Autonomous Waypoints Planning and Trajectory Generation for
Multi-rotor UAVs

Yilan Li*
Syracuse University
Syracuse, NY
yli41@syr.edu

Ziyi Zhao
Syracuse University
Syracuse, NY
zzhao37@syr.edu

ABSTRACT

Autonomous trajectory generation in a complex environment is a
challenging task for multi-rotor unmanned aerial vehicles (UAVs),
which have high maneuverability in three-dimensional motion. Safe
and effective operations for these UAVs demand obstacle avoidance
strategies and advanced trajectory planning and control schemes
for stability and energy efficiency. To solve those problems in one
framework analytically is extremely challenging when the UAV
needs to fly large distance in a complex environment. To address
this challenge, a two-level optimization strategy is adopted. At
the higher-level, a sequence of waypoints is selected that lead the
UAV from its current position to the destination. At the lower-level,
an optimal trajectory is generated between each pair of adjacent
waypoints analytically. While the goal of trajectory generation is
to maintain the stability of the UAV, the goal of the waypoints
planning is to select waypoints with the lowest control thrust con-
sumption throughout the entire trip while avoiding collisions with
obstacles. The entire framework is implemented using deep re-
inforcement learning, which learns the highly complicated and
non-linear interaction between those two levels, and the impact
from the environment. A progressive learning strategy is investi-
gated that not only reduces convergence time but also improves
result quality. We further investigate and provide results regarding
the tuning of gains in the optimal trajectory scheme using genetic
algorithm. The experimental results demonstrate that our proposed
approach is able to generate a list of obstacle-free waypoints with
minimum control energy and develop an optimal trajectory with
optimized platform velocity, acceleration, jerk and control thrust.

CCS CONCEPTS
« Computing methodologies — Motion path planning;

“These authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DESTION °19, April 15, 2019, Montreal, QC, Canada

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6699-1/19/04. .. $15.00
https://doi.org/10.1145/3313151.3313163

Hossein Eslamiat®
Syracuse University
Syracuse, NY
heslamia@syr.edu

Amit K. Sanyal
Syracuse University
Syracuse, NY
aksanyal@syr.edu

31

Ningshan Wang
Syracuse University
Syracuse, NY
nwangl6@syr.edu

Qinru Qiu
Syracuse University
Syracuse, NY

qiqiu@syr.edu
KEYWORDS

Deep Reinforcement Learning, Waypoints Planning, Optimal Tra-
jectory Generation, Multi-rotor UAV

ACM Reference format:

Yilan Li, Hossein Eslamiat, Ningshan Wang, Ziyi Zhao, Amit K. Sanyal,
and Qinru Qiu. 2019. Autonomous Waypoints Planning and Trajectory
Generation for Multi-rotor UAVs. In Proceedings of Design Automation for
CPS and IoT, Montreal, QC, Canada, April 15, 2019 (DESTION °19), 10 pages.
https://doi.org/10.1145/3313151.3313163

1 INTRODUCTION

Onboard real-time trajectory planning is particularly important in
beyond visual line-of-sight (BVLOS) operations, and applications
that require unmanned vehicles to move in cluttered and dynamic
environments [6]. Such applications include indoor operations [4],
package delivery in urban and suburban areas, monitoring of civil-
ian infrastructures like bridges and highways, autonomous landing
on moving platforms [22], and tracking wildlife in forested areas.
Autonomous trajectory generation has received increased attention
in the past decade [24][5][32], especially for autonomous systems
such as unmanned aerial vehicles (UAVs). Safe and effective opera-
tions of these UAVs demand that we consider trajectory generation
as a constrained optimization problem. While there are many dif-
ferent ways to formulate the objectives and constraints, the basic
requirement is to consume minimum flight energy while avoiding
obstacles and maintaining the UAV stability during the journey. To
solve such problem analytically is extremely difficult if impossible
when the UAV needs to fly large distance in a complex environment.
Some of the classical approaches apply rapidly-exploring random
trees [11] and voronoi graph [1]. In general, these approaches gen-
erate the feasible path by traversing the graph made by all possible
paths and searching for possible links between path nodes. The con-
vergence to the optimal path takes much time, and hence it cannot
be applied during the real flight time. Furthermore, they either uses
a large margin for obstacle avoidance, or adopt a trial-and-error
based iterative approach, which will further increase the complex-
ity. [27] implements a gradient decent approach which converges

This work is partially supported by the National Science Foundation under Grant
CNS-1739748.

https://doi.org/10.1145/3313151.3313163
https://doi.org/10.1145/3313151.3313163

a0

DRL waypoints plum... (higher level)

selected waypomts

[selected wa\pom(s current position,
ity, acceleration]

ory generation

(lower level)

_)Environment

Figure 1: Overall framework of proposed autonomous way-
points planning and trajectory generation scheme.

more quickly without loss of robustness. However, non-smooth tra-
jectory are produced that are difficult for UAVs to precisely follow.
Neither does it consider other objective functions such as minimum
control thrust.

Recently deep learning has drawn extensive attention in areas of
robotics applications for its outstanding abilities to learn represen-
tations of complex environment. Such representation is essential
for environment awareness for applications such as UAV trajec-
tory generation. Among others, deep reinforcement learning is
extremely suitable to solve goal-oriented robotics tasks that has
close interaction with environment dynamics [8]. Such interaction
provides feedback, which is useful to improve the performance
of the task being learned. Reinforcement learning has been used
for robot path planning in some previous works. Real-time model-
based reinforcement learning framework [7] as well as Q-learning
[2] are adopted to find path in 2D surface. These models consider
only the robot (or UAV) status as the system state. The environment
information (e.g. the location of the obstacles) is not part of the
system state. In other words, these models learn the environment
instead of learning the relationship between optimal control and
the surrounding environment. When the environment changes, the
model needs to be trained again. Such blindness to the surrounding
environment is not realistic in today’s UAVs. With the availability of
3D map and sensors such as the image and depth camera, the UAVs
will have partial information about the environment. Environment
information is used as an input in [26] and [12], where deep Q
network (DQN) and deep deterministic policy gradient network,
are deployed. However, without a lower level optimization, they
are not capable to maintain the stability of UAVs or minimize the
flight energy. At lower-level, [21][25] have decoupled time and ge-
ometry, constructed a geometric trajectory and then parameterized
it in time. Utilizing differential flatness of dynamics to generate
a trajectory is also adopted in [30]. Furthermore, [16] develops a
high level trajectory generator in conjunction with a motion primi-
tive generator to choose an optimized trajectory among different
motion primitives. However, planning scheme with consideration
only of the actuation model of UAVs is not enough, especially when
maneuvers that go beyond hovering or level flight are required. In
situations where large maneuvers are required, fast online trajec-
tory planning schemes like the one proposed in this work become
necessary.

