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Abstract—Using a wearable electromyography (EMG) and
an accelerometer sensor, classification of subject activity state
(i.e., walking, sitting, standing, or ankle circles) enables detec-
tion of prolonged “negative” activity states in which the calf
muscles do not facilitate blood flow return via the deep veins
of the leg. By employing machine learning classification on a
multi-sensor wearable device, we are able to classify human
subject state between “positive” and “negative” activities, and
among each activity state, with greater than 95% accuracy.
Some negative activity states cannot be accurately discrimi-
nated due to their similar presentation from an accelerometer
(i.e., standing vs. sitting); however, it is desirable to separate
these states to better inform the risk of developing a Deep
Vein Thrombosis (DVT). Augmentation with a wearable EMG
sensor improves separability of these activities by 30%.

Keywords-Wearable Sensors, Classification Algorithms,
Biomedical Computing

I. INTRODUCTION

Deep Vein Thrombosis (DVT) is a condition occurring
when a clot forms in the deep veins of the leg. This
condition impacts between 300,000 and 900,000 people
per year in the United States, and is the country’s leading
cause of maternal death [1]. Studies have shown that 10%-
30% of patients suffer mortality after developing a venous
thromboembolism [2]. In the majority of these cases, the
cause of death is a Pulmonary Embolism (PE) caused
by the displacement of a DVT. Most clinically significant
PEs originate as venous thromboembolisms in the lower
extremities or pelvis [3]. In addition to short term risks, risk
of recurrence within 4 years for patients with unprovoked
DVT is nearly 20% [4].

It is this long term risk that makes DVT a dangerous con-
dition. Clinical detection of DVT is difficult because venous
thrombi can be clinically silent, and many of the symptoms
of venous thrombosis are also associated with nonthrombotic
disorders [5]. Risk factors for DVT reflect the underlying
pathophysiologic mechanisms of venous thromboembolism,
with 70 to 96 percent of patients presenting at least one risk
factor. Strong risk factors for DVT are orthopedic surgery,
pregnancy, chemotherapy, and immobility [6]. Incidence
rates vary drastically across patient populations. For elderly
populations (age >= 80), incidence rates are about 1 per
100, while for younger populations (age < 80) the rates are
less than 2 per 1000.

Determination of risk based on only one physiologic indi-
cator is both insensitive and nonspecific [5]. The American
Association of Family Physicians provides practitioners with
clinical diagnostic algorithms that are widely accepted as the
best method of providing prompt and accurate diagnosis in
the field. The process of diagnosis combines both a physical
examination and blood tests, both of which require a direct
intervention by a trained physician.

Because a patient can be at risk for several years, it
would be impractical for providers to continuously perform
these diagnostic procedures without severely impacting the
patient’s quality of life. Automatic activity classification
allows for continuous monitoring of a patient without the
direct supervision of a medical practitioner. Because of the
high correlation between calf muscle activity and venous
blood velocity [7], it is possible that calf muscle activity
could be used to directly assess DVT risk.

The most direct method of monitoring muscle activity is
using electromyography (EMG). EMG measures the elec-
trical activity of a muscle in response to nervous stim-
ulation. Alternatively, using an accelerometer to measure
the motion of the leg, and indirectly measure calf muscle
activity, leverages a large amount of existing research and
provides a robust data collection workflow [8], [9], [10],
[11] . Accelerometers are a common method of monitoring
patient activity; mainstream devices such as the Apple Watch
already provide basic activity monitoring with feedback. In
this paper, we explore the ability of both EMG sensors and
accelerometers to accurately measure patient activity, and
examine the effectiveness of each sensor in correctly mea-
suring and classifying activity. Effective monitoring could
allow for more accurate DVT risk determination, enabling
practitioners and patients to make more informed decisions
on how best to prevent thrombus formation.

II. BACKGROUND

In 1856 Rudolf Virchow described the three factors:
venous stasis, activation of blood coagulation, and vein
damage, that are critically important in the development of
venous thrombosis. These factors have come to be known as
the Virchow Triad. Venous stasis can be caused by anything
that slows or obstructs the flow of venous blood, and can



result in an increase in blood viscosity and the formation of
microthrombi.

While the formation and dissolution of microthrombi
is a normal process; in the presence of increased stasis,
procoagulation factors, or endothelial injury, the thrombi that
form may grow and propagate in the vein [12]. Thrombi
usually form behind valve cusps, at venous branch points
(many of which begin in the calf), or where the flow
is otherwise disturbed [12]. The process of thrombosis is
usually characterized by cascading activation of enzymes
that magnify the effect of the initial trigger event. This
process causes platelets to adhere more readily, and provokes
an inflammatory response within the vein.

