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Abstract

We use a direct product basis, basis vectors computed by evaluating matrix-vector products,
and rank reduction to calculate vibrational energy levels of uraci! and naphthalene, with 12 and 18
atoms, respeclively. A matrix representing the Hamiltonian In the direct product basis and vectors

with as many components as there are direct product basis functions are neither calculated nor

2



stored. We also intreduce an improvement of the Hierarchical Intertwined Reduced-Rank Block
Power Method (HI-RRBPM), proposed previously in J. Chem. Phys, 146, (2017}, 204110. It
decreases the memory cost of the HI-RRBPM and enables one to compute vibrational spectra

of molecules with over a dozen atoms with a typical desktop computer.

l. Introduction

In this paper we repori variational calculations of vibrational energy levels of uracil and napntha-
leng, having 12 and 18 atoms. For molecules of this size, it is more common to use perturbation
theory.! Unlike perturbation theory, variational calculations systematically account for the effects
of strong coupling and nearly degenerate states. To do the variational calculations we use a di-
rect product basis. A direct product basis has the important advantage of simplicity, but its size
scales exponentially with the number of atoms.2* The memory and computer time required to
compute a spectrum can be significantly reduced by using iterative eigensolvers.>*® They require
only enough memory to store several vectors. However, for molecules with more than four atoms
even the amount of memory required to store direct-product basis vectors is excessive. In this
paper, although we use a direct product basis, elements of a matrix representing the Hamiltonian
in the direct product basis and vectors with as many components as there are direct product basis
functions are neither calculated nor stored.

The method we use works only if the potential energy surface (PES) is a sum of products
{(SOP). For molecules with fewer than about 5 or 6 atoms, it is possible to construct accurate PESs
that often are not SOPs.' ! For such molecules, quadrature or collocation is essential.* 121
For larger molecules, the best available PESs are often SOPs. When the PES is a SOP and
each basis function is a product of univariate factors, the calculation of its matrix elements is
inexpensive because they can be assembled from sums of preducts of 1D integrals. Although
this greatly simpiifies the calculation, one must still deveiop tools that make it possible to compute
eigenvalues of the (implicit) Hamiltonian matrix.

If the PES is a SOP, one way to compute a spectrum is to use a basis whose functions are



products of univariate functions, but which is not a full direct product basis. Such a basis is often
obtained by pruning.?>-27 Using mapping techniques.2.2% or weil known algorithms for storing
sparse matrices,””-% it is possible to evaluate the matrix-vector products (MVPs) required to use
an iterative eigensolver.

In this paper we use different ideas.3!32 In Ref. 31, Leclerc and Carrington used SOP basis
functions, basis vectors generated by evaluating matrix-vector products, and rank reduction with
an allernating least squares algorithmx.%® The SOP basis functions are not functions selected

from a direct product basis. Each basis function has the form,
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is & tensor of basis coefficients. In Eq. 2, ("} is a 1-D vector of coefficients and sF is a normaliza-
tion factor. A basis vector expressed as in eq 2 is said 1o be in CP-format.®* The number of terms,
Hy. is referred to as the rank. To slore F;, . ,,, one needs only o store the f}f‘“). which requires
storing /inD numbers, where » is a representative value of ny, - ,np and D is the number
of degrees of freedom. The number of terms in each of the basis vectors is reduced as they are
computed. These ideas were originally implemented in the Reduced Rank Block Power Method
(RRBPM).%! It uses CP format, a block-power method to generate basis vectors, and projects inlo
the space spanned by CP vectors to compute eigenvalues. The key advantage of CP format is
that the memory cost scales linearly in D (in constrast, when direct-product vectors are stored
the memory cost scales as »?). Mathematicians often shun CP format because algorithms for
representing a tensor in CP format may converge poorly. As our goal is only to make basis vectors
in CP format, we can compute exact eigenvalues even if reduction to CP format is imperfect. In

previous calculations, we have demonstrated that good results can be obtained with small ranks



(It < 1000).31:32.35-37

Other groups are also using related tensor methods. By far the most prominent is the muli-
configuration time-dependent Hartree (MCTDH) method.?®® It uses tensors in what is called
Tucker format.34-4® When the tensor of coefficients is in Tucker format, wavefunctions are repre-
sented in an optimised direct product basis. To reduce the size of the MCTDH coefficient vectors
one uses mode combination,*® multiple layers,*'~3 and pruning.**—7 Several years ago, it was
observed that cluster amplitudes in a vibrational coupled cluster calculation could be stored in CP
farmat.*® More recently, it has been shown that it is possible to develop & vibrational coupled clus-
ter method that not only stores but also calculates cluster amplitudes in CP format.#® This new
method has some of the same advantages of the RRBPM. A method like the RRBPM, but in which
the vectors are generated with inverse iteration and vectors are represented in tensor train (or ma-
trix product state) format is more efficient than the original RRBPM for acetonitrile.5? The density
matrix renormalized group (DMRG) method is often used by quantum chemists to calculate the
ground state of the electronic Schroedinger equation.>:5 It imposes the matrix product state (or
tensor train) form on the ground state wavefunction and then optimizes it. The RRBFPM optimises
not a wavefunction, but basis functions and then computes eigenstates by salving a (small) gener-
alized eigenvalue problem. In Ref. 53, energy levels of the helium atom are computed using basis
vectors in CP format by building a basis from matrix-vector products (MVPs). The start vectors
of the block are chosen to be eigenstates of a separable Hamiltonian; the iterative eigensolver is
different and the updating or restarting is also different than in Refs. 31,32, 35

Most variational calculations are memory bound, i.e., it is the amount of memory available that
determines whether or not a calculation is possible. The strategy of using MVPs to make basis
functions that are stored in a tensor format eliminates the memory problem. With the RRBPM it is
possible to compute the lowest 70 eigenstates of CH3CN using less than 1 GB of memory.?! Even
for larger molecules, not much memory is required.*23%37 There are, however, other problems:
(1) for molecules with more than seven atoms, the RRBPM converges slowly, requiring > 1000
matrix-vector praducts (MVPs) per desired state 1o achieve modest accuracy; (2) calculations take

a lot of computer time because of the need to reduce the number of terms in the SOP basis vectors



(rank reduction).

Convergence can be improved in several ways, including performing separate calculations for
ditferent symmetries, using an eigensolver with a betier convergence rate than the shifted power
methad,?”-3¢ and by grouping coordinates of the molecule into a tree structure and constructing the
basis hierarchically by solving eigenproblems for subsets of the coordinates.?®> The Hierarchical
(H-) RRBPM adopts this last strategy. It uses the RRBPM to compute eigenstates at each node of
the tree. With a good choice of tree, the H-RRBPM is orders-of-magnitude faster than the ordinary
RRABPM. At each node of the tree, the spectrum of the reduced-dimensional eigenproblem is less
dense than that of the full-dimensional eigenproblem, and thus applying the RRBPM node-wise
resulls in faster convergence than applying the RRBPM to the full-dimensional problem. Many
papers use bases composed of eigenfunclions of reduced dimension Hamiltonians for subsets of
the coordinates.®>57 When using the H-RRBPM, nodes in the tree are treated sequentially. In
contrast, Multi-tayer MCTDH treats all of the nodes simultaneously.

