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Abstract

We introduce a free and open-source software package (PES-Learn) which largely
automates the process of producing high-quality machine learning models of molecular
potential energy surfaces (PESs). PES-Learn incorporates a generalized framework for
producing grid points across a PES that is compatible with most electronic structure
theory software. The newly generated or externally supplied PES data can then be
used to train and optimize neural network or Gaussian process models in a completely
automated fashion. Robust hyperparameter optimization schemes designed specifically
for molecular PES applications are implemented to ensure that the best possible model

for the dataset is fit with high quality. The performance of PES-Learn toward fitting a



few semi-global PESs from the literature is evaluated. We also demonstrate the use of
PES-Learn machine learning models in carrying out high-level vibrational configuration

interaction computations on water and formaldehyde.

1 Introduction

Central to the application of electronic structure theory (EST) to molecular systems is the
concept of the Born—-Oppenheimer potential energy surface (PES). A great wealth of valu-
able chemical information can be derived from a high-quality PES, including the structure of
stationary points, reaction dynamics trajectories, thermochemical properties, spectroscopic
quantities, kinetic parameters, and many other chemically relevant insights. Unfortunately,
several PES applications require numerous evaluations of the electronic energy across the
relevant molecular configuration space, so much so that it is often impractical to utilize
highly accurate EST methods. Therefore, much effort has been dedicated towards develop-
ing methods for fitting mathematical representations of PESs which are less computationally
expensive to evaluate compared to the EST method from which the electronic energies are
derived. Generally, such a representation requires a grid of single-point energies across rel-
evant geometrical configurations, which inform its construction. Naturally, the number of
single-point energies required will determine the practicality of constructing the representa-
tion.

Numerous approaches for representing PESs have been introduced in the literature. Some
archetypal examples include various interpolation methods!™® and fits to several polynomial
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functional forms® ' such as the highly successful permutation-invariant polynomial (PIP)

approach of Bowman and coworkers. 111314
More recently, there has been a tremendous increase in the use of machine learning (ML)
techniques to model molecular PESs. 0729 At risk of oversimplifying, this approach can be

divided into two broad classes, and it is important to distinguish between the two. The first

class of methods can be regarded as using ML algorithms to directly fit Born-Oppenheimer



PESs of specific molecular systems. The idea here is analogous to the previously mentioned
interpolation and polynomial fitting schemes, but the fitting is performed with modern and
typically non-linear ML methods.

The second class of methods are attempts to fit general potentials which are intended
to work for systems of arbitrary molecular size, so long as they have a specific atomic
composition. These methods typically express the total energy of the system in terms
of a sum of atomic energy contributions, which depend on the local atomic neighbor-
hood within some cutoff radius.'%193036 These have been referred to as atomistic or high-
dimensional ML methods. Examples of atomistic methods include the Behler—Parrinello
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approach which makes use of atom-centered symmetry functions (ASFs), and modifica-

tions of this methodology such as the ANI-1 potential®” and the weighted-ASF approach.3°
We also refer the reader to the deep neural network architectures of Schiitt and coworkers3!:32
which likewise incorporate an atomistic framework. Such approaches are not the focus of the
present work, and are already available in other software packages.®* Generally speaking,
the ML approaches for directly fitting PESs of specific molecular systems can model small
molecular systems (< 6 atoms) with very high accuracy (< 5 cm™!) with only a few hundred
to a few thousand ab initio energy computations. However, these methods have an upper
bound of practicality in regard to the size of the molecular system that can be treated. For
atomistic methods, we find the reverse to be the case: substantial amounts of data are re-
quired for high accuracy, but larger system sizes are not a problem. This is not to say that
the atomistic approaches are not useful for smaller systems. Indeed, when using very large
training sets of tens of thousands of ab initio energies, it has been recently shown that the
Behler—Parrinello ASF approach can give similar performance to direct fits of PESs of small
reactive systems. 2

It has been consistently observed that ML models are capable of accurately representing

system-specific PESs with far fewer points compared to traditional fitting methods. For

directly fitting PESs, neural network 212228294243 (NN) and Gaussian process (GP) regres-



sion 18:24°28:35.36.4447 tochniques have emerged as popular ML algorithm choices, although
stuiccess has been achieved with other methods such as kernel ridge regression.?® Recently,
Kamath and coworkers compared the performance of NNs and GPs in fitting a local PES
of formaldehyde (H,CO) up to 17,000 cm~! above the global minimum.?® Training the ML
models with only 625 symmetry-unique ab initio computations, they obtained RMS fitting
errors in the neighborhood of 5 cm™!. The ML models were subsequently used as potentials
in vibrational configuration interaction (VCI) computations. The vibrational energy levels
obtained with the ML potentials reproduced those obtained with the reference PES with
sub-wavenumber accuracy. In a comparative study of PIP least-squares fitting methods to
GP regression, Bowman and coworkers found that while the GPs were more expensive to
train and evaluate they generally provided lower PES fitting errors for several molecular
systems, though the prediction of stationary point properties were similar between the two
methods. ?® Dral and coworkers demonstrated the use of kernel ridge regression toward fitting
a 44,819 point surface of methyl chloride (CH3C1).?* By training the model on a subset of
only 10% of the dataset, the fitting error and vibrational energy levels obtained using the ML
model were competitive with the reference surface which was trained on the entire dataset
with a standard linear least-squares method.*®

