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Abstract—Objective: Utilizing passive radio frequency
identification (RFID) tags embedded in knitted smart-
garment devices, we wirelessly detect the respiratory state
of a subject using an ensemble-based learning approach
over an augmented Kalman-filtered time series of RF prop-
erties. Methods: We propose a novel approach for noise
modeling using a “reference tag,” a second RFID tag worn
on the body in a location not subject to perturbations due
to respiratory motions that are detected via the primary
RFID tag. The reference tag enables modeling of noise
artifacts yielding significant improvement in detection ac-
curacy. The noise is modeled using autoregressive mov-
ing average (ARMA) processes and filtered using state-
augmented Kalman filters. The filtered measurements are
passed through multiple classification algorithms (naive
Bayes, logistic regression, decision trees) and a new sim-
ilarity classifier that generates binary decisions based on
current measurements and past decisions. Results: Our
findings demonstrate that state-augmented Kalman filters
for noise modeling improves classification accuracy drasti-
cally by over 7.7% over the standard filter performance. Fur-
thermore, the fusion framework used to combine local clas-
sifier decisions was able to predict the presence or absence
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of respiratory activity with over 86% accuracy. Conclusion:
The work presented here strongly indicates the usefulness
of processing passive RFID tag measurements for remote
respiration activity monitoring. The proposed fusion frame-
work is a robust and versatile scheme that once deployed
can achieve high detection accuracy with minimal human in-
tervention. Significance: The proposed system can be use-
ful in remote noninvasive breathing state monitoring and
sleep apnea detection.

Index Terms—Sensor fusion, wearable sensors, kalman
filtering, activity recognition, binary classification.

|. INTRODUCTION

NITTED antennas using Radio Frequency Identification
(RFID) tags have been utilized as wearable smart-garment
devices [1] capable of wirelessly monitoring strain-gauge and
movement-based activities such as limb movement for Deep
Venous Thrombosis (DVT) monitoring, respiratory monitoring,
and uterine monitoring during labor and delivery [2], as well
as electrical activity such as ECG heart monitoring [3]. Each
of these applications presents challenges beyond their wired,
tethered counterparts. Strain-gauge movements, such as respi-
ratory monitoring, are challenging because raw non-strain gauge
movements (i.e., moving the body or walking about) are detected
in the same band as strain-gauge stretches that would occur from
respiratory activity. Sleep apnea is defined as a reduction of res-
piratory activity by 95% for a period of 10 seconds [4]. Thus,
it is possible to exhibit some respiratory activity during this
“boundary period” while experiencing the onset of apnea con-
ditions. By considering classifier inertia, classifications made
at the boundary between two states (i.e., respiration and apnea)
consider recent prior classifications when determining a final
prediction and the degree confidence in that prediction.
In this study, we use multiple binary classifiers to develop
a framework that can detect in real-time the breathing or non-
breathing state of a person. A programmable mannequin simu-
lator was used to collect data from and test our framework. Each
classifier was trained on features extracted from RFID measure-
ments of two spatially separated tags. One tag was placed on
the mannequin belly to capture breathing movements, and a
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secondary reference tag was placed on the shoulder to capture
signal artifacts unrelated to breathing. Towards this end, we pro-
pose a novel similarity classfier that uses current measurements
from the reference tag and the past decisions for classification. A
fusion center uses the local classifier confidences when weight-
ing a final prediction of the breathing state at each sampling
instant.

Using a reference tag placed elsewhere on the body that does
not exhibit strain-gauge motion, noise artifacts that were once
in-band with the strain-gauge signal can be observed and mod-
elled. We observe that the noise is not white but exhibits tem-
poral correlation; by augmenting the Kalman Filter with an Au-
toregressive Moving Average (ARMA) process, the signal from
which our features (discussed in Section III-A) are extracted
is improved, significantly increasing classification accuracy as
compared to a system that used a standard Kalman filter (with
white Gaussian meaurement noise). The rest of this paper is
organized as follows. We survey related work in Section II.
Our data collection, feature extraction, and experimental proto-
col are summarized in Section III. We detail our fusion system
setup and approach in Section IV, and summarize results in
Section V. Finally, we conclude with a discussion of future
work in Section VI.

II. RELATED WORK

Unobtrusive and wireless techniques to obtain respiration data
have several advantages and is hence highly desired. Judging by
the high level of interest in this research area. Vital-Radio is
one such system that can accurately track a patient’s breathing
without body contact [5]. This system measures the reflection
time of low power transmissions to determine human respira-
tion rate. While the system provides a convenient method to
obtain vital signs, it is susceptible to inaccuracies due to non-
respiration related motion.