The most costly (> 90%) part of an RRBPM calculation is the reduction of the rank of the basis
vectors, which is increased when a MVP is performed or when the bas's is orthogonalized/updated.
The original RRBPM used an Allernating Least Squares (ALS) algorithm®® to reduce the ranks.
Recently, we proposed a method which “intertwines™ evaluation of MVPs with rank reduction.?2
In the intertwined (I-) RRBPM, there is a partial rather than a full optimization of a veclor after
each MVP. It is approximately an order of magnitude faster than the original RRBPM. The faster
optimization makes it practical to use larger ranks, which in turn allows one to compute vibrational
energy levels for larger molecules or for smaller molecules with higher precision, despite the fact
that the optimizations are less good. We demonstrated that using intertwining with the H-RRBPM it
is possible to compute vibrational energy levels for an 11-atom molecule such as cyclopentadiene
{CsHs). Moreover, the I-RRBPM can be formulated to avoid storing the large-rank vectors which
are created after matrix-vector products and orthogonalization/updates, reducing the memory cost.

In this paper we propose a slightly modified version of the -RRBPM which further reduces
its memory cost. We call it the “ultra-low-memory” I-RRBPM. It will make it possible to use the |-

RRBPM with graphical processing units (GPUs). We also compute energy levels of two molecules,



uracil (C;H;0:N-) with 12 atems and naphthalene (C,,H,) with 18 atoms, using the HI-RRBPM.
The modification is introduced to decrease the memory required to store matrices of inner prod-
ucts which are used for rank-reduction in the I-RRBPM. They become large (for naphthalene they
require hundreds of GB) when the number of terms in the Hamiltonian or the number of vectors
computed in parallel is large. Although many modern computers have hundreds of GB of memory,
we would like to have a method for doing variational calculatons on molecules like naphthalene

on a standard desktop computer.

. Theory

A. Computing vibrational energy levels using vectors in CP-format

The basic strategy is to make a set of CP vectors and to project into the space they span to
compute eigenvalues. To convert this strategy into a computational method we must specify how
the CP vectors are calculated. In the RRBPM, a block of vectors is evolved by evaluating MVPs. [f
a vector is in GP format then the vector obtained from it by applying a shifted SOP Hamiltonian to

itis also in CP format. We write the SOP Hamiltonian as
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where h,, . is an operator depending only on coordinate . A matrix-vector product (MVP) is®!
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Although (G),.,l Al in Eq. (3) is a CP vector, it is a CP vector with a much larger rank. The
MVP produces a vector which has T times as many terms as F. We denote all large-rank vectors
G (rank > /7,) and small-rank vectors F (rank— 17.). Because many MVPs are required, it
is necessary to reduce the rank of G after each MVP to keep the memary cost low. This means
finding a vector, “*'F, which minimizes ||*“F — GJ|. Inthe original RRBPM, we used an Alternating
Least Squares (ALS) method®® to compute **'F, unless there are only two coordinates, in which
case we used Singular Value Decomposition (SVD).5 *“'F then replaces F and another MVP s
evaluated.

The ALS procedure cycles through coordinates ¢ = 1... D and compules an improved set of

F ) for each value of ¢. For each coordinate, one computes matrices of inner products, defined



ds:

BS., = <f(r-’lc), _f(,.,c)> (5a)

IJ,(."'r — <g(rl'c), f‘r,c)> (Sb)

Bl = [ #0. (5¢)
e’ #e

T | B {5d)
ef e
D

Bere = [[5B:. (5e)
(;1

-PT".:' H 1):',1"! (5')
ree ]

where coordinate ¢ is omitted from B** and P*°. P** is used to construct right-hand sides of

sets of linear systems,

H
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The solutions (" replace /™). Each £ is then normalized so that s* = | 7| and

normabized plne) — LT Applying eqs 5a-7 to compute new £ for coordinates ¢ = 1... D in
Lo~ Apply P

sequence constitutes one ALS sweep.

The Reduced Rank Block Power Method (RRBPM)3! repeatedly applies the following steps to
a block of B basis vectors, F = {F,} (/ = 1... B): 1) matrix-vector product Gy, = (H — [,1) "Fy,
and 2) G,

ALE

+ °uFy. After every N,,. MVP4+ALS steps the B vectors are Gram-Schmidt or-

thogonalized and then used as a basis for solving a small B x B generalized eigenvalue problem.



The solution vectors then replace F. This process (or cycle) is repeated until the set of vectors
converges {0 the eigenvectors associated with the B smallest eigenvalues.

In the RRBPM, after each MVP, ALS is used to optimize £ for all ¢ = 1... D. One sweep
corresponds to optimizing £ for all the coordinates. Many sweeps constitute one application
of the ALS method. In the “intertwined" (I-) RRBPM,* after each MVP, £**°) is optimized for a
single coordinate. The other f("c'), ¢ # ¢in *"F are set equal to the values they had before
the MVP was evaluated. This is therefore a partial and not a full optimization. It is equivalent to
computing g('"'-c) = By £ (note that a value of + is associated with values of both + and m)
and then optimizing " /" for onc coordinate r at a time. For all ¢ # ¢, ! f,(';‘c') are set to

rm!f(’:'".) in ("'C,) '

L.

- A loop over all coordinates « = 1... D constitutes one sweep. In the original
RRBPM, performing ... MVP+ALS steps requires one to construct and solve Nyoro Nawweepd lin-
ear systems, where N, and N,,,..., have typical values of 10-20. In the I-RRBPM only NyyeenDD
I'near systems need to be constructed/solved per cycie. Moreover, in the RRBPM, the B and P
matrices must be constructed “from scratch™forall ¢ = 1... D every time ALS is called. In contrast,
in the I-RRBPM the B and P matrices are constructed for all ¢ only after the first MVP; they are
updated for only a single value of « aiter each subsequent MVP. Constructing the linear systems
accounts for the majority of the CPU time in an RRBPM calculation, so intertwining the MVP and
ALS steps reduces the calculation cost by roughly an order of magnitude.

The most obvious way to use both the RRBPM and the I-RRBPM requires storing large-rank
G vectors. The rank of the G veclors obtained after evaluating MVPs is TR,,. The Gram-Schmidt
orthogonalization step and the step of replacing the F basis with solutions of the generalized
eigenvalue problem both also produce large-rank vectors, but with a maximum of BR,; terms.
The memory cost of storing the large-rank vectors is significant, if many vectors are computed
in parallel and if either 1) there are many terms in the Hamiltonian (T is large), or 2} there are
many vectors in the block (3 is large). The “fow-memory” version of I-RRBPM?2 reduces the
memory cost by obviating the need to store the G vectors. Instead, a column of the P,f",. matrix
is made and Eq. (7) is evaluated by successively adding contributions from different g(" <) and

discarding them after they have been used. This avoids the need to store vectors with TR, nD

10



{or BR:nD) entries. However, the low-memory version incurs a slightly higher CPU cost since it
must generate the g('""") on-the-fly twice per ¢ per sweep, first to compute 1 _ for the downdate
Pl = Pu./ P, and then to compute a new P, , for the update ., Pf‘.‘_" 1%, .. In contrast,

e

the full-memory version must generate g(""')only once per ¢ per sweep.

