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Environmental variability is ubiquitous, but its effects on populations are not

fully understood or predictable. Recent attention has focused on how rapid

evolution can impact ecological dynamics via adaptive trait change. However,

the impact of trait change arising from plastic responses has received less atten-

tion, and is often assumed to optimize performance and unfold on a separate,

faster timescale than ecological dynamics. Challenging these assumptions,

we propose that gradual plasticity is important for ecological dynamics,

and present a study of the plastic responses of the freshwater green algae

Chlamydomonas reinhardtii as it acclimates to temperature changes. First, we

show that C. reinhardtii’s gradual acclimation responses can both enhance

and suppress its performance after a perturbation, depending on its prior

thermal history. Second, we demonstrate that where conventional approaches

fail to predict the population dynamics of C. reinhardtii exposed to temperature

fluctuations, a new model of gradual acclimation succeeds. Finally, using

high-resolution data, we show that phytoplankton in lake ecosystems can

experience thermal variation sufficient to make acclimation relevant. These

results challenge prevailing assumptions about plasticity’s interactions with

ecological dynamics. Amidst the current emphasis on rapid evolution, it is

critical that we also develop predictive methods accounting for plasticity.
1. Introduction
Ecologists are increasingly challenged to make quantitative predictions about the

behaviour and fate of ecological systems in times of significant environmental

change. Producing reliable forecasts is not trivial: most ecological systems are

composed of many species whose interactions are nonlinear, scale dependent

and often poorly understood [1]. A promising approach for improving forecasting

uses measurable properties (or traits) of organisms to understand their basic ecol-

ogy, predicting how they interact with other species and react to environmental

change [2–4]. Complexities at the community and ecosystem level can be simpli-

fied by focusing on the mechanistic interactions of small numbers of functional

groups (taxa sharing similar traits). Dynamic trait variation within species, over

time and across environments poses challenges for trait-based approaches [5].

However, preliminary successes in generating ecological predictions [6,7], and

accompanying empirical and theoretical advances, highlight the field’s initial

contributions towards a mechanistic understanding of ecology.

Trait changes on ecological timescales, such as those driven by rapid evolution,

greatly complicate predictive efforts because models can no longer treat species’

traits as constants. In recent decades, researchers have dedicated substantial
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Figure 1. Organismal performance changes in response to environmental change (say a shift from environment E1 to E2) through plastic and evolutionary processes
over a range of temporal scales. Rapid plastic responses (a) allow individuals with a fixed genotype to change their phenotype quickly, leading to performance levels
that match their reaction norm in environment E2. By contrast, when plastic responses are gradual (b), phenotypic adjustments occur slowly. During this period,
individuals may exceed or fall short of their eventual performance once adjusted to E2 (i.e. the value given by their reaction norm). We refer to plastic responses that
gradually improve performance following a perturbation as ‘beneficial’ (red); those that decrease performance are ‘detrimental’ (blue). Over longer exposures to E2,
evolutionary responses (c) spanning generations may improve the fitness (often correlated with performance) of the population of individuals, changing the reaction
norm. Note that plastic and evolutionary responses may occur simultaneously, depending on the rate of plasticity, the amount of heritable genetic variation present,
and the rate at which new variation arises. Finally, while plasticity typically concerns phenotypic changes within the lifespan of an individual, some plastic responses
can extend across generations (e.g. in populations of genetically identical, asexual microbes). (Online version in colour.)
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effort to documenting and understanding the effects of rapid

evolution on ecological dynamics [8–10], discovering examples

where evolutionary dynamics alter ecological predictions [11–

13]. For example, the theoretically predicted quarter-period

offset between predator–prey cycles were not observed in roti-

fer–algae systems due to rapid evolution [14]. Additionally,

within three generations, the evening primrose (Oenothera bien-
nis) evolved resistance to herbivory that influenced the

abundance of its specialist seed predator moth [15]. Ecosystems

can also be affected; in one case, rapid evolution in herbivore

life history altered primary production [16]. While expanding

literature on eco-evolutionary interactions has unarguably pro-

duced empirical and theoretical advances [17], dynamic trait

variation arising from other processes can be equally impor-

tant, yet seems to receive less attention.

