
Autonomous Waypoints Planning and Trajectory Generation for
Multi-rotor UAVs

Yilan Li
∗

Syracuse University

Syracuse, NY

yli41@syr.edu

Hossein Eslamiat
∗

Syracuse University

Syracuse, NY

heslamia@syr.edu

Ningshan Wang

Syracuse University

Syracuse, NY

nwang16@syr.edu

Ziyi Zhao

Syracuse University

Syracuse, NY

zzhao37@syr.edu

Amit K. Sanyal

Syracuse University

Syracuse, NY

aksanyal@syr.edu

Qinru Qiu

Syracuse University

Syracuse, NY

qiqiu@syr.edu

ABSTRACT
Autonomous trajectory generation in a complex environment is a

challenging task for multi-rotor unmanned aerial vehicles (UAVs),

which have highmaneuverability in three-dimensional motion. Safe

and effective operations for these UAVs demand obstacle avoidance

strategies and advanced trajectory planning and control schemes

for stability and energy efficiency. To solve those problems in one

framework analytically is extremely challenging when the UAV

needs to fly large distance in a complex environment. To address

this challenge, a two-level optimization strategy is adopted. At

the higher-level, a sequence of waypoints is selected that lead the

UAV from its current position to the destination. At the lower-level,

an optimal trajectory is generated between each pair of adjacent

waypoints analytically. While the goal of trajectory generation is

to maintain the stability of the UAV, the goal of the waypoints

planning is to select waypoints with the lowest control thrust con-

sumption throughout the entire trip while avoiding collisions with

obstacles. The entire framework is implemented using deep re-

inforcement learning, which learns the highly complicated and

non-linear interaction between those two levels, and the impact

from the environment. A progressive learning strategy is investi-

gated that not only reduces convergence time but also improves

result quality. We further investigate and provide results regarding

the tuning of gains in the optimal trajectory scheme using genetic

algorithm. The experimental results demonstrate that our proposed

approach is able to generate a list of obstacle-free waypoints with

minimum control energy and develop an optimal trajectory with

optimized platform velocity, acceleration, jerk and control thrust.

CCS CONCEPTS
• Computing methodologies → Motion path planning;

∗
These authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

DESTION ’19, April 15, 2019, Montreal, QC, Canada
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6699-1/19/04. . . $15.00

https://doi.org/10.1145/3313151.3313163

KEYWORDS
Deep Reinforcement Learning, Waypoints Planning, Optimal Tra-

jectory Generation, Multi-rotor UAV

ACM Reference format:
Yilan Li, Hossein Eslamiat, Ningshan Wang, Ziyi Zhao, Amit K. Sanyal,

and Qinru Qiu. 2019. Autonomous Waypoints Planning and Trajectory

Generation for Multi-rotor UAVs. In Proceedings of Design Automation for
CPS and IoT, Montreal, QC, Canada, April 15, 2019 (DESTION ’19), 10 pages.
https://doi.org/10.1145/3313151.3313163

1 INTRODUCTION
Onboard real-time trajectory planning is particularly important in

beyond visual line-of-sight (BVLOS) operations, and applications

that require unmanned vehicles to move in cluttered and dynamic

environments [6]. Such applications include indoor operations [4],

package delivery in urban and suburban areas, monitoring of civil-

ian infrastructures like bridges and highways, autonomous landing

on moving platforms [22], and tracking wildlife in forested areas.

Autonomous trajectory generation has received increased attention

in the past decade [24][5][32], especially for autonomous systems

such as unmanned aerial vehicles (UAVs). Safe and effective opera-

tions of these UAVs demand that we consider trajectory generation

as a constrained optimization problem. While there are many dif-

ferent ways to formulate the objectives and constraints, the basic

requirement is to consume minimum flight energy while avoiding

obstacles and maintaining the UAV stability during the journey. To

solve such problem analytically is extremely difficult if impossible

when the UAV needs to fly large distance in a complex environment.

Some of the classical approaches apply rapidly-exploring random

trees [11] and voronoi graph [1]. In general, these approaches gen-

erate the feasible path by traversing the graph made by all possible

paths and searching for possible links between path nodes. The con-

vergence to the optimal path takes much time, and hence it cannot

be applied during the real flight time. Furthermore, they either uses

a large margin for obstacle avoidance, or adopt a trial-and-error

based iterative approach, which will further increase the complex-

ity. [27] implements a gradient decent approach which converges

This work is partially supported by the National Science Foundation under Grant

CNS-1739748.

31

https://doi.org/10.1145/3313151.3313163
https://doi.org/10.1145/3313151.3313163

Figure 1: Overall framework of proposed autonomous way-
points planning and trajectory generation scheme.

more quickly without loss of robustness. However, non-smooth tra-

jectory are produced that are difficult for UAVs to precisely follow.

Neither does it consider other objective functions such as minimum

control thrust.

Recently deep learning has drawn extensive attention in areas of

robotics applications for its outstanding abilities to learn represen-

tations of complex environment. Such representation is essential

for environment awareness for applications such as UAV trajec-

tory generation. Among others, deep reinforcement learning is

extremely suitable to solve goal-oriented robotics tasks that has

close interaction with environment dynamics [8]. Such interaction

provides feedback, which is useful to improve the performance

of the task being learned. Reinforcement learning has been used

for robot path planning in some previous works. Real-time model-

based reinforcement learning framework [7] as well as Q-learning

[2] are adopted to find path in 2D surface. These models consider

only the robot (or UAV) status as the system state. The environment

information (e.g. the location of the obstacles) is not part of the

system state. In other words, these models learn the environment

instead of learning the relationship between optimal control and

the surrounding environment. When the environment changes, the

model needs to be trained again. Such blindness to the surrounding

environment is not realistic in today’s UAVs.With the availability of

3D map and sensors such as the image and depth camera, the UAVs

will have partial information about the environment. Environment

information is used as an input in [26] and [12], where deep Q

network (DQN) and deep deterministic policy gradient network,

are deployed. However, without a lower level optimization, they

are not capable to maintain the stability of UAVs or minimize the

flight energy. At lower-level, [21][25] have decoupled time and ge-

ometry, constructed a geometric trajectory and then parameterized

it in time. Utilizing differential flatness of dynamics to generate

a trajectory is also adopted in [30]. Furthermore, [16] develops a

high level trajectory generator in conjunction with a motion primi-

tive generator to choose an optimized trajectory among different

motion primitives. However, planning scheme with consideration

only of the actuation model of UAVs is not enough, especially when

maneuvers that go beyond hovering or level flight are required. In

situations where large maneuvers are required, fast online trajec-

tory planning schemes like the one proposed in this work become

necessary.

