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Imagine that you are a receptionist at an office and you 
have a bowl of miniature candy bars at your desk. 
Around noon each day, various staff members come by 
and take one. You currently have a mix of mostly Snick-
ers bars and just a few Kit Kats. For a few days in a 
row, Jordan walks by and grabs a Snickers bar each 
time, whereas Alex always grabs a Kit Kat. Does Jordan 
really like Snickers? Does Alex really like Kit Kats? You 
probably have the intuition that Alex definitely prefers 
Kit Kats, but what about Jordan? Because she could 
have grabbed the Snickers bars at random, it is harder 
to know what she prefers compared with Alex, whose 
choices would be unlikely given random selection. 
Thus, despite the fact that each person made consistent 
choices, the distribution of available bars made one 
person’s choices seem more intentional, providing a 
stronger basis for a preference attribution in the case 
of Alex than Jordan. This intuition relies on an appre-
ciation of the basic principles of probability, including 
recognizing that a sample containing only the majority 
item from a distribution could easily arise from chance 
but a sample containing only the minority item suggests 
nonrandom selection.

Although using probability (as opposed to facial 
expressions or explicit statements about desires) to infer 
another’s preferences seems very advanced, research 
suggests that even young children can make rational 
inferences such as these. That is, in experimental para-
digms very similar to the candy-bar example, infants, 
toddlers, and 4-year-old children have successfully used 
this kind of statistical information to infer agents’ prefer-
ences (Kushnir, Xu, & Wellman, 2010; Wellman, Kushnir, 
Xu, & Brink, 2016). These findings are part of a larger 
body of research examining the developmental origins 
of inductive inference more broadly and the basic sta-
tistical intuitions that underlie those inferences (for 
reviews, see Xu & Kushnir, 2012, 2013). The ability to 
engage in inductive inference—which can be defined 
as generating an expectation on the basis of incomplete, 
and sometimes sparse, information—is particularly chal-
lenging because learners must use this variable input to 
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arrive at a best guess, about which they cannot be cer-
tain. The recent studies examining preference attribu-
tions (Diesendruck, Salzer, Kushnir, & Xu, 2015; Kushnir 
et al., 2010; Ma & Xu, 2011; Wellman et al., 2016) rep-
resent one example from a burgeoning literature show-
ing that infants, toddlers, and preschoolers can make 
inferences using probabilistic data.

With the accumulation of this literature showing 
impressive inductive reasoning in young children, 
researchers have been struck by an apparent contradic-
tion. On the one hand, these findings suggest that chil-
dren are sensitive to base rates and sampling, but on 
the other hand, decades of research in cognitive psy-
chology suggest that adults often fail to integrate base-
rate data and random sampling in their judgments and 
decision making (for a review, see Kahneman, 2011). 
That is, in many classic experiments, adults tend to base 
their judgments almost exclusively on information 
about a person’s personality traits or other personal 
diagnostic information and undervalue or even ignore 
the relevant statistical or base-rate information 
(Kahneman & Tversky, 1971, 1973; Tversky & Kahneman, 
1974). For example, in the classic lawyer-engineer prob-
lem, study participants were told that 70 people in a 
group are lawyers and 30 are engineers (i.e., the base 
rate). They are then given a personality description of 
an individual that is highly representative of the stereo-
types associated with engineers and are asked to judge 
how likely it is that the individual is a lawyer or an 
engineer. In these experiments, participants almost 
entirely ignore the statistical base-rate information and 
focus on the personality description when making their 
ratings.

These classic tasks differ in numerous and important 
ways from the experiments with children mentioned 
above and from the literature on infants discussed 
below. Nonetheless, the contrast of young children’s 
acute sensitivity to base rates and adults’ tendency to 
ignore them in a variety of contexts have raised impor-
tant questions about the developmental origins of rea-
soning under uncertainty. We discuss this contrast, 
beginning with a review and critique of the recent 
empirical literature examining young children’s induc-
tive inferences. Thus far the evidence suggests that 
adults from prenumerate cultures, human infants, all 
species of great apes, and at least one species of New 
World monkeys can make judgments about future 
uncertain events using base-rate information (Denison, 
Reed, & Xu, 2013; Denison, Trikutam, & Xu, 2014; 
Denison & Xu, 2010b, 2014; Eckert, Call, Hermes, 
Herrmann, & Rakoczy, 2018; Eckert, Call, & Rakoczy, 
2017; Fontanari, Gonzalez, Vallortigara, & Girotto, 2014; 
Lawson & Rakison, 2013; Rakoczy et al., 2014; Tecwyn, 
Denison, Messer, & Buchsbaum, 2017; Téglás, Girotto, 

