knowledgeability factor, we

can write the Teaching-by-Instruction distribution of Eq. 6b in a more general form:

PTðxjhÞ ¼
X
g2H

PTðxjgÞdðgjhÞ: ð7Þ

Since the teacher knows the true hypothesis, dT(g|h) is 1 only when g = h, and 0 other-

wise. Therefore, the marginalization over h with the delta function simply replaces g with

h, which recovers Eq. 6b exactly. While the generalization seems trivial in case of Teach-

ing-by-Instruction because it takes the form of a delta function, when the knowledgeabil-

ity factor is less concentrated, it offers a way to introduce uncertainty about the teacher’s

belief about the true hypothesis into the teaching framework.

2.3.4. Self-teaching
Since there is no actual teacher in self-teaching, the learner does not have access to

the true hypothesis. While the teacher’s knowledgeability factor is concentrated on the

true hypothesis, the self-teacher’s knowledgeability must therefore reflect the learner’s
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current belief. Thus, we set the self-teacher’s knowledgeability factor to dST(g|h) = PL(g).
This says that no matter what the (hypothetical) true hypothesis is, the self-teacher

believes that the distribution over true hypothesis is the same as the learner’s prior, ren-

dering the self-teacher only as knowledgeable as the learner is. Following Eq. 7, we add

the self-teacher’s knowledgeability factor into the Teaching-by-Instruction probability.

This turns Eq. 6 into the Self-Teaching equations:

PTðxÞ ¼
X
g2H

PTðxjgÞdSTðgjhÞ ¼
X
g2H

PTðxjgÞPLðgÞ

¼
X
g2H

X
y2Y

PLðgjx; yÞPTðx; yÞPLðgÞ
ZðgÞ :

ð8bÞ

In Eq. 8b, the second equality has the same form as Eq. 7 but includes the self-tea-

cher’s knowledgeability. To obtain the third equality, we expand the term PT(x|g) accord-
ing to Eq. 6b. The term ZðgÞ ¼ P

y2Y
P

x2X PLðgjx; yÞPTðx; yÞ the normalizing constant

that comes from changing the proportionality in Eq. 6b to an equality in Eq. 8b.

Note that the self-teacher’s knowledgeability, PL(g), does not depend on h. After

marginalizing out g, the self-teacher’s selection in Eq. 8b depends only on x and not

on h. Therefore, marginalization using the self-teacher’s knowledgeability factor con-

verts the term PT(x|h) from the Teacher-by-Instruction model that is dependent on h
into the term PT(x) that is independent of h. As in the teaching framework, we can

compute an updated estimate of the Self-Teaching probability in Eq. 8b by feeding the

result into the learner’s inference in Eq. 8a. However, because the teacher’s selection

does not depend on h, this factor cancels out in Eq. 8a. The fact that the teacher’s

selection is independent of h indicates that the learner gains no extra information about

h from reasoning about the self-teacher’s selection, which is what one would expect.

This is reflected by the fact that the self-teacher samples features to intervene according

to Eq. 8b, which does not depend on h and hence cannot depend on the true underlying

hypothesis, h∗. Computationally, this means that the recursive reasoning converges in

one step, and only one pass through Eqs. 8a and 8b is needed to compute the probabil-

ities in the Self-Teaching model.

Self-teaching makes predictions about which choices one should make to learn effec-

tively, but differs in the objective and method to do so compared to the EIG model. To

see this, we first examine the term Z(g) in Eq. 8b. Since PT(x, y) is uniform, the term Z
(g) is the average probability that the learner will infer g as the true hypothesis if all pairs

of (x, y) have equal probability to be observed. Thus, Z(g) can be thought of as how

“common” g is, and its inverse, Z(g)�1, can be thought of as how “distinct” g is.4 The

Z(g) term appears in a ratio with the prior, suggesting that it is the distinctiveness relative

to the prior that matters. Lastly, two expectations over h and y are taken to yield the final
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intervention selection. Thus, the Self-Teaching model can be viewed as a hypothesis-test-

ing model with the objective of confirming whether the underlying true hypothesis has

high expected relative distinctiveness; that is, it selects x so that on average the learner

will more likely observe distinctive hypotheses (as measured by Z(g)�1) relative to the

prior.