In this paper, we tackle the problem of UAV trajectory generation

in a known 3D environment by solving it as a two-level optimiza-

tion. Figure 1 shows the overall framework. At the upper-level, a

sequence of waypoints is selected that lead the UAV from its cur-

rent position to the destination, and at the lower-level, the optimal

trajectory between each pair of adjacent waypoints is generated

analytically. While the goal of trajectory generation is to maintain

the UAV stability with minimum flight energy, the goal of the way-

points planning is obstacle avoidance with minimum control thrust

in a (partially) known environment over the entire trip.

The two level approach is optimized together and it effectively

reduces complexity of lower level optimization, where detailed aero-

dynamic model of UAVs is applied to generate a short trajectory

in a localized free space without worrying about obstacles. The

upper-level optimizer (i.e. the waypoints planner) ensures that a

global optimal solution can be obtained by connecting the sequence

of locally optimized short trajectories. This is a combinatorial op-

timization problem with exponential search space, and its results

are heavily affected by the lower level optimization. In this work,

we use deep reinforcement learning (DRL) for waypoints planning.

The DRL framework not only learns the highly complicated and

nonlinear interaction between the upper and lower level optimizers,

but also learns and generalizes the impact from the environment

(e.g. the location of obstacles) to the waypoints selection. While

the DRL model also relies on trial-and-error approach and detailed

aerodynamic model for training, this is done offline. During the

mission, the waypoints are selected only based on the surrounding

environment, the target location, and the flight status of the UAV.

We formulate the DRL as a Deep Q-Network (DQN), which ap-

proximates the optimal selection of actions in time based on the

instantaneous configuration of the environment. With awareness

of this configuration and the feedback at every time step, the UAV

modifies its behavior, i.e. the selection of the next waypoint. The

learning of the DRL is carried out in a controlled environment in

a progressive manner so that the UAV can first discover its own

dynamics and then learn how to cope with the external environ-

ment. After the generation of waypoints, an optimal trajectory is

calculated, where the control inputs actuate the three degrees of

rotational motion and one degree of translational motion in a body-

fixed coordinate frame. The translational motion is controlled by a

single thrust along a body-fixed direction vector, which can be con-

trolled by the attitude of the vehicle. This actuation model covers a

wide range of unmanned vehicles like fixed-wing and quadcopter

UAVs, unmanned underwater vehicles, and spacecraft.

The rest of paper is organized as follows. Section 2 provides

details about structure of our proposed model, the learning pro-

cess and different ways to select training data for learning and

waypoints generation. Section 3 provides details about continuous

and discretized dynamics model. Trajectory generation through

waypoints and gain selection are given in section 4. Experimental

results are given in section 5 and section 6 summarizes the work.

2 DRL-BASED WAYPOINTS PLANNING
2.1 Deep Q Network
The applicability of traditional reinforcement learning is limited to

tasks with low-dimensional state space. To address this problem,

DQN [15] has been introduced recently to approximate the relation-

ship between the immediate actions and their gains (i.e. reward)
by predicting theQ-value of action-state pairsQ(state,action) that

32

has very high-dimensions. The learner (i.e. aдent) develops the
knowledge of environment by accumulating its experience through

interaction with environment and makes decision (i.e. action) to
maximize the reward. The environment transforms the instanta-

neous configuration (i.e. state and action) into next state and a

reward, and the agent transforms the new state and reward into

next decision. DRL composes an optimization process throughout

the whole state space in order to maximize the accumulated reward.

For a specific policy, the Q(state,action) value is the expectation
of the accumulated discounted reward of each state action pair

as shown in Equation (1a), where R(statei ,actioni) is the reward
achieved in decision epoch i and i starts from current epoch t , and
λ ∈ (0, 1] is the discount factor.

DQN is adopted when the total number of possible actions is

finite. At ith of an execution sequence, the agent uses deep neural

network (DNN) to estimate the Q(statei ,actioni) and then select

action actioni either with random choice or by choosing the one

that has the highest estimated Q(statei ,actioni) value. At the end
of each epoch, the agent performs mini-batch updating [23] that

updates the DNN using new target estimations. The target value

ytarдet is given in Equation (1b), where state ′ and action′ are state
and action at next decision epoch while taking action in current

state. In order to reduce the instability caused by the correlations

between state-action valueQ(state,action) and target valueytarдet
[15], a target network with weights θ ′ is maintained and is updated

periodically by Equation (1c). In other words, the weights of target

model θ ′ is the exponential moving average of the weights θ of Q
network.

Q (statet , actiont) = E(Σ∞i=t λ
i−tR(statei , actioni)) (1a)

ytarдet = R(state, action) + γ max

act ion′
Q (state′, action′) (1b)

θ ′ = τ θ + (1 − τ)θ ′, 0 ≤ τ ≤ 1 (1c)

2.2 Problem Formulation
In this work, we focus on trajectory generation for multi-rotor

UAVs. These UAVs have fixed plane of rotors that actuate the vehi-

cle in three-dimensional transnational and rotational motion, hence

they have the property of under-actuation. Given a closed environ-

ment, the UAV takes off from an arbitrary position and reaches a

target position which is preassigned, without colliding with obsta-

cles. As stated before, the first step is to select waypoints based

on the environment. The entire 3D environment is divided into

N × N × N grids. The environment is described by a function M()

maps a grid (x ,y, z) to a real valueM : (x ,y, z) → R. A grid, g, that
contains obstacle will be mapped to -10, M(g) = −10. The destina-

tion grid that the agent needs to reach is mapped to 10, and the

grid where the UAV is currently located is mapped to 1. All other

grids are mapped to zeros in the discretized environment block. Let

W0,W1, · · · ,WN−1 be the sequence of generated waypoints, where

each one is a 3D vector corresponding to a grid in the environment.

Let f (Wi ,Wj) denote the control thrust for the UAV to follow the

trajectory between waypointsWi andWj generated by the lower

level optimizer. Also, let G(Wi ,Wj) denote the set of grids that the

generated trajectory betweenWi andWj will pass through. The

total thrust cost along the trajectory is denoted as F. The problem
of waypoints generation can be formulated as the following:

Input
30×30×30

Convolution
16@7×7×7

Pooling
16@2×2×2

FC
 1

0
2

4

FC
 2

5
6Convolution

32@3×3×3
Pooling

32@2×2×2 O
u

tp
u

t
2

6

Figure 2: Network structure of proposed Deep Q Network.

Problem 1 (Optimal obstacle avoidance waypoints plan-

ning). Minimize

F =ΣN−2
i=0 f (Wi ,Wi+1) (2)

subject to

(1) reaching the target position from current position,

M(W0) = 1, M(WN−1) = 10, (3)

(2) reaching the target position without colliding with obstacle,

M(g) , −10, g ∈ G(Wi ,Wi+1), 0 ≤ i ≤ N − 2, (4)

To find the set ofWi , 0 ≤ i ≤ N − 1 is a combinatorial problem.