These examples lead one to suggest that perhaps the usage of ML models should become
the norm for producing ab initio PESs. Intuitively, the nonlinear regression capabilities
offered by ML models are better suited than linear methods for fitting nonlinear, high-
dimensional functions such as PESs. However, there is currently a lack of freely available
software designed to facilitate the application of ML to system-specific theoretical chemistry
investigations. As a result, if one wishes to apply these powerful methodologies in research,
one is required to programmatically implement it themself. This can prove to be problematic
and challenging, as the complexity of ML methods creates a rather steep learning curve
toward applying them with best practices. Furthermore, the lack of a central software

platform creates reproducibility issues. As models in the literature are produced by different



parties on a case-by-case basis, they are not easily shareable, usable, or verifiable. This is of
course a hindrance in the scientific process. To alleviate these difficulties and drive further
innovation, we have developed an extensible, open-source, and user-friendly software package,
PES-Learn, which we have developed for use by the computational chemisty community:.
PES-Learn is the first software package to date designed to both generate PES data and fit
system-specific Born-Oppenheimer molecular PESs with machine learning methods.
Herein, we describe the capabilities of PES-Learn which aid in developing high-quality
machine learning models of potential energy surfaces. We illustrate how the capabilities
of PES-Learn make ML a highly accessible and useful tool for research. We show that
the ML model representations of the PESs produced by the present software can be used
to obtain very accurate ab initio results with low computational cost. We first compare
the performance of PES-Learn models to previous fitting attempts for a few benchmark
PESs from the literature. Next, we demonstrate how the ML models can be utilized
for high-accuracy computational chemistry applications by carrying out VCI computations
on water and formaldehyde. The software is open-source and freely available on GitHub

(https://github.com/CCQC/PES-Learn).

2 Capabilities

PES-Learn automates many of the various steps that are needed to go from a desired molec-

ular system to an accurate ML model representation of the PES. These steps include:

The generation of molecular geometry configurations and corresponding electronic en-

ergies

Preprocessing and transforming the data in an optimal way

Dividing the data into training and testing sets in an ideal manner

Training a finely tuned ML model and exporting it in an easy-to-use form



Further details are discussed below. PES-Learn does not require programming knowledge to
use, and features a familiar input file submission format through a command line interface.
However, the modular structure gives rise to a natural application-programming interface
(API) which enables more sophisticated workflows for users with minimal knowledge of the
Python programming language. All of these features are accessible in either manner.

Figure 1: Workflow schematic for PES-Learn
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2.1 Data Generation

In order to model a PES, one requires a grid of known geometry/energy pairs across the
surface. This can be rather tedious to produce, but the present software makes it very easy
to do. PES-Learn can automatically generate input files for an arbitrary electronic structure
theory software package, as well as parse energies from the corresponding output files. The
generation of input files is done by supplying a template input file for some EST package,
named template.dat, which may contain anything, as long as the molecular coordinates
are specified with Cartesian coordinates. Then, in the PES-Learn input file, standard “Z-
matrix” internal coordinates are specified along with the corresponding range of values for

each internal coordinate (e.g. rl = [start, stop, number of points], etc.). Upon execution,
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the software will create a series of input files by replacing the Cartesian coordinates in
template.dat with new Cartesian coordinates given by the internal coordinate grid. If
desired, symmetrically redundant geometries resulting from the internal coordinate ranges,
which are quite common, will be removed automatically, ensuring that only symmetry-unique
points are computed. This greatly reduces the computational cost of generating the PES.
For high-dimensional cases, the software also features an algorithm for filtering geometries
from the configuration space based on the Euclidean distances between geometries in the
dataset. If, for example, the internal coordinate grid contains tens of thousands of points,
the user can specify to instead generate an evenly spaced sub-grid which only contains, say,
1000 points. This is done using a scheme similar to the “structure-based sampling” method
described by Dral and coworkers,? and is especially useful for high-dimensional and low
symmetry systems.

The parsing of energies from output files can be done with two different schemes. The
first utilizes cclib,*® an open-source Python package which can parse data from popular EST
packages. For cases which cclib does not support, a completely general scheme using Python
regular expressions is also implemented. The cclib interface is easier to use, while utilizing
the regular expression scheme is more involved but carries the advantage of being completely
general. To reiterate, PES-Learn supports input file writing and the parsing of energies from
output files for any arbitrary EST package, so long as such a package supports Cartesian
molecular coordinates in the input file for geometry specification. Therefore, in principle no
barriers due to incompatibility with other software packages exist, leaving the user free to
generate PES data in whatever way she chooses.

A simple example workflow of data generation in PES-Learn is given below. In this case,

template.dat is a Ps14° input file:



molecule h2o {

0 0.000 0.000 0.000
H 0.000 0.000 1.000
H 0.000 1.000 0.000
}

set basis cc-pVTZ
energy(‘scf’)

In the corresponding PES-Learn input file, we choose to remove redundant geometries, and
parse the energies with cclib:

0

H1rl
H1r2?2al

rl = [0.8, 1.5, 8]
r2 = [0.8, 1.5, 8]
al = [90, 180, 10]

remove_redundancy = true
energy = cclib
energy_cclib = scfenergies

Upon running PES-Learn, Cartesian coordinate input files corresponding to every unique
combination of internal coordinates will be generated. The EST computations can then be
run on the user’s preferred computing resources. Once the EST computations are complete,
the software can be run again to parse energies from the output files. The obtained dataset
is then ready to be passed to the machine learning portion of the software. Though this data
generation scheme is more than enough for many applications, not all use cases are intended
to be satisfied by these capabilities. Fortunately, PES-Learn also supports externally supplied

datasets in a variety of flexible formats.

2.2 Incorporation of Molecular Symmetry

The energy output of an ideal PES representation should be invariant with respect to
geometry-preserving operations on a particular molecular configuration, such as transla-
tions, rotations, and the permutation of identical atoms. Therefore, such symmetries need
to be built-in to a ML model of a PES. If desired, PES-Learn incorporates these symmetries

into the ML models automatically.