Phenotypic plasticity also drives trait change, through non-

genetic mechanisms including behaviour, physiology and

development. Although most plasticity research has an evol-

utionary focus—considering when it is adaptive and how it

evolves—plastic trait changes also have important ecological

consequences [18–21]. Plastic responses are sometimes incor-

porated into ecological models; for example, species’ reaction

norms have been used to predict their occurrence, performance

and growth in temporally and/or spatially variable environ-

ments [22,23] (but see [24]). These studies generally assume

that plastic responses are rapid relative to environmental

changes (figure 1a). However, plastic phenotypic changes

may occur gradually relative to the timescales of prediction

and ecological change, potentially due to time lags inherent

to plasticity [25] (figure 1b). In these situations an individual’s

phenotype is neither fixed nor directly predicted by the current

environment; instead, it is determined by complex interactions
between an individual’s history of environmental exposure

and the mechanisms governing plasticity.

We introduce a new term, gradual plasticity, to identify this

situation and emphasize the importance of the temporal

dynamics of plasticity. Specifically, we define gradual plasticity
as all non-genetic phenotypic changes that are too slow to

closely track the ecological or environmental changes that

drive them, yet too fast to be treated as constant. This intention-

ally broad definition encompasses well-known processes,

including mechanisms that are reversible (e.g. acclimation) or

irreversible (e.g. development [26,27]), and that act within an

individual’s lifespan (e.g. behaviour) or potentially across

generations (e.g. maternal effects [28]). Examples of gradual

plasticity include leaf respiration rates (which acclimate to

novel temperatures over weeks to years, [29]), and phytoplank-

ton pigmentation (which reacts to shifts in the light spectrum

over a week [30]).

Studying the temporal dynamics and effects of acclimation,

a major class of plasticity, may yield insights into the broader

topic of gradual plasticity. Acclimation generally consists of

short term, reversible phenotypic changes stimulated by acute

environmental exposure. It is commonly assumed that acclim-

ation improves performance following exposure to a new

environment (the beneficial acclimation hypothesis [31,32];

figure 1b, red). However, empirical support for this hypothesis

is mixed; performance can decline with continued exposure

[25,30–33], perhaps due to the costs of acclimation or investment

in additional bet-hedging mechanisms [25]. We acknowledge

this possibility in the gradual plasticity framework as a ‘detri-

mental’ response (figure 1b, blue). Organismal performance is

difficult to predict when environmental variation elicits mix-

tures of beneficial and detrimental responses, because these
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responses are poorly captured by the standard reaction norm.

Finally, plasticity is often heritable, it can be both adaptive and

maladaptive, and ultimately it is subject to evolution. This

may occur simultaneously with plastic responses [20], and act

in similar or different directions [34]. Alternatively, evolutionary

adaptation dependent on mutation-limited selection proceeds

more slowly, ultimately increasing organismal fitness in its

new environment (figure 1c). Although understanding the inter-

action of evolution and plasticity is an important goal, the

remainder of this paper focuses primarily on plasticity, and

acclimation in particular.

Here, we evaluate the hypotheses that (i) plastic changes

(and acclimation in particular) can be gradual and interact

with ecological variation to hinder accurate forecasts of popu-

lation dynamics, and (ii) gradual acclimation responses can

be both beneficial and detrimental, and differ from those

produced by rapid evolution. We test these hypotheses by

investigating thermal acclimation in the freshwater green

alga, Chlamydomonas reinhardtii. We use laboratory exper-

iments to test how a population’s historical temperature

exposure affects its growth in constant and fluctuating thermal

environments, and we contrast the results with predictions that

ignore gradual acclimation. We then explore whether tempera-

ture fluctuations in natural lakes might prompt meaningful

acclimation responses. Our results show that (i) thermal

acclimation is gradual in C. reinhardtii; (ii) gradual acclimation’s

beneficial and detrimental effects are critical to understanding

C. reinhardtii population dynamics in the laboratory and

(iii) natural thermal regimes are capable of producing similar

effects in the field. Our findings show that gradual plasticity

has significant ecological effects that are under-appreciated in

ecology amidst the current emphasis on rapid evolution.
2. Methods
(a) Thermal acclimation effects on C. reinhardtii