In this paper, we tackle the problem of UAV trajectory generation
in a known 3D environment by solving it as a two-level optimiza-
tion. Figure 1 shows the overall framework. At the upper-level, a

32

sequence of waypoints is selected that lead the UAV from its cur-
rent position to the destination, and at the lower-level, the optimal
trajectory between each pair of adjacent waypoints is generated
analytically. While the goal of trajectory generation is to maintain
the UAV stability with minimum flight energy, the goal of the way-
points planning is obstacle avoidance with minimum control thrust
in a (partially) known environment over the entire trip.

The two level approach is optimized together and it effectively
reduces complexity of lower level optimization, where detailed aero-
dynamic model of UAVs is applied to generate a short trajectory
in a localized free space without worrying about obstacles. The
upper-level optimizer (i.e. the waypoints planner) ensures that a
global optimal solution can be obtained by connecting the sequence
of locally optimized short trajectories. This is a combinatorial op-
timization problem with exponential search space, and its results
are heavily affected by the lower level optimization. In this work,
we use deep reinforcement learning (DRL) for waypoints planning.
The DRL framework not only learns the highly complicated and
nonlinear interaction between the upper and lower level optimizers,
but also learns and generalizes the impact from the environment
(e.g. the location of obstacles) to the waypoints selection. While
the DRL model also relies on trial-and-error approach and detailed
aerodynamic model for training, this is done offline. During the
mission, the waypoints are selected only based on the surrounding
environment, the target location, and the flight status of the UAV.

We formulate the DRL as a Deep Q-Network (DQN), which ap-
proximates the optimal selection of actions in time based on the
instantaneous configuration of the environment. With awareness
of this configuration and the feedback at every time step, the UAV
modifies its behavior, i.e. the selection of the next waypoint. The
learning of the DRL is carried out in a controlled environment in
a progressive manner so that the UAV can first discover its own
dynamics and then learn how to cope with the external environ-
ment. After the generation of waypoints, an optimal trajectory is
calculated, where the control inputs actuate the three degrees of
rotational motion and one degree of translational motion in a body-
fixed coordinate frame. The translational motion is controlled by a
single thrust along a body-fixed direction vector, which can be con-
trolled by the attitude of the vehicle. This actuation model covers a
wide range of unmanned vehicles like fixed-wing and quadcopter
UAVs, unmanned underwater vehicles, and spacecraft.

The rest of paper is organized as follows. Section 2 provides
details about structure of our proposed model, the learning pro-
cess and different ways to select training data for learning and
waypoints generation. Section 3 provides details about continuous
and discretized dynamics model. Trajectory generation through
waypoints and gain selection are given in section 4. Experimental
results are given in section 5 and section 6 summarizes the work.

2 DRL-BASED WAYPOINTS PLANNING
2.1 Deep Q Network

The applicability of traditional reinforcement learning is limited to
tasks with low-dimensional state space. To address this problem,
DOQN [15] has been introduced recently to approximate the relation-
ship between the immediate actions and their gains (i.e. reward)
by predicting the Q-value of action-state pairs Q(state, action) that

has very high-dimensions. The learner (i.e. agent) develops the
knowledge of environment by accumulating its experience through
interaction with environment and makes decision (i.e. action) to
maximize the reward. The environment transforms the instanta-
neous configuration (i.e. state and action) into next state and a
reward, and the agent transforms the new state and reward into
next decision. DRL composes an optimization process throughout
the whole state space in order to maximize the accumulated reward.
For a specific policy, the Q(state, action) value is the expectation
of the accumulated discounted reward of each state action pair
as shown in Equation (1a), where R(state;, action;) is the reward
achieved in decision epoch i and i starts from current epoch ¢, and
A € (0, 1] is the discount factor.

DON is adopted when the total number of possible actions is
finite. At i;p, of an execution sequence, the agent uses deep neural
network (DNN) to estimate the Q(state;, action;) and then select
action action; either with random choice or by choosing the one
that has the highest estimated Q(state;, action;) value. At the end
of each epoch, the agent performs mini-batch updating [23] that
updates the DNN using new target estimations. The target value
Yrarger is given in Equation (1b), where state” and action’ are state
and action at next decision epoch while taking action in current
state. In order to reduce the instability caused by the correlations
between state-action value Q(state, action) and target value y;arger
[15], a target network with weights 0 is maintained and is updated
periodically by Equation (1c). In other words, the weights of target
model 6’ is the exponential moving average of the weights 6 of Q
network.

Q(states, actiony) = E(Zf;":t/li_tR(state,-, action;)) (1a)

Yrarger = R(state, action) +y max Q(state action’) (1b)
act lOn

0 =10+(1-1)0, 0<r<1 (1c)

2.2 Problem Formulation

In this work, we focus on trajectory generation for multi-rotor
UAVs. These UAVs have fixed plane of rotors that actuate the vehi-
cle in three-dimensional transnational and rotational motion, hence
they have the property of under-actuation. Given a closed environ-
ment, the UAV takes off from an arbitrary position and reaches a
target position which is preassigned, without colliding with obsta-
cles. As stated before, the first step is to select waypoints based
on the environment. The entire 3D environment is divided into
N X N x N grids. The environment is described by a function M()
maps a grid (x, y, z) to a real value M : (x,y,z) — R. A grid, g, that
contains obstacle will be mapped to -10, M(g) = —10. The destina-
tion grid that the agent needs to reach is mapped to 10, and the
grid where the UAV is currently located is mapped to 1. All other
grids are mapped to zeros in the discretized environment block. Let
Wo, W1, - - -, Wn—1 be the sequence of generated waypoints, where
each one is a 3D vector corresponding to a grid in the environment.
Let f(W;, W) denote the control thrust for the UAV to follow the
trajectory between waypoints W; and W; generated by the lower
level optimizer. Also, let G(W;, W;) denote the set of grids that the
generated trajectory between W; and W; will pass through. The
total thrust cost along the trajectory is denoted as F. The problem
of waypoints generation can be formulated as the following:

33

Input 32@3x3><3
30><30><30 Pooling
32@2x2x2

Figure 2: Network structure of proposed Deep Q Network.