Translational and rotational symmetry is taken care of by the use of internal coordinates,
such as a standard “Z-matrix” or the set of interatomic distances. The remaining challenge is
to incorporate permutational symmetry. Typically, this is done by using a set of permutation-
invariant polynomials (PIPs) of the interatomic distances.'? 142143 In the context of ML,
the quantities in the input vector of the model are the evaluations of the PIPs instead
of the raw molecular coordinates, and thus the permutation invariance is built-in. For
small molecules, it is not difficult to devise a set of polynomials that satisfy the desired
permutational symmetry. For example, the interatomic distances of water Ry n,, Rom,
Ron, may be replaced with the polynomials Ry, n,, Ron, - Ron,, Ron, + Romn,, which are
invariant under the permutation operation of the identical hydrogen atoms. In the context
of ML, one would alter the input vector of the model in terms of the interatomic distances

to instead be in terms of the PIPs:

. Ry, n, Ry, n,
OH, Row, — ROHl — ROHl ) ROH2
oooooooooooooooou\) R()H2 ROHl + ROH2

RHI Ho

More general approaches have been established for generating permutation-invariant ge-

11,13 d 14,51
)

ometry representations, such as the monomial symmetrization metho and methods
motivated by theorems from invariant theory.®? Such methods involve considering the effect
of like-atom permutations on the set of interatomic distances, and then subsequently deriv-
ing the induced permutation operations on the interatomic distances. Then, armed with the
set of interatomic distance variables and permutation operations on those variables, one can
generally derive polynomials which are invariant with respect to those permutation opera-
tions. The derivation of invariant polynomials can be done automatically using computer
algebra software such as MAGMA®® or SINGULAR.®* One example of such polynomials is
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the so-called primary and secondary invariant polynomials, which together generate the

invariant polynomial ring for the given set of interatomic distance variables and the per-



mutation operations on those variables. More recently, the use of primary and secondary
invariants have fallen out of favor compared to the fundamental invariants (FI), which can
be derived with the same information but are the minimal generating set of the invariant
polynomial ring.2?229%5:56 For example, completely describing the permutational symmetry
of an A3B molecular system (e.g., ammonia) requires 14 primary and secondary invariants,
but only 9 fundamental invariants. Since the cost of training and accuracy of ML models
scale unfavorably with the size of the input vector, and the number of polynomials is equal
to the size of the input vector, the FIs are clearly preferred. With larger molecules the
advantage is even more apparent: an A4;B molecular system (e.g. methane) has 307 primary
and secondary invariants, and only 31 fundamental invariants.

Therefore, PES-Learn utilizes the Fls as they are the most complete, general, and com-
pact method presented thus far for incorporating permutational symmetry into PES models.
PES-Learn features a library of fundamental invariants for various molecular systems which
were computed with SINGULAR®* using King’s algorithm.®® The SINGULAR input files are
automatically generated with routines within PES-Learn, so additional molecular system
types can easily be added as needed. However, we have found that the cost of computing the
FIs for molecular systems with many like-atoms (> 4) is prohibitive. Not only that, but the
number of FIs become too numerous for such systems, so much so that it is impractical to use
them at all. In these cases it is more favorable to use a Behler-Parrinello style approach, 6
which makes use of atom-centered symmetry functions and represents the PES as a sum of
atomic contributions.

When training machine learning models with PES-Learn, if the use of fundamental in-
variants is enabled, the geometries in the dataset are automatically transformed into the FI
representation without any further input from the user. When a model is exported for later
use in the form of a simple Python function accepting coordinate arguments (discussed later),
the appropriate transformation of the coordinates into the PIP representation is performed

on-the-fly.
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2.3 Hyperparameter Optimization

The term hyperparameter has a rather loose definition, but here we use it to describe any
attribute of the ML model or data transformation that is chosen before training a ML
model. Some examples of hyperparameters include the number of layers in a NN, the choice
of kernel for a GP, or the scaling of input and/or output data. Note the distinction of these
hyperparameters compared to the model parameters, which are optimized during training.

The choice of hyperparameters can vary based on the application and type of ML model,
but it is often difficult to know a priori whether a given hyperparameter is the proper choice.
Indeed, model performance can vary wildly if just one hyperparameter is changed. A straight-
forward grid search of all possible hyperparameter settings can be done, but oftentimes the
size of the hyperparameter space (the number of combinations of hyperparameters) is in-
feasibly large. Therefore, much effort has been dedicated towards creating hyperparameter
optimization schemes based on algorithms which attempt to find correlations between hyper-
parameter settings. PES-Learn currently implements the very popular HyperOpt package for
handling hyperparameter optimization,®” with both the tree of parzen estimators®® (TPE)
and random search algorithms. Given a manageable hyperparameter space and enough it-
erations, HyperOpt reliably finds a combination of hyperparameters which minimize the
prediction error of the ML model. The inclusion of this feature greatly reduces the need for
user trial and error and enables users with limited knowledge of ML methods to obtain high
quality models of PESs.

PES-Learn’s Python API allows for setting custom hyperparameter configurations before
running a hyperparameter optimization. This is useful if, for example, the user observes that

a particular hyperparameter is well-suited for training a model on a particular dataset.

2.4 Dataset Sampling Algorithms

Given a dataset of points along a PES, it must be divided into a training set and a test

set before passing it to a ML algorithm. The training set is the data that is seen by the
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model during training and used to optimize its parameters. The test set is used to verify
the model’s performance once it is finished training. Setting aside a test set is critical,
as we desire the machine learning model to generalize to unseen datapoints. In order to
truly gauge the model’s performance, an ideal test set must be suitably large, diverse, and
contain no datapoints which are identical or very similar to those in the training set. We
therefore require methods of adequately sampling training and testing sets from a larger
dataset of points. Random sampling is commonly used, but for modeling a PES this may
lead to “holes” in the surface which are not well-described by the training set. To this end,
in addition to random sampling, PES-Learn implements a variety of methods for splitting

datasets into training and test sets:

e smart random sampling: selects a random seed which leads to a training set and test

set energy distribution which most closely match that of the original dataset.

e structure-based sampling: selects a training set by analyzing the FEuclidean distances
between all of the geometries in the dataset, and choosing an evenly-spaced sub-grid

of points for the training set, as described in reference 23.