population growth rates
We measured the acclimated population growth rates of

C. reinhardtii at five temperatures to establish its thermal perform-

ance curve [35]. Then we determined how the growth rates of

populations acclimated to 148C and 338C responded to acute

exposure to other temperatures. In all experiments, we grew popu-

lations of a single mating type of C. reinhardtii (from E. Litchman,

Michigan State University) in 125 ml Erlenmeyer flasks using

COMBO growth media [36]. All populations received approxi-

mately 30 m Einsteins m22 s21 of light over 24 h/day within

environmental control chambers (Percival I-36 & I-30VL Series

Controlled Environmental Chamber; Percival Scientific, Perry,

Iowa, USA) and were manually re-suspended twice daily. In all

experiments, populations were inoculated at densities of approxi-

mately 10 000 cells ml21 and maintained in exponential phase

through biweekly dilutions returning densities to this level.

To measure C. reinhardtii’s thermal reaction norm [35], we accli-

mated populations over two weeks to temperatures of 148C, 208C,

268C, 308C and 338C, a range that includes its optimum temperature

(the temperature at which growth rate is maximized). We tracked

actual incubator temperatures using HOBO pendant tempera-

ture–light loggers (Onset Computer Corporation, Pocasset, MA)

placed in beakers containing approximately 200 ml water (elec-

tronic supplementary material, table S1). After two weeks, we

additionally established four replicates of populations acclimated

to both 148C and 338C at all five experimental temperatures (elec-

tronic supplementary material, figure S1). We measured cell
densities four times over the following 48 h, using a Spectrex

Laser Particle Counter Model PC-2200 (Spectrex Corporation,

Redwood City, CA). We estimated specific growth rates by taking

the slope of the regression between ln(density) and time, excluding

several observations where densities were too high (electronic

supplementary material, appendix A). Abundances based on fluor-

escence and biovolume yielded similar results (not shown). After

another 72 h, we repeated these measurements to monitor the

decay of acclimation effects. We assessed the effects of temperature

and acclimation history on growth rates using both a two-way

ANOVA and generalized additive models (GAMs) to examine the

shapes of acute and acclimated curves. The acclimated curve incor-

porates data from both measurement periods (growth rates were

comparable; electronic supplementary material, figure S2 and

table S2).

(b) Acclimation effects within single genotypes
The populations we studied were bottlenecked by dilutions before

our initial experiments; however, they were not necessarily geneti-

cally uniform. To determine whether the responses, we observed

were driven by plasticity rather than evolution, we established

five isogenic lines using single cells isolated from our stock popu-

lation of C. reinhardtii [37]. We measured the growth response of

isogenic lines (and a mixed culture) acclimated to 148C and 308C
when exposed acutely to 308C (corresponding to the largest effects

in our initial experiment). We analysed the effects of strain identity

and acclimation history on growth rates (two-way ANOVA), and

the differences between the pooled responses of the isogenic

lines and the mixed culture (one-way ANOVA, unequal variances).

(c) Effects of temperature fluctuations and acclimation
history on population dynamics

We next tested whether acclimation affects population dynamics

in variable environments. We exposed sets of four replicate

C. reinhartdii populations, acclimated to either 148C or 308C, to

thermal regimes alternating between 148C and 308C every 6, 12

or 24 h for a total of 48 h (electronic supplementary material,

figure S3). All populations had similar initial densities (F2,18 ¼

0.246, p ¼ 0.784) and spent a total of 24 h at both temperatures.

We measured the final densities of each population, and tested

the effects of acclimation history and fluctuation frequency (two-

way ANOVA). We also predicted final population densities

using: (i) an exponential growth model that assumes growth

rates acclimate instantaneously, and (ii) a new gradual acclimation

model parameterized using our experimental data (details appear

in electronic supplementary material, appendix B).

(d) Short-term lake temperature variation
To determine the scope of natural thermal variation to prompt

acclimation responses, we analysed high spatio-temporal resol-

ution water temperature data from two temperate lakes within

the North Temperate Lakes Long-term Ecological Research Station

in northern Wisconsin, USA (approx. 468000200 N, approx.