A similar system called WiBreathe is presented in [6] that uses
wireless signals in the same frequency range of commercial Wi-
Fi devices. While this may be advantageous in reducing system
costs and encouraging fast adoption, the system is not capable
of uniquely identifying signals from patients. This issue is also
present in the Vital-Radio system mentioned earlier and is a
result of the two systems relying on signal reflections to carry
out respiration detection.

NightCare is a system that uses Ultra High Frequency (UHF)
RFID for patient sleep monitoring. The system consists of flexi-
ble RFID tags integrated into clothing, bedding and surrounding
areas to determine patient motion patterns, falls and interaction
with objects [7]. The use of passive UHF RFID allows the sys-
tem to deploy sensors in patient surroundings without the need
for batteries or other power sources. However, NightCare is not
capable of obtaining vital signs such as respiration and heart
rate, as is possible with our system.

The textile respiration sensor presented in [8] operates in the
Industrial, Scientific and Medical (ISM) band (2.45 GHz) and
uses a spiral antenna structure. This sensor has been used to
detect breathing using two mechanisms: change in the physical
properties of the spiral antenna due to stretch and change in

Fig. 1. The Laerdal SimBaby programmable mannequin with Bellyband
tag and Reference Tag.

dielectric properties of the thoracic cage during respiration. The
sensor has not been operated wirelessly and a Vector Network
Analyzer (VNA) was used to prove its ability to detect respi-
ration using the two methods mentioned. The authors intend
to use a wireless standard such as Bluetooth to enable wire-
less capabilities to this sensor. However, using such a standard
would require the addition of a power source, something that
the Bellyband does not require due to its use of UHF RFID.

Since our Bellyband uses the commercial EPC Gen2 RFID
protocol for wireless operation, subjects can be identified using
a unique Tag ID (TID) number stored in the RFID tag embed-
ded in the textile antenna. This enables easy identification and
separation of signals from multiple patients. The use of passive
UHF RFID also allows Bellyband to operate battery-free, en-
abling seamless integration of the sensor in clothing for vital
sign monitoring.

I1l. DATA COLLECTION

In order to establish a repeatable ground truth (true state of
breathing or non-breathing), a Laerdal SimBaby programmable
mannequin simulator (see Figure 1) was used to actuate the
abdominal area to emulate respiratory activity. The mannequin
was programmed to perform respiration at a predefined rate (30
breaths per minute) for one minute, followed by a one minute
period of non-breathing; this behavior was repeated throughout
the data collection process. Two tags were used: a Bellyband
tag that was placed on the abdomen of the SimBaby and a
reference tag that was placed on its shoulder (see Figure 2).
The positioning of the reference tag on the shoulder makes it
less sensistive to movements related to breathing. We use a
filtered version of the meaurements from the reference tag as a
representative collection of non-breathing state data points.

The Impinj Speedway R420 RFID interrogator was used
to poll the Bellyband wearable RFID tag and antenna with a
900 MHz band RFID signal, and to measure properties of the
backscattered signal reflected from the RFID tag. Although a
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Fig. 2. System diagram illustrating Bellyband and Reference tag interrogation.

fixed polling interval is not guaranteed, interrogations are typi-
cally performed with a frequency of approximately 90 Hz. RFID
properties considered include the Received Signal Strength Indi-
cator (RSSI), phase, Doppler shift, interrogation frequency, and
timestamp. Features extracted from these properties, which in-
clude a channel-normalized RSSI ({) and a channel-normalized
change in phase or Doppler shift (the tag “velocity” v), are
discussed in more detail in Section III-A. In Section IV-B, we
classify the features in real-time into “breathing” and “non-
breathing” states, and in Section IV-D, we fuse the classifica-
tion results into a final predicted states. Data and features are
accessed from a database via a web service, which encrypts
and decrypts the data using an evolving key suitable for use in
a medical environment under Health Insurance Portability and
Accountability Act (HIPAA) regulations.