2.4. Remarks on the models

The learner’s inference equations in the three kinds of teaching models presented here

—Eqs. 5a, 6a, and 8a—show that different learning settings make use of different sources

of knowledge. In the Teaching-by-Intervention model, in addition to the learner’s prior,

Eq. 5a includes the term PT(x, y|h), indicating that the teacher is the only source of

information. In the Teaching-by-Instruction model, Eq. 6a includes the terms PT(x|h) and
P(y|x, h), indicating that information comes partly from the teacher and partly from

interacting with the environment. In self-teaching, Eq. 8a only requires knowledge from

P(y|x, h), indicating that the environment is the only source of information. This is true

of EIG and other active learning models, and it demonstrates that self-teaching introduces

no additional source of information for inference.

A similar observation can be made for the intervention selection equations. The selec-

tions of intervention according to Eqs. 5b and 6b in the Teaching-by-Intervention and

Teaching-by-Instruction models, respectively, both involve the underlying true hypothesis

h∗, whereas the selections according to Eq. 4 and Eq. 8b do not. Thus, in a teaching set-

ting, the learner benefits from the teacher’s knowledge of the true hypothesis, but this

does is not true in the case of self-teaching.

The Self-Teaching model and EIG model have at least three important differences.

First, the EIG model, as well as other conventional active learning models, only reason

about the world, whereas the Self-Teaching model involves a meta-cognitive component

that reasons about one’s own reasoning. Mathematically, this is expressed by the use of

PT(x|g) and PL(g) in Eq. 8b, indicating that the learner is simulating herself (the PL(g)
term) as a teacher (the PT(x|g) term) who reasons about herself as a learner. In contrast,

the EIG model is solely a function of the learner’s prior and observation likelihood. Sec-

ond, the reasoning behind the two approaches is quite different. The Self-Teaching model

inherits reasoning about individual hypotheses from the teaching model (see the end of

Section 2.3.1). This resembles a kind of hypothesis testing (see the end of Section 2.3.4),

where interventions are chosen based on their expected relative distinctiveness with

respect to individual hypotheses. In contrast, the EIG model is based on entropy, which is

a quantity derived from averaging over hypotheses. Thus, the Self-Teaching model rea-

sons more on the level of individual hypothesis, whereas the EIG model reasons more on

the level of global changes in the beliefs about hypotheses. Third, mathematically, the

Self-Teaching model involves only the rules of probability (sum, product, and Bayes’

rules), whereas the EIG model requires the minus and log mathematical operators to for-

malize the idea of reduction and uncertainty. This difference suggests that the Self-Teach-

ing model cannot be readily reduced to any of the uncertainty-reduction models (e.g.,
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those covered by Crupi et al., 2018). Despite these differences, the two intervention

selection behaviors of these two models can be quite similar. In the next section, we

characterize the similarities and differences through simulation.

3. Simulations

3.1. Tasks

We illustrate the Self-Teaching model with three tasks: two variants of a concept

learning task and a causal learning task. In each of these tasks, we compare and contrast

the predictions of the EIG model to our Self-Teaching model.

3.1.1. Concept learning
The first two tasks we consider are concept learning tasks, where the set of possible

hypotheses are various line segments on an interval as illustrated in Fig. 3a,b. The goal

of the learner is to discover the true hypothesis by querying features from different posi-

tions along the line. We consider two variants of the concept learning task which we call

the boundary task and the line task.
In the boundary task, the hypothesis space consists of all of the unique concepts that

are defined by the location of their boundary (e.g., Markant & Gureckis, 2014). Intu-

itively, a unique hypothesis has been identified when the learner observes two neighbor-

ing positions with different labels. In the line task, the hypothesis space consists of all

possible lines with n features (Shafto & Goodman, 2008; Tenenbaum, 1999). While the

set of concepts is similar in these two tasks, the value of selecting different features dif-

fers in either task due to the set of other hypotheses under consideration. For both con-

cept learning tasks, the learner can only ask for one feature and observe one label at a

time.