898410440 W) [38,39]. While abundant data exist for other lakes,

we focus on this pair because they are close together, yet bathy-

metrically distinctive: Sparkling Lake has a surface area of 24 ha

and maximum depth of 20 m, while Crystal Bog is only 0.5 ha in

area and 2.5 m deep. We used hourly water temperature data

over the longest overlapping interval (5 April to 2 November

2012) and from all available depths, linearly interpolating the

records from Sparkling Lake to 0.25 m depth resolution (for con-

sistency with Crystal Bog). Three gaps of 2–4 days occurred in

the data from Crystal Bog; we replaced these missing values

with temperatures from the same hour on the most recent day

with complete records.
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For each lake, we considered the thermal variation that phyto-

plankton might experience under three scenarios: species ‘mobile’

within the water column, species ‘recruiting’ from resting stages

in the profundal benthos and species maintaining a ‘stationary’

position in the water column (electronic supplementary material,

figure S4). We calculated the thermal variation members of each

category might experience using a moving window approach.

For ‘mobile’ species (either actively motile or subject to mixing

within the water column), we calculated the maximum range of

temperatures occurring within 24 h and +1 m of each time/

depth record. For ‘recruiting’ species (propagating from benthic

resting stages and migrating up the water column), we calculated

the temperature differential between the lake’s bottom and a

range of other depths at each time point. While most phytoplank-

ton recruitment may occur in the littoral zone [40], the available

data restrict our focus to profundal benthic recruitment. For

‘stationary’ species (capable of maintaining a constant depth), we

calculated maximum range of temperatures occurring within 24 h

at each time/depth. These categories are intentionally coarse

simplifications of more detailed life-history characteristics [41,42],

yet they approximate (and if anything, underestimate) the thermal

experiences of different phytoplankton. For example, motile

phytoplankton such Chlamydomonas are capable of 5–10 m d-1 of

directed movement [43,44], including instances of crossing a 148C
temperature gradient into hypolimnetic waters [45].
3. Results
(a) Thermal acclimation in C. reinhardtii
Acclimation temperature strongly affected C. reinhardtii growth

rate immediately following exposure to new temperatures.

Populations acclimated to 148C and then exposed to higher

temperatures achieved significantly higher acute growth rates

than populations already acclimated to such temperatures

(figure 2a; electronic supplementary material, tables S3–S5).

These effects were most pronounced at 248C, 308C and 338C,

increasing growth rates by 22–35%. By contrast, populations

acclimated to 338C grew more slowly at colder temperatures

than the corresponding acclimated populations (figure 2b;

electronic supplementary material, tables S3–S5). At 148C this

amounted to a 50% decrease. Differences between acute and
acclimated growth rates dissipated after a week of continued

exposure (electronic supplementary material, figures S5 and

S6 and tables S6–S8). Notably, we found examples of both ben-

eficial acclimation (growth rates of 338C acclimated populations

at 148C increase over time) and detrimental acclimation (growth

rates of 148C acclimated populations at 308C decline).

(b) Acclimation within single genotypes
The isogenic lines of C. reinhardtii exhibited the same qualitat-

ive responses as the C. reinhardtii culture we examined initially:

populations acclimated to 148C grew significantly faster at

308C than populations acclimated to 308C ( p , 0.0001,

figure 3; electronic supplementary material, table S9). The

magnitude of this response varied among strains, suggesting

that these lines are not identical (strain by acclimation history

interaction, p , 0.0001; electronic supplementary material,

table S9). The pooled response of the isogenic lines was not

distinguishable from mixed culture ( p ¼ 0.46; electronic sup-

plementary material, table S9), suggesting that these lines

adequately characterize the dominant variants present in

our first experiment.

(c) Phytoplankton population dynamics
If phenotypic responses to environmental change are

rapid, then acclimation dynamics should have little effect on

population dynamics. Consequently, C. reinhardtii population

growth in variable thermal environments should be directly

predictable from the acclimated thermal performance curve

or reaction norm (as assumed in [22,46]). However, the final

population densities we observed (figure 4) deviated dra-

matically from the predictions of a rapid acclimation model,

which had an R2 of 20.14 (appendix B; negative R2s arise

when a model’s predictions are worse than the global mean

across treatments). Both fluctuation frequency (F2,18 ¼ 47.6,

p , 0.001) and acclimation history (F1,18 ¼ 162.3, p , 0.001)

significantly affected populations (figure 4; electronic sup-

plementary material, table S10). A new model accounting for

gradual acclimation and acute growth rates captured these

effects better (especially that of acclimation history) and offered
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improved predictive power (R2 ¼ 0.497; electronic supplemen-

tary material, appendix B). Future models may yield additional

improvements by considering, for example, the possibility that

acclimation rate is temperature dependent.