3 ©

a n

16@7x7x7 SLIR
Pooling 4 2

16@2x2x2

PROBLEM 1 (OPTIMAL OBSTACLE AVOIDANCE WAYPOINTS PLAN-
NING). Minimize

F=30% f(Wi, Wis1) @
subject to
(1) reaching the target position from current position,
MW) =1, M(Wn-1) = 10, ®3)
(2) reaching the target position without colliding with obstacle,
M(g) # —-10, g€ G(W;,Wjt1), 0<i<N-2, (4)

To find the set of Wj, 0 < i < N — 1is a combinatorial problem.
The goal is to achieve minimum control thrust without obstacle
collision if the UAV flies along the waypoints and trajectory. A
large reward will be received at the end of the flight if the UAV
reaches the destination. While this is the problem formulation of the
upper level optimizer, the functions f(W;, W;) and G(W;, Wj) are
determined by the lower level optimizer. Reinforcement learning
provides a way to solve such constrained optimization problem
with delayed reward. Incorporating with deep neural network, an
optimal policy is learned to guide the UAV to the next selected
actions (i.e. waypoints) that can lead to maximum future rewards.

2.3 Network Structure

The detailed structure of the DQN is shown in Figure 2. The input
of DON is the state, which represents current known knowledge
of the surroundings and the status of the UAV. The state is a 3D
matrix with size N X N X N. Each entry (x, y, z) of the matrix is
the mapped value M(x, y, z) of the corresponding grid in the 3D
environment previously discussed. The state has the information
about the relative position between agent and obstacles. A UAV can
choose any of the 3 X 3 X 3 grids around its current location as the
waypoint. Therefore, there are 26 possible actions. This input state
is fed into two 3D convolutional layers and each is followed by a
pooling layer. The intermediate output of the second pooling layer
is fed into two fully-connected layers with the size 1024 and 256
respectively. The output is a fully-connected layer with the size 26.
Each output neuron estimates the Q(state, action) values for one
of the 26 actions at the given state.

Our goal is to generate trajectory for the UAV with minimum
control thrust under the premise of reaching target position without
hitting any obstacle. Therefore, our reward function is defined as

the combination of position reward and control reward as following:

®)

where o and f are the coefficients of position reward and control re-
ward respectively, & = f# = 0.5 in our experiment. Ry, (state, action)
is the position reward of taking action in current state. It is defined
as following:

R(state, action) = aRp(state, action) + fR.(state, action)

10 reach target position
Ry (state, action) = { —10 collide with obstacles
0 others

And R (state, action) indicates the control reward. It is calculated as
the negative L1 norm of thrust cost, which is calculated by Equation
22 in optimal trajectory generation scheme proposed in section 4.

2.4 Learning of DQON

Since the problem complexity, i.e. the total number of state action
pairs, is O(26 x N®) which is relatively larger than many other
existing problems [33][31][20], it is crucial to maximize exploration
at the beginning of learning. Therefore e—greedy [14] is applied
during the learning. Based on e—greedy, more random actions (i.e.
exploration) are taken at the beginning of learning and more actions
with maximum Q(state, action) values (i.e. exploitation) are chosen
as learning progresses.

To improve the learning, we also decrease the learning rate Ir
gradually because it becomes harder to improve performance with
large learning rate as the gradient reaches plateau. In our approach,
there are 30, 000 learning episodes in total. Instead of using a fixed

learning rate, the learning rate starts from le — 4 and decreases
every 5,000 episodes based on Irpey = (Ir — l_r)e och=i>1 €
epoch’ P
{5e + 3,1e + 4,1.5¢ + 4, 2e + 4, 2.5¢ + 4} and i is the i;;, learning
episode. This helps to prevent the learning from over correct after
5,000 iterations, which allows to maximize the exploitation.
Instead of randomly initializing model weights based on a uni-
form distribution, we initialize the weights of model based on a
normal distribution. It initializes weights with relatively small val-
ues, and prevents outputs of the model from being either too large
or too small. Batch normalization is used before the second con-
volutional layer and the first fully-connected layer to reshape the
input of those hidden layers. In order to bound the training time,
for every single training episode, the maximum steps Wy 4x that
the UAV can take is fixed. If the UAV has taken Wy, 4 steps but
has not reached the target position, it will be forced to start a new
learning episode. The start and target positions are randomly se-
lected. So do the locations of obstacles. In this way the environment
configuration of every episode is different, therefore each learning
episode is independent. During learning, an experience replay is
used to save last thousand times of performance and a randomly
sampled mini-batch of size 32 is used to train the network. At each
time step within an episode, the UAV takes an action and receives
a +10 position reward if it reaches the target position and -10 if
colliding with obstacles. Otherwise the position reward is 0. The
control reward is determined based on the current and next posi-
tion, velocity and acceleration of the UAV. The weighted sum of

34

10

-90

-290

-390

Average reward

-490

1 6 11 16 21 26 31 36 4

2 3 1 46 51 56 61
Learning episodes (5e2)

(a) Average reward agent received in each learning episode.

BoR
© N & & ® O N

N

1 6 11 16 21 26 31 36 41 a6 51 56 61

Learning episodes (5e2)

. Average Q(state, action) values

& A

(b) Average predicted Q(state, action) values of selected actions

Figure 3: Learning results using progressive learning in a
controlled environment.

these two rewards and corresponding UAV state and action is saved
in experience replay buffer.

2.5 Progressive Learning in a Controlled
Environment

The waypoints planner is trained from scratch together with lower-
level trajectory generation scheme. At the beginning of the training,
the optimizer does not only have no idea about the optimal route
to the target, it also does not know how the trajectory generation
layer (i.e. the lower layer) will react to different waypoints selection,
and if the UAV can keep its stability. It even does not know that
the goal is to reach the target while avoiding obstacles. All of these
must be taught globally using reward and trial. Before a baby learns
walking, we put her in a small area free of obstacles, where she can
roll and crawl and discover how to coordinate muscle movements.
Then she can learn how to reach target and avoid obstacles. We
believe that the same should be applied to teach a UAV fly and we
refer this as progressive learning in a controlled environment.
It consists of two measures, "progressive learning" and "controlled
environment". The progressive learning requires us to start learning
with very low UAV mobility and gradually increase it as the learning
progresses. By only allow the UAV to travel short distance, it can
get quick feedback. Although it won’t be able to travel long enough
to reach the target and get the large position reward, based on the
received control reward it learns how to coordinate with the lower
level controller. Based on this learned knowledge, it will then learn
how to reach target when the mobility increases. The controlled
environment means to start the learning with a free space and
gradually increase the number of obstacles. In this way, it can reach
the target sooner with less failure. The received position reward
helps the UAV to gain the knowledge of its goal.