We use the following notation for describing the concept learning tasks. First, each

hypothesis h in the concept learning task consists of a set of features X = {xi|xi = i,
i = 1, . . ., n} and labels {yi | yi 2 {0, 1}, i 2 {1, . . ., n}}, where each feature, xi, refers
to a position along the line segment, and each label, yi, refers to whether the line segment

for a given hypothesis exists at that position or not. Thus, each hypothesis can be

described as a set of data points h ¼ fðxi; yiÞgni¼1. For this tasks, the likelihood P(y|x, h)
is given by weak sampling, and it is equal to 1 when x = xi, y = yi and 0 when x = xi,
y 6¼ yi for a given h.

3.1.2. Causal learning
The third task we explore is a causal learning problem. In this task, the learner is pre-

sented with a causal system where the connections between the nodes are not shown, and

the learner must determine which of two possible causal graphs is the true causal graph.

Each causal graph consists of three nodes and the nodes are connected in different config-

urations (see Fig. 3c for one example). The learner can choose to intervene on one of the
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three nodes, which will turn that particular node on, and will also cause other nodes that

are connected downstream of the intervened node to turn on with high probability.5

Depending on the true underlying graph, intervening on different nodes produces different

patterns of nodes turning on, which can help the learner determine which of the two

graphs is the true hypothesis. We consider 27 possible pairs of causal graphs, matching

the set used in Coenen et al. (2015), to compare the predictions of the EIG and Self-

Teaching models for this task.

The notation for the causal learning tasks is similar to the concept learning tasks, albeit

with a few minor differences. The hypotheses h in the causal learning tasks refer to the

different graphs, and each pair of graphs form a hypothesis space H. The features in this

task, x, refer to the three nodes the learner can intervene on, thus x 2 {x1, x2, x3}. The
corresponding label, y, refers to the state of the causal graph after intervening on feature

xi. Thus, if the learner intervened on x1, and this caused both x2 and x3 to turn on, then

the corresponding label would be y ¼ fintervened on; observed on; observed ong.
The set of possible labels for the causal learning task is the four possible sets of observa-

tions over two of the nodes when intervening on the third node, leading to twelve possi-

ble values of y. For this task, the likelihood P(y|x, h) is the likelihood of observing a

particular combination of states for all three nodes, as given by the joint probability over

the directed graphical model when intervening on x.

(a) (b) (c)

Fig. 3. Examples of the three tasks to compare the Expected Information Gain and Self-Teaching models.

We explore two kinds of concept learning which we call the boundary task (a) and the line task (b), which
both involve concepts of varying line segments on a one-dimensional line. In both concept learning tasks, the

set of features xi refers to the different positions along the line. In the boundary game, the set of hypotheses

is restricted to lines where there is a single boundary to disambiguate between hypotheses. On the other hand,

the line task includes all possible single line concepts for a given number of features. In the causal learning
task (c), the hypotheses h are two different causal graphs. The set of features xi in this task refers to which

node the learner chooses to intervene on.
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3.2. Results

In this section, we explore via simulation how the predictions of our proposed Self-

Teaching model fares when compared to EIG model.6 In particular, we explore similari-

ties and differences between these models in their choice of particular features to inter-

vene upon.7 For the boundary task, we ran simulations using both three features and

eight features as shown in Fig. 4. The results show that the EIG model and Self-Teaching

model both favor selecting the central feature, rather than features at the ends. This is

true both in the three feature case (Fig. 4a) where the choice favored by either model is

the central feature, and the eight feature case (Fig. 4b), where both models show a prefer-

ence for the two middle features.8

To further explore the behavior of both models in the boundary task, we conducted an

additional set of simulations in the three feature case, considering how the EIG model

and Self-Teaching model would determine which feature to select after observing a single

data point. The plots showing the four different possibilities are shown in Fig. 5.9 For the

four sets of observations, in each case the results show that the EIG model and Self-

Teaching model both favor the same sets of features.