(d) Thermal variation in natural lake ecosystems
Phytoplankton experience different thermal regimes

depending on their movement ability, phenology and the

spatio-temporal variability of their environment (figure 5a
and electronic supplementary material, figure S7). In the lab-

oratory, temperature changes of as little as 68C significantly
affected C. reinhardtii growth rates (figure 2a). Our analyses

of two stratified north temperate lakes suggest that diel

changes of .68C occur frequently enough that gradual acclim-

ation may be ecologically important in at least some instances

(figure 5 and electronic supplementary material, figure S7).

As they move across gradients, ‘mobile’ phytoplankton

can experience high amounts of diel temperature variation

(figure 5b and electronic supplementary material, figure S7b).

This was common in Crystal Bog, where diel changes of greater

than 68C occurred in 25.07% of the intervals examined, but rare

in Sparkling Lake (0.05%). In both lakes, ‘recruiting’ phyto-

plankton commonly experience temperature increases greater

than 68C (occurring with 58.67% and 71.82% frequencies in

Crystal Bog and Sparkling Lake, respectively) (electronic sup-

plementary material, figure S7c). Stationary phytoplankton

only experienced changes of greater than 68C in the shallow

Crystal Bog, and then only near the surface and on 6.2% of

days in the time series. Such changes did not occur in the

larger and deeper Sparkling Lake (figure 5b and electronic sup-

plementary material, figure S7d). Focusing on the times and

places where lake temperatures were approximately 148C, we

found that the distributions of temperature increases within

24 h for mobile and recruiting phytoplankton are often ade-

quate to yield significant growth rate effects, relative to our

experiments (figure 5b).
4. Discussion
Thermal acclimation has broad effects on the growth and

population dynamics of C. reinhardtii, especially when the

timescales of acclimation and environmental change coincide.

Our results additionally highlight the contrast between

phenotypic changes that are plastic (which can have both

beneficial and detrimental effects on performance) or driven

by selection (which are usually locally adaptive). We also

show that phytoplankton may experience thermal variation

on scales where acclimation dynamics matter, depending

on their lake environment and natural history. As such, our

initial hypotheses are supported: gradual plasticity occurs

(via acclimation in this case), inhibits accurate ecological
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predictions when ignored, and has effects that differ from rapid

evolution. Below, we consider the causes and implications of

these effects for C. reinhardtii, and discuss the consequences

of interactions between ecology and plasticity.

(a) Mechanisms of thermal acclimation in
phytoplankton

At the cellular level, a cascade of physiological changes occur

as C. reinhardtii reacts to shifts in temperature by regulating

its metabolism, photosynthesis, and membrane fluidity, and

synthesizing new proteins [47,48]. Gradual improvements in

growth rate due to acclimation (figure 2b) may occur due to

delays associated with making new proteins and lipids,

which can take � 24 h [47,48]. Additionally, given lowered

temperatures but constant light, cells still absorb the same

amount of light energy, yet have less capacity to direct it into

carbon fixation [49], leading to reallocation of energy [50],

decreased efficiency or even cellular damage. Other mechan-

isms may be involved when performance declines due to

acclimation (defying the beneficial acclimation hypothesis

[25,31,32], figure 2a). Phytoplankton tend to have lower C : N

and C : P ratios under cooler conditions [51–52], potentially

due to accumulating reserves of N and P. Following a tempera-

ture increase, these reserves may fuel a temporary period of

enhanced growth. However, warm-acclimated cells with

depleted reserves might experience nutrient-limited growth

when exposed to colder temperatures. Alternatively, detrimen-

tal acclimation could reflect an evolutionary bet-hedging

strategy (sensu [53]), with moderate temperature increases
prompting cells to investment in costly machinery that reduces

growth, while enhancing survival at even higher temperatures.