Gonzalez, & Bonatti, 2007; Téglás, Ibanez-Lillo, Costa, 
& Bonatti, 2015; Téglás et al., 2011; Xu & Garcia, 2008). 
This body of work raises a number of questions about 
the nature and development of this ability, the most 
notable of which centers on the underlying cognitive 
mechanisms that make these inferences possible. We 
then turn to the question of why adults often neglect 
base rate and other statistical information when infants 
and young children are so adept at using it. Finally, we 
ask whether we can capitalize on some of these intui-
tive abilities to improve later mathematical and induc-
tive reasoning.

The Origins of Reasoning Under 
Uncertainty: A Review of Empirical 
Research

Using a variety of methods, and from phylogenetic and 
ontogenetic perspectives, researchers have found that 
rational reasoning under uncertainty emerges surpris-
ingly early in development. The most common methods 
for assessing statistical inference in preverbal and non-
verbal populations are violation-of-expectation (VOE) 
looking-time tasks and choice tasks. Imagine a lottery 
machine on a computer screen that contains three yel-
low crosses and one blue cube. The objects bounce 
around in accordance with the principles of physics, 
and then the contents are briefly covered as one item 
exits: Will it be a yellow cross or a blue cube? If you 
think it is likely to be a yellow cross, then you agree 
with 12-month-old infants, who look longer when the 
single blue item exits the machine rather than one of 
the yellow items (Téglás et al., 2007). The logic of VOE 
looking time is that infants look longer at unexpected 
events than at expected events, and it has been applied 
widely in research on infant perception and cognition 
(for a review of infant looking-time paradigms, see 
Aslin, 2007).

This methodology has recently been used in a num-
ber of paradigms assessing reasoning under uncertainty 
in human infants. These experiments have revealed that 
6- to 12-month-olds can make inferences about which 
of two event outcomes is more or less likely given the 
statistical attributes of its population or source, as 
indexed by infants looking longer at improbable out-
comes than probable outcomes (Figs. 1a and 1b). For 
example, in another VOE looking-time paradigm, 
infants are shown a large box containing many red balls 
and a few white balls. When balls are drawn randomly 
from this box, infants look longer at a small collection 
of mostly white balls (an improbable outcome) than at 
a small collection of mostly red balls (a probable out-
come). Infants and apes can also make this inference 
in the reverse direction, inferring that when a small 
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collection of mostly red balls is drawn from a box, the 
box itself is likely to have a larger proportion of red 
balls than white balls (Eckert et al., 2017; Xu & Garcia, 
2008; see also Placi, Eckert, Rakoczy, & Fischer, in 
press, who suggest that long-tailed macaques do not 
make this reverse inference). These findings suggest 
that infants and apes recognize that when an item is 
randomly drawn from a container it is most likely to 
be of the majority type.

Recent studies have also used choice tasks with 
infants and nonhuman animals to investigate similar 
questions (Figs. 1c and 1d). Thus far all of the examples 
of reasoning under uncertainty provided (i.e., attribut-
ing preferences to individuals and making predictions 
from lottery machines) seem uniquely relevant to humans. 
However, numerical competence is critical to survival for 
nonhuman animals, allowing them to engage in effi-
cient foraging and providing an edge in intergroup 
conflict (e.g., Addessi, Crescimbene, & Visalberghi, 
2008; Wilson, Hauser, & Wrangham, 2001). As it can be 
for humans, numerical reasoning about absolute quanti-
ties alone is insufficient for many of the inferences 
nonhuman animals must make (Rugani, Vallortigara, & 
Regolin, 2015). For example, to maximize the quantity 
of food an animal can access they must consider the 
relative relationship between available food quantities 
and the number of animals feeding at different locations 
(Harper, 1982). In addition, recent work suggests that 
some monkey species experience inequity aversion—
they are aware of the relative discrepancies between 
their individual effort and payoff compared with that 
of another individual (e.g., Brosnan & de Waal, 2003; 
Cronin & Snowdon, 2008). Therefore, similar statistical-
reasoning abilities are likely to be present in these 
nonhuman animal species for reasoning under 
uncertainty.