For patients with low mobility, or those who are confined
to bed rest, risk of thrombus formation is very high. Sitting
or lying for long periods can cause blood to leave the
lower extremities [13], [14]. This reduced outflow can affect
autonomic tone and cause vascular dysfunction. Even in
healthy adults, being seated for as little as 4 hours can reduce
lower leg blood velocity by 13% [14].

The calf muscle plays an important role in the movement
of blood from the leg. The so called calf muscle pump
can push as much as 70% of the blood out of the calf
during plantar flexion by generating a pressure gradient both
proximally and superficially [15]. The American Association
of Colleges of Pharmacy guidelines for the prevention of
DVT include frequent calf muscle contractions for travelers
who are taking flights longer than 8 hours [16] and most
airlines recommend performing some sort of foot or leg
exercises to improve circulation in the confined space of
modern cabins. Study of the effect of active foot and ankle
movements on lower extremity blood velocity has shown an
increase in mean velocity over both no activity and passive
movements [17], [18].

III. RELATED WORK

For patients recovering from major surgery or who are
otherwise relatively constrained in their mobility and are
therefore at risk of DVT, traditional types of activities on
which classifiers from the literature are trained may be
impossible. Properly measuring factors such as time spent
in bed, compliance with provider recommended therapeutic
exercises, and overall mobility are crucial to determining
patient risk.

Extensive work has been done on the subject of activity
classification using data from a tri-axis accelerometer. Yang
et al. used a wrist mounted sensor to segment activity of
subjects performing a wide variety of activities and was able
to achieve an accuracy of 96% [8]. Khan et al. and Mathie
et al. were also able to achieve accuracy above 90% with
sensors mounted on the chest and waist respectively [9],
[11]. In other cases, such as Allen et al., a single waist
mounted sensor was able to achieve 91.4% accuracy for

classification of Lying but only 79.2% and 77.3% for Sitting
and Standing respectively [10].

As with [10], the classification accuracy of Sitting and
Standing consistently lags behind the accuracy of other
activities for single sensor studies. Berninger et al. used
a single hip mounted accelerometer to classify Standing,
Sitting, and Walking. In the free living portion of their study
the accuracy for Sitting and Standing were 72.6% and 87.1%
respectively, compared to 96.8% for Walking [19]. Khan
et al. demonstrated average accuracies for a single chest
mounted accelerometer of 95% for Lying, but only 63% and
74% for Standing and Sitting respectively [9]. Some studies,
such as [20] avoided the differentiation of Sitting versus
Standing altogether by lumping them into a single activity.
For Sitting and Standing, the results for single sensor studies
not only lag behind detection of other activities, but also the
accuracies for Sitting and Standing in multi-sensor studies
such as [8], which achieved accuracies of 98% and 100%
for Sitting and Standing respectively.

The use of EMG sensing for the measurement of muscle
activity is accepted as a standard practice. Tomaszewski et
al. demonstrated that EMG signals were able to be used to
accurately classify hand gripping activities with an accuracy
of greater than 80% [21]. The success of this EMG based
system on classifying fine motor activity implies that such
a system may assist a single accelerometer based system
in better classifying low mobility activities performed by
patients. The addition of an EMG sensor could also improve
the system’s ability to reject activity noise, improving clas-
sification accuracy during unstructured activity [22]. Roy et
al. demonstrated that combining an accelerometer and EMG
sensors can allow for classification of patient activity, but
required the use of several EMG sensors to obtain accurate
results [23]. Multiple sensors can be uncomfortable for the
patient and make monitoring more intrusive. By utilizing
only one EMG sensor the proposed system could be used
more effectively in the treatment environment, but may
reduce classification accuracy without additional sensor data.

While the existing work in this field has obtained highly
accurate results for traditional activities, the problem of
classification for low mobility activities presents challenges
not accounted for in these works. It is therefore important
to test specific activities that are more relevant to the patient
population at risk of DVT. In this paper we outline a new
set of activities that better represent the available range
of motion for patients with low mobility. Evaluating the
effectiveness of a multiple sensor system on low mobility
activities is the major goal of this work.