In our original learning approach, the maximum number of steps
Winax that the UAV can take is set to 1000. Using the progressive
learning technique, the Wy, 4 is initialized to be 100 at the begin-
ning of learning, and every 5,000 iterations, its value increases 50%.
The new value is calculated as (Wpax)new = round(1.5Wpax).
With such short travel distance, if the UAV is able to reach the tar-
get, it will gain the knowledge and increase the value of locations
close to the target. If the UAV is not able to reach the target, it will
still gain the knowledge about the control cost. Using the controlled
environment technique, the number of obstacles is set to 0 at the
beginning of the learning. The number increases by 5 every 5000
iterations. With the help of controlled environment, the UAV can
reach target much quicker at the beginning of learning. Again, this
helps it to learn the inherent relation and interaction between the
upper and lower layer optimizer faster and better. Later in the learn-
ing process, when the UAV has more knowledge of its capability, it
will learn how to avoid obstacles more quickly. Figure 3a gives the
average reward the agent received in each learning episode during
the entire learning process. And Figure 3b gives the average pre-
dicted Q(state, action) values of those selected actions during the
learning process. These figures indicate that as the learning goes
on, the UAV receives more and more rewards and selects better and
better actions. The learning converges at around 7,500 iterations.
Experimental results also show that using progressive learning in
controlled environment not only reduces learning time but also
improves learning quality. Details can be found in Section 5.

3 DYNAMICS MODEL OF MULTI-ROTOR UAV

3.1 Continuous Time Dynamics

The rigid body model considered in this work has four control
inputs for the six degrees of freedom. These control inputs include
a torque for the three degrees of freedom of rotational motion and
one thrust along a body-fixed thrust vector. This model is identical
to that used in [28][29]. It can be applied to several unmanned
vehicles, and the particular case of a quadrotor UAV is considered
in section 5 for numerical results.

In this work, b € R3 denotes the rigid body’s position vector
expressed in an inertial coordinate frame and R € SO(3) is the rigid
body’s attitude expressed as the rotation matrix from inertial frame
to body-fixed frame. Without loss of generality, it is assumed that
the thrust vector is along the third body-fixed coordinate frame
axis. The translational dynamics motion equation is:

(6)

where g is gravitational acceleration, v € R is the translational
velocity in inertial frame, e3 = [0, 0, l]T, u=fr3 e R3 is the
control thrust vector of magnitude f acting on the body, and r3 is
the unit vector along the third axis of the body-fixed coordinate
frame, expressed in the inertial frame. Note that r3 is also the third
column of the rotation matrix R. Equation (6) can be rewritten as:

mo = mges — frs,

™

) 1
vzge3—;fr3.

The velocity kinematics for the translational motion expressed in
inertial coordinate frame is simply b = v. Consider a “triple inte-
grator" dynamics model for position trajectory generation, given

35

by
b(t) = v(t), (8)
o(t) = a(?),)
a(t) = u(t), (10)

where the vectors b, v, a, u € R3 represent position, velocity,
acceleration, and jerk respectively. Let x € R® denote the state

vector, i.e., x = [pT T 4T]

compactly expressed as follows:

T .
. The resulting system can be

9 _ s B (1)
@ u,
dt
y =Cx. (12)
where
03x3 Isx3 03x3 03x3
A= 03x3 03x3 I3x3 |,B=| 03x3 |,
03x3 03x3 03x3 Ixs3
C=| Ixs 0O3x3 O3x3 |,

where I3x3 is the 3 X 3 identity matrix. A trajectory is to be gener-
ated for this system to pass through a given set of k waypoints in
position, where k > 1. The set of waypoints consisting of positions
in R3 with respect to an inertial frame, are generated by the method
described in previous section. To facilitate numerical computation
of the system, the dynamics expressed in (11)-(12) is discretized in
the next subsection.

3.2 Discretization of Dynamics

Consider a fixed step size in time, h, and a fixed time interval
[0, T] over which the trajectory is to be generated in discrete time.
Without loss of generality for the system, the initial time is assumed
to be 0. Thus time is discretized as t,, = nh with T = my.h, so that
my is a positive integer that corresponds to the final time at which
the generated trajectory passes through the final waypoint. Let
the discrete-time state variable be given by x, = x(nh), where
ne Nand N ={0,1,...,mg}. Denote the discrete time instants at
which the trajectory passes through the given position waypoints
by m;,i ={1,...,k}, with {my,...,mr} C N.The discrete system
representation of (11)-(12) can be obtained as:

(13)
(14)

Xn+1 = Agxn + Bgun,
Yn = Cgxn,
where
Ag=et By = _/Oh e49Bds, C4=0C,

Due to the nilpotent nature of A, only the first three terms of
the exponential series are needed to calculate eA” exactly. There-
fore, the above discretization leads to an exact discretization of the
continuous time system (11)-(12). The optimal control problem is
formulated and its solution is presented in the next section.

4 OPTIMAL POSITION TRAJECTORY
GENERATION AND GAIN SELECTION
4.1 Position Trajectory through Waypoints

The problem of trajectory generation amounts to constructing a
feasible discrete-time desired trajectory through the given set of

k waypoints generated by DRL-based algorithm. Let the set of k
waypoints be given by tuples (yy; . m1), (Y, m2), - (Y, Mi)s
where the time instants corresponding to these waypoints are
denoted by the subscript m; € N, withi = 1,---k. We con-
struct a discrete optimal control problem such that the output
yn passes through the given waypoints in specified time instants,
ie. Ym, = ym, fori = 1,---k. Let the initial state be given by
x(0) = xinit- The boundary condition at the end point is deter-
mined by the last waypoint, y, . The optimal control problem can
be formulated as follows:

PROBLEM 2 (D1SCRETE-TIME OPTIMAL TRAJECTORY GENERATION).

Minimize

mg
1
jd :hz E(xiTQxi + uiTRui)
i=0

k
+ gj_l (Catm, —ui2)) TS Catmy). (15)
subject to
(1) satisfying the dynamical model,

Xiy1 = Agxi + Bau;, (16)

(2) and the boundary conditions given by,
X0 = Xinits (17)
CaXme = Y- (18)

Here Q € R > 0,ReR¥™3 >0andS e R¥>3 > 0are square,
symmetric matrices.