In the choice tasks depicted in Figures 1c and 1d, 
participants (infants in some studies and nonhuman pri-
mates and monkeys in others) are shown two populations 
of items and are tasked with predicting the likely out-
come of a single draw on the basis of the composition 
of the populations. Note that one population has a higher 
proportion of preferred to nonpreferred items than the 
other population. The participants are motivated to 
choose the sample from the container with the greater 
proportion of preferred items. In a number of experi-
ments, infants, great apes, and capuchins typically choose 
to look for a hidden, unknown sample from the popula-
tion with a higher probability of yielding a preferred item 
(Denison & Xu, 2010b, 2014; Eckert, Call, Hermes, 
Herrmann, & Rakoczy, 2018; Rakoczy et al., 2014; Tecwyn 
et al., 2017). The convergence between VOE and choice 
tasks suggests that the ability to reason under uncertainty 
based on statistical sampling information is robust early 
in human development: The representations are strong 

enough to support looking-time differences (which may 
require only postdiction; see Haith, 1998) and to guide 
action (which requires prediction).

These findings have been replicated multiple times 
with several different subject populations, demonstrat-
ing sophisticated quantitative and inferential abilities.1 
However, a critical open question remains unanswered 
in this line of work: How do infants and nonhuman 
primates make these judgments about uncertain events? 
Does the early-emerging ability to make inferences 
under uncertainty stem from foundational knowledge 
about logic (i.e., comparisons of all possible outcomes), 
probabilities (i.e., statistical reasoning about samples 
and populations), or simple heuristics (i.e., shortcuts 
that can seem on the surface to be a rational inference 
but that can introduce systematic errors)? We outline 
these three possibilities, termed the logic, probabilistic, 
and heuristics views, respectively, and discuss the rel-
evant empirical evidence for and against each. Specify-
ing the basic cognitive mechanisms that underlie these 
abilities will refine our understanding of how inductive 
inference unfolds early in development and will shape 
the research questions to be pursued in future work.

Underlying Cognitive Mechanisms: 
Three Proposals

Consider the problems in Figure 1 that were posed to 
infants in looking-time tasks and to infants and other 
primates in action tasks. How could one go about solv-
ing them? One way to solve these problems is through 
logical inference, a view that has been proposed and 
explicated in several publications (Cesana-Arlotti, 
Téglás, & Bonatti, 2012; Téglás et al., 2007; Téglás et al., 
2015; Téglás et al., 2011). The logic view suggests that 
the foundation of reasoning under uncertainty is 
grounded in intuitive modal logic—infants represent 
future events via a logical sense of possibilities. This 
view differs from the idea that reasoning under uncer-
tainty is grounded in a statistical sense of probability 
or heuristics. A logic proposal based on modal reason-
ing suggests that infants reason about the likelihood of 
particular outcomes for a novel, single event by enu-
merating the possibilities and then comparing the num-
ber of possible outcomes of each kind.

Consider again the lottery-machine example pre-
sented earlier (which is based on the scenario presented 
in Fig. 1a). In these VOE looking-time experiments, 
infants observe a lottery machine that displays three 
yellow crosses and one blue cube bouncing in the 
machine. From previous familiarization with the machine, 
they know that just one object will eventually reach an 
opening, apparently at random, and exit. Twelve-month-
old infants look longer when observing the unlikely 
event of a blue square exiting the machine than at the 
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more likely event of a yellow cross exiting the machine. 
Téglás, Bonatti, and their colleagues propose that these 
intuitions about uncertain future events result from 
infants’ intuitive logical capacities. That is, when infants 
view this scene, they represent it modally as a set of 
logically possible future states: three in which a yellow 
item exits the machine and one in which a blue item 
exits. The infants keep track of these potential outcomes 
via object tracking, or subitizing, and then compare the 
number of outcomes of each object type to determine 
the most likely outcome. In the example, there are three 
outcomes in which a yellow cross exits the machine and 
one in which the blue square exits. Infants can compare 
the numbers of these possible events and conclude that 
a yellow cross is the most likely outcome.