The goal is to achieve minimum control thrust without obstacle

collision if the UAV flies along the waypoints and trajectory. A

large reward will be received at the end of the flight if the UAV

reaches the destination.While this is the problem formulation of the

upper level optimizer, the functions f (Wi ,Wj) and G(Wi ,Wj) are

determined by the lower level optimizer. Reinforcement learning

provides a way to solve such constrained optimization problem

with delayed reward. Incorporating with deep neural network, an

optimal policy is learned to guide the UAV to the next selected

actions (i.e. waypoints) that can lead to maximum future rewards.

2.3 Network Structure
The detailed structure of the DQN is shown in Figure 2. The input

of DQN is the state, which represents current known knowledge

of the surroundings and the status of the UAV. The state is a 3D
matrix with size N × N × N . Each entry (x ,y, z) of the matrix is

the mapped value M(x ,y, z) of the corresponding grid in the 3D
environment previously discussed. The state has the information

about the relative position between agent and obstacles. A UAV can

choose any of the 3 × 3 × 3 grids around its current location as the

waypoint. Therefore, there are 26 possible actions. This input state

is fed into two 3D convolutional layers and each is followed by a

pooling layer. The intermediate output of the second pooling layer

is fed into two fully-connected layers with the size 1024 and 256

respectively. The output is a fully-connected layer with the size 26.

Each output neuron estimates the Q(state,action) values for one
of the 26 actions at the given state.

Our goal is to generate trajectory for the UAV with minimum

control thrust under the premise of reaching target position without

hitting any obstacle. Therefore, our reward function is defined as

33

the combination of position reward and control reward as following:

R(state,action) = αRp (state,action) + βRc (state,action) (5)

where α and β are the coefficients of position reward and control re-

ward respectively, α = β = 0.5 in our experiment. Rp (state,action)
is the position reward of taking action in current state. It is defined

as following:

Rp (state,action) =


10 reach tarдet position
−10 collide with obstacles
0 others

AndRc (state,action) indicates the control reward. It is calculated as
the negative L1 norm of thrust cost, which is calculated by Equation

22 in optimal trajectory generation scheme proposed in section 4.

2.4 Learning of DQN
Since the problem complexity, i.e. the total number of state action

pairs, is O(26 × N 3) which is relatively larger than many other

existing problems [33][31][20], it is crucial to maximize exploration

at the beginning of learning. Therefore ϵ−greedy [14] is applied

during the learning. Based on ϵ−greedy, more random actions (i.e.

exploration) are taken at the beginning of learning andmore actions

with maximumQ(state,action) values (i.e. exploitation) are chosen
as learning progresses.

To improve the learning, we also decrease the learning rate lr
gradually because it becomes harder to improve performance with

large learning rate as the gradient reaches plateau. In our approach,

there are 30, 000 learning episodes in total. Instead of using a fixed

learning rate, the learning rate starts from 1e − 4 and decreases

every 5, 000 episodes based on lrnew = (lr −
lr

epoch
)epoch=i , i ∈

{5e + 3, 1e + 4, 1.5e + 4, 2e + 4, 2.5e + 4} and i is the ith learning

episode. This helps to prevent the learning from over correct after

5,000 iterations, which allows to maximize the exploitation.

Instead of randomly initializing model weights based on a uni-

form distribution, we initialize the weights of model based on a

normal distribution. It initializes weights with relatively small val-

ues, and prevents outputs of the model from being either too large

or too small. Batch normalization is used before the second con-

volutional layer and the first fully-connected layer to reshape the

input of those hidden layers. In order to bound the training time,

for every single training episode, the maximum stepsWmax that

the UAV can take is fixed. If the UAV has takenWmax steps but

has not reached the target position, it will be forced to start a new

learning episode. The start and target positions are randomly se-

lected. So do the locations of obstacles. In this way the environment

configuration of every episode is different, therefore each learning

episode is independent. During learning, an experience replay is

used to save last thousand times of performance and a randomly

sampled mini-batch of size 32 is used to train the network. At each

time step within an episode, the UAV takes an action and receives

a +10 position reward if it reaches the target position and -10 if

colliding with obstacles. Otherwise the position reward is 0. The

control reward is determined based on the current and next posi-

tion, velocity and acceleration of the UAV. The weighted sum of

-590

-490

-390

-290

-190

-90

10

1 6 11 16 21 26 31 36 41 46 51 56 61

Av
er

ag
e

re
w

ar
d

Learning episodes (5e2)

(a) Average reward agent received in each learning episode.

-6

-4

-2

0

2

4

6

8

10

12

Av
er

ag
e

Q
(s

ta
te

, a
ct

io
n)

 v
al

ue
s

1 6 11 16 21 26 31 36 41 46 51 56 61

Learning episodes (5e2)

(b) Average predictedQ (state, action) values of selected actions

Figure 3: Learning results using progressive learning in a
controlled environment.

these two rewards and corresponding UAV state and action is saved

in experience replay buffer.

2.5 Progressive Learning in a Controlled
Environment

The waypoints planner is trained from scratch together with lower-

level trajectory generation scheme. At the beginning of the training,

the optimizer does not only have no idea about the optimal route

to the target, it also does not know how the trajectory generation

layer (i.e. the lower layer) will react to different waypoints selection,

and if the UAV can keep its stability. It even does not know that

the goal is to reach the target while avoiding obstacles. All of these

must be taught globally using reward and trial. Before a baby learns

walking, we put her in a small area free of obstacles, where she can

roll and crawl and discover how to coordinate muscle movements.

Then she can learn how to reach target and avoid obstacles. We

believe that the same should be applied to teach a UAV fly and we

refer this as progressive learning in a controlled environment.
It consists of two measures, "progressive learning" and "controlled
environment". The progressive learning requires us to start learning
with very lowUAVmobility and gradually increase it as the learning

progresses. By only allow the UAV to travel short distance, it can

get quick feedback. Although it won’t be able to travel long enough

to reach the target and get the large position reward, based on the

received control reward it learns how to coordinate with the lower

level controller. Based on this learned knowledge, it will then learn

how to reach target when the mobility increases. The controlled

environment means to start the learning with a free space and

gradually increase the number of obstacles. In this way, it can reach

the target sooner with less failure. The received position reward

helps the UAV to gain the knowledge of its goal.

34

In our original learning approach, the maximum number of steps

Wmax that the UAV can take is set to 1000. Using the progressive

learning technique, theWmax is initialized to be 100 at the begin-

ning of learning, and every 5,000 iterations, its value increases 50%.

The new value is calculated as (Wmax)new = round(1.5Wmax).