To further support the conclusion that the Self-Teaching model accords with the

behavior of the EIG model, we consider predictions on a related, but different concept

learning task. Results for the line task are shown in Fig. 6, where we considered hypothe-

sis spaces that again consisted of either three or eight features. The results from these

two simulations show different, yet interesting patterns of predictions that are qualita-

tively different from the boundary task. First, in the three feature case as shown in

Fig. 6a, both the Self-Teaching and EIG models show a preference for the features on

(a) (b)

Fig. 4. Probability of selecting each feature for the boundary task with three features (a) and eight features

(b). The horizontal axes represent the feature position along the line for each concept. The vertical axis repre-

sents the probability of selecting each feature. The predictions of the Self-Teaching model are shown in blue,

while the Expected Information Gain (EIG) model is in red. Both the EIG and Self-Teaching models favor

the selection of features in the middle for the boundary task for both three and eight features.
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the ends, rather than in the center like the boundary task results in Fig. 4. This suggests

that Self-Teaching and EIG exhibit a similar sensitivity to the set of hypotheses and

assign similar values to the features. Indeed, examination of the probabilities of selecting

each feature in a line task with eight features in Fig. 6b reveals interesting differences

compared to the boundary task with eight features in Fig. 4b. Here, we find that the EIG

model peaks in two points away from the center, suggesting selecting the features at

Fig. 5. Probability of selecting each feature for the boundary task with three features after observing a single

data point. The title of each figure is the first data point observed by the model. Two conditions are omitted,

as observing either of these cases would lead the learner to infer the true hypothesis after a single step. After

a single observation, both the Self-Teaching model (blue) and the Expected Information Gain model (red)

show the same qualitative behavior in determining which feature to select next.
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those points would provide more information than the center. Similarly, we also see that

Self-Teaching predicts the same qualitative behavior with two peaks.

So far, our results show that the qualitative behavior of Self-Teaching matches the EIG

model in two different concept learning tasks. However, is this always the case? Or are

there situations where the predictions of the Self-Teaching model differ from the EIG

model?

To explore this possibility, we also compared the EIG and Self-Teaching models in a

causal learning setting. We examined the predictions of both models across the 27 prob-

lems used in Coenen et al. (2015), as they provide a challenging test-bed of active learning

problems within the domain of causal learning. In particular, neither of the two models

(EIG and Positive-Test Strategy) considered in the paper alone explains the human data

particularly well, and we were interested in how the predictions of the Self-Teaching

model would compare to the EIG and Positive-Test Strategy models in this domain.

In this task, participants were presented with an unknown causal system (by showing

three nodes, but not the particular edges connecting the three nodes) and were asked to

figure out how the causal system worked. Participants were presented with two possible

hypotheses to explain the causal system (by showing two different sets of connecting

edges between the nodes). They were asked to choose one of the three nodes to intervene

on and observe how the system operated to determine which of the two possible hypothe-

ses was the true underlying causal system. For each problem, the proportion that each

node was selected across all participants was noted by Coenen et al. (2015).