IV. APPROACH

A. Study participants

Study participants were 17 healthy undergraduate and
graduate student volunteers from the Drexel Wireless Sys-
tems Laboratory. Participants represented the demographics



of the laboratory, and were randomly distributed in gender,
age, and height. None of the participants had limited range
of motion. Because the study sought to characterize sub-
classifications of low mobility activities without the require-
ment that the participants themselves had reduced mobility,
this population was suitable. This study was approved by
and conducted in accordance with the Drexel Institutional
Review Board protocol number 1703005276.

B. Structured Exercise regimens

Exercises were chosen from literature relating to both tra-
ditional accelerometer based activity classification and DVT
prevention. For accelerometer based activity classification,
the exercises that appeared most often in literature were
Walking, Standing, and Sitting [24], [10], [8], [11]. The
DVT prevention exercises selected were designed to activate
the calf muscle and therefore increase blood flow in the
lower leg [13]. The Tap and Twist and Ankle Circles were
performed Sitting, while the Foot Pumps were performed
standing up. All of these DVT prevention exercises were
designed to be able to be performed by patients with low
mobility. For ease of working with the data, each activity
was assigned a number. Activities that were specifically
referenced in literature as beneficial in reducing DVT risk
were labeled as a Positive activity, while the activities that
increased DVT risk were labeled as a Negative activity.
These activity labels are shown in Table I, along with the
subclass to which they belong. Additionally, the average
magnitude of EMG signal is included for each activity to
demonstrate the correlation between calf muscle activation
and activity type.

Number Activity
Average EMG
Magnitude (V) Classification

1 Walking 1.18 Positive
2 Sitting 0.54 Negative
3 Standing 0.60 Negative
4 Tap and Twist 0.74 Positive
5 Ankle Circles 0.84 Positive
6 Foot Pumps 1.07 Positive

Table I: Activity labels with their respective classifications.
Based on the average EMG magnitude it is clear that positive
activities have a higher level of calf muscle activity than
negative activities.

For each exercise, the participant was given a verbal
description as well as a demonstration of the exercise.
Exercises were performed continuously for 2 minutes in
the case of the first three, and in 30 second sets for
those that remained. These shorter sets for more fatiguing
exercises were designed to ensure exercise performance was
consistent. At the end of each set, the participant was given
the opportunity to take a break if they felt their ability to
perform the exercise correctly was degrading.

C. Unstructured Exercise regimens

To determine robustness of the classifier in situations
where data is collected over longer periods of time, partic-
ipants were asked to spend one hour working at a standing
desk. During this time, the participant was allowed to stand
or sit at whatever interval they chose, noting only the time
period that represented the transition. The participants were
asked to perform some mental task to distract them from the
activity they were performing.

D. Data collection

Data was collected using the x-IMU device from X-IO
Technologies. This device has a 12-bit accelerometer with
selectable range of up to ±8g, and an 8 channel 12-bit digital
to analog converter. The EMG sensor used was the MyoWare
Muscle Sensor, which was connected to the analog input of
the x-IMU device. This sensor is able to measure muscle
activity using two adhesive pads placed on the skin. The
sensor was placed by the researchers for each participant,
with the reference electrode placed on the shin, and the
middle and end electrode placed at the center of the medial
head of the gastrocnemius muscle as shown in Figure 1.

Figure 1: Image used to guide placement of the EMG sensor.
Anatomic variation can result in slight variations in the ideal
placement of the sensor which caused differences in the
magnitude of the resulting signal. Feature selection was used
to reduce the effects of this variation.

For each exercise, after being given verbal instructions,
the participant was told to start the exercise. Shortly after
the participant began to perform the exercise correctly (at the
discretion of the investigator but without further instruction)
the start time of the exercise was recorded. After 2 minutes,
the labeling of the exercise was stopped and the participant
was told to stop performing the exercise after a small period
time. The goal of this procedure was to remove a margin
at the beginning and end of each exercise to ensure that
the activity labeling was as accurate as possible. Figure 2
illustrates the result of this procedure for a dataset, where
the red color represents the excluded margin and the green
color represents data that included. This labeled data was
used as the ground truth for classification.
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Figure 2: Accelerometer data for a trial showing the effect of
the data collection methodology. Excluding transition peri-
ods between activities reduced the noise level and improved
classifier performance.

Data collection was performed at a rate of 64 Hz for both
data streams, and the data was saved to a storage device for
later analysis.