B. “Ultra-low-memory” intertwining

In this subsection we explain that it is possible to further reduce the memory required to use the
I-RRBPM. Although it is possible to use the low-memory I-RRBPM of Ref. 32 to do variational
calculations on molecules with more than a dozen atoms (in the next section we present results for
naphthalene), in order to use the RRBPM on a standard personal computer to do such calculations,
changes in the algorithm are necessary. Moreover, reducing the memory cost of the method will
make it possible to use it with GPUs and thereby reduce the time required to compute a spectrum.

Relative to the RRBPM and full-memory |-RRBPM, the low-memory I-RRBPM signifcantly
reduces the memory cost. However, if many vectors are computed in parallel and either 7' or
1} is large, hundreds of GB are required. The low-memory version requires storing P matrices.
They have TR and up to BR’ elements for the MVP and Gram-Schmidt/vector update steps,
respectively. For the largest caiculations in this paper, T = 767 and 7y = 700, so storing a single
P matrix requires 2.8 GB. To compute 128 states in parallel {vide infra), 358 GB is needed to store
all of P matrices simultaneously.

The key idea of the ultra-low memory method we propose in this section is to generate both the
G vector and the P7" matrix on-the-fly and only in small portions, discarding them immediately
after use. It is described in Algorithms 1-2. Algorithm 2, which does MVPs, is similar to the
low-memory version described in Algorithm 4 of Ref.3? What distinguishes the ultra-low memory
version is the way B[ and bl are computed. In the low-memory version they are obtained
by storing B and P and downdating and updating to get B*“ and P* matrices for each o, c
pair. In the ultra-low-memory version, to avoid storing P (T'R° elements), P7¢ is constructed from

scratch, but in blocks, for each a, c. This is done inside Algorithm 2, which generates an 12, x /..
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block of P for each value of m = 1...T. The blocks are used to construct the right-hand-sides
&4 of a linear system and then discarded.

Because when we apply the shifted Hamiltonian, (H — F.1) F, the energy shift is the last
(= T) term in Algorithm 2, the last F,. = 1?,, block of the P#© matrix is

P#c H <g(r'.c),f(1‘.c ::-

c'de

I (109, 70

ol

H < Flre) f r.c))

L o

B*, (8)

so Algorithm 2 provides the B matrix at no additional cost as part of the &%~ computation.

Algorithm 1 Intertwined power method, ultra-low-memory version.
Input: vector in block, F, with rank Rp
Dutput: improved vector in block, F, with rank Rp
for aw=1... Nypeep:

for e=1...D: (Loup over coordinates)
a) Call Algorithm 2 to calculate B:f

and l)f-i"'c} for all i., r (Eg. 6)

b) solve linear system for (¢ (Eq. 7);

replace fl-(:‘c) — 9 for all ics T

5 £

i

¢ .
o for all 7', r;

c) nermalize sf ”f("'“) for all r;

(r.e)
FIGG)

normalize F «— ]T%]T

The GPU cost of Aigorithms 1-2is O (Nuuwe,D (THun2D + THin,D + ) ). Here, TRyn2D
is the cost of computing the MVPs insteps -1 —~b—iand1—-1 —¢, and TRZn.Dis the sum of
the cost of the inner product in 1 — 1 — b — ii and vpdating BV inT—1—4d, in Algorithm 2. The
R term is the cost of solving the linear system in step b of Algorithm 1. This cost is approximately

a factor of D /3 larger than the full- and low-memory versions of I-RRBPM which store P¥<.
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Algorithm 2 Pseudo-code for computing B matrices and right-hand sides b without generat-
ing & large-rank vector G or matrix P.

Input: CP-format vector, F, with rank Ry
Output: matrix B7™°; right-hand sides, b‘~¢

Initialize b'% « 0 for all fe, T3 Pff; -0 for all r
I) for m=1...T:

1) for I=1...RHy:
a) e {m—1)F,+!
b) for ¢'=1...c=1l,e+1,...D:
1) g"e) = hy, 0 5 0)
ii) for r=1...Ry:
P pre (g(r <) plre )>

iii) discard g{"")
c) g("f'c) — hm,cf("c)
d) for r=1...Ry:

if mo< T b 4o plieed 5f'g,(: P)P,f‘, for all i,

else: I)S-i"‘c) o i) Easf‘gi(: 'c)l’ff;_ for all i,
e) discard g("l'“)

2} 1f m < T: discard Pff',

II} Rename Bf.ff"r = ]’ff‘,

13



The memory cost of Algorithms 1-2 is @ (I¢, (£2,. + n)), per vector computed in parallel {in
addition to O (BR,nD) required for storing the B vectors in the block). The factors of 1 and
nity come from storing the B7° matrix and right-hand-sides, respectively. The “ulira-low-memory”

version saves a full © (T!Eﬁ,) storage per vector compared to the low-memory version of -RRBPM.

lll. Results and Discussion

In this section we report vibrational energy levels of uracil and naphthalene, computed using
the tow-memory version of the Hierarchical Intertwined Reduced-Rank Block Power Method (HI-
RRBPM).? These calculations could also be performed with the “ultra-low-memory” version, Al-
gorithm 1, but we prefer to use the low-memory version because it requires less CPU time. As
before, we parallelize the calculations over vectors in the blocks.

The potential energy surfaces we use are both “semi-diagonal” quartic Taylor expansions of the
potential about the minimum energy geometry.t® This simple form of the potential is convenient to

use, although the method is compatible with any sum-of-products potential. The Hamiltonian is

o = % i_
; 2 e=1

o e
[¢
g

1 &
+ G Z Z z‘brugc.‘h;‘k;'[«-a
le
1 D D
+ 2 Z Z Z Z E;lgumflc,‘.h_ﬁ'c ey (9)

c1=1ez=1ry=1cs=1

where we neglect all =*um terms in the kinetic energy operator (KEQ) and the potential-like
Lo Mo term.E' The number of terms in each node of a tree is reduced by sorting the terms
in Eq. (1). See Ref. 35 for detail. The univariate functions, in Eq. (1) are eigenfunctions of 1D cut
Hamiltonians obtained by keeping only the w./2p? term in the KEO and setting g = 0,¢’ # ¢ in
the potential. They are obtained by solving each 1D cut Hamiltonian in a harmonic oscillator basis

chosen large enough to converge the levels of interest.
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A. Uracil (C4 H,0, Nz)

We have computed the lowest 224 vibrational states of the uraci! molecule (Fig. 1), which has
12 atoms and 30 vibrational DOF. Uracil is essential 1o life as one of the four nuclecbases of
DNA; as such, its vibrational spectrum has been measured in numerous experiments spanning
decades (see Ref. 62 for a complete list) and analysed in detail using second order vibrational
perturbation theory.52-%8 The potential that we use is the quartic force field PES of Krasnoshchekov
et al.,% which contains cubic and quartic anharmonic constants computed at the MP2/cc-pVTZ
level. The harmonic frequencies of are the “best theoretical” harmonic constants computed earlier
by Puzzarini et al.5 With this PES, the Hamiltonian contains 30 kinetic, 30 harmonic potential,
and 2716 cubic and 5050 quartic anharmonic potential terms, for a total of 7826 terms. The force
constants are given in the Supplementary Material.