A. Features

Three measures from the RFID interrogator are considered
for subject state tracking: the RSSI of the backscatter from the
interrogation of the passive RFID tag, the phase of the reflected
signal observed by the interrogator, and the Doppler shift of
the reflected signal observed by the interrogator. Each of these
metrics is affected in-band by the frequency of the original sig-
nal emitted by the interrogator. Under United States Federal
Communications Commission (FCC) regulations, RFID inter-
rogations must iterate (or “channel hop”) over 50 frequency
channels in the 900 MHz band. In addition to perturbing the
raw measurement observations at the interrogator, channel hop-
ping poses challenges in computing higher order features from
changes in the observed phase, because these features depend
on observing changes in successive values of the phase under
the assumption that they were observed from the same inter-
rogation frequency [9]. As a result, the observed Doppler shift
is used to identify fine movements of the RFID tag, either in
space or as a result of a strain force applied to the surround-
ing knit antenna. The tag “velocity” is computed as a feature
on the Doppler measure, which is proportional to the inter-
rogation wavelength A = % (where c is the speed of light in
a vacuum, and f is the interrogation frequency), the observed
Doppler measure, and the interrogation angle, which we assume

to be constant. A higher order feature ¢ is computed from the
RSSI measure by accounting for the interrogation frequency.
The Radar Cross Section (RCS) relates changes in received sig-
nal power (Pg, ) to the interrogation power (Pr, ), the reader and
tag gains (Geqder and Gy, g, respectively), the return loss (R),
and the interrogation wavelength A [10]. If we assume that the
interrogation power Pp, and the reader gain G, .qq., are con-
stant, we observe that the changes in gain of the tag (resulting
from movement or a strain force on the antenna), the distance
between the interrogator and the tag (resulting from movement),
and return loss (resulting from movement, strain force, fading
or multipath interference) are proportaional to the interrogation
wavelength and observed RSSI measure as defined in (1). We
define ¢ as those terms of the RCS model that indicate changes
at the tag, such as movement, strain force, or interference.
(=G, 2 xr*R™

tag

4
= PT.T,T(:n,drzr X G%(z(),d(gr X Plgalc,reader X <4)\‘7T> ) (1)
where Pr,; yeqder 18 the RF transmit power from the interrogator
(1 Watt, or 30 dBm), Pry rcader 18 the observed backscattered
power at the interrogator that is reflected from the RFID tag,
measured indBm; G,y and G, .c 4., are the tag and reader gains,
respectively, r is the distance between the interrogator and tag,
and R is the return loss. The proportionality defined by ( in (1)
has aresidual of & = —10l0g10 g5y ~ —0-00941,
as the frequency changes by 500 kHz on each change in channel.
This constant linear oscillatory pattern is mitigated by comput-
ing ¢ = ¢ — (50 — w), where w is the channel number in [0,
50) that denotes the frequency iteration with respect to the fre-
quency f. The channel number [0, 50) is obtained given the
interrogation frequency by computing w = % to de-
termine which of the 500 kHz offsets from the start of the 900
MHz RFID band is in use.

In summary, we chose the following features for consideration

during wireless respiratory state classification:
e Feature 1: Reflected signal strength as measured at the

interrogator (()
® Feature 2: Phase angle of the reflected signal
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Fig. 3. Decision fusion of Bellyband and reference tag measurements.
e Feature 3: Tag velocity as a function of the observed
Doppler shift at the interrogator
e Feature 4: Tag velocity as a function of the change in
phase of successive interrogations
The entire dataset consisted of approximately 1200 data
points from each tag (Bellyband and reference).

B. Dataset Labeling

As shown in Figure 7, we label each feature tuple with the
known state established from the ground truth (“breathing” or
“non-breathing”). This is denoted in Figure 7 via vertical lines in
time at each minute interval. Each minute of data corresponds
to approximately 400 “sampling instants,” which consists of
a moving average of 6 data points. This indicates an RFID
interrogation frequency of 40 Hz per RFID tag; as a primary
Bellyband tag and a reference tag were used in the system, an
interrogation frequency of roughly 80 Hz was observed. These
labels were used to determine accuracy, precision and recall
metrics of the classifiers and fusion algorithm, as well as to
train the individual classifiers.

