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Abstract

Adaptive quantum mechanics/molecular mechanics (QM/MM) approaches are able to
treat systems with dynamic or non-localized active centers by allowing for on-the-fly reas-
signment of the QM region. Although these approaches have been in active development,
the inaccessibility of current software has caused slow adoption and limited applications.
JANUS seeks to remedy the limitations of current software by providing a free and open-
source Python library for adaptive methods that is modular and extensible. Our software
has implementations of many existing adaptive methods and a user-friendly input structure
that removes the hindrance of complicated set-up procedures. A Python API is made avail-
able to customize JANUS’s capabilities and implement novel adaptive approaches. JANUS
currently interfaces with Psi4 and OPENMM, but its modular infrastructure enables easy

extensibility to other molecular codes without major modifications to either code. The soft-
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ware is freely available at https://github.com/CCQC/janus. Our goal is that Janus will

serve as a user-driven platform for adaptive QM /MM methods.

Introduction

Background

The use of combined quantum mechanical and molecular mechanical (QM/MM) methods
to treat problems otherwise intractable by either QM or MM approaches alone has long been
established. ? However, traditional QM /MM methods are only appropriate for systems with
fixed QM regions. For systems with non-localized active centers, such as ion transport and
solvent diffusion, an adaptive QM /MM approach that allows on-the-fly reassignment of the
QM region during a molecular dynamics (MD) simulation should be used.?** These adaptive
methods have been in active development, and utilized mostly in studies on the solvation

5714 and select organic reactions. !¢ Recent achievements, such as studying

properties of ions
the exchange of molecules in protein binding sites,!” the tracking of proton hopping in bulk
water, 1819 the determination of explicit solvation effects on nucleophilic addition to carbonyl
carbons,?’ and proton transfer in a protein channel,?! demonstrate the ability of adaptive
QM/MM to address problems previously unreachable by traditional QM /MM.

The smoothing of energy and forces between steps in an MD simulation is a central
problem in adaptive QM/MM. In order to have a dynamic QM region, an atom’s designation
to be treated as a QM or MM particle can change between one step of a MD simulation
and the next. This may cause a discontinuity in the energy and forces between the two
steps that must be alleviated. In most adaptive QM /MM algorithms, this smoothing is
achieved by defining a buffer zone between the QM and MM regions; the particles that fall
within the buffer zone will be referred to as buffer groups. Various QM /MM configurations

are determined from a method-dependent partitioning of each atom in the buffer group as

either a QM or MM particle. A smoothing function is then applied to interpolate the various



QM/MM partitions. Buffer groups effectively have dual QM and MM character, enabling

smoothing between time steps.
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Figure 1: An example of a Permuted Adaptive Partitioning (PAP) scheme for a buffer zone
with two groups.

Figure 1 shows an illustrative example of this process, and can be used to further under-
stand the various parts of an adaptive QM /MM approach that need to be considered. Each

step of Figure 1 is described below:

Step 1: Initial QM /MM designation. For a given system, atoms can be initially desig-
nated as a core QM atoms (blue) or a MM atom (pink). The core QM atoms will
always be treated as QM throughout the course of the simulation, and are effectively

what is being tracked or followed.



Step 2: Determination of buffer groups. Various approaches have been proposed for

5 22,23

how to define the buffer zone; these include distance-,” number-, and density-
based?® partitioning schemes. The distance-based scheme shown in Figure 1 is the
most common, and involves the user defining a R,,;, (solid orange arrow) and R,,4¢
(dotted orange arrow) calculated from the core QM atoms to serve as the lower
and upper radial boundary for the buffer zone. Everything within R,,,;, now become

designated as a QM atom (blue), while everything between Rp,in, and Ryqz is a buffer

group (green).

Step 3: Identification of QM /MM configurations. The groups within the buffer zone
can be treated as either QM or MM, and QM /MM configurations may be identified
based on this method-dependent decision. Figure 1 shows the scheme used by the
Permuted Adaptive Partitioning (PAP) method, in which all combinations of how to
assign buffer group identities are considered. For the two buffer groups in question,
we can designate them to be: a. both MM atoms; b. both QM atoms; ¢. 1 QM
atom and 1 MM atom; and d. 1 MM atom and 1 QM atom. A separate QM /MM

computation is performed on the four resulting QM /MM configurations.