We find that some of the energy levels computed on this PES are spurious. Their energies
change when we change the number of basis functions in some of the nodes. Some of them are
lower than the level we identify as the zero point energy (ZPE). The quantum numbers assigned
(using eigenvectors) to the spurious levels are usually nonsensical. Other levels are close to the
VPT2 levels, as expected. The spurious levels exist because the PES has unphysical regions or
holes. Aleng some cuts the potential increases and then decreases.

Such holes plague many polynomial PESs. Perturbation theory often works well even when the
PES has holes. Hoping to find a PES without holes, we recomputed force constants at twao different
electronic structure levels: MO5-2X/6-311G, and MP2/cc-pVTZ level. Both the new PESs also
have holes. They they are less severe for the MP2/cc-pVTZ potential, which has constants almost
identical to those of Krasnoshchekov et al.%? Since the MP2/cc-pVTZ PES of Krasnoshchekov et
alf2 has fewer quartic terms (5050) than ours (11614), we used the potential from Ref. 62 for all
the HI-RRBPM calculations.

We must do something to eliminate the holes without significantly changing the PES near the
equilibrium geometry. The univariate cut potentials, V. (g, ) are large when |¢;| is large; the holes are

due to the coupling terms, V.., = V — 37, Vi(;). One way to deal with the problem is: 1) choose
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a function =(¢,} that approaches a plateau value as |¢,| increases; 2) expand =, in terms of gi:

3) invert these expansions to obtain

4= ez (10)

4) substitute ¢, = 3, iz’ ino Veoup and refain only the lowest powers of -*. This yields a new
PES that is a sum of the original PES and a term, whose degree is larger than the degree of
the original PES thal makes the new PES more realistic at large |¢.|. Replacing ¢, with 3=, ¢x.=/
in Viou, ensures that V..., approaches a constant value as |¢;| — co. The function we use is
z; = tanh (£0;q;). Because the degree of the factors in the terms of Veoup 18 less than or equal 1o
two, we can keep only the first term in Eq. (10), i.e., q; = E—fg;  V.(q.) is even, o, is defined as for

a Rosen-Morse potential®”
rf)ﬁ“

86| =

0y =

The larger {'!  is, the more likely it is that an unphysical region occurs at a smaller value of g,.
When ¢ ’ ;I8 large, it is therefore best to choose «; 50 that it is large and the plateau is reached

at smaller values of y;. If V.(y,) is odd, «, is defined

¢
3¢

0y = (12)
This means that if the cubic constant is large the plateau is reached sooner, thus limiting unphysical
behaviour. In the plateau region there is no coupling. In the tank argument, ¢ is an adjustable
parameter. We need it because the above choices of «; are somewhat arbitrary. As primitive
basis functions, we use standard harmonic oscillator functions. To use the modified PES we must
compute matrix elements of tanh (£«;¢;) in the harmonic basis. This is done by evaluating the
required 1D integrals with a 257-point Clenshaw-Curtis quadrature in ;.

Increasing £ will remove holes because it moves the plateau region closer to the equilibrium

geometry. Although all the non-zero derivatives (with respect o the ¢, coordinates) of the original

16



PES are unchanged by replacing ¢; with the shape of the potential close to the equilibrium

o
geometry changes enough that energy levels are affected. It £ is too small, holes remain. If ¢ s
too large, the modified coupling terms infringe on the region close to the equilibrium geometry.
The hole problem exists only because the PESs we use are truncated Taylor series in normal
coordinates If the PES were fit to a more physical form there would be no holes. For uracil, we
found that with £ = 1.125, the modified PES still has spurious levels. With £ = 1,25, the modified
PES has some, but fewer, spurious levels. With ¢ = 1.5, there are no spurious levels and we
assume no holes, however, all of the non-spurious levels are shifted up, compared to their £ = 1.25
counterparts.

The free used in the hierarchical calculations in this paper is shown in Figure 2. Since many of
the low frequency modes g, — 430 Couple strongly to the N-H stretch modes g, and ¢, and to the
C-H stretch modes «; and ¢, il is necessary to retain many basis functions as one moves up the
tree in order to obtain converged energy levels. For th's reason, we arrange modes ¢, — ¢4 and
18 — g0 into small groups of 2-4 coordinates each and retain moderately large basis sizes, i.e.
166-236 functions throughout the tree. The intermediate frequency modes g5 — ¢+, which couple
less strongly to ¢1 — ¢4 and qis — 30, are grouped together in several steps into a single node on
the second-from-the-top layer. The number of states computed at the top node, 224, is enough to
accurately compute the fundamentals below 1200 em™!, that is, &y, — 1.

Parameters used in the calculations are summarized in Table 1. For £ = 1.25, a preliminary cal-
culation was performed with 12, = 40 (for all nodes) and N, — 20. We then added 200-40=160
terms with random ™) whose normalization constants are small to the top-layer wavefunctions
computed in this preliminary calculation to obtain initial guesses for a second top layer calculation
with f1,, = 200 and N, = 10. The basis parameters, except R, and N, for these calcula-
tions are the same as those in Table 1 for calculations 'A1'-'A4'. The top-layer wavefunctions from
this second calcutation, with R, = 200, were then used as initial guesses (again small random
terms were added so that the rank of the input vectors is equal 1o R2,.) for the calculations labelled
'A1'-'AJ’ in Table 1. The 'B1'-'B3’ calculations were done in the same way, but for £ = 1.50. For

¢ = 1.25, an additional calculation ('A4’) was performed, re-computing again the top-layer wave-
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functions using this time as initial vectors the top-layer wavefunctions from the 'A3' calculation
(plus small random terms}. Choosing £2,, = 40 for nodes below the top is enough to converge the
energy levels in these branch nodes; larger ranks are needed for top nodes only.

Table 2 lists selected levels of uracil for the 'A1'-'A4" and 'B1'-'B3’ HI-RRBPM calculations. We
report leve's that we can unambiguously assign. To assign levels, we first use ALS to reduce the
rank of the corresponding wavefunctions 1o one. If the assignments obtained by reducing the rank
is unclear (e.g., if two wavefunctions are assigned the same labels) then we verify or correct them
by computing eigenvectors. We also compare our fundamental transitions with the CVPT2 levels
of Ref. 62. Since replacing ¢; with E—ff; changes the potential, the CYPT2 calculation and the ‘A’
and 'B’ HI-RRBPM calculations are performed on different PESs. From Table 2 we observe that
medifying the PES does not significantly affect low-lying fundamentals v,x — 1y, vy — 145, and
vas — vun, whose HI-RRBPM values in both 'A’ and ‘B’ sets converge to within <15 cm~! of the
CVPT2 values. Higher fundamentals are more strongly affecled by the change in potential, and
iy @nd v are severely affected. However, the aim of this paper is not to produce a better PES
for uracil but 1o demonsirate that it is possible to use a variational method to compute converged
energy levels of a iwelve-atom molecule.