E. EMG Descriptors

The EMG data feature descriptor was generated using a
rolling window of 6.5 seconds with a 90% overlap [25]. All
windows containing more than one activity were removed.
The feature vector was 3(n−416) to account for the window
size. The feature vector for a given window wn is defined
as shown in Equation 1 where var is the variance of the
signal.

wn = [En, µEn
, var(En), ϕ

0, ϕ1, ϕ2, Q1(En)] (1)

where En is the EMG envelope defined by En =
∑N

n=1 |en|
for the raw EMG data en, N denotes the length of the EMG
signal and µEn

represents the average of the signal over the
window.

The vector [ϕ0, ϕ1, ϕ2] represents the coefficients of a
second-order auto regressive model fit to the data win-
dow. This model was chosen because of its effectiveness
at separating activities in EMG signals over time domain
features [26].
Q1 represents the median of the first quartile of the

window. This value was used instead of minimum to elim-
inate the influence of localized minima spikes and better
characterize the lower bound of the signal. This feature was
designed to increase separability of Standing and Sitting.
The separability between the activity classes can be seen in
Figure 3.

F. Accelerometer Descriptors

The feature descriptor for the accelerometer data was
generated using the same window parameters as the EMG
signal. For each descriptor, a 1 x 4 vector was generated
for the signals an = [ax, ay, ax, |a|]. The feature vector for
the accelerometer signal was therefore defined for window
wn as shown in Equation 2 where rms() is the root mean
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Figure 3: En for a trial, showing the activity labels. It is
clear from the raw data the the amount of calf muscle activity
varies drastically between certain activities but the EMG data
alone is not enough to separate them with high granularity.

square value of the signal and µan represents the average of
the signal over the window.

wn = [µan , rms(an), var(an)] (2)

These features were chosen for their high efficiency to
reduce classification latency.

G. Classifier

The classifier used in all testing was a single layer feed
forward network. For all trials, the number of neurons
was n = 3(t) where t is the number of target classes, a
formula that was determined to most effectively balance
training data requirements and accuracy based on testing.
Training and testing for the structured data was done using
a leave-one-out methodology [27], and the results obtained
by summing all of the resulting confusion matrices. For
the unstructured data, the classifier was trained on all of
the structured training data and tested using the long term
data that was collected from a separate set of participants.
While personalizing the trained model for each participant
may have improved accuracy, the additional challenges of
training such a system the end use environment would make
this approach much less practical.

V. RESULTS

Data collection for the study was performed over the
course of a week. Fourteen participants each spent approx-
imately 20 minutes performing the exercises. All data was
verified to be without sensor malfunction, with any irregular
data such as a sensor flat-line being cause for the removal
of a dataset. In six cases, issues with EMG pad connection
caused the dataset to be be thrown out. For each trial,
unlabeled data was removed leaving exactly 1,118 labeled
windows for each activity.



A. Individual Sensor Collection
On their own, each sensor measures fundamentally dif-

ferent aspects of the process of locomotion. As such it is
important to understand the strengths and weaknesses of
each on the model’s ability to describe an abstract set of
activities via each feature set independently. Using the same
subset of the dataset to train and test, three separate networks
were trained to classify all activities.

1) Accelerometer: The accelerometer alone achieved
85.8% (σ = 0.128) accuracy in the classification of the
6 activities as shown in Figure 4a. As was shown in the
existing work, Sitting and Standing were frequently mistaken
for each other, resulting in an accuracy for activities 2 and 3
of 61.1% (σ = 0.522) and 59.3% (σ = 0.335) respectively.
This lagged behind the other activities by an average of
25%. Higher sigma values for both of these classes were
caused by trials in which accuracy for these activities was
0%. These anomalies occurred when the classifier converged
on a solution that was unable to separate activities 2 and 3
despite relatively high accuracy for the remaining classes.
We observed 100% classification accuracy between Positive
and Negative activities. The results for the accelerometer
alone are shown in Figure 4a.

In the unstructured data, the results were similar. For
Sitting the classifier achieved an accuracy of 58.7%, and
for standing the accuracy was 18.6%. Again, all of the
misclassified windows were put misclassified within the set
of the two activities.

For Standing and Sitting, the accelerometer has a difficult
job. There was little variance in the signal (variance of
0.000015 and 0.000011 respectively) resulting in no obvious
features that would differentiate the raw signal of the two
classes. It is understandable that this is the major source
of error for the sensor, however this did not effect the
accuracy of the Positive and Negative classification because
both activities were within the same class.