(a) (b)

Fig. 6. Probability of selecting each feature in the line task with three features (a) and eight features (b). The

horizontal axes represent different features for each concept. The vertical axis represents the probability of

selecting the feature. Here, the qualitative pattern of predictions differs from the boundary game for both the

three feature case and the eight feature case. In the three feature case, both the Self-Teaching model (blue)

and the Expected Information Gain (EIG) model (red) have a preference for choosing the features on the

ends, rather than the central feature like the boundary task. Additionally, for the eight feature case, instead of

a single peak at the center, both the Self-Teaching model (blue) and the EIG model (red) have a preference

at two particular peaks away from the center.
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The behavioral data collected from Coenen et al. (2015) was then compared to two

different active learning models: the EIG model, which we have described earlier, and a

Positive-Test Strategy model (PTS), which is reminiscent of confirmation bias strategies

for active learning. In this particular task, the behavior of the PTS model favors nodes

which turn on as many other nodes as possible, by calculating the following:

PTSx ¼ max
x

DescendantLinksx;h

TotalLinksh

� �
: ð9Þ

Overall, the results from Coenen et al. (2015) showed that while both models captured

participant behavior well in some of the problems, neither of the two active learning

models alone was able to capture participant’s responses across all of the problems.

We computed the predictions for the Self-Teaching model (along with the EIG and

PTS models) across the set of 27 causal learning problems, and results for these simu-

lations are shown in Fig. 7.10 For each problem, the two causal graphs under consider-

ation for each problem are shown in the top right of each plot and the predictions

from each of the three models are plotted in different colors and symbols. We say that

the behavior of the Self-Teaching model differs from the EIG model if the predictions

diverge in a noticeable manner, and there are two kinds of situations where this

occurs. First is when the predictions of the EIG model favors selecting a single feature

with high probability such that the point lies on one of the vertices (Problems 8, 13,

and 25). In these instances, the Self-Teaching model favors selecting the same feature

as predicted by the EIG model (as both points lie within the same sector). The second

case is when Self-Teaching favors selecting a different feature than the EIG model as

evidenced by the predictions from the two models lying in two different sectors (Prob-

lems 4, 14, 21, and 22). In the latter cases where Self-Teaching prefers a different

feature than the EIG model, the predictions of the PTS model also prefer the same

feature that Self-Teaching does (except for Problem 14). Aside from these few cases,

we consider the predictions of the EIG model and the Self-Teaching model to be

matching, and we find that there is a strong amount of similarity between these two

active learning models.

4. Discussion

People can learn from both active exploration and from other people. Yet research on

active learning and teaching has largely been conducted independently, and to our knowl-

edge, there exists no unified framework of these basic cognitive phenomena. These mod-

els differ in terms of both the learning objective and learning architecture, making

unification an interesting and challenging problem. We have presented an integration by

formalizing active learning as self-teaching. In our approach, active learning by self-

teaching determines which features to select by imagining teaching oneself and averaging

across all possible outcomes and hypotheses. Mathematically, this corresponds to adding
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two simple marginalization steps to a previously proposed teaching model, with the

resulting model being a formalization of active learning as self-teaching.

We compare our Self-Teaching model to a representative model from the active learn-

ing literature, EIG. Mathematically, the models yield quite different selection functions

(see Sections 2.2, 2.3.4, and 2.4). Indeed, the differences are substantial enough that

direct mathematical comparison is non-trivial. Inspection of the Self-Teaching model,

however, shows that it seeks data that, in expectation, yield changes in beliefs about

specific, distinctive hypotheses relative to random sampling. This expected relative dis-

tinctiveness differs from EIG in focusing on (a) specific hypotheses rather than the entire

distribution and (b) hypotheses that are relatively distinctive in the sense that one would

be unlikely to learn about through by random sampling rather than the divergence

between prior to posterior.

A well-known challenge for existing models of active learning is that there exist rela-

tively distinct sets of empirically observed phenomena. On one hand, there exists a robust

literature that demonstrates that people’s selection of interventions is best explained by

models that minimize global uncertainty or maximize global information (Crupi et al.,

2018; Nelson, 2005). Second, others have argued that learners minimize entropy with

respect to manageable subsets of the full hypothesis space (Bramley et al., 2017; Markant

et al., 2016). A third approach has characterized active learning as a form of hypothesis

testing with a bias toward confirmation (Klayman & Ha, 1987; Navarro & Perfors, 2011;

Wason, 1960). The EIG model can explain the first two approaches to active learning

Fig. 7. The predictions of the Self-Teaching model (blue square), Expected Information Gain (EIG) model

(red circle), and Positive-Test Strategy model (green diamond) for the different causal learning problems.