Comparing the 'A3’ and 'A4’ levels enables one to assess the convergence of the "A’ calcula-
tions. Half of the reported levels change by < 1 cm ! as the rank is increased from 7, = 600 to
R, = 700. Since the value £ = 1.25 used in the 'A’ set calculations does not fully remove the holes,
the spectrum contains spurious energy levels some of whose energies are similar to those of levels
that we want 1o compute. These spurious levels increase the density of the eigenvalue spectrum,
which slows convergence of the power methad. Without the holes, the true levels would converge
faster. In the ‘B’ calculations, there is no indication that holes affect any of the levels of interest.
Comparing 'B2" and 'B3', one sees that convergence is significantly better than in the 'A’ set: all
but eight of the reporied levels decrease by < 1 cm~! as the rank is increased from R, = 500 to
Ry = 600. The larger value of £ = 1.5, used for the 'B’ calculations, shifis the entire spectrum
to higher energy. The ‘B3’ ZPE is larger than its 'A4’ counterpart by ca. 24 cm~!. Differences

between 'B3’ levels and the 'B3' ZPE are also larger than differences between 'A3' levels and the
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'A3' ZPE. However, the tight convergence of the levels in 'B3' demonstrates that it is possible to
compute converged energy levels for a 12-atom molecule, if the potential does not have holes in

accessible regions.

B. Naphthaiene (CgH,o)

In this subsection, we present HI-RRBPM calculations of the lowest 128 vibrational levels of naph-
thalene, with 18 atoms and 48 DOF. Amongst the 128'are the 20 lowest fundamentals. Naphtha-
lene, the smallest polycyclic aromatic hydrocarbon (PAH), has been the subject of several recent
theoretical®-"* and experimental™-"" spectroscopic studies due to the importance of PAHs as
pollutants”™ and as possible carriers of the Aromatic Infrared Bands” observed in space. The
spectrum of naphthalene has been computed with second order vibrational periurbation theory by
several authors.®8.5%71-73 The PES we use is a quartic force field computed at the BS-71/TZ2P
density functional level and is avalable in the Supplementary Material of Ref. 69. Quartic force
fields for naphthalene have also been computed by other authors using the same or different elec-
fronic structure methods.®®7'-7° The PES thal we use contains 48 harmonic constants and 1936
and 2188 cubic and quartic anharmonic constants, respectively. Including kinetic terms, the Hamil-
tonian has 4221 terms and has the form of Eq 9. We did not encounter problems with holes for
this PES, and therefore it is used without modification.

The tree used in the naphthalene HI-RRBPM calculations is shown in Figure 4. Following the
strategy used previously, we arrange the coordinates into groups with similar frequencies and types
of motion in lower layers of the tree. As in our previous papers, we find that it is not necessary to
optimize the placement of coordinates in the tree to compute accurate energy levels. We arrange
the nodes in & quasi-binary fashion in all layers below the top; this has the advantage that most
of the nodes have d = 2 sub-nodes, in which case one can use singular value decomposition
(8VD) to reduce the ranks. In the third layer from the bottom, we use standard diagonalization to
compute the bases for nodes containing two sub-nodes, instead of the power method, since the

direct product basis is small. The direct product sizes shown for these nodes are larger than is
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necessary for computing accurate bases in higher levels of the tree. Therefore we truncate the
bases to smaller sizes in the fourth layer. The top node, in which we combine the six nodes from
the previous layer, is the only node where we use the I-RRBPM and accounts for the vast majority
of the calculation time.

We made seven HI-RRBPM caiculations with /¢, values between 60 and 1000. Parameters for
the calculations are given in Table 3. The bases for all nodes beiow the top were all computed with
2, = G0. Calculations 'B'-'G' differ from caiculation 'A’ only because the functions of the top node
are re-computed with a larger rank, using input vectors obtained from the top layer of a previous
calculation (and smail random terms). For calculation ‘B’ the input vector is made from the top
layer of calculation "A’. For calculation 'C' the input vector is made from the top layer of calculation
'B". For calculation 'D’ the input vector is made from the top layer of calculation 'C'. For calculation
'E’ the input vector is made from the top layer of calculation 'C’. For calculation 'F' the input vector
is made from the top layer of calculation 'E'. For calculation 'G’ the input vector is made from the
top layer of calculation 'F'. Calculations ‘D" and 'E’ are done in parallel. This strategy was also used
previously in calculations on cyclopentadiene.® It makes it possible to da inexpensive calculations
for the nodes in lower layers of the tree where small ranks are sufficient and at the top of the tree,
where a large rank is needed, a large rank calculation. The number of cycles for calculations 'B',
'C, 'D'VE, 'F', "G’ is fairly small (see table 3), only large enough to converge the levels for the
corresponding rank.

Table 4 lists the lowest 128 energy levels of naphthalene from the HI-RRBPM calculations.
Experimental values for the fundamentals and VPT2 values from Ref. 69 are also shown, where
available. The energy levels decrease significantly as the rank is increased from /i, = 60 to
£y = 300 and more slowly as the rank is increased from I, = 300 to R, = 1000. Comparing the
'F' and ‘G’ columns provides a rough estimate of convergence. Most of the leveis in the bottom half
of the spectrum are well-converged and decrease by less than 1 cm~' when the rank is increased
from R, = 7000 R 1000. Moreover, most of the HI-RRBPM fundamentals are close to {and
in some cases, lower than) the VPT2 values in the largest ‘G’ calculation. Levels in the top half

of the spectrum are less converged, with the largest absolute change between the 'F' and 'G'
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being 11.5 cn ™! for the 3u14 + 20« level. Increasing either the block size B3, the rank /.., or the
number of cycles N.,. would improve these levels. Differences between the variational and the
VPT2 energies are small.

Calculations on naphthalene are time consuming but require relatively little memory. For exam-
ple, the 'F' calculation has a total memory cost of 364 GB, of which 358 GB are used to store P
matrices. If the ultra-low-memory version were used and the calculation run on 128 processors, 'F’
would require only 4.7 GB. This includes 0.5 GB for Hamiltonian operator matrices and 3.0 GB ior
storing two copies of the vectors in the block during the vector update step, both of which do not
depend on the number of processors. Using the ultra-low-memory version, the CPU cost would be
approximately twice as high, owing to the fact thal the top-layer node contains six sub-nodes.

We use many processors (see Tables 1 and 3). If, instead, it were possible to use only 8,
calculation 'F’, with the ultra-low-memory version, would need 3.6 GB in total although the CPU
cost would be much higher. However, this memory cost is small enough that it would be possible to
fit the Hamiltonian and the basis vectors onto a graphical processing unit (GPU) card. MVPs and
vector inner products account for the majority of the computational burden; these operations can
be subdivided into small paralielizable chunks. Thus, the ultra-low-memory HI-RRBPM could be
used to perform variational quantum dynamics calculations on molecules with over a dozen atoms

using a fairly common workstation.