With such short travel distance, if the UAV is able to reach the tar-

get, it will gain the knowledge and increase the value of locations

close to the target. If the UAV is not able to reach the target, it will

still gain the knowledge about the control cost. Using the controlled

environment technique, the number of obstacles is set to 0 at the

beginning of the learning. The number increases by 5 every 5000

iterations. With the help of controlled environment, the UAV can

reach target much quicker at the beginning of learning. Again, this

helps it to learn the inherent relation and interaction between the

upper and lower layer optimizer faster and better. Later in the learn-

ing process, when the UAV has more knowledge of its capability, it

will learn how to avoid obstacles more quickly. Figure 3a gives the

average reward the agent received in each learning episode during

the entire learning process. And Figure 3b gives the average pre-

dicted Q(state,action) values of those selected actions during the

learning process. These figures indicate that as the learning goes

on, the UAV receives more and more rewards and selects better and

better actions. The learning converges at around 7,500 iterations.

Experimental results also show that using progressive learning in

controlled environment not only reduces learning time but also

improves learning quality. Details can be found in Section 5.

3 DYNAMICS MODEL OF MULTI-ROTOR UAV
3.1 Continuous Time Dynamics
The rigid body model considered in this work has four control

inputs for the six degrees of freedom. These control inputs include

a torque for the three degrees of freedom of rotational motion and

one thrust along a body-fixed thrust vector. This model is identical

to that used in [28][29]. It can be applied to several unmanned

vehicles, and the particular case of a quadrotor UAV is considered

in section 5 for numerical results.

In this work, b ∈ R3 denotes the rigid body’s position vector

expressed in an inertial coordinate frame and R ∈ SO(3) is the rigid

body’s attitude expressed as the rotation matrix from inertial frame

to body-fixed frame. Without loss of generality, it is assumed that

the thrust vector is along the third body-fixed coordinate frame

axis. The translational dynamics motion equation is:

m Ûv =mдe3 − f r3, (6)

where д is gravitational acceleration, v ∈ R3 is the translational

velocity in inertial frame, e3 = [0, 0, 1]T , u = f r3 ∈ R3 is the

control thrust vector of magnitude f acting on the body, and r3 is
the unit vector along the third axis of the body-fixed coordinate

frame, expressed in the inertial frame. Note that r3 is also the third

column of the rotation matrix R. Equation (6) can be rewritten as:

Ûv = дe3 −
1

m
f r3. (7)

The velocity kinematics for the translational motion expressed in

inertial coordinate frame is simply
Ûb = v . Consider a “triple inte-

grator" dynamics model for position trajectory generation, given

by

Ûb(t) = v(t), (8)

Ûv(t) = a(t), (9)

Ûa(t) = u(t), (10)

where the vectors b, v , a, u ∈ R3 represent position, velocity,

acceleration, and jerk respectively. Let x ∈ R9 denote the state

vector, i.e., x =
[
bT vT aT

]
T

. The resulting system can be

compactly expressed as follows:

dx

dt
= Ax + Bu, (11)

y = Cx . (12)

where

A =


03×3 I3×3 03×3
03×3 03×3 I3×3
03×3 03×3 03×3

 ,B =

03×3
03×3
I3×3

 ,
C =

[
I3×3 03×3 03×3

]
,

where I3×3 is the 3 × 3 identity matrix. A trajectory is to be gener-

ated for this system to pass through a given set of k waypoints in

position, where k ≥ 1. The set of waypoints consisting of positions

in R3 with respect to an inertial frame, are generated by the method

described in previous section. To facilitate numerical computation

of the system, the dynamics expressed in (11)-(12) is discretized in

the next subsection.

3.2 Discretization of Dynamics
Consider a fixed step size in time, h, and a fixed time interval

[0,T] over which the trajectory is to be generated in discrete time.

Without loss of generality for the system, the initial time is assumed

to be 0. Thus time is discretized as tn = nh with T =mkh, so that

mk is a positive integer that corresponds to the final time at which

the generated trajectory passes through the final waypoint. Let

the discrete-time state variable be given by xn = x(nh), where
n ∈ N andN = {0, 1, . . . ,mk }. Denote the discrete time instants at

which the trajectory passes through the given position waypoints

bymi , i = {1, . . . ,k}, with {m1, . . . ,mk } ⊂ N . The discrete system

representation of (11)-(12) can be obtained as:

xn+1 = Adxn + Bdun , (13)

yn = Cdxn , (14)

where

Ad = eAh , Bd =
∫ h
0
eAσBdσ , Cd = C,

Due to the nilpotent nature of A, only the first three terms of

the exponential series are needed to calculate eAh exactly. There-

fore, the above discretization leads to an exact discretization of the

continuous time system (11)-(12). The optimal control problem is

formulated and its solution is presented in the next section.

4 OPTIMAL POSITION TRAJECTORY
GENERATION AND GAIN SELECTION

4.1 Position Trajectory through Waypoints
The problem of trajectory generation amounts to constructing a

feasible discrete-time desired trajectory through the given set of

35

k waypoints generated by DRL-based algorithm. Let the set of k
waypoints be given by tuples (ywm1

,m1), (y
w
m2

,m2), · · · (ywmk
,mk),

where the time instants corresponding to these waypoints are

denoted by the subscript mi ∈ N , with i = 1, · · ·k . We con-

struct a discrete optimal control problem such that the output

yn passes through the given waypoints in specified time instants,

i.e. ymi = ywmi
, for i = 1, · · ·k . Let the initial state be given by

x(0) = xinit . The boundary condition at the end point is deter-

mined by the last waypoint, ywmk
. The optimal control problem can

be formulated as follows:

Problem 2 (Discrete-time Optimal Trajectory Generation).

Minimize

Jd =h

mk∑
i=0

1

2

(xTi Qxi + u
T
i Rui)

+
1

2

k∑
j=1

(
Cdxmj − ywmj

)T
S
(
Cdxmj − ywmj

)
, (15)

subject to
(1) satisfying the dynamical model,

xi+1 = Adxi + Bdui , (16)

(2) and the boundary conditions given by,

x0 = xinit, (17)

Cdxmk = y
w
mk
. (18)

Here Q ∈ R9×9 ⩾ 0, R ∈ R3×3 > 0 and S ∈ R3×3 ⩾ 0 are square,
symmetric matrices.

In problem 2, high values of the position, velocity, acceleration

and the derivative of acceleration (also known as "jerk"), are pe-

nalized. Additionally, at the time instances corresponding to the

waypoints, the error between actual position and the desired po-

sition waypoint is penalized. The problem 2 can be approached

from the first principles of optimal control. Let the augmented

performance index be written as,

Jd
a = Jd +

mk−1∑
i=0

λTi+1(Adxi + Bdui − xi+1), (19)

here λi ∈ IR
9
is a vector of co-states. The optimal control input is

found to be (details are removed for brevity):

ui = −[R + (Bd)
TPi+1Bd]

−1(Bd)
T(Pi+1Adxi + ηi+1). (20)

This control input generates an optimal, smooth trajectory between

waypoints.