IV. SYSTEM SETUP

Figure 3 shows the system setup used for filtering and fu-
sion of raw observations from the Bellyband and reference tags.
The system consists of a bank of classifiers; namely logistic
regression, decision tree and naive Bayes’ for the Bellyband tag
observations and one similarity classifier that takes in both the
reference tag and Bellyband tag measurements as input. Each
classifier generates local binary decisions u;(k),i =1,...,N
(N =4 is the number of classifiers) supporting either of the

two hypotheses (Hj: breathing state, H: non-breathing state).
The decision fusion center aggregates the local decisions to
compute a global decision ug (k) supporting the same set of hy-
potheses. Each Kalman filter has a state augmented form (see
Section IV-A) and is tuned individually to the incoming obser-
vation source. The 3 binary classifiers excluding the similarity
classifier are trained on data sets obtained from the Bellyband
sensor through bootstrap aggregation [11]. At each time instant,
the similarity classifier computes a binary decision based on the
current Bellyband and reference tag measurements and also M
past decisions. For this study, the parameter M was fixed to 7
(see Section IV-C) but in general it can be changed during run
time based on some chosen performance metric.

A. Kalman Filtering

The standard model of an autonomous (with no control in-
put) discrete dynamic system as a first order linear difference
equation is

=F(k)z(k — 1)+ G(k)w(k), 2)

where (k) € R" is the state of interest at time instant &, and
w(k) € R! is a random vector referred to as the process noise.
F e R™"*" is the system matrix relating past state to the state at
time instant k. The matrix G € R"*! relates the process noise
to the state at time k. The state observation model is defined as

z(k) = H(k)z(k) + v(k), ©)

where z(k) € R%(d < n) is the observation vector, H(k) €
R?*™ is the observation matrix at time instant k, and v(k) € R?
is the measurement noise. In the model described above, the
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TABLE |
ARMA MODEL PARAMETERS BASED ON GRID SEARCH WITH AIC
MINIMIZATION FOR BOTH BELLYBAND AND REFERENCE TAG MEASUREMENTS

Feature AR process order (p) MA process order (q)
Bellyband  Reference  Bellyband  Reference
1 3 1 1
2 3 1 1 1
3 1 0 1 0
4 1 0 1 0

noise processes w(k) and v(k) are assumed to be white, zero-
mean, uncorrelated, with covariance matrices Q € R**! and
R € R?* respectively. However initial inspection of the mea-
surements from the tags (Bellyband and reference) showed that
the measurement noise is colored (temporally correlated). Col-
ored measurement noise can be handled in multiple ways in the
context of Kalman filtering. Two of the popular methods are the
state augmentation approach ([12], section 7.2) and the mea-
surement differencing approach ([13], section 11.2). Here we
follow the state augmentation approach. It augments the actual
state vector x(k) in (2) with colored noise samples v(k) which
are output of an Autoregressive Moving Average (ARMA) pro-
cess driven by current and delayed samples of zero mean white
Gaussian noise. The ARMA(p, q) model of the measurement
noise v(k) is

v(k) =Y aw(k—i)+> bie(k—j)+ek), @

i=1 j=1

where a; fori = 1,..,p, b; for j = 1, .., g are the coefficients of
the AR and MA models respectively. p, g are the orders of the AR
and MA processes. e(k) ~ N(0,02(k)) is zero mean Gaussian
noise input to the ARMA system. In this study o2 (k) was fixed
at 0.1. The ARMA model orders p, ¢ were estimated through
grid search and the pair with the minimum Akaike Information
Criterion (AIC) [14] value was chosen. Table I shows the the
ARMA model orders for each of the features (see Section I1I-A)
from both Bellyband and reference tags.

Each measurement obtained from the tag is independently
modeled as a scalar state x defined by a first order (n = 1)
system as

(k) = Fa(k — 1) + w(k), ®)

where z(k) is the actual measurement (such as phase in radians
or velocity by doppler) at time instant k. The system matrix F’
is considered to be constant, equal to 1. w(k) is the zero mean
Gaussian process noise with variance (. In other words, we
model the state dynamics as a simple random walk. There are
various methods (some being computationally demanding) such
as [15], [16] of choosing Q. However, such methods were not
employed in this study and the process noise variance () was
fixed at 0.05.

Modeling the measurement noise as an ARMA process results
in its own dynamic system given by (6).

w(k) G ]
1 0 0
vk —1) o 1 o v(k —2)
v(k—p+1) 0 1 0| Lv(k —p)
[ ek) ]
Lb b e(k—1)
+ ) (6)
0 :
~ Le(k—q) ]

The state dynamics represented in (6) is included in the
state space model of the Kalman filter shown in (2) as
a block diagonal element. The augmented state vector be-
comes Tqyy (k) = [z(k), v(k),v(k —1),...,v(k —p+ 1)]T €
R(P+1)x1 The augmented matrices are as follows:

1 0 0 07
0 a1 ay -+ aq
0 1 o --- 0
Faug: 0 1 0 (7)
o 0o -~~~ 1 0]

with F,,,, € R(PFD*+1) and

10 0 --- 0
0 1 b - b
Gaug: ®)
0

with G, € RPH1*(@+2) The augmented process noise

vector is way, (k) = [w(k), e(k),e(k —1),...,e(k —q)]T €

R(4+2)%1 The augmented measurement equation becomes

[ z(k) ]
v(k)

Zaug(k):[1 10 0} v(k—1) 9)

| v(k—p+1) ]
where the augmented observation matrix Hg,, € RIx(@+1) g
given by [1 10--- O]. Note that the augmented measurement
equation in (9) no longer has any direct measurement noise. The
above formulation transforms the single order system in (5) to a
(p + 1) order system. Using the transformed Kalman matrices,
it is shown through (9) that the observation at any instant is
the sum of the variable x(%) which from (5) is the RFID signal
under investigation and the original measurement noise; namely
z(k) = x(k) + v(k). The other elements of the state vector are
not observed. Essentially the steps of augmenting the Kalman
matrices retained the original observation z(k) (a noisy version
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of the RFID signal) but got rid of the colored measurement noise
so that a standard Kalman filter can be applied. The predict and
update steps are provided:

Predict Step:

B (k) = Fuugd * (k—1), (10)

]3_ (k) = FaUgP+ (k - ) aug + GaugD(waUg)GaTug
(11)
Update Step:
K(k) =P~ (k)H,,,(Huo P~ (k)HL,,)", (12)
7 (k) =i (k) + K(k)(2aug (k) = HaougZ ~ (K)), (13)
P (k)= (I — K(k)Huu )P~ (k). (14)

In the above equations 2 ~ (k) is the apriori estimate of state
vector (before observation at instant k£ has been processed).
P~ (k) e Re+Dx@+1) s the covariance of the apriori state
estimation error. & (k) is the posteriori state estimate (after
observation at instant k has been processed). P * (k) is the
covariance of the posteriori state estimation error. K (k) is the
Kalman gain at instant k. I € R(P+1*(+1) ig the identity ma-
trix. D(wg,,) € RUFT2¥0+2) s a diagonal matrix with wq,,
filling up the diagonal elements. For further details in state aug-
mented Kalman filters see [12].

Under ideal conditions, for a perfectly working Kalman filter,
the autocorrelation of the innovations sequence has the statistical
characteristics of white noise (non-zero autocorrelation only at
zero lag). To test the performance of the state augmented Kalman
filter we used the second order whiteness test as defined in ([17],
page 16-8, [18]). The test involves using the biased estimate of
autocorrelation defined as

S—
Z (t+7)y(t), 7 >0 (15)

CQ \

to form the test statistic

S
T cZ(O)ch(Z)'

Here the sequence y is zero mean with length S. The parame-
ter L is a chosen maximum lag for whiteness testing. The test
statistic 7" is distributed chi-squared, x? (L) (x? with L degrees
of freedom) if the sequence y is zero mean white. For a fixed sig-
nificance level, the test statistic can be compared to a threshold
to validate the second order whiteness. If 7" is greater than the
threshold, the sequence y is declared non-white at the chosen
significance level.

Figure 4 shows the performance of the state augmented
Kalman filter on the { measurements from the Bellyband tag.
The top left trace shows the raw observations (magenta) and
filtered estimates (black). The innovation sequence is shown
in the bottom left trace with the autocorrelation of the innova-
tion presented in the top right trace. The autocorrelation does
resemble that of white noise and was further corroborated as
the innovation sequence passed the second order whiteness test
mentioned above at 0.05 significance level.

(16)
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Fig. 4. Performance of state augmented Kalman filter on feature 1 : .
Clockwise from top left: raw observation (magenta) and filtered (black)
observations, autocorrelation of the innovation sequence, Normal QQ
plot of the innovation sequence, residuals from the filtering operation.
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Fig. 5. Performance comparison of standard and state augmented

Kalman filter on Bellyband tag measurements.

A comparison of the standard and augmented Kalman filter is
shown in Figure 5. The top two traces show the autocorrelation
of the innovations for standard (left) and augmented (right)
Kalman filter. In case of the standard Kalman filter, multiple
spikes at non-zero lags are observed which clearly shows that the
innovation was not white (standard Kalman filter formulation
failed the second order whiteness test at 0.05 significance level).
The normal QQ plot for the augmented Kalman filter shows that
the innovation sequence exhibits Gaussian characteristics.