2) EMG: The results of classification using only the
EMG is shown in Figure 4b. In the case of almost all classes,
errors were widely distributed across several activities. Ac-
tivities 1, 4, and 6 all achieved more than 80% accuracy,
with an overall accuracy of 74.8% (σ = 0.03). Standing
had the highest degree of misclassification overall with an
accuracy of 23.8% (σ = 0.10), with misclassification spread
across all other classes relatively evenly, but Sitting was able
to maintain a high accuracy. For the EMG sensor alone, the
accuracy of Sitting and Standing lagged behind the other
activities by 19.4%.

For the unstructured data, the classifier was only able to
achieve an accuracy of 95.0% for Sitting and 22.8% for
standing. Unlike the classifier that used only the accelerom-
eter data, this classifier spread the classifications more evenly
across all activities.

Where the accelerometer was able to maintain high ac-
curacy across the Positive and Negative classes with an

accuracy of 94%. The EMG was more widely distributed,
subclass accuracy for the EMG was high for Positive exer-
cises but very low for Negative ones with an accuracy of
98.0% (σ = 0.008) and 58.6% (σ = 0.10) respectively.

B. Combined Classification

The combined feature descriptor was a concatenation of
both the Accelerometer and EMG features. This classifier
showed high accuracy for all activities, with an overall
accuracy of 97.7% (σ = 0.128) as shown in Figure 4c. For
both Standing and Sitting, which have accuracies of 93.2%
and 93.7% respectively, the majority of the misclassification
(3.1% overall) was within these two exercises. We observed
99.99% classification accuracy between Positive and Neg-
ative activities. The results for the combined classifier are
shown in Figure 4c.

For the unstructured data the classifier was able to achieve
an accuracy of 62.1% for Sitting and 93.5% for Standing.
This is a 40% increase in accuracy over the classifier that
was trained on the accelerometer features alone, but the
accuracy of Sitting is notably lower than the classifier trained
on the EMG data.

VI. CONCLUSION AND FUTURE WORK

The improvement between the classifier using the ac-
celerometer features alone and the combined classifier was
primarily in the separability between Sitting and Standing.
While the classifier trained on the accelerometer features
was able to classify with high accuracy most activities, the
combined classifier was 30% more accurate at separating
Sitting and Standing. As demonstrated in Figure 3, there
was a noticeable increase in calf muscle activity for Standing
over Sitting. When standing the patient is constantly making
subconscious adjustments to posture to maintain balance.
The EMG sensor also benefited the classification of the other
activities and enabled an increase classification accuracy in
the combined classifier of 11% overall.

Surprisingly the classifier trained on the EMG data
alone also had poor performance when separating Sitting
and Standing. While it improved significantly the accuracy
of Standing, the accuracy of Sitting actually decreased.
Whereas in the combined classifier adding the EMG data
seemed to allow better information about the calf muscle’s
activity, on its own the EMG envelope data was insufficient
for accurate classification.

There are several factors related to the EMG sensor itself
that could have contributed to this performance. Across the
dataset, there was sufficient variation in signal magnitude
(due to sensor placement and anatomical variations) to cause
clipping in 6 of the datasets which resulted in an artificially
low maximum signal magnitude. This clipping did not
have a significant impact on classifier accuracy most likely
because the EMG descriptors chosen focused more heavily
on the second order shape of the signal and variance levels.
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Figure 4: Confusion matrices for classifiers based on the accelerometer alone (left), the EMG sensor alone (center), and
combined (right)

Additionally, the activities affected most by the clipping
were those that had high levels of accelerometer activity and
were therefore more easily separated. The Myoware Muscle
sensor has a fixed gain; a more robust sensor may be able
to prevent this issue.

Overall the addition of an EMG to a single ankle mounted
accelerometer for the classification of activities has been
shown in this paper to improve separability of Sitting and
Standing, two activities whose accuracies lagged behind in
other work, by 30%. In addition, the combination of an
accelerometer and an EMG sensor is able to classify low
mobility activities with an accuracy above 90% for both
short and long duration. The system showed robustness to
variations between participants and could provide vital data
to practitioners concerned with a patient’s compliance in a
treatment plan deigned to prevent future clot formation.

A. Future Work

The results provided in the paper demonstrate that in a
lab setting the classifier is robust and able to accurately
classify activities. Further investigation is required to de-
termine whether the classifier is able to perform with the
same accuracy for patients with limited mobility. Several
factors including skin condition and interaction with hospital
equipment may interfere with the ability for the EMG sensor
to gather accurate data. The use of a knitted sensor such
as [28] may improve data accuracy in these situations while
also improving the overall comfort of the device.
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