In problem 2, high values of the position, velocity, acceleration
and the derivative of acceleration (also known as "jerk"), are pe-
nalized. Additionally, at the time instances corresponding to the
waypoints, the error between actual position and the desired po-
sition waypoint is penalized. The problem 2 can be approached
from the first principles of optimal control. Let the augmented
performance index be written as,

my—1
%d = jd + Z A?+1(Adxi + Baui — xi+1), (19)
i=0

here A; € R’ is a vector of co-states. The optimal control input is

found to be (details are removed for brevity):
ui = —[R+ (Bg) Pis1Ba] ' (Bo) ' (Piv1Agxi + niv1). (20)

This control input generates an optimal, smooth trajectory between
waypoints.

REMARK 1. LetK; = [R+(Bd)TP,~+1Bd]_1(Bd)T, then the optimal
control can be written as
uj = —Ki(Piv14gxi + ni+1))

After applying the optimal control, the dynamics of the discrete system
given in (13) becomes,

Xi+1 = Agxi — BgKi(Pi+1Agxi + ni+1),

= (Ad - BdKiPi+lAd)xi — BdKiUHl- (21)
REMARK 2. Throughout all steps, thrust force can be calculated by:
i = mlla; — ges]|. (22)

36

©
2
8
N N
2 @
I

M Fixed number of generation

N
o
o

—Fixed population size

@'I ~ N\
10 12 14 16 18 20
1 2 3 ;

(a) Trade-off among average control thrust cost, number of
generations and population size.

N
io
@
NN
w0
® o

N
o
@

7.94

population size is fixed

N
o
S

N
o
~

N
&
8
Average control thrust cost when

Average control thrust cost when
number of generation s fixed

N
o
S

‘
7.90 I I ‘
6 8

Generation No. (G) 2 a

0.8

o
o

0.2674

/

2 4 6 8

decision epoch (s)
o
»

Average used time of single
o
)

10 12 14 16 18 20 22 24 26 28 30

Number of generations

(b) Relation between number of generations and time con-
sumption for single decision epoch.

Figure 4: Genetic algorithm utilization analysis.

4.2 Gain Selection through Genetic Algorithm

During the trajectory generation, the system gives the acceleration
of the UAV while solving Problem 2. Based on Equation 10 and
7, we derived Equation 22 to calculate the control thrust, which
is the feedback reward for higher level waypoints planner during
learning. It is necessary to mention that in the lower level of our
module, optimal trajectory generation scheme, Q, R and S are three
positive definite gain matrices. Each of these gain matrices penal-
ize different aspects while generating the trajectory as indicated
in Equation 15. Q is a matrix penalizing high values of position,
velocity and acceleration. The higher the values in Q, the harder
these parameters are penalized. The input jerk is penalized when
R matrix has large eigenvalues and how much the waypoints will
affect the trajectory is weighted by S matrix. From Equation 15 we
can see that these three gain matrices have significant impact on
the performance index J 4 of the trajectory. Their values need to
be tuned in order to minimize the control thrust f. In our exper-
iment, f is calculated from the lower level scheme, while it will
be measured by sensors in real field learning. We apply genetic
algorithm (GA) [3] to optimize the gain matrices. The best set of
(R, Q, S) satisfies arg mino f(W;, W, 4, vi, a;) where W;, v;, a; are
R,Q,S

initial position, velociQty and acceleration of the UAV and W,,,; are
the destination for UAV.

Without loss of generality, we let the gain matrices be identity
matrices scaled by different factors. Therefore, each chromosome
(i.e. solution) in the population has 3 genes, one for each gain ma-
trix. For our problem, we randomly select 10 chromosomes based
on a uniform distribution at the beginning. The negated L1 norm
of thrust cost is used as the fitness of each solution. Based on the
fitness value, we select the best set of (R, Q, S) within the current
population as parents for mating. Next step is to apply GA variants
(i.e. crossover and mutation) to produce the offspring, creating new

population by appending parents and offspring. In our approach,
one point crossover and uniform mutation are adopted. Repeat-
ing these steps for several iterations, the returned optimal set of
(R, Q, S) results in minimum control thrust when UAV flying from
the W; to W,,,4. As a stochastic optimization algorithm, the more
generations and larger population evaluated by the GA, the better
solution can be found. Figure 4a shows how the cost (i.e. inverse
of fitness) reduces as the generation (blue labels) and population
size (orange labels) increases. As we can see that the quality of the
solution saturated when the size of population and the number of
generations are both beyond 10. Figure 4b shows that the runtime
of the GA is almost a linear function of the number of generations.
Based on the above analysis we set the population size to 10 and
maximum generations also to 10 indicated as yellow triangle in
Figure 4.

5 EXPERIMENTS

In this section, we demonstrate the performance of our proposed
model. The training and testing were done on NVIDIA TitanX (Pas-
cal). In the experiments, the environment is divided into 10X 10X 10
and the unit distance 84 is 10 meters. Within each testing scenario,
the number of obstacles is randomly generated and obstacles are
placed randomly within the environment boundary. Besides, the
start and target positions are also randomly selected. We report
the results of two aspects: (1) the improvements achieved by using
progressive learning in a controlled environment; (2) the results
compared with some existing approaches.

5.1 Impacts of Progressive Learning in a
Controlled Environment

Figure 5a and 5b compare the change of reward and Q values of
learning with and without gradually increased UAV mobility (i.e.
progressive learning) and environment complexity (i.e. controlled

-250

—original learning
-350

—original learning with progressive
learning
original learning with progressive
learning in a controlled environment

-450

Average reward the agent received of
every learning episode during learning

-550
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Learning episodes (5e2)

(a) Average reward the agent received.

[
S

—original learning

"

—original learning with progressive —
learning —
original learning with progressive
learning in a controlled environment

o
Y

P

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Learning episodes (5e2)

selected actions during learning
A 5 e
NN

Average Q(state, action) values of

o
Y

(b) Average Q(state, action) values of selected actions.

Figure 5: Learning results of first 10,000 episodes compar-
isons before and after using improved learning.

37

Table 1: Average selected waypoints number comparison
over different distances.

Normalized distance

. . 0,4 4.8 8,12 12,16
from start to destination 04] | (48] | (8.12] | (]
traditional learning 343 | 6.49 | 12.11 | 13.52
improved learning 340 | 643 | 11.88 | 13.42

Table 2: Average control thrust cost comparison over differ-
ent distances.