Another way of solving the problems in Figure 1 is 
to use heuristics, or mental shortcuts, as opposed to 
logical or probabilistic reasoning. The heuristics view 
suggests that if infants demonstrate any skills at all in 
these kinds of problems then what they would really 
be engaging in is heuristic reasoning that seems only 
on the surface to be logical or probabilistic inference, 
and this reasoning would be prone to bias. That is, 
many dual-processing views assume that humans start 
out relying heavily, or perhaps exclusively, on heuris-
tics, and they proceed to full analytical reasoning (spe-
cifically, in this case, probabilistic reasoning) only with 
the onset of language (for a review of dual-processing 
accounts, see Kokis, Macpherson, Toplak, West, & 
Stanovich, 2002). Note that this is different from the 
assumption that analytical reasoning replaces heuristic 
reasoning as development progresses, which has been 
referred to as the illusion of replacement and has found 
limited support (Stanovich, West, & Toplak, 2011). We 
are instead referring to the assumption that true analyti-
cal reasoning may not be present at all in preverbal 
infants and that heuristic processing constitutes the 
majority of infants’ reasoning.

Several heuristics or shortcuts could be used to solve 
the problems posed to infants and other primates in 
the experiments on reasoning under uncertainty. One 
such heuristic would unfold as follows. To determine 
which of the two item types is likely to exit the machine 
shown in Figure 1a, infants see more yellow than blue 
items and conclude that a yellow object should be 
drawn according to the heuristic that more items of one 
type will lead to an item of that type being selected 
(the more heuristic). This view predicts that when ana-
lytical reasoning is pitted against heuristic reasoning, 
infants should behave in accordance with the heuristic 
response, not the analytical response. Thus, infants 
should not be capable of overriding a response on the 
basis of the more heuristic (or any other heuristic) if 
the situation were to call for it.

Finally, infants could solve all of the tasks discussed 
above via probabilistic inference as opposed to logical 
or heuristic reasoning. The probabilistic view suggests 
that infants’ ability to engage in nonverbal reasoning 
under uncertainty results from their intuitive ability to 
estimate proportions and consider the relationship 
between samples and populations (Denison et al., 2013, 
2014; Denison & Xu, 2014, 2010a, 2010b; Rakoczy et al., 
2014; Xu & Garcia, 2008). According to this view, when 
posed with the problem in Figure 1a, infants begin by 
encoding the proportion of items. This estimate of pro-
portions could be derived from either of infants’ two 
quantitative systems for representing number or con-
tinuous variables, the approximate-number system or 
the object-tracking system.2 Then, if the sample were 
generated randomly, they would infer that the yellow 
item is the more likely outcome. The central predictions 
of this view are (a) the computations performed will 
be predicated on an assumption of random sampling 
and (b) analytic responses should, at least sometimes, 
override simple heuristic responses, such as a response 
from the more heuristic.

For the lottery-machine and ping-pong-ball tasks, 
the correct application of logic, simple heuristics, or 
probability would result in the same response patterns 
in infants; thus, each proposed mechanism could 
account for the data from these initial studies. Research 
conducted over the past few years has begun to address 
which mechanism underlies the origins of reasoning 
under uncertainty by posing problems that should yield 
different patterns of behavior depending on which 
mechanism is at work. In particular, the probabilistic 
view has been contrasted with both the logic and heu-
ristics views. In the following section, we review the 
findings from this line of research, first contrasting the 
probabilistic and logic views and then the probabilistic 
and heuristics views.

Comparison of the logic and 
probabilistic views

The central predictions of the logic and probabilistic 
views converge on two points. First, both predict that 
infants should not predominantly rely on heuristics 
when reasoning under uncertainty (a prediction that 
we return to in the next section). Second, both predict 
that infants should be capable of making inferences in 
the absence of experiencing past frequencies. Research 
has clearly shown that infants do not require past fre-
quency information to make inferences about future 
events. In these tasks, infants are shown collections of 
objects, and they infer the most likely outcomes from 
random draws without having had the opportunity to 
accumulate information from observing the outcomes 
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of sampling events (see Denison & Xu, 2010b; Téglás 
et al., 2007; Xu & Garcia, 2008).