Each of the diagrams represents a probability simplex over the three nodes to intervene upon, along with the

two hypotheses to be considered in the top right of each diagram. A point in the center of the simplex indi-

cates indifference toward selecting any of the three nodes, while points that are closer to each corner repre-

sent a stronger preference for selecting one node over the others. The dotted lines indicate the boundaries for

favoring one feature over the other two, partitioning the simplex into three distinct sectors. Our results show

that for most of the 27 problems, the predictions of the Self-Teaching model for which node to intervene

matches the EIG model (see text for more details). However, in a number of cases, the Self-Teaching model

prefers intervening on a different node. We compared this to another model of active learning (Positive-Test

Strategy) and found that this made similar predictions in these non-matching cases, suggesting that self-teach-

ing mimics the behavior of both models under different circumstances.
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(Markant & Gureckis, 2014; Nelson, 2005), but not the latter on hypothesis testing. In

contrast, the Self-Teaching model can qualitatively capture aspects of these different

empirical phenomena through expected relative distinctiveness. Our results show close

correspondence with the EIG model on the boundary and line tasks (Figs. 4–6), while in

the causal learning task it displays behavior that is close to a mixture of the EIG and pos-

itive-test strategy models (Fig. 7). This suggests that self-teaching can capture different

forms of active learning that previously required different mathematical formalizations,

and in a manner that is consistent with formal theories of teaching.

Unifying active learning and teaching as meta-reasoning has potentially far-reaching

implications. A model that unifies the two would allow interpolation between these two

extremes by manipulating the teacher’s knowledgeability. These interpolations allow

direct comparisons between teaching from teachers of different knowledge levels, active

learning, guided learning (Weisberg, Hirsh-Pasek, & Golinkoff, 2013), and collaborative

learning between peers (Dillenbourg, 1999). More generally, unifying models of teaching

and active learning may provide a first step toward unifying models of cognition about

others (i.e., social cognition; Baker, Saxe, & Tenenbaum, 2011; Eaves & Shafto, 2012;

Shafto et al., 2012) and cognition about oneself (i.e., meta-cognition) in a single meta-

reasoning architecture. Research in psychology and neural science has long speculated

about a close link between social cognition and meta-cognition, including the possibility

of common developmental trajectory and neural substrates (Meltzoff, 2005). Work

remains to explore how the current framework relates to more varieties of active learning

models in the literature (e.g., Austerweil & Griffiths, 2011; Steyvers, Tenenbaum, Wagen-

makers, & Blum, 2003) and how much of human behavior it captures. Overall, based on

the simulation results, there is reason to be optimistic that the different models and model

behaviors can be tied together to yield an integrated account of human learning from peo-

ple and the world.
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Notes

1. Fig. 1a,b correspond to the boundary task in Fig. 3a, with additional details of the

calculations in Appendix S1.

2. While there exist other approaches for active learning that optimize other objectives

(e.g., Bramley, Lagnado, & Speekenbrink, 2015; Markant, Settles, & Gureckis,
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2016; Nelson, 2005), in this paper, we primarily focus on EIG as a comparison to

our self-teaching approach because of its widespread use.

3. This can be considered as a generalization of the knowledgeability factor intro-

duced in Shafto et al. (2012).

4. This concept of distinctiveness of a hypothesis is the same distinctiveness intro-

duced in Fig. 1.

5. For our simulations, the probability that an active parent node would turn on its

direct descendants was set to be 0.8, and the background rate of a node turning on

spontaneously was set to be 0.0. These settings were chosen to match the settings

used in the simulations reported by Coenen, Rehder, and Gureckis (2015).

6. For all of the simulations, the EIG values were normalized so that they sum up to 1.

7. The source code to run the simulations and produce the figures in the Results sec-

tion can be found at https://github.com/CoDaS-Lab/self-teaching.