B. Binary Classifiers

The data set collected from the Bellyband tag for the 4 se-
lected features was used for training three binary classifiers
namely logistic regression, decision tree and naive Bayes’ (see
[11] for details on individual classification algorithms). Each
classifier was trained on a randomly sampled (without re-
placement) subset (85%) of the total training set. The random
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TABLE Il
BINARY CLASSIFIER PARAMETERS CHOSEN AFTER GRID SEACRH

Classifier Parameters grid searched Chosen parameters

Logistic Regression  Regularization weight (C) 0.1

Regularization penalty L2 (Ridge)
Decision Tree Maximum depth 20
Regularization penalty L2 (Ridge)

sampling is a common process in ensemble learning and is used
to introduce diversity in the samples on which the individual
classifiers are trained on [19]. The entire dataset was of size
2805 x 4 with rows indicating the number of samples and
columns indicating the 4 chosen features. Each classifier was
trained on 2384 samples (85% of dataset). There were no sepa-
rate validation sets as the classifier performances were verified
with 5-fold cross-validation. Four (4) criteria, namely the clas-
sification accuracy, precision, recall [11], and the probability of
error [20] were used to assess performance.

The classifier parameters were chosen through grid search.
Table II shows the hyper parameters that were tuned.

For details about ridge regularization see [11]. The regular-
ization weight C' in logistic regression indicates the degree to
which regularization is enforced. Lower the value of C, more
the regularization. For the decision tree classifier, lower the tree
depth, higher the bias, lower the variance and therefore lower
the chances of overfitting. For the naive Bayes’ classifier, the
prior probablities of each class were estimated from the labeled
dataset and the likelihoods were assumed to be Gaussian dis-
tributed.

C. Similarity Classifier

The assumption in this study is that the reference tag owing to
the location (shoulder) is not significantly affected by breathing
movements and hence the tag measurements are representative
data points for the non-breathing state. Therefore, more similar
the Bellyband tag measurement is to the reference tag mea-
surement at a given time instant, the higher the confidence that
hypothesis H; (non-breathing state) is true. Based on this ra-
tionale, the similarity classifier is designed to compute a binary
decision on the set of hypotheses based on a weighted sum of
how similar the Bellyband tag observation is to the reference
tag measurement at the same time instant and the average of
the past M local decisions (see Figure 3). Let us denote the
measurement vector obtained from the belly-band tag at time
instant k as x,(k) and the corresponding measurement from
the reference tag as x, (k). We form a weighted sum y(k) of
two factors namely the similarity between z, and z, denoted
by sim(xq,x,) (we chose the cosine similarity measure [21]
in this study) and the average of the last M decisions from the
similarity classifier. The formulation is given as:

S g (k — )

y(k) = asim(zq,z,) + (1 — @) %

a7

Similarity classifier performance vs # of past decisions

N Accuracy
EEE Precision
E Recall

0.8

0.6

0.4

0.2

0.0

Fig. 6. number

Similarity classifier
decisions (M).

performance vs. of past

Here « € [0, 1] is a weighting factor that decides how to dis-
tribute support between the current measurement and past
decisions. Since the cosine similarity sim() € [—1, 1], a scaled
version of the similarity measure is used in (17) so that
y(k) € [0, 1]. We interpret y(k) as the amount of confidence the
decision maker accumulates based on the similarity between the
current Bellyband and reference tag measurements, as well as
the past decisions.

At every time instant the similarity classifier compares y (k)
to a threshold ¢ to generate a binary decision w4 (k). The fusion

rule is given as
L,
k =
uy (k) { 0

The weighting factor « and threshold ¢ € [0, 1] were computed
using grid search such that the similarity classifier produced the
highest classification accuracy on the data sets.

The number of past decisions M to use in (17) is not obvious.
The larger M is, more smoothed the classifier decisions will
be. In other words, for large M, new sudden changes that are
actually true and not due to noise may be ignored. On the other
hand a small M may force the classifier to trust the most recent
observations more and as a result make decisions influenced by
random fluctiations possibly due to noise. We tested the classi-
fier performance based on three (3) criteria namely, accuracy,
precision, and recall for different values of M. Only odd values
were chosen so as to break symmetry among past decisions.
Figure 6 shows the performance variation as M was changed.
It can be observed that there is only marginal improvement
in accuracy from M = 7 to M = 9, whereas the precision re-
mains same. As increasing M beyond 7 improves classification
perfomance only marginally, for this study M was fixed at 7.
Role of the similarity classifier: Unlike the binary classifiers
that use only the measurement at the current instant to decide
on a class, the similarity classifier makes a decision based on
a weighted combination of the current measurements and past
M decisions. Incorporating past decisions induces a form of

ify(k) >t

18
otherwise. (18)
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Fig. 7. Classification of data points from the Bellyband tag for the
feature (. Red points are classified as H; : non-breathing state, and blue
points as H: breathing state.