The views diverge in that the logic view suggests 
that this reasoning is grounded in the enumeration of 
logical possibilities, whereas the probabilistic view sug-
gests that this reasoning is grounded in the statistical 
relationship between populations and samples. Thus, 
the most diagnostic empirical tests of which mechanism 
underlies reasoning will be ones that determine whether 
infants are capable of making these inferences only 
when presented with small numbers of items: If infants 
are using statistical representations of the relationship 
between samples and populations, then there should 
be no such limit. If infants are representing the scene 
in a modal way, deriving the possible states of affairs 
and comparing the number of outcomes of each type, 
then their ability should be limited by the number of 
items or events infants can represent in parallel. Téglás 
et al. (2015) found support for such a limit in an experi-
ment using the lottery-machine paradigm, in which 
infants could not make predictions when the total num-
ber of items was increased to 16 (12:4; still the same 
3:1 ratio). However, evidence from choice tasks with 
human infants, great apes, and capuchin monkeys sug-
gests that all of these populations can make inferences 
about single items from large sets (see Figs. 1c and 1d). 
In each of these experiments, participants have chosen 
a single hidden item from a population with a higher 
proportion of their preferred item, with numbers of 
items ranging from 12 to 500 (e.g., Denison & Xu, 2014; 
Rakoczy et al., 2014; Tecwyn et al., 2017). Any or all of 
the many differences between the two paradigms could 
be responsible for the discrepant findings, including the 
difference in dependent measures (i.e., looking vs. 
choice), and possible inequities in motivation between 
the stimuli (i.e., looking at neutral items vs. choosing 
preferred items), to name a few. There is a strong possibil-
ity that basic statistical intuitions and basic logical intu-
itions might both support reasoning under uncertainty in 
different contexts. We return to this possibility later.

Comparison of the heuristics and 
probabilistic views

The main predictions of the heuristics and probabilistic 
views are naturally in opposition to one another, given 
that each predicts that when pitted against one another 
the response from that “system” will prevail. Three lines 
of research have examined the predictions from these 
views.

First, researchers have begun examining whether 
infants and other primates use heuristics based on sim-
ple absolute-quantity comparisons that children and 
adults often rely on in both formal mathematics and in 
some choice problems (e.g., Falk, Yudilevich-Assouline, 

& Elstein, 2012). In recent work using the choice para-
digms depicted in Figures 1c and 1d, researchers have 
systematically contrasted the predictions from analytical 
reasoning with variations of the more heuristic, which 
often result in denominator neglect (e.g., Falk et al., 
2012). For example, infants, nonhuman primates, and 
capuchins have been presented with tasks in which the 
absolute quantity of target (i.e., preferred) items in two 
contrasting populations is equated, thus eliminating the 
ability to make choices simply on the basis of which 
population has more targets and forcing participants to 
consider the proportions of items. These populations 
succeed at these tasks as well as other tasks in which 
the absolute number of targets is lower in the more 
probable population (Denison & Xu, 2014; Rakoczy 
et al., 2014; Tecwyn et al., 2017).

Although these findings suggest that infants and non-
human primates can override a heuristic response in 
these particular paradigms, heuristics clearly continue 
to influence reasoning throughout the life span. As 
referenced earlier, school-age children continue to 
sometimes rely on versions of the more heuristic when 
making explicit judgments about which of two urns is 
most likely to yield a particular color ball (Falk et al., 
2012). In addition, in recent experiments, 3- and 4-year-
old children failed to make correct inferences on a 
number of choice tasks that were very similar in design 
to the infant choice tasks (Girotto, Fontanari, Gonzalez, 
Vallortigara, & Blaye, 2016). Girotto et al. suggest that 
preschoolers’ difficulties might occur because the pre-
schooler tasks place higher executive-functioning 
demands on children than do the infant tasks. Pre-
schoolers are explicitly told they must wait for a reward 
based on their choice, whereas in the infant tasks, 
choices and subsequent rewards are produced more 
quickly. It is difficult to know why infants (and other 
primates) sometimes show competence when older 
children do not, but this work from the choice tasks 
indicates that, at a minimum, preverbal infants do not 
always rely on simple heuristics.

Although variants of the more heuristic have received 
considerable attention in the literature on cognitive 
development and education, it is not the only heuristic 
that learners could use. There are numerous demonstra-
tions of adults relying on a variety of judgment heuris-
tics rather than applying the principles of probability 
in more complex inductive-inference tasks. Do infants 
also rely on these judgment heuristics? One heuristic 
that adults tend to rely on is the representativeness 
heuristic, which can lead to base-rate neglect under a 
variety of circumstances. The use of this heuristic results 
in the biased judgments shown in tasks such as the 
lawyer-engineer problem described earlier—adults rely 
on the personality description and ignore base rates 
because the description fits their representation of a 
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typical engineer. Because this heuristic, in its simplest 
form, can be described as an assumption that the sur-
face features of a sample should represent the surface 
features of the population from which it is drawn 
(Tversky & Kahneman, 1974), this could explain infants’ 
success in problems such as the ping-pong-ball para-
digm (i.e., Xu & Garcia, 2008). To address this possibil-
ity, several researchers have examined how infants 
behave when posed with problems that pit a response 
from perceptual representativeness against a response 
based on base rates (Denison et al., 2014; Denison & 
Xu, 2010b). In these looking-time experiments, infants 
were shown that the more numerous balls in a popula-
tion had a property that caused a large proportion of 
them to remain stuck inside the box and therefore 
unavailable for sampling. In these cases, infants reversed 
their expectations, reasoning that the sample should 
have a greater number of the minority-colored balls 
rather than a greater number of majority-colored balls.