Step 4: Interpolation scheme. The separate QM /MM configurations can then be com-
bined as a linear combination of either energies or forces with weights determined by
the smoothing function. The smoothing function depends on the relative distances
of the buffer groups to the QM center; if a buffer group is close to the QM region
then the QM /MM configuration in which that buffer group is treated with QM is

given more weight than the QM /MM configuration in which it is treated with MM.

Algorithms with energy-interpolation [e.g., ONIOM-XS,? DAS,? and the adaptive par-
titioning (AP) family of methods!'®2?"?%] conserve energy and momentum for the most part,
but the presence of the smoothing function in the energy expression gives rise to extraneous

forces due to the gradient of the smoothing function. Algorithms with force-interpolation



(e.g., Buffered Force,?® Hot-Spot,” and Size-Consistent Multipartitioning®’) often do not con-

serve energy or have a meaningful energy expression, but there are no extraneous forces.?

A number of reviews has been written on adaptive QM/MM methods, and we refer the

interested reader to these for a more detailed discussion of these approaches. 342132

Table 1: Time evolution of adaptive approaches and their availability in various software
packages

Year” Method Software Package
1996 Hot-Spot 57533 FlexMD,**#*QMMM,* Gaussian,*" Janus
2002 ONIOM-XS82 FlexMD, QMMM, Janus
2007 Permuted Adaptive Partitioning (PAP)!7:18:27.28.38 QMMM, Janus
2007 Sorted Adaptive Partitioning (SAP)!71827.28 QMMM, Janus
2009 Difference-based Adaptive Solvation (DAS)% FlexMD, Janus
2012 Buffered Force (BF)2%% Flex-MD, CP2K,* Amber,*! Janus
2012 Number-Adaptive?? AG-IF %
2014 Density-Based Adaptive (DBA)2*43 Yoink*
2014 Size-Consistent Multipartitioning (SCMP),%043 GROMACS,* b
2015 Time-Adaptive!” CPMD*
2016 Hamiltonian Adaptive Many-Body Correction (HAMBC)* FlexMD, b
2017 Scaled Interaction Single Partition Adaptive (SISPA)30 pDynamo®!

a. Methods are dated by the year in which they were first published, and subsequent modifications are cited.
b. Method will be implemented in Janus in the near future.

Current limitations to adaptive QM /MM

The development of new adaptive QM /MM methods is rapidly gaining traction, as more
than half of all available methods were developed within the last six years.? Table 1 shows
current methods as well as the software packages in which they are available. Despite this
progress, the number of published studies using adaptive QM /MM methods is far fewer
than one would expect, considering the number of different algorithms available. There are
many untapped areas of potential research that could benefit from the potential insights
gained with an adaptive approach. The primary cause for the lack of usage stems from the

limitations of existing software,3? which include:

1. Restrictive licensing. Most current software packages that have adaptive QM /MM

capabilities offer restrictive licensing and/or is not free to use. Moreover, the QM or
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MM codes with which QM /MM software packages interface may also have restrictive

licensing and/or are not free to use. This causes a barrier to researchers.

2. Lack of comprehensive method selection Some codes used for traditional QM /MM,
such as ChemShell,’**3 do not have adaptive QM /MM capabilities; others fail to of-
fer a comprehensive selection of all available methods found in Table 1. Comparisons
between selected methods require the use of different packages, which may all have
their own approach to implementation. Reproducibility of results using various codes
is thus difficult to achieve, and the advantages and disadvantages of energy or force-

based approaches are still debated.

3. Developer-focused software. Most implementations are developer-focused, requir-
ing additional programming skills (FLEX-MD,343 pDyNAMO®!) or complicated sys-
tem set-ups (QMMM?*®). Such need of this prior knowledge is a significant hinderance
to users. In addition, the actual implementation details are not always made clear
by developers. As a result, existing methods have not been used widely enough to
test their robustness and performance, and newer methods have seen little application
outside of benchmarking on small systems.*'4*® For example, the first application of
the SCMP method was published just this year!4 and the HAMBC method has not
been used outside of a benchmarking context. Increased usage will allow for assess-
ment of current methods and lead to the development of a standard adaptive QM /MM

methodology.

The inaccessibility of adaptive methods has been the primary barrier to their adoption;
as such, there have been repeated calls in the literature for user-friendly adaptive QM/MM

software. %3132 The goals of such software would be as follows:

1. open-source code that interfaces with other open-source packages for easy access and

community contribution;



2. user focused code with detailed documentation and tutorials for easy setup, with no

prior programming knowledge required;
3. importable capabilities for flexible use by developers and advanced users;

4. the availability of most or all adaptive methods in one place for maximum choice and

testing.