inertia in the classifier which makes the classifier stick to the
previous decisions unless there is very high evidence from the
current measurement to decide otherwise. For example, let us
consider the case when hypothesis H) is true and the similarity
classifier have correctly classified majority of the past K mea-
surements. At the current instant k let the measurement value be
affected by unknown noise artifacts which shifts the measure-
ment across the decision boundaries of the binary classifiers. In
this case, based on the measurement at time instant %, the first
three binary classifiers would decide H; for the current obser-
vation, whereas the similarity classifier would weigh in the past
decisions (which were mostly supporting H()) and has a higher
chance of making the correct classification.

D. Decision Fusion

The local detector decisions u;, i = 1,..., N (N = 4 in this
study) are sent to a decision fusion center (DFC), where they
are combined to generate an aggregate decision ug (k), to accept
Hy (ug(k) = 1) or Hy (ug(k) = 0). Fusing local decisions not
only provides a more robust classifier (the fusion center) that
can overcome individual classifier deficiencies [19], [20] (fusion
center decision is more aligned toward the general consensus
among the individual classifiers) but also results in a modu-
lar detection framework where better classifiers can be added
and inefficient classifiers removed without affecting the overall
system setup. The fusion center computes a weighted sum of
the local classifier decisions with each classifier’s decision be-
ing weighted by the corresponding classifier’s reliability given
as 1, where p € [0,1] is the classifier accuracy. The class
H;,1 € 0,1 that receives the highest weighted vote wins and is
chosen as the aggregate decision ug (k) at sampling instant k.

V. RESULTS

Figure 7 shows the classification performance of the ensem-
ble system on the feature (. Three cycles of Hj: breathing state,
H,: non-breathing state are shown. The true classes are de-
marcated by the vertical lines. The points marked in red were
classified as belonging to class H; whereas the blue points were

TABLE IlI
5-FOLD CROSS-VALIDATED CLASSIFICATION PERFORMANCE OF LOCAL
CLASSIFIERS AND FUSION CENTER WITH KALMAN FILTERING

Classifier Accuracy (%)  Precision Recall Probability of error
Logistic Regression 73.6 0.703 0.671 0.272
Decision Tree 85.5 0.832 0.834 0.147
Naive Bayes’ 72.7 0.693 0.659 0.282
Similarity Classifier 83.7 0.79 0.846 0.162
Fusion Center 86.7 0.835 0.861 0.133
TABLE IV

5-FOLD CROSS-VALIDATED CLASSIFICATION PERFORMANCE OF LOCAL
CLASSIFIERS AND FUSION CENTER WITHOUT KALMAN FILTERING

Classifier Accuracy (%)  Precision  Recall  Probability of error
Logistic Regression 60.5 0.55 0.471 0.412
Decision Tree 83.3 0.804 0.808 0.17
Naive Bayes’ 60.9 0.557 0.433 0.413
Similarity Classifier 73.2 0.686 0.693 0.273
Fusion Center 80.5 0.813 0.713 0.205

classified as belonging to class H. Overall the ensemble sys-
tem was able to demarcate the breathing and non-breathing state
data points. Most of the mis-classifications occurred around the
borders during the transition between states.

In Table III, we show the classification performance after 5-
fold cross-validation based on four criteria: namely, the classi-
fication accuracy, precision, recall, and the probability of error
when the input measurements where Kalman filtered. Fusion
improves the classification performance with respect to all four
chosen criteria. The fusion center performance is better than the
best individual classifier and hence underlines the advantages of
an ensemble system. However it should be noted that weighted
majority vote does not guarantee improvement in performance
[19] in all condtions. The ensemble system is however more ro-
bust and resilient to failures or abrupt input data inconsistencies.
If the inputs to the classifiers are statistically independent condi-
tioned on the hypotheses (this condition was not satisfied in this
study), optimal decision fusion rules such as [22] can be applied
that guarantees overall improvement in performance. Among
the individual classifiers, the decision tree classifier appeared to
perform the best.