IV. Conclusion

Variational methods have been used to compute vibrational spectra for decades. The first calcu-
lations were done with orthonormal basis functions by explicitly constructing and diagonalizing a
Hamiltonian matrix. The computation time required to diagonalize a matrix scales as N*, where N
is the size of the matrix. Fortunately, the speed of computers has improved significantly. However,
1o diagonalize a matrix with standard algorithms, it must be stored in memory. If the computer one
is using does not have enough memory to store the matrix, it is not possible to compute a spec-

trum by diagonalization. Important progress was made by using iterative eigensolvers to compute
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some, but not &ll of the eigenvalues of a Hamillonian matrix. To use an iterative eigensolver there
is no need to slore a Hamiltonian matrix in memory. It is, however, necessary to store in memory
vectors with has many elements as there are basis functions. For molecules with more than about
five atoms this means that it is not possible, even with iterative eigensolvers, to compute spectra
with a direct product basis. One way to beat this problem is to use a nondirect product basis.

It is also possible to use a variational method with a direct product basis and to solve the
vibrational Schroedinger equation without storing vectors with has many elements as there are
direct product basis functions. This is done by reducing the rank of basis vectors,31:32.35.50.53 The
memory required scales linearly (not exponentially) with the number of degrees of freedom. In this
paper, we report calculations, done with reduced-rank basis vectors, on uracil and naphthalene
with 12 and 18 atoms. This is done by using a sequence of basis contractions organized into a
tree®> and the intertwining idea to decrease the cost of the rank reduction.2 The method was
dubbed the HI-RRBPM. We also suggest a new ultralow memory version of the HI-RRBPM, which
further reduces the required memory. With the ultralow memory version, variational calculztions
on molecules with more than a dozen atoms are possible on a commen desktop computer. It might

be possible to use similar ideas to solve the time-dependent Schroedinger equation.
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Table 1: Parameters for HI-RRBPM calculations on uracil. Wall times in this paper were obtained
using Intel E7-8867 (v3) processors running at 2.5 GHz. f2,, is for the calculation of the 1op node

only.
Parameter Value
Calculation. Al A2 A3 A4* Bl B2 B3
£ 125 1256 125 125 1.50 1.50 1.50
R, 400 500 600 700 400 500 600
Nepg 32 56 112 75 56 56 112
N j; LS 2 2 2 2 2 2 2
Neye 10 10 10 10 10 10 10
Naweep 10 10 10 10 10 10 10
Memory (GB) | 26 65 181 166 43 65 181
Walltime (d) | 18.2 146 158 350 89 145 13.3

“ Cantinuation of ‘A3’ calculation with |arger rank
bor rank reductions in Gram-Sechmidt, H =) = FTHF steps; Nars.p = L0 in vector updates



Table 2: Lowest vibrational energy lavels (cm™ ') computed for uragil us ng HI-RABPM, in

comparison 1o GVPT2 values frem Ref. 62, We raport the zero-point energy (ZPE) and differ-

ences between olher jevels and the ZPE.

CVPT2 HI-AREPM
Al A2 A3 Ad B1 B2 B3 Assignment
18969.36  18969.27  18969.21 18969.12  18993.14  18893.07 1899302 2ZPE
139.7 140.22 140.15 140,10 140.02 143.90 143.87 143.84 fom
157.9 157.29 157.21 157.16 157.09 158.20 159,17 159.15 20
295.60 295.15 294.95 294.53 286.53 286.47 296.41 2130
311.51 a.oe 310.68 310.02 303.56 303.48 303.42 bsn + tay
327.21 326.73 326.38 325.68 324,39 324,30 324.24 2ugn
385,50 385.37 385.30 385.15 385.18 385.14 3B5.12 r2)
384.4 379.97 379.76 379.68 379.36 386.37 386.31 386.27 Vg
510.8 511.10 511.01 510.91 510.81 511.49 511.45 511.43 12
514.57 513.84 513.40 512.49 528.56 528,32 528.14 eyg o+ by
526.14 525.91 525.75 525.43 529.82 520,62 529.49 30 4 b
531.1 535.67 535.23 535.13 536.08 §32.04 532.83 532.68 g
535.3 546.04 545,52 545,08 543.15 536.79 536.67 536.56 iy
543.43 543,10 543.00 54277 545.08 544.95 544.87 oy 4 My
530.69 530.07 529.64 520.68 551.42 551.24 551.10 Hag + bay
653.35 B52.23 651.73 651.91 655,56 655.45 655.37 v+ van
669,84 668.42 669.34 669.86 £671.35 671.24 671.13 van + von
672.22 678.57 679.03 676.87 679.00 678.58 678.37 v+ Vip
690.39 6849.18 688.56 B87.46 692,23 691.67 691.38 bag 4 vy
715.8 704.82 702.24 711.51 705.29 713.39 713.16 712.94 vag
549.4 725.78 724.71 726.81 725,85 740.53 740,43 740.39 ey
756.1 754.70 754.14 754.90 754,47 754 84 754.77 754.74 v
751.8 779.37 780.92 780.88 778.02 764.8¢ 764.75 764.65 vy
77212 77212 771.98 770.91 770.96 770.88 770.82 24
765.47 766.99 766.99 766,39 771.92 . 771.61 #21 + baa
761.27 760.93 762.38 759.56 789.30 769,07 768.88 2oy
651.4 789.95 791.44 791.50 788.99 BD5.57 805.39 805.27 van
803.2 819.10 B09.16 804.65 798.73 B08.83 809.18 B08.92 vay
865.24 864.20 BE65.47 867.69 883.02 882,45 882.02 bz + 127
901.59 901.95 902.13 900.75 898.54 897,82 897.46 b21 + g
894.19 896.64 B96.26 894.00 899,65 898.53 898.03 Van + t
902.62 898.70 898.32 899,38 90247 301.04 900.66 van + 1z
888.36 B86.27 886.72 £86.53 903.82 901.62 901.48 ray + by
8923.57 925,82 922,98 917.80 910.26 900.40 808.86 pag by
918.47 920.89 919,88 915.42 918.60 916.37 915.%1 rrag 4 oy




Table 2; {conlinuad)

CVPT2 HI-RRBEPM
Al A2 A3 A4 B1 B2 B3 Assignment
928.36 924,56 §24.45 921.83 918.71 919.29 gy + P
929.57 926.27 934.89 925.B6 924.79 923.61 21+ Pin
930.96 928,26 928.78 920.64 927.56 927.15 [ T
941.29 939.79 935.68 933.56 850.77 948.54 949.15 g+ 20
951.42 951.46 946.24 952.43 851,72 950.77 g0 + t2s
947.5 969.98 967.89 965.55 986.07 962.00 960.94 960.34 G
954.60 951.95 848.08 948.41 965.80 965.03 964.69 vy bz
955.9 974.87 969.96 970.39 961.82 975.61 97240 97114 [
979.9 1001.02 999.68 998.30 998.23 997.61 996.30 995.56 vin
1034.49 1026.54 1032.44 1027.19 1030.83 102740  1028.27 R
1051.36 1047.28 104751 1050.40 1050.62 1048.80 1048.94 vap + P
1126.87 1121.96 1120.91 1115.85 1136.77 1134.35 112843 27 ¥ 1421
1152.13 1144.88 1144.81 1143.28 1149.48 1146.22 1144.15 Pay b g
1150.98 1141.44 1140.75 1136.93 1148.34 1145,84 1146.03 [T
1157.39 1156.72 1150.06 1145.01 1163.85 1159.03  1156.53 taw + 7
1188.87 1183.52 1178.83 1179.67 1205.22 1188.78 1196.00 g + oy
1179.9 1209.64 1208.5% 1205.45 1203.81 1208.62 1207.24 1205.80 g