Normalized distance

. . 0,4 4.8 8,12 12,16
from start to destination (04] (48] ®12] | (]
traditional learning 1.4321 | 3.5951 | 6.2375 | 6.2459
improved learning 1.3479 | 3.4859 | 6.0139 | 6.1138

environment). The results of traditional learning, which adopts
none of those two improvements, are represented by blue curves
and the results after adopting only the progressive learning are
represented by green curves in the figure. The orange curves show
the results of applying both progressive learning and controlled
environment techniques. To make it clear to see, we show the result
of first 10,000 episodes with average of every 500 learning episodes.
With the help of progressive learning, the learning converges after
7,500 episodes. It is 16.67% less compared to the traditional learning
that converges after 9,000 episodes. Because of the reduced mobility,
an episode at the beginning of progressive learning is much shorter
than an episode in the traditional learning. Therefore, the reduction
in computing time is even more. It uses around 10 hours total
learning time with both improvement techniques which has 47.4%
reduction in learning time. From Figure 5b we can see that the
progressive learning and controlled environment not only speed
up the convergence, the quality of learning is also better because
the Q values are more stable than that of traditional learning.

To evaluate the quality of learned model, we generated thousands
different testing scenarios and divide the flight of the UAV into four
groups: (1) the UAV collides into obstacles without reaching target;
(2) the UAV collides into obstacles but eventually reaches the target;
(3) the agent does not collide into obstacles neither does it reach the
target; (4) the UAV does not collide into obstacles and it successfully
reaches the target. If the UAV travels 100 steps without reaching the
target, it is regarded as a failure. Only type (4) flights are considered
as successes. We refer both type (4) and type (2) as achieved as

96.5%

96.0%

95.5% 2z 95.8%

P
95.0% g~ 95.6%

94.5% -
94.0% . _-°~ Success rate
94.0% 2
—-Achieve rate
o
93.5% 93.8%
93.0%
original learning original learning with

progressive learning

original learning with
progressive learning in a
controlled environment

Figure 6: Success rate and achieve rate improvements us-
ing progressive learning in a controlled environment tech-
niques. Situation (4): the agent reaches the target position
and does not collide into obstacles.

u original learning

u progressive learning in a
controlled environment

8.1716

16
I |
selected waypoints number

(b)

Figure 7: (a) Example of trajectory generation through way-
points selected by traditional learning (green) and improved
learning (blue) respectively. (b) Comparisons tracking num-
ber of selected waypoints and thrust cost during generation.

control thrust cost

(@

they both achieved the goal, i.e. reaching the target. Figure 6 shows
how the success rate and achieve rate improved after using the
progressive learning and controlled environment. As indicated in
the figure, the success rate increases from 93.8% to 95.8% and the
achieve rate increases from 94.0% to 96.0% after optimization.
With respect to the number of steps taken and control thrust
consumption during the flight, progressive learning in a controlled
environment can also lead to improvement. Table 1 compares the
number of waypoints generated by the traditional learning and
the improved learning over different distances. The less number of
waypoints means the fewer steps for the UAV to fly to the target.
In general the UAVs learned using the improved learning need
less number of steps. The reduction of waypoints usage becomes
larger as the distance between start and target increases. Table 2
compares the average thrust cost if the UAV follows the trajectory,
To illustrate it clearer, an example of a scenario in an obstacle-
free environment is shown in Figure 7, which compares results of
model trained in traditional way and one trained with controlled
environment technique. In the example, the environment has the

°

o
)
)

N
°
S

—DQN-based waypoint selection with proposed
LQR trajectory generation scheme

A
°
S

—DQN-based waypoint selection with PID-based
trajectory generation

Average reward the agent received of
every learning episode during learning
A . b X |
8
3

1 6 11 16 21 26 31 36 41 46 51 56
Learning episodes (5e2)

(a) Average reward the agent received every learning episode.

15

n

o
n

°

o
in

—DQN-based waypoint selection with proposed
LQR trajectory generation scheme

)

=—DQN-based waypoint selection with PID-based
trajectory generation

Average Q(state, action) values of
selected actions during learning

I
n

N

1

6 11 16 21 26 31 36 41 46 51 56
Learning episodes (5e2)

(b) Average Q(state, action) value of selected actions.

Figure 8: Learning results of proposed DQN waypoints se-
lection together with proposed optimal trajectory genera-
tion scheme and PID-based trajectory generation baseline
respectively.

38

same configuration, i.e. same start (i.e. red triangle) and target
position (i.e. blue triangle). The green curve indicates the trajectory
along waypoints generated by traditional learning, and the blue
curve shows the trajectory along waypoints generated by improved
learning.

5.2 Results Comparison

As a baseline of reference, we also implement a control scheme
based on PID theory [19] to estimate the control thrust consumption
along waypoints, and use it to replace optimal trajectory genera-
tion of Section 4 scheme as the lower level optimizer. We define
position as measurable variables and velocities when reaching each
waypoints are regarded as controllable variables. Every time the
position of the agent is updated by the feedback of the environment,
and the feedback is calculated by the environment simulation based
on Kinematic theory [13]. Figure 8 shows the learning results of

«-Proposed DQN waypoint selection with optimal
trajectory generation scheme in Section 4

o,
0.98 98.20% 4#PID-based waypoint selection with optimal
98.00% trajectory generation scheme in Section 4
 0.96 95.00%
2
jd 94.00%
a
$0.94
=]
>
@*
0.92
91.80%
0.9
[0, 0.01) [0.01, 0.02) [0.02, 0.03)

Obstacle density

(a) Comparison tracking success rate of proposed DRL with
proposed optimal trajectory generation scheme and with PID
baseline

13.91

13.42
12.25
11.88 I

(4,8] (8,12] (12,16]
Normalized distance from start to destination

= Proposed DQN waypoint selection with

14 optimal trajectory generation scheme in
Section 4

m PID-based waypoint selection with optimal
trajectory generation scheme in Section 4

"
N

=
°

6.43 6.69

®

o

3.40 3.51

a4
2
o

(0,4]

Average number of selected waypoints
used to reach destination

(b) Average selected waypoints number to reach destination.

= Proposed DQN waypoint selection with

= 8 optimal trajectory generation scheme in 7.0987
S Section 4 6.4699
2 = PID-based waypoint selection with 6.0139 6.1138
] 6 optimal trajectory generation scheme in
g Section 4
S e
% o
B 3.6992
£E, 3.4859
s
53
§
o 1.5161
» 2 1.3479,
: -
<
(0,4] (4,8] (8,12] (12,16]

Normalile’d distance from start to destination
(c) Average control thrust cost along selected waypoints.

Figure 9: Comparisons tracking results of different trajec-
tory generation schemes, i.e. proposed optimal trajectory
generation scheme (orange) and PID baseline (blue), with
the same proposed DQN waypoints selection process.