Remark 1. LetKi = [R+ (Bd)
TPi+1Bd]

−1(Bd)
T, then the optimal

control can be written as

ui = −Ki
(
(Pi+1Adxi + ηi+1)

)
After applying the optimal control, the dynamics of the discrete system
given in (13) becomes,

xi+1 = Adxi − BdKi (Pi+1Adxi + ηi+1),

=
(
Ad − BdKiPi+1Ad

)
xi − BdKiηi+1. (21)

Remark 2. Throughout all steps, thrust force can be calculated by:

fi =m∥ai − дe3∥. (22)

7.80

7.82

7.84

7.86

7.88

7.90

7.92

7.94

7.90

7.92

7.94

7.96

7.98

8.00

A
ve

ra
ge

 c
on

tr
ol

 t
hr

us
t

co
st

 w
he

n
po

pu
la

ti
on

 s
iz

e
is

 fi
xe

d

A
ve

ra
ge

 c
on

tr
ol

 t
hr

us
t

co
st

 w
he

n
nu

m
be

r
of

 g
en

er
at

io
n

is
 fi

xe
d

 Fixed number of generation

Fixed population size

Generation No. (G) 2 4 6 8 10 12 14 16 18 20

Population size (P) 6 7 8 9 10 11 12 13 14 15

(a) Trade-off among average control thrust cost, number of
generations and population size.

0.2674

0

0.2

0.4

0.6

0.8

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

A
ve

ra
ge

 u
se

d
ti

m
e

of
 s

in
gl

e
de

ci
si

on
 e

po
ch

 (s
)

Number of generations

(b) Relation between number of generations and time con-
sumption for single decision epoch.

Figure 4: Genetic algorithm utilization analysis.

4.2 Gain Selection through Genetic Algorithm
During the trajectory generation, the system gives the acceleration

of the UAV while solving Problem 2. Based on Equation 10 and

7, we derived Equation 22 to calculate the control thrust, which

is the feedback reward for higher level waypoints planner during

learning. It is necessary to mention that in the lower level of our

module, optimal trajectory generation scheme, Q, R and S are three

positive definite gain matrices. Each of these gain matrices penal-

ize different aspects while generating the trajectory as indicated

in Equation 15. Q is a matrix penalizing high values of position,

velocity and acceleration. The higher the values in Q, the harder

these parameters are penalized. The input jerk is penalized when

R matrix has large eigenvalues and how much the waypoints will

affect the trajectory is weighted by S matrix. From Equation 15 we

can see that these three gain matrices have significant impact on

the performance index Jd
of the trajectory. Their values need to

be tuned in order to minimize the control thrust f . In our exper-

iment, f is calculated from the lower level scheme, while it will

be measured by sensors in real field learning. We apply genetic

algorithm (GA) [3] to optimize the gain matrices. The best set of

(R, Q, S) satisfies argmin

R,Q,S
σ f (Wi ,Wend ,vi ,ai) whereWi , vi , ai are

initial position, velocity and acceleration of the UAV andWend are

the destination for UAV.

Without loss of generality, we let the gain matrices be identity

matrices scaled by different factors. Therefore, each chromosome

(i.e. solution) in the population has 3 genes, one for each gain ma-

trix. For our problem, we randomly select 10 chromosomes based

on a uniform distribution at the beginning. The negated L1 norm

of thrust cost is used as the fitness of each solution. Based on the

fitness value, we select the best set of (R,Q, S) within the current

population as parents for mating. Next step is to apply GA variants

(i.e. crossover and mutation) to produce the offspring, creating new

36

population by appending parents and offspring. In our approach,

one point crossover and uniform mutation are adopted. Repeat-

ing these steps for several iterations, the returned optimal set of

(R,Q, S) results in minimum control thrust when UAV flying from

theWi toWend . As a stochastic optimization algorithm, the more

generations and larger population evaluated by the GA, the better

solution can be found. Figure 4a shows how the cost (i.e. inverse

of fitness) reduces as the generation (blue labels) and population

size (orange labels) increases. As we can see that the quality of the

solution saturated when the size of population and the number of

generations are both beyond 10. Figure 4b shows that the runtime

of the GA is almost a linear function of the number of generations.

Based on the above analysis we set the population size to 10 and

maximum generations also to 10 indicated as yellow triangle in

Figure 4.

5 EXPERIMENTS
In this section, we demonstrate the performance of our proposed

model. The training and testing were done on NVIDIA TitanX (Pas-

cal). In the experiments, the environment is divided into 10×10×10

and the unit distance δd is 10 meters. Within each testing scenario,

the number of obstacles is randomly generated and obstacles are

placed randomly within the environment boundary. Besides, the

start and target positions are also randomly selected. We report

the results of two aspects: (1) the improvements achieved by using

progressive learning in a controlled environment; (2) the results

compared with some existing approaches.

5.1 Impacts of Progressive Learning in a
Controlled Environment

Figure 5a and 5b compare the change of reward and Q values of

learning with and without gradually increased UAV mobility (i.e.

progressive learning) and environment complexity (i.e. controlled

-550

-450

-350

-250

-150

-50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Av
er

ag
e

re
w

ar
d

th
e

ag
en

t r
ec

ei
ve

d
of

ev

er
y

le
ar

ni
ng

 e
pi

so
de

 d
ur

in
g

le
ar

ni
ng

Learning episodes (5e2)

original learning

original learning with progressive
learning
original learning with progressive
learning in a controlled environment

(a) Average reward the agent received.

-1

-0.6

-0.2

0.2

0.6

1

1.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Av
er

ag
e

Q
(s

ta
te

, a
ct

io
n)

 v
al

ue
s

of

se
le

ct
ed

 a
ct

io
ns

 d
ur

in
g

le
ar

ni
ng

Learning episodes (5e2)

original learning

original learning with progressive
learning
original learning with progressive
learning in a controlled environment

(b) Average Q (state, action) values of selected actions.

Figure 5: Learning results of first 10,000 episodes compar-
isons before and after using improved learning.

Table 1: Average selected waypoints number comparison
over different distances.

Normalized distance

from start to destination

(0,4] (4,8] (8,12] (12,16]

traditional learning 3.43 6.49 12.11 13.52

improved learning 3.40 6.43 11.88 13.42

Table 2: Average control thrust cost comparison over differ-
ent distances.

Normalized distance

from start to destination

(0,4] (4,8] (8,12] (12,16]

traditional learning 1.4321 3.5951 6.2375 6.2459

improved learning 1.3479 3.4859 6.0139 6.1138

environment). The results of traditional learning, which adopts

none of those two improvements, are represented by blue curves

and the results after adopting only the progressive learning are

represented by green curves in the figure. The orange curves show

the results of applying both progressive learning and controlled

environment techniques. To make it clear to see, we show the result

of first 10,000 episodes with average of every 500 learning episodes.