8. In the active learning literature, the EIGs usually pass through a softmax decision

function to yield the probabilities of intervention selection. Thus, the ordering of

the preferences, rather than the values of the information gain, is the more mean-

ingful quantity. The same is true with Self-Teaching.

9. We do not show the two sets of data points which end up discovering the true

hypothesis from a single observation. After the learner observes x = 1, y = 1, or

x = 3, y = 0, the only consistent hypothesis remaining is h1 or h4, respectively, as
depicted in Fig. 3a, and thus, there is no additional benefit to exploring the predic-

tions of either model after having observed either of these two cases.

10. We requested the data from the authors, but it was not made available; thus, our

focus is to quantitatively compare Self-Teaching to the EIG and Positive-Test Strat-

egy models of active learning.

References

Austerweil, J. L., & Griffiths, T. L. (2011). A rational model of the effects of distributional information on

feature learning. Cognitive Psychology, 63(4), 173–209.
Baker, C., Saxe, R., & Tenenbaum, J. (2011). Bayesian theory of mind: Modeling joint belief-desire

attribution. In L. Carlson, C. H€olscher & T. Shipley (eds.), Proceedings of the 33rd Annual Meeting of the
Cognitive Science Society (pp. 2469–2474). Austin, TX: Cognitive Science Society.

Bramley, N. R., Dayan, P., Griffiths, T. L., & Lagnado, D. A. (2017). Formalizing Neurath’s ship:

Approximate algorithms for online causal learning. Psychological Review, 124(3), 301–338.
Bramley, N. R., Lagnado, D. A., & Speekenbrink, M. (2015). Conservative forgetful scholars: How people

learn causal structure through sequences of interventions. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 41(3), 708–731.

Bruner, J. S. (1961). The act of discovery. Harvard Educational Review, 31, 21–32.
Bruner, J. S., Goodnow, J. J., & Austin, G. A. (1956). A study of thinking. New York: John Wiley & Sons.

Coenen, A., Nelson, J. D., & Gureckis, T. (2017). Asking the right questions about human inquiry. PsyArXiv.
https://doi.org/10.31234/osf.io/h457v

Coenen, A., Rehder, B., & Gureckis, T. M. (2015). Strategies to intervene on causal systems are adaptively

selected. Cognitive Psychology, 79, 102–133.

S. C.-H. Yang et al. / Topics in Cognitive Science 11 (2019) 335

https://github.com/CoDaS-Lab/self-teaching
https://doi.org/10.31234/osf.io/h457v


Crupi, V., Nelson, J. D., Meder, B., Cevolani, G., & Tentori, K. (2018). Generalized information theory

meets human cognition: Introducing a unified framework to model uncertainty and information search.

Cognitive Science, 42, 1410–1456.
Dillenbourg, P. (1999). Collaborative learning: Cognitive and computational approaches. New York:

Elsevier.

Eaves, B., & Shafto, P. (2012). Unifying pedagogical reasoning and epistemic trust. Advances in Child
Development and Behavior, 43, 295–319.

Frank, M. (2014). Modeling the dynamics of classroom education using teaching games. In P. Bello, M.

Guarini, M. McShane & B. Scassellati (Eds.), Proceedings of 36th Annual Conference of the Cognitive
Science Society (pp. 481–486). Austin, TX: Cognitive Science Society.

Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not

work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-

based teaching. Educational Psychologist, 41(2), 75–86.
Klahr, D., & Nigam, M. (2004). The equivalence of learning paths in early science instruction: Effects of

direct instruction and discovery learning. Psychological Science, 15(10), 661–667.
Klayman, J., & Ha, Y.-W. (1987). Confirmation, disconfirmation, and information in hypothesis testing.