Table 3: Parameters for HI-RRBPM calculations an naphthalene. Wall times in this paper were
obtained using Intel E7-8867 (v3) processors running at 2.5 GHz. R, is for calculation of the top

node only.
Parameter A B C" D E° Fd G°
Ry 60 300 400 500 600 70D 1000
Nepy 128 128 128 &4 64 128 64
N 2 2 2 2 2 2 2
Neye 20 10 10 20 10 10 5
Noweep 10 10 10 10 10 10 10
Memory (GB) 10 68 120 94 135 364 371
Walltime{(d) 038 21 49 254 21.0 188 4.4

“Continuation of 'A’ calculation with larger rank
*Continuation of 'B’ calculation with larger rank
cContinuation of 'C’ calculation with larger rank
“Continuation of 'E’ calculation with larger rank
¢Continuation of 'F' calculation with larger rank

I'For rank reductions in Gram-Schmidt, H'") = FTHF steps; Nays.,

a1

10 in vector updates



Table 4; Lowest 128 vibrational levels {cm~'} computed for naphthalene using HI-ARBPM.

Experimental and VPT2 fundamental values ara taken from Table | of Raet® except where

noted,
Exp VPT2 HI-RREPM Assignment
A B c D E F G
2178220 3176371  31787.75 3176713 3176687 31766.50 31766.03 ZPE
168.6584388" 166 165.84 165.80 165,36 165.06 164.92 164.79 164.80 Vi
177 184.90 179.21 178.86 178.62 178.51 178.36 178.18 "1y
338.21 3z 330.96 330.36 33017 320.82 329.41 P
365.68 345.16 343.78 343.05 342.76 342.47 342,02 (ST AT
358.7" 359 372,86 357.92 355,80 355.21 355.056 354,85 354.44 o
397.32 361.10 359.70 350.54 358.52 358.20 a57.66 2y
390 383 405,35 388.88 388.24 388.04 387.95 387.84 387.71 vin
465 466 468.20 464.87 484,23 463.97 463.87 463.71 463.47 125
473.739502" 473 477.10 473.78 A73.17 472.83 472.83 472.63 47241 7
506.60 500.30 498.16 497,10 496.71 496.14 495,50 Hugm
509 508 513.63 508.00 506.88 506.14 505.81 505.87 505.64 1y
534.62 514,89 51279 510,73 510.18 509.61 508.42 vig + 2an
513 512 552.53 517.51 514.53 513.71 513.31 512.95 512.32 v
573.62 525.47 524.97 523.03 521.72 521,14 520.31 1124 4 Ban
577.47 530,42 527.56 525,37 524.60 523.66 522.83 2rya  pas
581,62 537.65 534.19 533,48 533.14 532.62 531.90 [T R LT
583.38 543.28 540,96 538.87 538.49 537.98 537.32 By
602.68 556.57 554,92 554.33 554.15 553.87 553.44 g+ Pan
610.60 569.04 568.08 567.53 567.37 567.11 5686.73 i + Vi
g19.5" 624 626.99 624.26 623.30 B622.14 621.93 B621.76 621.30 Y3u
621 646.39 626.63 625.28 624.57 62447 624.37 62412 vz
652.64 632.91 630,82 630.08 629.85 620.45 628,94 tray + tan
664.85 644,08 642.53 641.65 641.47 641.09 640.45 par + s
674.81 645.74 644.85 644.21 643.95 B43.60 643.04 tgn + g
692.32 655.36 654.63 653.97 653.78 653.49 652.85 var 413
695.81 671.98 668.42 667.19 B66.60 665.84 664.98 Avyy
T10.41 580.31 675.83 673.98 673.29 672.42 671.45 vig + van
716.49 684.60 683.23 680.17 676.31 677.70 676.34 iy +F 3vaa
732.70 669.47 BB5.16 683.94 682.21 680,53 680.36 vy + vy
735.97 698.72 692.45 680.08 689.55 687.94 686.06 34 4 113
751.01 702.06 696.11 693.33 592.19 680.70 688.11 124 4 20gn
754.62 705.91 699.96 697.89 £695.39 694.02 £691.73 2y + 2an
763.68 713.18 702.40 699.17 897.17 696.47 693.84 [ S )
779.99 716.95 708.15 703.13 701.65 700.09 698.49 vaa + s+ vas




Table 4: {continued)

Exp VPT2 HI-ARBPM Assignment
A B c ! E F G
784.81 71842 71239 71056 70845  70B25 70554 Bugy +vun
726 714 | 79816 72388  TI7.29 Ti4B8 71119 71068 708.08 g
80245  731.20 720,86 716.82  TI7A6 71546  TI248  dwy
80508  735.23 727.19 71882 71831 71876 71380  1gy+2uyg
08,73 73988 729.95 72620  725.63 72344 72182 dugy
B23.73 74187 73381 72946  726.54 72618 72405 puo o+ 2oga
42538  750.18  738.83  735.03 734.50 73387 73280  1aq b vis + v
832.18 754.85 752,18 745.91 74418 743,26 74222 eyt
BIR56 75648 75086  749.83 74932 74856  T4TEE g+ ey
764 757 | 83823  767.84 764,02 75951 75852  757.39 75663 1
773 788 | 84207 77548 77293 77203 77204 171.83 TNET wgr
762330968 783 | B44.94 77873 TILI0 77498 774.71 774,08 77340 s
g52.27  786.31 78385 78152 781.07 78071 77996 2wy
85402 79555 79321 79316  791.25 78887  TBT48  ruu+vus
855.73 78830 79591 79525 79440 792.81 79183 pes s
796 784 | 85732  B0B.SI 799.67 79546 79567 793.66 79354 iy
B50.55  B810.90 BO4.54 80181 80063  799.73 79851 wow + Dae
86557  B12.54 20853 80508 80453  B0A25  BO217  wsu s
869.67 81638  B810.60 808.07  B07.88 806.76 80587 1z +
88102  B19.05  B17.01 B15.87 81350 81388 81249  var + 2oun
88337 82225 81846  BI7OB 81574  B1440  BIZB3  vuw + ua s
891.19 83347 831,36 B26.96 82432 B2363 82100  vou+am
892.59 83440  B34.05 82008  B27.72 62648 B24.15 gy + s+ daw
89559  836.77 83632  B31.80 529.04 829.78 B27.44  wgy + Ding
90547  B4Z85  £37.66 83357 83304 83212 B29.5B gy +ur
830 | 9t0.82 B46.61 842.08 g4098 83479 BIZE6  B3LES
514,53 850,84 B50.42 84363  B40.61 839,33 838.23 w7+ Zoug
91526  859.91 B57.43  850.29 B46.24 846.72 84194  wag + 2o
919.13  B65.41 861.97  B857.40 85359  851.53 B4BA9 iy + 2ugs
92008  B67.77 86325  B5B.21 B56.43  B54.56  B50.51  Seys
932.38 87467  865.99 86348  BGO.G1 857.81 BS4.00  tgs + a4 vy
94069  879.09  B72.04 §6549  B61.87  860.28 B58.45 g + dirsy
942,34 884.46 B73.27  868.58  B6545  BGASY 85693  wau + dun
94546  886.80 874.21 B71.95  868.27  BBES4 BB0.27  wyg + vus
951.31 BEB.S6  S77.63 B73.60 87046  BEA4T  BE536 sy + puz + v
95775  B90.32 88076 B75.92 67257 87298 BBBBY  way 4 vu
964.89 89525 884.26 87891 47510 875.72 870.84 2wy + Srys
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Table 4: {conlinued)