11.0531

11.06
11.04
11.02 10.974
10.98
10.96

10.94

Average control thrust cost

10.92

DQN + optimal trajectory
generation scheme in

Section 4 with GA tuning

DQN + optimal trajectory
generation scheme in
Section 4

Figure 10: Improvements achieved with tuning gain matri-
ces of optimal trajectory generation scheme in Section 4 us-
ing genetic algorithm

DOQN when our purposed trajectory generation scheme or PID are
used in the lower level. As indicated in the figure, the learning of our
scheme converges 44% faster than using PID, because the proposed
optimal trajectory generation scheme will not over correct the tra-
jectory and there is no control latency, hence its performance is
more stable and predictable. Also the DQN with optimal trajectory
control achieves higher reward, i.e. it consumes less control thrust,
because of higher fidelity of the proposed optimal trajectory gener-
ation scheme in Section 4. Figure 9 (a)~(c) reports the comparisons
of success rate, the average number of selected waypoints to reach
the target and the average control thrust cost to go through these
waypoints. The comparisons are divided into four groups based on
the Euclidean distance between start and target position.

Since the critical roles of gain matrix in proposed proposed opti-
mal trajectory generation scheme in Section 4, it is crucial to im-
prove the performance by tuning gain matrices. The control thrust
of UAVs with and without optimized grain matrices is compared
in Figure 10. The average thrust cost of using genetic algorithm is
indicated as blue labels, while orange indicates the result of man-
ually selecting gain matrices. As shown in the figure, the average
control thrust consumption decreases from 11.0531 to 10.9740 in
a 30 X 30 X 30 discretized environment block. Figure 11a gives
an example of trajectories without gain optimization (blue), with
medium optimization (green) and with heavy optimization (orange).
The corresponding control thrust and optimization time is given in
Figure 11b. In the example, four waypoints (blue dots) are selected
to reach the target. The start and target points are shown in red and
blue triangles respectively and the cylinder represents obstacles.

. \ //W
-y / Ve
L /) /
s = g //., ‘
(b) Control thrust cost and time

(a) Example trajectories. consumption comparison.

Time consumption (s)

Control thrust cost

blue green

orange

Figure 11: Example of trajectory generation without and
with gain matrices tuning by genetic algorithm. Blue: tra-
jectory without gain optimization; Green: trajectory with
medium gain optimization; Orange: trajectory with heavy
gain optimization.

39

The blue curve shows the trajectory generated with fixed R, Q and
S, which has large overshoot and some sharp curves. The control
thrust for the blue trajectory is 6.1286 force cost as indicated in
Figure 11b. If we apply GA between current waypoints W; and next
waypoint W41 to select the optimal set of R, Q and S just for each
segment, the control thrust cost reduces to 4.0868 (i.e. green curve),
after 7 generations of GA search. The control thrust cost further
reduces to 3.4302 after 10 generations of GA search (i.e. orange
curve). And the orange line in Figure 11b gives time cost for the
GA optimization.

Finally, we compare the DRL based waypoints selection with
four traditional waypoints selection approaches in aspects of av-
erage number of steps needed to reach target, and the average
control thrust cost along the trajectory. These four approaches in-
clude maze routing [17], shortest path [18], DLite algorithm [9]
and voronoi path [10]. To make it more convincing, the size of
discretized environment is set as 30 X 30 X 30. We generated 1000
different test scenarios by randomly select different start positions,
destination positions, types and locations of obstacles. Figure 12
compares the average number of selected waypoints to reach desti-
nation and the average control thrust cost for the UAV to go through
these waypoints. For all waypoints selection approaches,optimal
trajectory generation scheme in Section 4 is used for trajectory
generation. In Figure 12a, the results show that our approach only
needs an average 21.91 waypoints which is 6.6% less than other
approaches. In Figure 12b, the comparison of average control thrust
consumption is reported. As indicated in the figure, our approach

26 25.14
25 24.37

24

23 22.29 22.31
21.91

22

21

20

Average number of selected
waypoints to reach destination

Shortest DlLite Voronoi

path

Maze
routing

proposed
DRL

(a) Average number of selected waypoints to reach destina-

tion.
13.4152 12.9701 13.3524
14

s 11.0531 11.4815

g 12

£

E g1o

=

s E8

3%

£

55

£g°

s,

oo

©

g 0

< proposed Maze Shortest DLite Voronoi

DRL routing path

(b) Average control thrust cost along trajectory generated
through waypoints.

Figure 12: Results comparison between proposed DQN
scheme, routing, shortest path, DLite and Voronoi

Figure 13: An example of autonomous waypoints planning
and trajectory generation using proposed framework.

use least control thrust which has 13.33% reduction than other ap-
proaches. According to these results, our purposed scheme with
fewer selected waypoints is less possible to be over constrained
and less times of lower level scheme invocation is needed.

A more realistic scenario is given in Figure 13. In this scenario, a
door is set as the start position which is indicated by a red triangle
in the figure. The UAV takes off from the door, and then land on
the center of the table near the door first. After that, it takes off
again to reach the final destination which is indicated by blue
triangle in the figure. As shown in the figure, blue dots are selected
waypoints provided by our proposed DQN scheme. And the smooth
orange curve shows the trajectory generated by optimal trajectory
generation scheme purposed in Section 4. The UAV does not collide
into obstacles during the flight. In order to display the trajectory
clearly, we show four different views of the 3D trajectory plot.

6 CONCLUSION

A two-level framework to generate navigation trajectory for UAVs
to follow in a complex environment is introduced. The framework’s
construction, processing and analysis are presented. The proposed
waypoints planning and trajectory generation framework effec-
tively avoids obstacles in complex indoor environment and reduces
the control thrust consumption during flight. Also, it is general
enough to be applied in other robotics tasks such as parcel delivery
and conflicting routing of high-density UAVs.

REFERENCES

[1] Scott A Bortoff. 2000. Path planning for UAVs. In American Control Conference.
Proceedings of the 2000, Vol. 1. IEEE.

Pradipta K Das, SC Mandhata, HS Behera, and SN Patro. 2012. An improved
Q-learning algorithm for path-planning of a mobile robot. International Journal
of Computer Applications 51, 9 (2012).

Agoston E Eiben, James E Smith, et al. 2003. Introduction to evolutionary computing.
Vol. 53. Springer.

M. Hehn and R. DAndrea. 2015. Real-time trajectory generation for quadrocopters.
Robotics, IEEE Transactions on 31, 4 (2015), 877-892.

Markus Hehn and Raffaello DAAZAndrea. 2011. Quadrocopter trajectory genera-
tion and control. In IFAC world congress, Vol. 18. 1485-1491.