For example, high temperatures stimulate the production of

heat shock proteins [54] and reduce physiological rates in

ectotherms [55,56]. In C. reinhardtii, up-regulation of heat

shock proteins has been reported after 2 h exposures to temp-

eratures of �358C [48]. While several mechanisms plausibly

explain the mix of acclimation effects we observe, the exact

mechanisms underlying acclimation in C. reinhardtii remain

an important topic of study.
(b) Reconsidering the nature of acclimation responses
Other phytoplankton, and indeed many other organisms

[25,32], can express a mixture of beneficial and detrimental

acclimation responses depending on the environmental per-

turbations they experience. Collectively, this suggests that a

reframing of acclimation concepts is needed: clearly, neither

acclimation, nor plasticity more broadly, is universally ben-

eficial. The existence of trade-offs may offer a general

explanation for seemingly maladaptive responses like detri-

mental acclimation: the evolution of plasticity is driven by

selection acting on organisms in the context of all the environ-

mental variation they experience [53]. Organisms are unlikely

to evolve plastic responses that improve their fitness under

all possible environmental changes, due to trade-offs [30].

However, as long as situations prompting maladaptive

responses are sufficiently rare or of small effect size, selection

can still favour the evolution of plasticity. To understand

species’ responses to environmental variation, we need a
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more comprehensive understanding of plasticity (whether be-

havioural, physiological or developmental). Specifically, it is

important to study plastic responses to a complex range of per-

turbations, rather than individual and potentially idiosyncratic

treatments. Investigating the historical environments driving

selection on plasticity is also critical.

(c) Towards integrating plastic and evolutionary effects
Plasticity is typically considered to occur within individuals

during their lifespan, whereas evolutionary change occurs

across generations. However, ‘trans-generational acclimation’

has been observed in other organisms, including fish [28,57].

It is less surprising that acclimation should occur over the

course of multiple generations in fast-growing microbes such

as C. reinhartdii, either due to epigenetic effects or the fact that

daughter cells inherit large portions of their physical matter

from their progenitors. Our results do allow us to consider

the potential effects of evolution within our experiments, to

a degree.

While we did detect strain-level differences in the magni-

tude of acclimation responses, our results strongly suggest

that acclimation, not evolution, is the dominant mechanism

of phenotypic change during our experiments. We base this

conclusion on two factors: (i) there were very few generations

for relevant de novo mutations to arise and sweep to fixation

during our short-term experiments, and (ii) detrimental acclim-

ation runs directly counter to the expected effects of natural

selection. Established from single cells, our isogenic lines had

no variation initially and could only reproduce asexually.

A mutation accumulation study of C. reinhardtii detected only

14 mutations after approximately 350 generations, for an esti-

mated total mutation rate of 3.23 � 10– 10 mutations/site/

generation [58]. By contrast, to generate the growth rate differ-

ences we observed (figures 2 and 3), mutations conveying

increased growth at 308C would have to arise and nearly fix

in the 148C acclimating populations within approximately 16

generations (assuming growth rate r ¼ 0.8 for 14 days) and

yet not appear in the 308C acclimating populations. Further-

more, these mutations would have to be lost—despite being

favoured by selection—within another 10–20 generations

(assuming r � 2.2 for 7 days; electronic supplementary

material, figures S5 and S6). By contrast, artificial selection

experiments on plankton thermal tolerance take much

longer, even starting from polycultures [37,59].

Although acclimation dominates the effects we observed,

there is clearlyamong-genotype variation in thermal acclimation

capacity (consistent with prior studies showing intra-specific

variation in plasticity, [21]). This implies that some change in

strain frequency likely occurred in our initial experiments, and

that populations exposed to different thermal regimes over

longer intervals might eventually evolve different acclimation

abilities. Constant thermal environments might lead to a loss

of acclimation ability, while variability might foster increased

acclimation capacity, or alter which temperature combinations

elicit detrimental or beneficial responses.

(d) When are overlapping eco-physiological timescales
important?