2.5 Machine Learning Algorithms

Currently, PES-Learn supports the creation of Gaussian process and feed-forward neural

59,60

network models. The theory and structure of these ML models is covered elsewhere, and

their application contextualized to molecular PESs is already detailed in the literature, 1926

SO
we do not discuss the methodologies here. The Gaussian process models are created through
an interface to the GPy open-source Python library.®! The neural networks are built using
PyTorch. 52

The Gaussian process models perform well with a small number of training points and

tend to not suffer from overfitting, but they scale rather unfavorably with the size of the

training set, as noted previously.?%?® Neural networks, on the other hand, scale well with
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increasing training set sizes, but they are more difficult to train, as they employ more pa-
rameters and hyperparameters, and often suffer from overfitting. Thus, the GP and NN
models built by PES-Learn complement each other quite well with differing strengths and
weaknesses, and should more than suffice for many use-cases. Future research may also
pursue the implementation of atomistic neural network methods, discussed earlier. This
will most likely be achieved through an interface to other open-source projects which have
implemented these schemes. 384!

Once PES-Learn has finished training a model, it is saved as a file which can be readily
loaded and utilized. PES-Learn also writes a simple Python file containing a convenience
function for evaluating the PES ML model, which takes as arguments one or more sets of
molecular coordinates and returns a corresponding number of electronic energies. The conve-
nience function automatically handles all of the data transformations which that particular
model was trained on, as well as the loading and execution of the ML model. Thus, the

machine learning models created by PES-Learn can be easily used to predict energies for

new molecular geometries with little to no programming experience.

3 Example Applications

In each of the following example applications, the molecular geometries were automatically
transformed into a permutation-invariant representation using the present software’s library
of fundamental invariants (see section 2.2). Furthermore, each ML model for each example
application presented here was optimized by the software in an entirely automated fashion.
That is, no manual hand-tuning was performed for any of the models; each of them were

constructed from the ground up by the same model optimization routine in PES-Learn.
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3.1 Fitting Performance

We claim that the sophisticated nonlinear regression capabilities offered by modern ma-
chine learning techniques provide superior fits to molecular PESs compared to traditional
methods, such as linear least-squares polynomial fitting. We also suggest that the creation of
optimally-tuned ML models is well-automated by PES-Learn’s hyperparameter optimization
routines. Here we directly test these claims by fitting select potential energy surfaces from
the literature and comparing the fitting error to previously published models. The diverse
set of surfaces were featured in a recently published work?® comparing GP regression to
the linear least-squares permutation-invariant-polynomial (PIP-LS) approach.!? The first
surface is that of HsO™, originally published by Yu and coworkers.% The dataset as used
in reference 26 contains 32,141 points, covers an energy range of ~60 kcal/mol (~21,000
cm™ 1), and describes the D3y, saddle point separating the two equivalent Cs, global minima.
The second surface is of the linear molecule OCHCO™, and describes the proton-transfer be-
tween two equivalent Cu,, minima (OCH----CO™, OC----HCO™") through a D, saddle point
(OC---H---CO™).54 This dataset contains 7,800 points spanning an energy range of ~22,000
cm~'.%6 The third surface describes the isomerization of formaldehyde (HyCO) to cis and
trans hydroxycarbene.% It contains three distinct minima and two 1%¢-order saddle points
connecting them. This HoCO dataset as used previously?® contains 34,750 points spanning
~50,000 cm L.

Table 1 compares the previous attempts at fitting these PESs (the PIP-LS and GP
methods?®) to the optimized GP and NN models produced by PES-Learn. Each PES-Learn
GP and NN was obtained by selecting the best-performing hyperparameter configuration
after 20 hyperparameter optimization iterations. Fundamental invariant polynomials were
used. Columns labeled RS (reference sample) use the exact same training and testing sets as
described in reference 26 for each molecular species. As the fitting error for these columns
corresponds to the exact same test set, these RMSE quantities directly compare the different

fitting methods. The performance of training and test set sampling methods incorporated
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into PES-Learn are also included.

The most striking difference in RMSE can be seen for the case of H;O" using 500 train-
ing points. The previously published PIP-LS and GP models yield errors of 116.99 and
268.74 cm™!, respectively, while the PES-Learn optimized GP obtained an error of 19.97
cm ! with the exact same training set. How could the same type of machine learning al-
gorithm (Gaussian process regression) display such a large performance discrepancy? The
robust hyperparameter optimization routines in PES-Learn search across not only different
model configurations but also different transformations of the geometry parameters and en-
ergy. In the case of H;O", PES-Learn found a hyperparameter configuration that performs
exceptionally better than the GP model trained in the previous study.?® With only 1,000
training points, the PES-Learn GP using structure-based (SB) sampling obtains an error of
6.09 cm™!, beating the performance of the PIP-LS model trained on all 32,141 points (7.09
cm™!). This constitutes a 97% reduction in the number of ab initio points required to obtain
a given accuracy.

For OCHCO™, the performance of the GP?¢ and PES-Learn GP are similar, though the
PES-Learn GP consistently has a slight edge. Generally, for smaller training set sizes of
the H;O" and OCHCO™ surfaces, the PES-Learn neural networks perform slightly worse
compared to the PES-Learn Gaussian process models, but the NNs become more competitive
with increasing training set size. The PIP-LS models, on the other hand, fail to model the
H30" and OCHCO™ surfaces as effectively given the same number of points as the PES-
Learn GP and NN models.

For the H,CO surface, many more training points are required to describe the complex
landscape of multiple minima and transition state structures. Here the PES-Learn neural
networks outperform all other approaches by a wide margin. Using the reference sample
training set of 5,104 points, both of the PES-Learn models achieve much better generalization
across the surface than the PIP-LS model trained with 17,383 points.

There is a slight increase in fitting error between the PES-Learn NN models trained on
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the reference sample of 5,104 and 8,703 points (118.53 cm™! and 121.07 cm ™!, respectively).
We attribute this increase to the fact that the 5,104 training points are not contained within
the 8,703 training point set. In fact, the 5,104 and 8,703 training sets only have 1,281 points
in common. As such, a performance increase is not guaranteed, so the slight increase in
fitting error is not suprising. The structure-based sampling algorithm samples the training
set in a deterministic and systematic fashion, such that the smaller training set sizes are
completely contained within the larger training set size. Because of this, we see a clear trend
toward higher and higher accuracy as the training set size is increased.