With the help of progressive learning, the learning converges after

7,500 episodes. It is 16.67% less compared to the traditional learning

that converges after 9,000 episodes. Because of the reduced mobility,

an episode at the beginning of progressive learning is much shorter

than an episode in the traditional learning. Therefore, the reduction

in computing time is even more. It uses around 10 hours total

learning time with both improvement techniques which has 47.4%

reduction in learning time. From Figure 5b we can see that the

progressive learning and controlled environment not only speed

up the convergence, the quality of learning is also better because

the Q values are more stable than that of traditional learning.

To evaluate the quality of learnedmodel, we generated thousands

different testing scenarios and divide the flight of the UAV into four

groups: (1) the UAV collides into obstacles without reaching target;

(2) the UAV collides into obstacles but eventually reaches the target;

(3) the agent does not collide into obstacles neither does it reach the

target; (4) the UAV does not collide into obstacles and it successfully

reaches the target. If the UAV travels 100 steps without reaching the

target, it is regarded as a failure. Only type (4) flights are considered

as successes. We refer both type (4) and type (2) as achieved as

93.8%

95.6%

95.8%

94.0%

95.7%
96.0%

93.0%

93.5%

94.0%

94.5%

95.0%

95.5%

96.0%

96.5%

original learning original learning with
progressive learning

original learning with
progressive learning in a
controlled environment

Success rate

Achieve rate

Figure 6: Success rate and achieve rate improvements us-
ing progressive learning in a controlled environment tech-
niques. Situation (4): the agent reaches the target position
and does not collide into obstacles.

37

(a)

16

8.1716
9

4.6972

0

2

4

6

8

10

12

14

16

18

selected waypoints number control thrust cost

original learning

progressive learning in a
controlled environment

(b)

Figure 7: (a) Example of trajectory generation through way-
points selected by traditional learning (green) and improved
learning (blue) respectively. (b) Comparisons tracking num-
ber of selected waypoints and thrust cost during generation.

they both achieved the goal, i.e. reaching the target. Figure 6 shows

how the success rate and achieve rate improved after using the

progressive learning and controlled environment. As indicated in

the figure, the success rate increases from 93.8% to 95.8% and the

achieve rate increases from 94.0% to 96.0% after optimization.

With respect to the number of steps taken and control thrust

consumption during the flight, progressive learning in a controlled

environment can also lead to improvement. Table 1 compares the

number of waypoints generated by the traditional learning and

the improved learning over different distances. The less number of

waypoints means the fewer steps for the UAV to fly to the target.

In general the UAVs learned using the improved learning need

less number of steps. The reduction of waypoints usage becomes

larger as the distance between start and target increases. Table 2

compares the average thrust cost if the UAV follows the trajectory,

To illustrate it clearer, an example of a scenario in an obstacle-

free environment is shown in Figure 7, which compares results of

model trained in traditional way and one trained with controlled

environment technique. In the example, the environment has the

-600

-500

-400

-300

-200

-100

0

1 6 11 16 21 26 31 36 41 46 51 56

Av
er

ag
e

re
w

ar
d

th
e

ag
en

t r
ec

ei
ve

d
of

ev

er
y

le
ar

ni
ng

 e
pi

so
de

 d
ur

in
g

le
ar

ni
ng

Learning episodes (5e2)

DQN-based waypoint selection with proposed
LQR trajectory generation scheme

DQN-based waypoint selection with PID-based
trajectory generation

(a) Average reward the agent received every learning episode.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

1 6 11 16 21 26 31 36 41 46 51 56

Av
er

ag
e

Q
(s

ta
te

, a
ct

io
n)

 v
al

ue
s

of

se
le

ct
ed

 a
ct

io
ns

 d
ur

in
g

le
ar

ni
ng

Learning episodes (5e2)

DQN-based waypoint selection with proposed
LQR trajectory generation scheme

DQN-based waypoint selection with PID-based
trajectory generation

(b) Average Q (state, action) value of selected actions.

Figure 8: Learning results of proposed DQN waypoints se-
lection together with proposed optimal trajectory genera-
tion scheme and PID-based trajectory generation baseline
respectively.

same configuration, i.e. same start (i.e. red triangle) and target

position (i.e. blue triangle). The green curve indicates the trajectory

along waypoints generated by traditional learning, and the blue

curve shows the trajectory along waypoints generated by improved

learning.

5.2 Results Comparison
As a baseline of reference, we also implement a control scheme

based on PID theory [19] to estimate the control thrust consumption

along waypoints, and use it to replace optimal trajectory genera-

tion of Section 4 scheme as the lower level optimizer. We define

position as measurable variables and velocities when reaching each

waypoints are regarded as controllable variables. Every time the

position of the agent is updated by the feedback of the environment,

and the feedback is calculated by the environment simulation based

on Kinematic theory [13]. Figure 8 shows the learning results of

98.20%

95.00%

94.00%

98.00%

94.20%

91.80%

0.9

0.92

0.94

0.96

0.98

1

[0, 0.01) [0.01, 0.02) [0.02, 0.03)

Su
cc

es
s

ra
te

Obstacle density

Proposed DQN waypoint selection with optimal
trajectory generation scheme in Section 4

PID-based waypoint selection with optimal
trajectory generation scheme in Section 4

(a) Comparison tracking success rate of proposed DRL with
proposed optimal trajectory generation scheme andwithPID
baseline

0

2

4

6

8

10

12

14

(0,4] (4,8] (8,12] (12,16]

3.40

6.43

11.88

13.42

3.51

6.69

12.25

13.91

A
ve

ra
ge

 n
um

be
r

of
 s

el
ec

te
d

w
ay

po
in

ts

us
ed

 to
 r

ea
ch

 d
es

ti
na

ti
on

Normalized distance from start to destination

Proposed DQN waypoint selection with
optimal trajectory generation scheme in
Section 4
PID-based waypoint selection with optimal
trajectory generation scheme in Section 4

(b) Average selected waypoints number to reach destination.

0

2

4

6

8

(0,4] (4,8] (8,12] (12,16]

1.3479

3.4859

6.0139 6.1138

1.5161

3.6992

6.4699
7.0987

A
ve

ra
ge

 c
on

tr
ol

 t
hr

us
t

co
st

 to
 r

ea
ch

de

st
in

at
io

n

Normalized distance from start to destination

Proposed DQN waypoint selection with
optimal trajectory generation scheme in
Section 4

PID-based waypoint selection with
optimal trajectory generation scheme in
Section 4

(c) Average control thrust cost along selected waypoints.

Figure 9: Comparisons tracking results of different trajec-
tory generation schemes, i.e. proposed optimal trajectory
generation scheme (orange) and PID baseline (blue), with
the same proposed DQN waypoints selection process.