Existing patterns of environmental variation both dictate

selection on plastic responses and determine whether they

are sufficiently gradual to impact ecological dynamics (e.g.
figure 5). In the stratified north temperate lakes, we considered

the most consistent source of thermal variation existed across

depths. Phytoplankton recruiting from the profundal benthos

to near-surface waters will typically experience a 10–158C
temperature change during spring and summer months. This

places the 168C temperature differential used in our laboratory

fluctuation experiment (figure 4) near the upper end of thermal

variation phytoplankton might experience. However, acclim-

ation still produced significant effects on growth rate for

smaller temperature perturbations (figure 2) such that smaller

amplitude fluctuations (68C) are still likely to affect realized

population dynamics (figure 5b). The importance of benthic

recruitment of phytoplankton for maintaining pelagic popu-

lations is variable [60], but can be substantial in certain

systems [61,62]. Additionally, these life stages also correspond

to points in time where populations are not likely to experience

density dependence.

Our results provide context for understanding when and

where gradual acclimation is likely to affect phytoplankton

ecology, due to the temporal overlap of plastic and environ-

mental changes. Acclimation will have its largest effects when

phytoplankton experience temperature perturbations of �68C
on timescales of 1–2 days. This is most likely to occur in smaller

lakes, during spring and summer, and for species that recruit

from the profundal benthos, migrate through the water

column or reside in surface waters. Estimates of mean daily sur-

face temperature fluctuations in lakes less than 3 km2 area are

4–78C [63]. This is significant considering that such small sys-

tems represent the overwhelming majority of all lakes [64].
Importantly, patterns of thermal variability also change

through time. In temperate systems, the largest temperature

swings appear either early in the growing season when temp-

eratures are most temporally dynamic [63] or spatially after

stratification establishes strong thermal gradients [65]. Temp-

erature variation reaches its lowest from late fall through early

spring, where temperate lake temperatures only span 0–48C
[65]. Accordingly, when lake temperatures are stable through

time and across depths, and change slowly, acclimation effects

will be minor, as cellular physiology equilibrates faster than

environments change. From an applied perspective, ongoing

difficulties in predicting important dynamical phenomena in

phytoplankton, such as the onset of harmful algal blooms,

may be directly related to a lack of understanding of acclimation

effects in variable aquatic habitats.

Beyond phytoplankton and acclimation, there are many

reasons to believe that the timescales of plastic and ecological

changes will overlap in a wide range of ecosystems and organ-

isms. Other small taxa with short generation times (e.g.

protists, bacteria and rotifers) will experience analogous

environmental fluctuations and may depend similarly on

acclimation history over timescales from days to weeks.

Acclimation is typically assessed in longer-lived organisms

by measuring physiological variables over brief intervals. It

remains unclear how the effects of such short-term responses

accumulate over the lifespan of an organism. Other forms of

plastic responses, including developmental plasticity and

maternal effects may interact with ecology over longer time-

scales by irreversibly fixing the traits of an organism based

on conditions prevailing early in its life, or that of its parents

[26]. In general, measuring the plastic responses of organisms

to environmental change, including both the direction and

rate of plastic changes, will be important in determining

when gradual plasticity may complicate ecological dynamics.
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5. Conclusion
The future of ecology as a predictive science depends on being

able to accurately connect environmental conditions and orga-

nismal traits with particular ecological outcomes. Currently,

process-based models rarely improve forecasting horizons rela-

tive to simple statistical models [1]. Additionally, studies of

population dynamics in fluctuating environments generally

reveal mismatches between measurements in static conditions

and observed values in fluctuating environments over short

timescales [66]. Our studyof C. reinhardtii shows that accounting

for gradual acclimation can reduce such mismatches and pro-

vide enhanced predictions. These results provide a microcosm

against which we can better understand the effects of gradual

plasticity on ecology in general. We argue that alongside the cur-

rent integration of rapid evolution and ecology, it is critical to

appreciate that gradual plasticity can also have large effects on

ecological processes. While recent efforts to increase the accu-

racy of ecological forecasts have embraced incorporating the

capacity for adaptive evolution, acclimation and plasticity

more broadly remain ignored [22]. Given that patterns of
environmental variation are changing now and will continue

to do so over the coming century [67], and that predictions are

often most needed in variable and perturbed systems, it is criti-

cal that we develop predictive methods that integrate the joint

effects of plasticity, evolution and ecology.
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