M. Hoy, A. S. Matveev, and A. V. Savkin. 2015. Algorithms for collision-free
navigation of mobile robots in complex cluttered environments: a survey. Robotica
34 (2015), 467-497.

Nursultan Imanberdiyev, Changhong Fu, Erdal Kayacan, and I-Ming Chen. 2016.
Autonomous navigation of UAV by using real-time model-based reinforcement

40

ey
&

=
it

(17]

(18

[19

[20

[21

[23

[24

[25

I
&

[27

[28

[29]

[30

[32

[33

learning. In Control, Automation, Robotics and Vision (ICARCV), 2016 14th Inter-
national Conference on. IEEE, 1-6.

Jens Kober, J] Andrew Bagnell, and Jan Peters. 2013. Reinforcement learning in
robotics: A survey. The International Journal of Robotics Research 32, 11 (2013),
1238-1274.

Sven Koenig and Maxim Likhachev. 2002. D™ Lite. Aaai/iaai 15 (2002).

Boris Lau, Christoph Sprunk, and Wolfram Burgard. 2010. Improved updating of
Euclidean distance maps and Voronoi diagrams. In Intelligent Robots and Systems
(IROS), 2010 IEEE/RSJ International Conference on. IEEE, 281-286.

Steven M LaValle. 1998. Rapidly-exploring random trees: A new tool for path
planning. (1998).

Timothy P Lillicrap, Jonathan] Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).

Sandeep Kumar Malu and Jharna Majumdar. 2014. Kinematics, localization and
control of differential drive mobile robot. Global Journal of Research In Engineering
(2014).

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540 (2015), 529.

M. W. Mueller, M. Hehn, and R. D’Andrea. 2015. A Computationally Efficient
Motion Primitive for Quadrocopter Trajectory Generation. IEEE Transactions on
Robotics 31, 6 (Dec 2015), 1294-1310. https://doi.org/10.1109/TRO.2015.2479878
John A Nestor. 2002. A new look at hardware maze routing. In Proceedings of the
12th ACM Great Lakes symposium on VLSL. ACM, 142-147.

Rosli bin Omar. 2012. Path planning for unmanned aerial vehicles using visibility
line-based methods. Ph.D. Dissertation. University of Leicester.

Lluis Pacheco and Ningsu Luo. 2015. Testing PID and MPC performance for
mobile robot local path-following. International Journal of Advanced Robotic
Systems 12, 11 (2015), 155.

Riccardo Polvara, Massimiliano Patacchiola, Sanjay Sharma, Jian Wan, Andrew
Manning, Robert Sutton, and Angelo Cangelosi. 2018. Toward End-to-End Con-
trol for UAV Autonomous Landing via Deep Reinforcement Learning. In 2018
International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 115-123.
Charles Richter, Adam Bry, and Nicholas Roy. 2016. Polynomial trajectory
planning for aggressive quadrotor flight in dense indoor environments. In Robotics
Research. Springer, 649-666.

J. Sanchez-Lopez, S. Saripalli, P. Campoy, J. Pestana, and C. Fu. 2013. Toward
visual autonomous ship board landing of a VTOL UAV. In Unmanned Aircraft
Systems (ICUAS), 2013 International Conference on. IEEE, 779-788.

David Silver, Aja Huang, Chris] Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural
networks and tree search. nature 529, 7587 (2016), 484.

Leena Singh and James Fuller. 2001. Trajectory generation for a UAV in urban
terrain, using nonlinear MPC. In American Control Conference, 2001. Proceedings
of the 2001, Vol. 3. IEEE, 2301-2308.

Florin Stoican and Dan Popescu. 2016. Trajectory Generation with Way-Point
Constraints for UAV Systems. Springer International Publishing.

Lei Tai and Ming Liu. 2016. Towards cognitive exploration through deep rein-
forcement learning for mobile robots. arXiv preprint arXiv:1610.01733 (2016).
John Tisdale, ZuWhan Kim, and J Karl Hedrick. 2009. Autonomous UAV path
planning and estimation. IEEE Robotics & Automation Magazine 16, 2 (2009).
Sasi Prabhakaran Viswanathan, Amit K Sanyal, and Maziar Izadi. 2017. Integrated
Guidance and Nonlinear Feedback Control of Underactuated Unmanned Aerial
Vehicles in SE(3). In AIAA Guidance, Navigation, and Control Conference. Gaylord,
TX. https://doi.org/10.2514/6.2017-1044

S.P. Viswanathan, A. K. Sanyal, and R. Warier. 2017. Finite-Time Stable Tracking
Control for a Class of Underactuated Aerial Vehicles in SE(3). Seattle, WA, to
appear.

Michael P. Vitus, Wei Zhang, and Claire J. Tomlin. 2012. A hierarchical method
for stochastic motion planning in uncertain environments. 2012 IEEE/RSY Inter-
national Conference on Intelligent Robots and Systems (2012), 2263-2268.

Juan Wu, Seabyuk Shin, Cheong-Gil Kim, and Shin-Dug Kim. 2017. Effective lazy
training method for deep q-network in obstacle avoidance and path planning.
In Systems, Man, and Cybernetics (SMC), 2017 IEEE International Conference on.
IEEE, 1799-1804.

Wenda Xu, Junging Wei, John M Dolan, Huijing Zhao, and Hongbin Zha. 2012. A
real-time motion planner with trajectory optimization for autonomous vehicles.
In Robotics and Automation (ICRA), 2012 IEEE International Conference on. IEEE.
Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav Gupta, Li Fei-
Fei, and Ali Farhadi. 2017. Target-driven visual navigation in indoor scenes
using deep reinforcement learning. In Robotics and Automation (ICRA), 2017 IEEE
International Conference on. IEEE, 3357-3364.

https://doi.org/10.1109/TRO.2015.2479878
https://doi.org/10.2514/6.2017-1044

	Abstract
	1 Introduction
	2 DRL-based Waypoints Planning
	2.1 Deep Q Network
	2.2 Problem Formulation
	2.3 Network Structure
	2.4 Learning of DQN
	2.5 Progressive Learning in a Controlled Environment

	3 Dynamics Model of Multi-rotor UAV
	3.1 Continuous Time Dynamics
	3.2 Discretization of Dynamics

	4 Optimal Position Trajectory Generation and Gain Selection
	4.1 Position Trajectory through Waypoints
	4.2 Gain Selection through Genetic Algorithm

	5 Experiments
	5.1 Impacts of Progressive Learning in a Controlled Environment
	5.2 Results Comparison

	6 Conclusion
	References