The similarity classifier was able to correctly classify around
68% of the data points that were mis-classified by two or more
of the other three classifiers (logistic regression, decision tree,
and naive Bayes’). The correct classification by the similar-
ity classifier was due to the decision making process which
relied on both the current measurement and the past M deci-
sions. It can also be observed that the similariy classifier had
the best true detection rate (identifying non-breathing states cor-
rectly) as shown by the highest recall value among the individual
classifiers.

Table IV shows the deterioration in 5-fold cross-validated
performance when raw (unfiltered) observations were used for
classification. Overall there was around 7.7% (80.5% to 86.7%)
improvement in accuracy when Kalman filtered measurements
were used in the classification setup. The decision tree clas-
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sifier outperformed the fusion center in this case in terms of
accuracy, recall, and probabiltiy of error. Although the indi-
vidual classifier provides a small but useful improvement in
classification, the fusion center yields constructive sensor fu-
sion that improves upon the classification of individual sensors
used independently. Because the filter improves classification
of each individual sensor (see Tables III and IV) as well as the
subsequent fused decision, and many classification errors occur
at the transition boundary between states (i.e., from breathing to
non-breathing or vice-versa), the use of an augmented Kalman
filter as an input to the classifier is of particular benefit. The
filtering mechanism would alleviate discrepancies arising when
classifiers disagree due to the state transition of the wearer as
well as due to noise already inherent in the signal. Although the
addition of training data will always theoretically improve the
classification accuracy, there are several limitations to training
a physiological process such as respiration. These include en-
vironmental parameters such as the position of the wearer and
possible interference from surrounding objects in the environ-
ment. Additionally, the probability of mis-classification dimin-
ishes exponentially with the number of training samples and
with the square of the target accuracy tolerance [23]-[25]. This
tolerance is bounded more tightly in practice than that provided
by the theoretical model [26], suggesting that additional training
data is of theoretical benefit that diminishes over time. Analyz-
ing improvement in performance with additional training data
may be an interesting future study, but may be inconclusive or
incompatible with the practical limitation of manually training
the device prior to use.

VI. CONCLUSION

This study used multiple feature measurements obtained from
a Bellyband RFID tag and reference measurements from a ref-
erence tag to assess the breathing state of a programmable man-
nequin simulator. The reference tag was placed on the shoulder
and measurements obtained were assumed to be not signif-
icantly influenced by breathing related movements. State aug-
mented Kalman filtering aided in handling temporally correlated
measurement noise and provided smoothed estimates of the fea-
tures. Three binary classifiers were used to classify an incoming
Kalman filtered observation vector into one of the two classes
(H; or Hy). A new classifier named the similarity classifier was
developed to incorporate information from a reference tag. The
similarity classifier used both current measurements and past
decisions to generate a local decision which made it good at
correctly classifying observations mis-classified by majority of
the other classifiers. An aggregate decision was generated by a
fusion center that combined individual classifier decisions using
a weighted majority vote rule. Through the proposed architec-
ture, we showed a framework that can aid in real-time remote
monitoring of breathing rates using noninvasive RFID tags. A
similar system could also be used for sleep apnea detection;
this hypothesis-based classification is suitable for integration
into a software monitoring framework that has been used in an
IRB-approved human trial applications of our technology and
algorithms for respiratory and apnea classification [27]. For ex-

ample, the proposed system could be used in real-time to keep
track of the time interval for which continuous “non-breathing”
state is detected and if the interval is above a threshold the onset
of apnea could be inferred. Provided relevant data are available
for training, the system could be modified to generate decisions
on multi-levels of breathing (normal, reduced, absence). Such a
system may be beneficial for detecting apnea events and lead to
better tracking and diagnosis. Our current effort involves gen-
erating synthetic training data to simulate the “non-breathing”
class for purposes of human-based classification. We envision
generating such synthetic anomaly data in real-time, providing
it to the augmented Kalman filter-based classifier system, and
thus enabling human apnea detection as a result of this effort.

The similarity classifier proved to be able to distinguish points
that were mis-identified by majority of the other trained classi-
fiers which did not use past decisions. In future studies, multiple
reference tags may be used to consolidate the similarity classifier
decisions optimally.

Instead of a binary classification framework, the proposed
setup (see Figure 3) can be altered to provide decisions on levels
of breathing using multi-class classifiers or by comparing the
distance of a data point from the classifier decision boundary to
a graded scale.
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