38

10.92

10.94

10.96

10.98

11

11.02

11.04

11.06

DQN + optimal trajectory
generation scheme in

Section 4

DQN + optimal trajectory
generation scheme in

Section 4 with GA tuning

11.0531

10.974

Av
er

ag
e

co
nt

ro
l t

hr
us

t c
os

t

Figure 10: Improvements achieved with tuning gain matri-
ces of optimal trajectory generation scheme in Section 4 us-
ing genetic algorithm

DQN when our purposed trajectory generation scheme or PID are

used in the lower level. As indicated in the figure, the learning of our

scheme converges 44% faster than using PID, because the proposed

optimal trajectory generation scheme will not over correct the tra-

jectory and there is no control latency, hence its performance is

more stable and predictable. Also the DQN with optimal trajectory

control achieves higher reward, i.e. it consumes less control thrust,

because of higher fidelity of the proposed optimal trajectory gener-

ation scheme in Section 4. Figure 9 (a)∼(c) reports the comparisons

of success rate, the average number of selected waypoints to reach

the target and the average control thrust cost to go through these

waypoints. The comparisons are divided into four groups based on

the Euclidean distance between start and target position.

Since the critical roles of gain matrix in proposed proposed opti-

mal trajectory generation scheme in Section 4, it is crucial to im-

prove the performance by tuning gain matrices. The control thrust

of UAVs with and without optimized grain matrices is compared

in Figure 10. The average thrust cost of using genetic algorithm is

indicated as blue labels, while orange indicates the result of man-

ually selecting gain matrices. As shown in the figure, the average

control thrust consumption decreases from 11.0531 to 10.9740 in

a 30 × 30 × 30 discretized environment block. Figure 11a gives

an example of trajectories without gain optimization (blue), with

medium optimization (green) and with heavy optimization (orange).

The corresponding control thrust and optimization time is given in

Figure 11b. In the example, four waypoints (blue dots) are selected

to reach the target. The start and target points are shown in red and

blue triangles respectively and the cylinder represents obstacles.

(a) Example trajectories.

0.02

0.72

1.216.1286

4.0868

3.4302

0

1

2

3

4

5

6

7

blue green orange

0

0.2

0.4

0.6

0.8

1

1.2

1.4

C
o

n
tr

o
l t

h
ru

st
 c

o
st

T
im

e
 c

o
n

su
m

p
ti

o
n

 (
s)

(b) Control thrust cost and time
consumption comparison.

Figure 11: Example of trajectory generation without and
with gain matrices tuning by genetic algorithm. Blue: tra-
jectory without gain optimization; Green: trajectory with
medium gain optimization; Orange: trajectory with heavy
gain optimization.

The blue curve shows the trajectory generated with fixed R, Q and

S, which has large overshoot and some sharp curves. The control

thrust for the blue trajectory is 6.1286 force cost as indicated in

Figure 11b. If we apply GA between current waypointsWi and next

waypointWi+1 to select the optimal set of R, Q and S just for each

segment, the control thrust cost reduces to 4.0868 (i.e. green curve),

after 7 generations of GA search. The control thrust cost further

reduces to 3.4302 after 10 generations of GA search (i.e. orange

curve). And the orange line in Figure 11b gives time cost for the

GA optimization.

Finally, we compare the DRL based waypoints selection with

four traditional waypoints selection approaches in aspects of av-

erage number of steps needed to reach target, and the average

control thrust cost along the trajectory. These four approaches in-

clude maze routing [17], shortest path [18], DLite algorithm [9]

and voronoi path [10]. To make it more convincing, the size of

discretized environment is set as 30 × 30 × 30. We generated 1000

different test scenarios by randomly select different start positions,

destination positions, types and locations of obstacles. Figure 12

compares the average number of selected waypoints to reach desti-

nation and the average control thrust cost for the UAV to go through

these waypoints. For all waypoints selection approaches,optimal

trajectory generation scheme in Section 4 is used for trajectory

generation. In Figure 12a, the results show that our approach only

needs an average 21.91 waypoints which is 6.6% less than other

approaches. In Figure 12b, the comparison of average control thrust

consumption is reported. As indicated in the figure, our approach

20

21

22

23

24

25

26

proposed
DRL

Maze
routing

Shortest
path

DLite Voronoi

21.91

25.14

22.29 22.31

24.37

A
ve

ra
ge

 n
u

m
b

er
 o

f
se

le
ct

ed

w
ay

p
oi

nt
s

to
 r

ea
ch

 d
es

ti
n

at
io

n

(a) Average number of selected waypoints to reach destina-
tion.

0

2

4

6

8

10

12

14

proposed
DRL

Maze
routing

Shortest
path

DLite Voronoi

11.0531

13.4152 12.9701

11.4815

13.3524

A
ve

ra
ge

 c
on

tr
o

l t
h

ru
st

 c
on

su
m

pt
io

n

to
 r

ea
ch

 d
es

ti
n

at
io

n

(b) Average control thrust cost along trajectory generated
through waypoints.

Figure 12: Results comparison between proposed DQN
scheme, routing, shortest path, DLite and Voronoi

39

Figure 13: An example of autonomous waypoints planning
and trajectory generation using proposed framework.

use least control thrust which has 13.33% reduction than other ap-

proaches. According to these results, our purposed scheme with

fewer selected waypoints is less possible to be over constrained

and less times of lower level scheme invocation is needed.

A more realistic scenario is given in Figure 13. In this scenario, a

door is set as the start position which is indicated by a red triangle

in the figure. The UAV takes off from the door, and then land on

the center of the table near the door first. After that, it takes off

again to reach the final destination which is indicated by blue

triangle in the figure. As shown in the figure, blue dots are selected

waypoints provided by our proposed DQN scheme. And the smooth

orange curve shows the trajectory generated by optimal trajectory

generation scheme purposed in Section 4. The UAV does not collide

into obstacles during the flight. In order to display the trajectory

clearly, we show four different views of the 3D trajectory plot.

6 CONCLUSION
A two-level framework to generate navigation trajectory for UAVs

to follow in a complex environment is introduced. The framework’s

construction, processing and analysis are presented. The proposed

waypoints planning and trajectory generation framework effec-

tively avoids obstacles in complex indoor environment and reduces

the control thrust consumption during flight. Also, it is general

enough to be applied in other robotics tasks such as parcel delivery

and conflicting routing of high-density UAVs.

REFERENCES
[1] Scott A Bortoff. 2000. Path planning for UAVs. In American Control Conference.

Proceedings of the 2000, Vol. 1. IEEE.
[2] Pradipta K Das, SC Mandhata, HS Behera, and SN Patro. 2012. An improved

Q-learning algorithm for path-planning of a mobile robot. International Journal
of Computer Applications 51, 9 (2012).

[3] Agoston E Eiben, James E Smith, et al. 2003. Introduction to evolutionary computing.
Vol. 53. Springer.

[4] M. Hehn and R. DAndrea. 2015. Real-time trajectory generation for quadrocopters.