Finally, a major component of making correct proba-
bilistic inferences is that the learner should consider 
how a sample is generated when judging its likelihood. 
Thus, if infants are engaging in true probabilistic infer-
ence they should be flexible in their expectations 
depending on whether a sample is drawn intentionally 
or randomly. This flexibility has been tested with 
11-month-old infants using the paradigm depicted in 
Figure 1b (Xu & Denison, 2009; for converging evidence 
from 16-month-old infants and in apes using different 
methods, see Gweon, Tenenbaum, & Schulz, 2010, and 
Eckert, Rakoczy, Call, Herrmann, & Hanus, 2018, respec-
tively; for similar results in the naive-physics domain, 
see Denison & Xu, 2010a, 2014, and Téglás et al., 2007). 
In this experiment, when the agent expressed a goal or 
preference for one color of balls and then intentionally 
drew balls from the box (she looked into the box and 
deliberately chose balls), infants expected that the sam-
ple should reflect the agent’s goal and not the statistical 
properties of the box. However, when the agent dem-
onstrated an initial preference but then drew balls ran-
domly from the box (the agent carefully demonstrated 
that she could not see what she was sampling by using 
a blindfold), infants expected that the sample should be 
similar in statistical properties to the larger population. 
This finding suggests that infants do not automatically 
assume that a sample should always match a distribution 
in statistical properties, which strongly supports true 
probabilistic inference.

Looking Forward: Implications and 
Future Directions

We argue that the balance of the reviewed evidence 
favors the probabilistic view, but the logic view also has 
much empirical support. A simple heuristics proposal 

in which infants are capable of relying only on heuristics 
is becoming increasingly unlikely.

The discrepancy in findings regarding single-event 
probabilistic inferences with large versus small quanti-
ties should be further explored, as resolving this dis-
crepancy will be critical to teasing apart whether logic 
or probability underlie these inferences. To gain addi-
tional clarity on infants’ abilities, researchers should 
address some gaps in empirical evidence. First, the 
ping-pong-ball looking-time paradigm, which has been 
used with large populations and multi-item samples 
(Fig. 1b) has not yet been used with large populations 
and single-item sampling events. If infants succeed at 
this type of task, it would support the interpretation 
that differences between the stimuli in the lottery-
machine paradigm versus the choice paradigm are 
responsible for the discrepant findings. One way to test 
this possibility directly would be to use an experimental 
technique that manipulates the speed and number of 
the moving objects to reveal infants’ limits on tracking, 
enumerating, and extracting the ratio of such objects. 
Multiple-object-tracking experiments with adults sug-
gest that the upper limit of four objects can be increased 
if the speed at which the objects move is reduced (e.g., 
Alvarez & Franconeri, 2007); thus, infants might be 
more or less successful at these tasks depending on the 
number of objects and their rate of motion.

Implications for the Development of 
Judgment and Decision Making

One of the most intriguing questions raised by rejecting 
a heuristic account of infant probabilistic inference is 
how this relates to well-documented heuristic use and 
base-rate neglect in adults. One initial caveat is that the 
tasks conducted with infants thus far have been neces-
sarily much simpler in design than those used with 
adults, as illustrated in the experiments with infants 
examining representativeness (Denison et  al., 2014). 
Relatedly, the format of the presented base rates is 
notably different from that in classic tasks in that they 
are presented visually, whereas most adult tasks were 
presented verbally. Because of this visual presentation, 
it is likely that participants encode the base rates in 
frequency format. As we know very well from research 
with adults and older children, this frequency format 
often facilitates the use of statistical information such 
as the base rate (Cosmides & Tooby, 1996; Gigerenzer, 
1991; Gigerenzer & Hoffrage, 1995; Hoffrage & 
Gigerenzer, 1998). One practical takeaway from this is 
that adult comparison groups will be vital to any explo-
rations of the development of heuristic use. This will 
ensure that if children show greater base-rate use than 
is typical of adults, the format of the base-rate informa-
tion alone is not the driving force of this difference. 
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Second, much work is still needed to render a full 
picture of whether infants and very young children will 
commit other reasoning fallacies that stem from misuse 
or neglect of numerical information. Examinations of 
phenomena such as the “law of small numbers,” the 
gambler’s fallacy, the anchoring-and-adjustment heuris-
tic, and failure to integrate base rates with diagnostic 
information, just to name a few, should be conducted 
(but for evidence that 5-year-olds can compute poste-
rior probabilities by integrating priors and likelihoods, 
see Girotto & Gonzalez, 2008). The accumulation of 
this empirical evidence will be critical to mapping the 
emergence of base-rate neglect and other biases.