In a very recent publication,% Brorsen fit these same OCHCO™ and H,CO surfaces with
the SchNet architecture,®® an atomistic NN approach. Training with 7,020 points from the
OCHCO™ surface, Brorsen obtained a test set RMSE of 23.55 cm™!.%6 As observed from
Table 1, PES-Learn obtains similar errors with just 520 training points with a variety of
point sampling methods, and approaches sub-wavenumber accuracy with just 1,560 training
points. For the HyCO surface, Brorsen obtained a test set RMSE of 109.28 cm ™! with 31,275
training points using the SchNet architecture. PES-Learn, on the other hand, was able to
construct better models (test set errors of 78.95, 82.96, 93.27 cm™!) with a training set nearly
half the size (17,383). For lack of a more comprehensive benchmark, this seems to suggest
that PES-Learn models excel at fitting surfaces for small molecular systems and training set
sizes. Meanwhile, atomistic methods such as the SchNet architecture can yield phenomenal
performance for larger molecular systems, as demonstrated previously. 323

We note that each result in Table 1 obtained in this work could be improved by increasing
the number of hyperparameter optimization iterations. Since the results were obtained
with just 20 hyperparameter optimization iterations, not all model configurations have been
exhausted. We also note that though the results obtained by PES-Learn’s automated model
optimization routines are very good, an experienced machine learning practitioner would
likely be able to achieve similar or even slightly better performance, given enough time.

However, here we show that by using the present software, very impressive results can be
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obtained by a novice with minimal knowledge of ML methods.

Every result in Table 1 was obtained by running PES-Learn in parallel across 4 cores on
an Intel Xeon E3-1270 v5 @ 3.60 GHz CPU. Each GP and NN result was obtained by running
the software for less than 8 hours, with the exception of the 5104-point training sets used for
the GP’s, which required about one day. Such large training sets are really not appropriate
for standard GP regression, as discussed earlier and noted previously.?® The amount of time
required to produce optimal models with smaller training set sizes (< 2000) required roughly
30 minutes or less. While these timings are much slower than linear fitting methods, the
cost of training these MLL models pales in comparison to the cost of generating the ab initio
data in the first place. Given that the required number of ab initio computations for a given
accuracy is considerably reduced, we contend that PES-Learn’s ML model optimization is

well worth the wait.

3.2 Vibrational Configuration Interaction Computations

Here we demonstrate the performance of the auto-generated machine learning models pro-
duced by PES-Learn through vibrational configuration interaction (VCI) computations.5
As vibrational energy levels obtained through VCI are highly sensitive to the accuracy of
energy predictions from the underlying PES, on the order of mere wavenumbers, VCI serves
as an excellent test application. Rather than the brute-force computation of tens of thou-
sands of ab initio points as is typically done in the literature, we leverage the flexible and
robust fitting capabilities of machine learning models to minimize the number of ab initio
computations needed. We attempt to obtain high-quality VCI results with a machine learn-
ing model trained from only a few hundred points for both HoO and H,CO. The capabilities
of PES-Learn are utilized to greatly simplify the workflow of obtaining the present results.
Our VCI computations are performed with Changala’s NITROGEN program.® We

used NITROGEN's general curvilinear internal coordinate vibrational Hamiltonian. ™ The

Hamiltonian was approximated with a many-body (or n-mode) expansion in normal coor-

17



Table 1: Test set fitting error (RMSE, cm™!) of the H;0", OCHCO™, and H,CO PESs using
four different fitting methods: linear least-squares fitting of permutation invariant polynomials
(PIP-LS), Gaussian process model (GP) reported previously, and PES-Learn auto-optimized
Gaussian process (PES-Learn GP) and neural network (PES-Learn NN) models. Errors are
given for different training and testing set sampling schemes. Reference sample (RS) is the
exact same training set and test set sample used in reference 26. The performance of PES-
Learn sampling algorithms, structure-based (SB) sampling and smart-random (SR) sampling,
are also included for comparison.

PIP-LS*  GP® PES-Learn GPP PES-Learn NNP
RS RS RS SB SR RS SB SR
H30+ Ntrain

500 116.99  238.74 19.97 15.24 22.59 22.53 15.27 34.76
1000 39.20 125.76 10.71 6.09 10.22 13.99 11.77 27.78
2000 28.13 36.33 5.88 2.94 6.36 11.35 6.99 15.31
5000 11.81 11.17
10000 9.99 5.62
32141 7.09

OCHCO™  Nirain
520  259.18 32.09 23.77 8.70 19.62 38.84 14.33 46.79
780  293.53 26.62 23.03 4.06 17.87 29.60 5.92 34.96
1560  128.65 15.78 10.58 1.03 8.03 11.99 2.33 10.30
2600 97.40 15.55

HQCO Ntrain
5104 432 238 191.15 402.84 375.27 118.53 124.09 189.14
8703 322 229 121.07 91.36 146.29
17383 239 143 78.95 82.96 93.27
& From Ref 26.
> This work.
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dinates of the potential energy and kinetic coupling terms, which is a standard approxima-

tion, 697172

We used the 3-mode expansion in each case. For water, this Hamiltonian is exact,
while for formaldehyde, the 3-mode truncation of the Hamiltonian is an approximation to
the exact 6-mode expansion. A discrete variable representation™ (DVR) of the potential
was constructed with 20 harmonic oscillator basis functions along each normal coordinate.
A ground state vibrational self-consistent field (VSCF) reference wavefunction was obtained,
and virtual configurations involving up to 15 total quanta of excitation were included in the
VCI Hamiltonian matrix for water. For formaldahyde, due to prohibitive computational ex-

pense, configurations with up to 10 total quanta of excitation were included. Diagonalizing

the VCI Hamiltonian matrix yields the J = 0 vibrational energy levels.