Robotics, IEEE Transactions on 31, 4 (2015), 877–892.

[5] Markus Hehn and Raffaello DâĂŹAndrea. 2011. Quadrocopter trajectory genera-

tion and control. In IFAC world congress, Vol. 18. 1485–1491.
[6] M. Hoy, A. S. Matveev, and A. V. Savkin. 2015. Algorithms for collision-free

navigation of mobile robots in complex cluttered environments: a survey. Robotica
34 (2015), 467–497.

[7] Nursultan Imanberdiyev, Changhong Fu, Erdal Kayacan, and I-Ming Chen. 2016.

Autonomous navigation of UAV by using real-time model-based reinforcement

learning. In Control, Automation, Robotics and Vision (ICARCV), 2016 14th Inter-
national Conference on. IEEE, 1–6.

[8] Jens Kober, J Andrew Bagnell, and Jan Peters. 2013. Reinforcement learning in

robotics: A survey. The International Journal of Robotics Research 32, 11 (2013),

1238–1274.

[9] Sven Koenig and Maxim Likhachev. 2002. Dˆ* Lite. Aaai/iaai 15 (2002).
[10] Boris Lau, Christoph Sprunk, and Wolfram Burgard. 2010. Improved updating of

Euclidean distance maps and Voronoi diagrams. In Intelligent Robots and Systems
(IROS), 2010 IEEE/RSJ International Conference on. IEEE, 281–286.

[11] Steven M LaValle. 1998. Rapidly-exploring random trees: A new tool for path

planning. (1998).

[12] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,

Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control with

deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).
[13] Sandeep Kumar Malu and Jharna Majumdar. 2014. Kinematics, localization and

control of differential drivemobile robot. Global Journal of Research In Engineering
(2014).

[14] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep

reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).
[15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.

Nature 518, 7540 (2015), 529.
[16] M. W. Mueller, M. Hehn, and R. D’Andrea. 2015. A Computationally Efficient

Motion Primitive for Quadrocopter Trajectory Generation. IEEE Transactions on
Robotics 31, 6 (Dec 2015), 1294–1310. https://doi.org/10.1109/TRO.2015.2479878

[17] John A Nestor. 2002. A new look at hardware maze routing. In Proceedings of the
12th ACM Great Lakes symposium on VLSI. ACM, 142–147.

[18] Rosli bin Omar. 2012. Path planning for unmanned aerial vehicles using visibility
line-based methods. Ph.D. Dissertation. University of Leicester.

[19] Lluis Pacheco and Ningsu Luo. 2015. Testing PID and MPC performance for

mobile robot local path-following. International Journal of Advanced Robotic
Systems 12, 11 (2015), 155.

[20] Riccardo Polvara, Massimiliano Patacchiola, Sanjay Sharma, Jian Wan, Andrew

Manning, Robert Sutton, and Angelo Cangelosi. 2018. Toward End-to-End Con-

trol for UAV Autonomous Landing via Deep Reinforcement Learning. In 2018
International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 115–123.

[21] Charles Richter, Adam Bry, and Nicholas Roy. 2016. Polynomial trajectory

planning for aggressive quadrotor flight in dense indoor environments. In Robotics
Research. Springer, 649–666.

[22] J. Sanchez-Lopez, S. Saripalli, P. Campoy, J. Pestana, and C. Fu. 2013. Toward

visual autonomous ship board landing of a VTOL UAV. In Unmanned Aircraft
Systems (ICUAS), 2013 International Conference on. IEEE, 779–788.

[23] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-

vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural

networks and tree search. nature 529, 7587 (2016), 484.
[24] Leena Singh and James Fuller. 2001. Trajectory generation for a UAV in urban

terrain, using nonlinear MPC. In American Control Conference, 2001. Proceedings
of the 2001, Vol. 3. IEEE, 2301–2308.

[25] Florin Stoican and Dan Popescu. 2016. Trajectory Generation with Way-Point
Constraints for UAV Systems. Springer International Publishing.

[26] Lei Tai and Ming Liu. 2016. Towards cognitive exploration through deep rein-

forcement learning for mobile robots. arXiv preprint arXiv:1610.01733 (2016).
[27] John Tisdale, ZuWhan Kim, and J Karl Hedrick. 2009. Autonomous UAV path

planning and estimation. IEEE Robotics & Automation Magazine 16, 2 (2009).
[28] Sasi Prabhakaran Viswanathan, Amit K Sanyal, and Maziar Izadi. 2017. Integrated

Guidance and Nonlinear Feedback Control of Underactuated Unmanned Aerial

Vehicles in SE(3). In AIAA Guidance, Navigation, and Control Conference. Gaylord,
TX. https://doi.org/10.2514/6.2017-1044

[29] S. P. Viswanathan, A. K. Sanyal, and R. Warier. 2017. Finite-Time Stable Tracking

Control for a Class of Underactuated Aerial Vehicles in SE(3). Seattle, WA, to

appear.

[30] Michael P. Vitus, Wei Zhang, and Claire J. Tomlin. 2012. A hierarchical method

for stochastic motion planning in uncertain environments. 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (2012), 2263–2268.

[31] Juan Wu, Seabyuk Shin, Cheong-Gil Kim, and Shin-Dug Kim. 2017. Effective lazy

training method for deep q-network in obstacle avoidance and path planning.

In Systems, Man, and Cybernetics (SMC), 2017 IEEE International Conference on.
IEEE, 1799–1804.

[32] Wenda Xu, Junqing Wei, John M Dolan, Huijing Zhao, and Hongbin Zha. 2012. A

real-time motion planner with trajectory optimization for autonomous vehicles.

In Robotics and Automation (ICRA), 2012 IEEE International Conference on. IEEE.
[33] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav Gupta, Li Fei-

Fei, and Ali Farhadi. 2017. Target-driven visual navigation in indoor scenes

using deep reinforcement learning. In Robotics and Automation (ICRA), 2017 IEEE
International Conference on. IEEE, 3357–3364.

40

https://doi.org/10.1109/TRO.2015.2479878
https://doi.org/10.2514/6.2017-1044

	Abstract
	1 Introduction
	2 DRL-based Waypoints Planning
	2.1 Deep Q Network
	2.2 Problem Formulation
	2.3 Network Structure
	2.4 Learning of DQN
	2.5 Progressive Learning in a Controlled Environment

	3 Dynamics Model of Multi-rotor UAV
	3.1 Continuous Time Dynamics
	3.2 Discretization of Dynamics

	4 Optimal Position Trajectory Generation and Gain Selection
	4.1 Position Trajectory through Waypoints
	4.2 Gain Selection through Genetic Algorithm

	5 Experiments
	5.1 Impacts of Progressive Learning in a Controlled Environment
	5.2 Results Comparison

	6 Conclusion
	References