Psychological Review, 94(2), 211–228.
MacKay, D. J. (1992). Information-based objective functions for active data selection. Neural Computation, 4

(4), 590–604.
Markant, D. B., & Gureckis, T. M. (2014). Is it better to select or to receive? Learning via active and passive

hypothesis testing. Journal of Experimental Psychology, 143(1), 94–122.
Markant, D. B., Settles, B., & Gureckis, T. M. (2016). Self-directed learning favors local, rather than global,

uncertainty. Cognitive Science, 40(1), 100–120.
Meltzoff, A. N. (2005). Imitation and other minds: The “like me” hypothesis. Perspectives on Imitation:

From Neuroscience to Social Science, 2, 55–77.
Navarro, D. J., & Perfors, A. F. (2011). Hypothesis generation, sparse categories, and the positive test

strategy. Psychological Review, 118(1), 120–134.
Nelson, J. D. (2005). Finding useful questions: On Bayesian diagnosticity, probability, impact, and

information gain. Psychological Review, 112(4), 979–999.
Shafto, P., Eaves, B., Navarro, D. J., & Perfors, A. (2012). Epistemic trust: Modeling children’s reasoning

about others’ knowledge and intent. Developmental Science, 15(3), 436–447.
Shafto, P., & Goodman, N. (2008). Teaching games: Statistical sampling assumptions for learning in

pedagogical situations. In V. Sloutsky, B. Love & K. McRae (Eds.), Proceedings of the 30th Annual
Conference of the Cognitive Science Society (pp. 1632–1637). Austin, TX: Cognitive Science Society.

Shafto, P., Goodman, N. D., & Frank, M. C. (2012). Learning from others: The consequences of

psychological reasoning for human learning. Perspectives on Psychological Science, 7(4), 341–351.
Shafto, P., Goodman, N. D., & Griffiths, T. L. (2014). A rational account of pedagogical reasoning: Teaching

by, and learning from, examples. Cognitive Psychology, 71, 55–89.
Steffe, L. P., & Gale, J. E. (1995). Constructivism in education. Hillsdale, NJ: Lawrence Erlbaum.

Steyvers, M., Tenenbaum, J. B., Wagenmakers, E.-J., & Blum, B. (2003). Inferring causal networks from

observations and interventions. Cognitive Science, 27(3), 453–489.
Sutton, R. S., & Barto, A. G. (1998). Introduction to reinforcement learning (vol. 135). Cambridge, MA:

MIT Press.

Tenenbaum, J. B. (1999). Bayesian modeling of human concept learning. In M. Kearns, S. Solla & D. Cohn

(Eds.), Advances in Neural Information Processing Systems (pp. 59–65). Cambridge, MA: MIT Press.

Tobias, S., & Duffy, T. M. (2009). Constructivist instruction: Success or failure? New York: Routledge.

Wason, P. C. (1960). On the failure to eliminate hypotheses in a conceptual task. Quarterly Journal of
Experimental Psychology, 12(3), 129–140.

Weisberg, D. S., Hirsh-Pasek, K., & Golinkoff, R. M. (2013). Guided play: Where curricular goals meet a

playful pedagogy. Mind, Brain, and Education, 7(2), 104–112.

336 S. C.-H. Yang et al. / Topics in Cognitive Science 11 (2019)



Yang, S. C.-H., Lengyel, M., & Wolpert, D. M. (2016). Active sensing in the categorization of visual

patterns. Elife, 5, 1–22.
Yang, S. C.-H., & Shafto, P. (2017). Teaching versus active learning: A computational analysis of conditions

that affect learning. In G. Gunzelmann, A. Howes, T. Tenbrink & E. J. Davelaar (Eds.), Proceedings of
the 39th Annual Conference of the Cognitive Science Society (pp. 3560–3565). Austin, TX: Cognitive

Science Society.

Supporting Information

Additional supporting information may be found

online in the Supporting Information section at the end

of the article.

Appendix S1. A worked example showing the calcula-

tions performed by the Self-Teaching model and the

Expected Information Gain model.

S. C.-H. Yang et al. / Topics in Cognitive Science 11 (2019) 337