Current empirical work is tackling the question of 
whether real developmental differences exist in base 
rate versus heuristics use across the life span. One pos-
sibility is that heuristic use (and its corresponding 
biases) develop later in childhood and strengthen as 
learners engage in more and more real-world judg-
ments. A recent examination of the representativeness 
heuristic in 4- to 6-year-old children supports this idea 
(Gualtieri & Denison, 2018). In these experiments, all 
participants were presented with child-friendly versions 
of the classic lawyer-engineer problem. For example, 
they were told that an individual who likes to play with 
trucks and train sets (stereotypes that a separate group 
of same-age children readily endorsed as being more 
indicative of boys than girls) was sampled from a visu-
ally presented group of eight girls and two boys. Chil-
dren (and a comparison group of adults) were asked 
to classify the group membership of the mystery indi-
vidual. By age 6, children nearly always guessed that 
the individual was a boy whether they were presented 
with this conflicting 2:8 base rate or an opposite base 
rate of 8:2, showing base-rate neglect at levels similar 
to adults in this task. It is noteworthy that, at age 4, 
children’s aggregated responses were much closer to 
the base rates, and 5-year-olds’ judgments fell in 
between. This suggests that favoring representativeness 
at the expense of base-rate increases during the pre-
school years.

This finding raises the question of why children 
would start out favoring the seemingly more rational 
approach and then later settle on one that is less ideal. 
When considering this question, it is important to keep 
in mind that heuristic use often leads to accurate infer-
ences, and therefore relying on them will produce a 
rational response much of the time. Recent work with 
adults has examined the idea of “resource-rational” rea-
soning, in which people appear to show an intuitive 
sense of the costs and benefits of deploying a fully 
analytic strategy versus a heuristic shortcut (Griffiths, 
Lieder, & Goodman, 2015; Lieder, Griffiths, Huys, & 
Goodman, 2018a, 2018b). Although this possibility has 
not been investigated yet, it will be interesting to 

explore whether children are developing a similar intui-
tive sense and might be engaging in efficient strategy 
selection when relying on heuristics. In other words, 
older children might be using strategies such as heu-
ristic shortcuts to allow them to reason more efficiently 
and to conserve cognitive resources.

Implications for Improving Inductive 
Inference and Mathematics in 
Childhood

The developmental research on intuitive statistics and 
inductive reasoning has significant implications for later 
reasoning abilities. Future work should focus on these 
important connections. Although we discussed the idea 
that heuristic use might be more rational than some 
have previously proposed, it is still important to inter-
vene in unequivocally errant applications of statistical 
concepts seen in older children and adults, such as the 
gambler’s fallacy. Researchers have already begun 
examining whether the early intuitive principles that 
are present in the first year can be used to improve 
older children’s general inductive reasoning on the 
basis of applications of sampling principles. For exam-
ple, in one study, preschool children were given train-
ing with the ping-pong-ball paradigm in Figure 1b 
(Stanley & Lawson, 2014). Children were given a pretest 
assessing their ability to consider elements such as 
sample size and random sampling in real-world 
inductive-inference problems (e.g., guessing which 
kind of cookie a child might get). They then received 
training with ping-pong balls: While drawing balls, the 
experimenter remarked on the random nature of the 
sampling process and on the correspondence in statisti-
cal properties between the larger distribution and the 
items drawn. The experimenter specifically pointed out 
the correspondence between the randomly selected 
balls and the larger distribution. Posttraining tests of 
additional inductive-inference problems revealed that 
children in this training group were better able to con-
sider statistical principles such as random sampling and 
sample size in their predictions than were children in 
a control group. This research is inspired by work with 
adults in which training on formal statistical concepts 
such as the law of large numbers has been shown to 
improve inductive inference (e.g., Fong, Krantz, & 
Nisbett, 1986). It is important to note that the experi-
mental paradigms used for adults are set up to assess 
how generally participants can apply the recently trained 
statistical concept. Similar assessments of the generaliz-
ability of trained statistical concepts should be imple-
mented in future training paradigms with children.