3.2.1 H,0 V(I

For water, we first computed the VCI results with density-fitted Moller-Plesset perturbation
theory (DF-MP2) with a cc-pVDZ-RI basis set.™ In the first case, the electronic energies
required by the VCI procedure were analytically evaluated with the PS14 quantum chemistry
package.® Next, we performed VCI using energies obtained from a machine learning model
generated with PES-Learn which was trained on DF-MP2/cc-pVDZ-RI energies. The ML
model was constructed as follows. First, the data generation module of PES-Learn was used
to construct a grid of internal coordinates spanning 11 points from 0.8 to 1.3 A for each of
the bonds and 15 points from 40° to 180 ° for the HOH angle. The equilibrium geometry was
also included in the grid, and redundant geometries were removed. In total, 991 geometries
were obtained, and the corresponding Psi4 input files were generated. The energies were
computed with Psi4 and parsed by PES-Learn. The obtained dataset was used to train a
Gaussian process model using 300 points in the training set which were chosen using the
structure-based sampling algorithm. Twenty hyperparameter combinations were attempted,
and the best model was selected. The hyperparameter optimization iterations in total took a

few minutes on a modern desktop computer with a 4-core Intel Core i7-7700 CPU 3.60GHz.
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For the best model, the root-mean-square error (RMSE) of the test set (the 691 points not
used for training) was 10.8 cm™!, and the energy range of the entire 991 point dataset was
roughly 45,000 cm ™. We performed a similar procedure at the CCSD(T)/aug-cc-pVTZ level
of theory, comparing the VCI results with energies obtained both analytically and with a
Gaussian process model trained on 300 points. Finally, using the exact same grid of points
as the DF-MP2 and CCSD(T) cases (with the exception of the equilibrium geometry), we
computed CCSDT(Q) energies at the complete basis set (CBS) limit with several additive
corrections.

The CCSDT(Q)/CBS energies were obtained by a procedure analogous to the focal-point

approach of Allen and coworkers™ 7"

using the augmented correlation consistent basis sets
of Dunning and coworkers (aug-cc-pVXZ).™ The augmented functions were found to be nec-
essary for adequately describing geometries heavily distorted from the equilibrium geometry.

79-81

In addition to the energy extrapolation we include a core correlation correction, a scalar

relativistic correction (MVD1),%? and a diagonal Born—-Oppenheimer correction (DBOC). 338
Full details for how these were obtained are given in the supporting information. The re-
sulting dataset consisted of a grid of geometries and their corresponding composite energies,
each formed from a sum of the CCSDT(Q)/CBS electronic energy and the core, relativistic,
and DBOC corrections. 300 points of this dataset were used to train a GP model of the
PES. The RMSE of the test set was 9.26 cm™!, and the RMSE of the full dataset was 7.81
cm L

Table 2 compares the vibrational energy levels of water obtained from VCI using various
methods. We denote the vibrational levels in terms of the normal modes of vibration: the
symmetric stretch (1), the bend (1), and the asymmetric stretch (v53). The Gaussian process
models of the PESs at DF-MP2/cc-pVDZ-RI and CCSD(T)/aug-cc-pVTZ reproduce each
of the vibrational levels obtained with the corresponding analytic energies to well within

1 em™!. Likewise, a ML model of the composite CCSDT(Q)/CBS PES reproduces the

experimental vibrational bands with exceptional agreement. The largest error in the first 15
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vibrational levels with respect to experiment is only 1.06 cm™!. The first 40 vibrational levels
are presented in the supporting information, and the accuracy with respect to experiment
does not degrade significantly for higher vibrational states. Of these 40 vibrational levels,
the vast majority are within 2 cm™! of the experimental values, with just a few exceptions;
in particular, states with very high (> 6) quanta of excitation in the bending vibration vy
feature notably less experimental agreement. The mean-absolute error (MAE) of these 40
vibrational levels with respect to the experimental values is 2.16 cm~!. Excluding the largest
error, 34.21 cm~! for the Svy level, the MAE of the remaining levels is just 1.34 cm™!. It is
likely that the vibrational levels with poor experimental agreement are negatively affected
by the lack of coverage of the internal coordinate grid over the bending vibrational mode vy
normal coordinate. If our dataset were generated with better coverage over this coordinate,
one would expect the vibrational states with highly excited bending modes to be better
predicted. We also note here that ML models trained with 200 and 250 training points
yielded slightly higher errors for some modes (on the order of 1-2 cm™!), while models trained
with 400 and 500 points did not improve over the 300 training point model significantly.
The accuracy of the vibrational levels are in good agreement with past high-level ab
initio computations.® 87 Admittedly, the usage of ML in this case does not significantly
reduce the computational cost compared to linear fitting methods in regard to the number

85,86 onsisted of a sum

of ab initio computations required. For example, the CVRQD surface
of seven surfaces, most of which were each generated with energies from roughly 300-400
geometries. This is improved here only slightly with the need for only 300 training points to
reproduce results obtained from analytic energies. The advantage of ML over linear fitting
methods is more clear for higher dimensional surfaces, as we will see in the next example.
Nevertheless, this example application illustrates how the capabilities of PES-Learn facilitate

the construction and application ML models of molecular PESs toward high-level ab initio

results.
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Table 2: Errors in VCI J = 0 vibrational energy levels of HyO using an ML model
of the PES.* The DF-MP2 and CCSD(T) deviations (Aanalytic mr,) correspond to
the difference between the vibrational energy levels obtained using exact ab initio
energies versus those obtained with an ML potential. The final column represents
the difference between experimental values® and values obtained from VCI using the

CCSDT(Q) ML potential.© All ML models trained with 300 ab initio points.?