Exp VPT2 HI-RRBPM Assigniment
A B c D E F G

966.28 899.25 834,60 880.05 877.17 876.86 871.53 byt vy
873.24 200,77 B90.72 B81.36 879.37 877.38 B871.97 [T T
§74.53 905.03 B95.27 B85.68 882.73 878.85 873.66 [T S UT I A
977.60 908.53 899.28 B87.39 885.16 881.00 875,87 a2,
981.99 911.26 a7y 888.60 B88.99 882.96 B78.03 vk ey
987.98 21622 203.11 890.26 B891.37 B86.61 B880.02 ey b g
989.84 917.98 907.54 891.64 89567 889.11 880.57 2rg4 by
802.82 921.39 911.58 899.65 899.00 B91.07 BB5.24 troy = Qiyy kg

880 877 993.75 924.37 913.73 905.28 900.93 894.93 887.53 6
999,73 926,45 816.74 907.79 902.75 B97.15 £889.43 pyn 4 b
1003.95 927.17 918.44 909.34 8904.57 801,57 890.57 RIS Y
1006.17 929,14 920.54 911.05 05,71 803.77 895.62 Lpag s
1010.40 930.89 922.01 913.68 907.53 505.86 897.87 Ab1a + s
1012.03 833.37 925.43 816.26 909.09 507.98 899.47 1924 + By
1014.53 834,75 928.79 914.10 912,50 909.03 801.79 vy 4 Svgw
1018.32 940.36 930.81 919.73 914.39 910.15 806.00 4q +
1021.74 943.50 932.38 923.84 915.84 s1271 907.65 LT T
1024.48 943.81 932.97 824.45 919.35 913.97 911.08 i+ g + 20k
1026.59 945.77 936.38 827.59 92242 917.99 913.81 Suyg
1029.54 948.09 938.94 §28.03 924.58 919.74 914,94 L0 HiE o S T o AT
1032.04 8950.20 941.04 833.77 926.50 923.31 920.33 v+ 201 + g
1036.19 952.36 841.73 934.11 929.01 926.66 523.52 [T T S 4T
1037.50 4953.47 843.74 940.38 933.09 938,38 929.92 oo+ Pan
1038.33 955,68 846.33 941.79 940.70 939.15 8937.48 P
1042.58 958.24 947.33 944.71 944,30 840,14 938.90 ey + g
1044.60 960.48 - 855.11 952.53 948,35 943.95 942,02 by 1y

ah2 940 1045.75 862.95 959.53 954.24 949,54 94747 942.92 vra
1047.45 965.03 963.03 956.78 950.90 950.12 944.11 var -+ pay

H36 835 1051.07 966.42 98546 980.51 §52.32 950.82 948.87 iy
1054.70 968.35 968.07 962.08 957.56 952.14 849.34 Yaz + 2
1059.99 975.51 968.47 963.07 958.38 957.28 954.50 Qg + s
1062.93 976.31 971.38 968.93 960.17 959.39 957.00 vay + 13
1065.85 979.37 972.96 §70.05 963.84 962.79 961.23 247
1068.97 984,91 g78.18 971.91 957.18 985.92 964.29 Mg + i1y
1076.05 991.34 984.48 973.41 969.55 969.74 866,39 vie +ia
1076.40 1002.54 987.91 981.24 972.97 g72.52 967.12 [T
1085.68 1004.96 990.53 986.07 978,64 874.52 g68.11 tga + Mas




Table 4: {cantinued}

Exp VRTz HI-RABPM Assignmant
A B c D E F G
1087.59 1008.86 995,36 987.24 983.67 978.48 973.55 i+ via + ae
1091.20 1010.69 989,37 990.30 984.66 979.84 974.99 g3 + g3
1084.62 1012.71 1000.82 992,98 989.41 982.81 978.30 Paq + vou
1098.74 1017.65 1002.92 996.85 989.96 985.54 981.31 1+ g
1099.87 1019.63 1004.24 999.28 993.87 988.08 982.87 dsn + d2a
1100.56 1024.01 1010.11 1005.53 994,87 988.53 985.06 24 + iz
1106.07 1027.30 1011.63 1006.34 997.17 9g1.32 a9B7.92 g + 1T
1114.30 1028.04 1015.22 1007.45 999.07 094.09 988.11 g b gy ogs
1116.75 1030.10 1017.54 1010.37 1001.11 984.78 989.75 v+ 2ria
1120.48 1032.95 1018.27 1010.79 1005.22 998.22 992,29 g4 + Voy t tqu
1121.57 1035.10 1021,70 1014.31 1006.42 1001.41 994,66 by + 37
1128.64 1036.63 1027.23 1017.63 1010.96 1004.72 998.71 tryz + 24
1129.00 1039.04 1029.27 1021.93 1013.51 1006.60 1002.84 [P SR S M0
1091 63" 1oz 1134.08 1043.80 1033.15 1024.34 1018.20 1015.26 1011.89 2
1138.09 1045.04 1034.98 1027.23 1020.67 1017.14 1013.55 RIS S UTH
1136.46 1051.05 1037.28 1030.66 1025.05 1021.81 1015.09 Qg4
1148.79 1055.63 1040.79 1032.37 1030.58 1024.40 1018.96 Yo gy
1159.83 1057.70 1042.66 1036.11 1032.25 1026.04 1024.74 iy
1164.45 1066.96 1054.88 1040.33 103317 1028.55 1026.52 12 + 11e
“Ref, 74
" Rgt, T8



Figure 1: Uracil
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Figure 2: Tree used in calculations on uracil. Numbers appearing at vertices are basis sizes;
placement of the primitive coordinates in the leaf nodes is shown at the bottom of the tree.
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Figure 3: Naphthalene
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Figure 4: Tree used in calculations on naphthalene. Numbers appearing at vertices are bas's
sizes: placement of the prmitve coordinates in the leaf nodes is shown at the botiom of the tree.