We end with a few speculations on how these infant 
studies may inform mathematics education in older chil-
dren. Proportional reasoning, probability, and statistics 
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are difficult mathematical concepts to teach in schools 
(Bryant & Nunes, 2012). The main focus in the early 
years of mathematics curriculum is on learning about 
whole numbers via counting, addition, and subtraction. 
A number of researchers have argued that this whole-
number focus may cause or exacerbate a “whole-number 
bias,” a tendency in young children to struggle with 
ratios and fractions because the well-learned principles 
governing whole numbers bias their reasoning (see 
Braithwaite & Siegler, 2018; Ni & Zhou, 2005; O’Grady 
& Xu, in press; Siegler, Thompson, & Schneider, 2011; 
Vamvakoussi & Vosniadou, 2010). There is support in 
the developmental literature for the idea that children’s 
familiarity with the rules of whole numbers negatively 
affects their proportional and probabilistic reasoning. 
For example, it has been shown that children perform 
worse on proportional-reasoning tasks when the stimuli 
are discrete and countable versus continuous and 
uncountable, suggesting that counting leads them astray 
in these cases (Boyer, Levine, & Huttenlocher, 2008; 
Jeong, Levine, & Huttenlocher, 2007). Falk et al. (2012) 
also show that children apply erroneous subtraction 
strategies and erroneous comparisons of whole num-
bers in numerators when computing probabilities. 
These findings might be the result of an overlearning 
of counting principles and arithmetic as they relate to 
whole numbers. These entrenched notions about how 
whole numbers work may also lead to difficulties in 
understanding that they cannot be rigidly applied to 
fractions and ratios.

The idea that children should first master whole 
numbers before other types of numbers is sensible, 
given that one needs to start somewhere, and classic 
developmental literature suggests that children have no 
intuitions about proportions and probability until well 
into middle childhood. However, given the recent 
research with infants and nonhuman primates reviewed 
in this article, it may be worth exploring the idea that 
in addition to positive integers, other types of numbers, 
including ratios, can be introduced earlier in education. 
Children appear to have intuitions about proportions 
and probability much earlier in development. The tasks 
used with infants and nonhuman primates, which pres-
ent items visually in varying proportions, might be par-
ticularly good tools for introducing mathematical 
concepts such as proportions and probability. Further, 
the lottery-machine stimuli, which can be presented 
easily on computers, could be implemented as a game 
in which children can make predictions about future 
outcomes, as the numbers of different items change 
across trials. By introducing ratios, proportions, frac-
tions, and decimals earlier in education, perhaps first 
in an intuitive manner and then more formally, children 
might become more flexible in their numerical 

reasoning. This practice could potentially help students 
harness the intuitive understanding they already have 
as babies, enrich their numerical-reasoning abilities, 
and build a better foundation for learning high-level 
mathematics later on.
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Notes

1. Although probabilistic reasoning has been shown in infants 
and sophisticated applications of these abilities have been 
shown in young children, recent work has also demonstrated 
important limitations on how children apply probabilistic 
reasoning. For example, in mental-state reasoning, for which 
previous studies have found that children successfully infer 
preferences from nonrandom sampling, Garvin and Woodward 
(2015) found that statistical information alone was insufficient 
for 3-year-olds to infer preferences. Their work suggests that 
children may struggle to select appropriate hypotheses to con-
sider in the first place, and verbal framing provides a context in 
which children can apply their probabilistic intuitions.
2. How numerosities are represented by each system differs 
(e.g., the approximate-number system, or ANS, represents large 
approximate numerosities, whereas the object-tracking system 
indirectly represents precise numbers up to four). Very little 
work with infants has examined how proportions or ratios are 
encoded by infants. One study by McCrink and Wynn (2007) 
found that 6-month-old infants’ discrimination of different ratios 
of visual-spatial arrays showed the same signatures of ANS as in 
infant studies with large numbers (e.g., Lipton & Spelke, 2003; 
Xu & Spelke, 2000).
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