DF-MP2 CCSD(T) ExperimentP CCSDT(Q) Diff.
State AAnalytic—ML AAnaulytic—ML
Vs 0.03 0.14 1594.75 1594.62 0.13
vy 0.31 0.02 3151.63 3151.55 0.08
vy 0.06 —-0.23 3657.05 3656.94 0.11
V3 —0.40 —0.19 3755.93 3756.53 —0.60
3uy 0.33 —0.21 4666.79 4666.75 0.04
vy + 1o —0.19 0.01 5234.98 5234.88 0.10
vy + 13 —0.45 —0.12 5331.27 5331.65 —0.38
4y 0.11 —-0.37 6134.02 6134.13 —0.11
Vi + 2v3 0.11 —0.06 6775.09 6775.09 0.00
vy + V3 —0.20 —0.23 6871.52 6871.90 —-0.38
2u; —0.11 —0.32 7201.54 7201.80 —0.26
vy + 13 —0.35 —0.36 7249.82 7250.85 ~1.03
2u3 —0.43 —0.25 7445.06 7446.12 —1.06
5uo —0.20 —0.39 7542.37 7543.40 —1.03
v1 + 3uy 0.02 —0.33 8273.98 8273.99 —0.01

MAE first 40 levels 2.16

& Higher vibrational levels included in the supporting information.

b Experimental values obtained from the analysis in reference 88.

¢ CCSDT(Q)/CBS energies included additive core correlation, relativistic, and DBOC corrections.
See text.

4 The same 300 geometries were used for the training set for each ML model, with the exception
of the equilibrium geometry.

3.2.2 H,CO VCI

We perform VCI computations on formaldehyde using a similar procedure as discussed earlier
for water. We first probed possible internal coordinate grids by comparing VCI results using
analytic DF-MP2/cc-pVDZ-RI energies to VCI results obtained using energies produced by
a ML model of the PES. As before, we quite easily found an internal coordinate grid which
gave rise to a high quality ML model for obtaining sub-wavenumber agreement in the VCI
vibrational energy levels compared to the levels obtained using analytic DF-MP2 energies

(see supporting information). The final dataset was composed of points selected from two
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internal coordinate grids. The first internal coordinate grid consisted of 500 points selected
using structure-based sampling from a larger grid of 8,126 symmetry-unique points. This
grid spanned 5 increments across each of the following coordinates: the C-O bond distance
from 1.16 to 1.27 A, the H-C bond distances from 1.05 to 1.20 A, the HCO angles from 105 to
135 degrees, and the dihedral angle from 160 to 180 degrees. A second grid spanning a more
expansive configuration space was also generated by selecting 500 points using structure-
based sampling from a larger grid of 23,977 symmetry-unique points. This grid spanned 6
increments across each of the following coordinates: the C—O bond distance from 1.05 to 1.45
A, the H-C bond distances from 0.90 to 1.45 A, the HCO angles from 95 to 145 degrees, and
the dihedral angle from 110 to 180 degrees. The resulting dataset consisted of 1,000 distinct
geometry configurations, and it was produced entirely by using PES-Learn data generation
capabilities.

At each geometry, we computed a CCSD(T')/CBS energy as follows. A three-point scheme
was used for extrapolating the Hartree-Fock energies (aug-cc-pVTZ, aug-cc-pVQZ, and aug-
cc-pV5Z),7# and the correlation energies at CCSD(T)/aug-cc-pVQZ and CCSD(T)/aug-
cc-pVHZ were extrapolated using a two-point CBS extrapolation.®! Each energy included
relativistic effects using the spin-free exact two-component theory in its one electron variant®°
(SF-X2C-1e) as implemented in the CFOUR package.” The basis sets used were the SF-
X2C-1e recontracted variants.?® The frozen-core approximation was used.

Table 3 compares the first 25 vibrational energy levels of formaldehyde obtained using
various methods. We denote the vibrational levels in terms of the following normal modes of
vibration: symmetric C—H stretch (v4), C-O stretch (v2), symmetric OCH bend (v3), torsion
(v4), antisymmetric C-H stretch (v5), and antisymmetric OCH bend (v4). The first column
of deviations with respect to experimental results was obtained in the present work using
an underlying GP PES trained using 800 ab initio points from the dataset of 1000 points
computed at the CCSD(T)/CBS level of theory. The RMSE of the test set (the 200 points

not used for training) was 1.76 cm™!, while the RMSE of the full 1000-point dataset was
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just 1.16 cm™1.

The vast majority of the points lie within 44,000 cm™! above the global
minimum, so these errors indicate that our GP is an excellent model of not only the local
PES around the equilibrium geometry but also for higher energy regions.

We first note that for the present CCSD(T)/CBS results, all of the fundamentals lie

1 of the experimental values, as do most of the overtones and combination

within 2 cm™
bands. The largest error in the first 25 vibrational energy levels is 2v, at —4.28 cm™!. The
excellent experimental agreement continues for the higher vibrational states, which are not
included in Table 3, but are included in the supporting information. The mean absolute
error (MAE) of the first 50 vibrational levels is 1.68 cm™!, and the MAE for the first 125
vibrational levels is 2.52 cm ™.

For the fundamentals, the error is directly correlated with the level of theory utilized.
The previously reported CCSDT(Q)/CBS results perform the best for the few low-lying
modes that were computed, as is expected.”! We generally also see that the size of ba-
sis for the CCSD(T) results plays an important role in accurately describing the vibra-
tional energy levels. As one might anticipate, the previously reported VCI results with
triple-¢ quality basis sets??% are outperformed by the present CBS limit result. The VCI
CCSD(T)/CBS result also demonstrates significant improvement over values obtained by the
TROVE CCSD(T)/aug-cc-pVQZ result,® though the TROVE approach is different than
V(I so these are not as directly comparable.

It is important to put the 800 training points required to obtain the GP CCSD(T)/CBS
VCI result into perspective. First, we point out that it is highly likely that more sophisticated
sampling schemes would reduce the number of points needed, such as sampling along the
normal coordinates. Nevertheless, in light of what is typically done for PESs intended for
computing the energies of high-lying vibrational states, i.e., tens of thousands of ab initio
computations, the amount of computational savings obtained by using ML for the PES

is tremendous. The TROVE result® in Table 3, for example, was obtained using a PES

obtained from a least-squares fit of 30,840 single point energies, while the present GP PES
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was fit with just 800 single point energies. This massive reduction in the grid size needed to
fit the PES enabled us to compute our result at a very high level of theory [CCSD(T)/CBS]
which would be otherwise infeasible.

The cost of obtaining the GP representation of the PES is even competitive with the cost
of more approximate methods of obtaining anharmonic fundamental vibrational energies,
which only consider the higher order derivatives of the equilibrium geometry. For instance,
the number of ab initio energy evaluations needed for training the GP model for the present
VCI result is considerably less than that needed for a full quartic force field (QFF) derived
from finite differences in normal coordinates. For HyCO this requires ~1,500 single-point
energies when exploiting its Cy, point group symmetry, though this can be reduced by other

means, such as using a symmetry-adapted coordinate system. %92

However, QFF approaches
are not precise for vibrational states far beyond the fundamentals, as they only describe the
PES at near-equilibrium geometries. The present GP PES obtained with 800 single-point
energies describes the geometrical configurations well above the equilibrium region, and
as such is appropriate for a VCI treatment of high-lying vibrational states. Though the
CCSD(T)/CBS high-lying vibrational energy levels are overall the best pure ab initio results
presented in the literature thus far, the underlying potential lacks contributions which may
improve the results even further. Here we are neglecting contributions from core electron

correlation, as well as correlation arising from higher order excitations and corrections for

the Born—Oppenheimer approximation.
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Table 3: Deviation from experimental values of ab initio results for the J = 0 vibrational levels of
So formaldehyde. The CCSD(T)/CBS result obtained in this work utilized potential energies from

a PES-Learn ML model trained on 800 ab initio computations. All values given in wavenumbers
(cm™1h).

Experiment  This work Previous theory
VCI2 TROVEP VCI® VCId DVR®
CCSD(T) CCSD(T)  CCSD(T) CCSD(T)-F12a CCSDT(Q)

State CBS aug-cc-pVQZ  cc-pVTZ aug-cc-pVTZ CBS
vy 1167.2563F —0.56 1.16 1.56 0.06 0.80
Ve 1249.0948f 0.86 3.49 1.19 3.29 —0.04
V3 1500.1747F 1.53 1.07 —4.13 2.47 0.02
Vo 1746.00938 —1.89 1.40 —2.99 —1.29 0.32
2wy 2327.52398 —0.22 2.34 3.02 3.05
vy + v 2422.97018 0.49 4.54 2.67 0.32
2w 2494.35438 1.82 6.62 1.95 —0.52
vs + 1y 2667.04818 1.32 2.41 —1.65 0.17
vs + Ug 2719.15508 1.83 3.92 —5.64 —1.31
v 2782.45758 1.98 0.72 —6.74 —1.74 —~1.18
s 2843.32568 —0.46 0.96 1.33 —6.07 —1.06
vy + 1 2905.96858 —2.69 2.62 —0.53 1.24
2u3 2998.98738 2.78 3.08 -1.71
vy + Ug 3000.06592 —1.07 2.83 —5.73 0.17
vy + 13 3238.4548¢8 —1.07 2.34 —6.35 0.14
2us 3471.6 b —4.28 2.21 —9.60 0.53
3u4 3480.7 B —0.38 2.66 6.28
2wy + v 3586.6 P 0.58 5.51
vy + 2ug 3673.5 B —1.54 4.62
V3 + 214 3825.3 b 1.27 2.87
v3+ vy +uvg 38865 B —1.09 3.13
v + 20 39374 P 3.80 7.54
v+ vy 3941.5295! 0.06 1.68 11.30
vy + s 3996.51801 —0.89 1.77 10.60
v+ g 4021.080 667 1.39 3.38 10.78
MAE first 50 levels 1.68
MAE first 125 levels 2.52

& This research. Additional energy levels included in the supporting info. Includes relativistic correction. See
text.

b Ref. 94.

¢ Ref. 92.

4 Ref. 93.

¢ Ref. 91. Includes core correlation correction.

f Ref. 95 Tchana et al.

€ Ref. 96 Perrin et al.

b Ref. 97 Bouwens et al.

I Ref. 98 Perez et al.

I Ref. 99 Flaud et al.
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3.3 Additional Applications

The use of PES-Learn accelerates the acquisition of high quality PESs and opens the door
to previously infeasible problems. There are numerous potential applications not explored
in this work which will benefit from the capabilities of the present software. For example,
in an upcoming study produced by our group regarding the reaction of 2-methylvinoxy
radical with O, we utilize PES-Learn to model the 2-dimensional reaction coordinate and
elucidate the nature of the entrance channel of the surface. We also note that in principle, the
present software should be appropriate for modeling other geometry-dependent properties
(e.g. dipole moment), though this has not been investigated. Finally, more sophisticated
ML methodologies open up further avenues of research. Examples include using gradients
to inform the construction of the PESs, or the implementation of multi-fidelity Gaussian
processes, ‘¢ which exploit a low level of theory PES to inform the construction of a higher

level of theory PES.

4 Conclusions

The burgeoning field of applied machine learning is being established as a valuable tool
for theoretical chemistry. Here we have illustrated how our software package, PES-Learn,
can provide superior fits of complex PESs compared to traditional methods. We have also
shown that the present software greatly simplifies the application of ML methods toward
creating PES representations for small molecules. The sample workflow used here for the
VCI computations of water and formaldehyde is expected to be appropriate for other ap-
plications as well. Initially probing several PES grids with a low level of theory, as done
here, is recommended for ensuring that produced ML models are energetically relevant to
the application in question. We note that the open-source nature and modular structure of
PES-Learn allows for community contributions. For example, additional ML model types

and training set data sampling methods can be easily added to the code. It is our hope
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that PES-Learn lowers the barrier-to-entry not only to utilizing machine learning in quan-
tum chemistry research but also towards ordinarily prohibitive PES applications in general.
We would like to further develop the code to include additional features which enable more
complex use-cases such as larger system sizes, and we welcome suggestions and contribu-

tions from the community. The software is open-source and freely available on GitHub

(https://github.com/CCQC/PES-Learn).
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