Several open-source programs exist for adaptive methods. The PDYNAMO program of
Field® is a Python-based library for general QM/MM which can be used to implement
adaptive methods. However, knowledge of the Python programming language is needed to
run this program and adaptive methods are not readily available. Q-REG®! is a library
written in C++ designed for running adaptive QM /MM specifically for electrochemistry.
Standard adaptive methods are not implemented and would require extensive programming
knowledge on the user’s part. Furthermore, neither PDYNAMO nor Q-REG currently interface
with open-source codes for QM and MM computations.

Herein, we introduce JANUS, an open-source Python library that seeks to remedy the
limitations of current programs by providing a unified platform for adaptive methods. (The
name “Janus” is a reference to the Roman god of transition and duality, and has been used
in the literature to describe QM /MM boundary atoms.®) JANUS lowers the barrier to using
adaptive QM /MM methods by eliminating prior programing knowledge and providing a
simple set-up scheme. For more advanced users and developers, the full set of the software’s
capabilities is available through a Python API to provide flexibility in usage. The modular
design makes it possible for easy expansion of the code: only minimum modification to the
code is required for implementing new methods and adding new interfaces. The key features
of JANUs, as well as some illustrative benchmarking results are discussed in the following

sections.



Software Features

Ease of use

: water.pdb
im: True
u : True
mmm scheme: ONIOM-XS
m: OpenMM
am: Psi4

[0,1,2]

: gmmm: 30000
| gmmm: 70000
51 70000
“mble: NVE
a: 0.5
ater: False
ic_coeff: 91
temp: 298
od: scf
ls: cc—pvdz

Figure 2: An example of a minimal input file for running JANUS. The presented input tells
the software to run adaptive QM /MM (“run_aqmmm”) with an ONIOM-XS scheme (“aqmmm -
scheme”) , using Psi4 for the QM computations (“hl_program”) and OPENMM for the MM
computations (“l1l_program”) and MD time-step integration (“run md”). The QM center
(“gm_center”) is defined as the atoms with indices 0, 1, and 2. 30000 MD steps with pure
MM will run, after which the adaptive QM /MM computation will start (“start_qmmm”).
40000 steps will be taken with an adaptive QM/MM computation at every step (“end -
qmmm” ), resulting a total of 70000 MD steps (“md _steps”) . The microcanonical (NVE)
ensemble (“md_ensemble”) is specified. Additional MM (“11”) and QM (“h1”) parameters
are also given. No reinitialization is required.

JANUS does not require programming knowledge but instead supports input file submis-
sion through a simple command line interface (CLI). Figure 2 shows an example of a minimal

input file that runs an adaptive QM /MM /MD simulation. The input has a YAML format

with separate sections that specify the job instructions (“system”), any adaptive QM /MM



specific keywords (“agmmm”), any MD simulation specific keywords (“md”), as well as any
parameters specifically related to the QM (“hl”) or MM (“11”) computations. Although
there are many potential keywords for each section, there are sensible defaults for nearly all
of them. Thus, the user only has to change the keywords they desire by including them in
the appropriate section, resulting in a very simple input. Instructions on installation, how
to set up an input file and run the program, along with the keywords of each section and
their descriptions are provided in the manual (https://ceqe.github.io/janus/) to ensure that
the learning barrier is as low as possible. For more advanced users, JANUS is available as an
importable Python library.

JANUS offers a comprehensive selection of methods (see Table 1) for the user to choose
from. Because the different types of adaptive QM/MM approaches can all be run in the
same place, the methods can be compared on equal footing. This will allow for consistent
benchmarking across different approaches, as well as easy comparisons between them to es-
tablish general adaptive procedures. Information on each method is provided in the manual,

so the user can make an informed choice that is appropriate for their specific system.

Rapid testing using an API

In addition to input file submission, JANUS provides its own Python API as an alternative
way to interact with the software, which is useful both to developers and general users. For
developers, the API makes JANUS’s capabilities both accessible and customizable. Many of
JANUS’s functionalities can be used independently as a starting point for new approaches.
In addition, modifications to a currently existing method in JANUS can quickly be tested.

The following section of code is an example of how a general user might use the API:

from janus import qm_wrapper , mm_wrapper , qmmm

# instantiate a Psi4Wrapper object as the high level wrapper

hl_wrapper = qm_wrapper.Psi4Wrapper ()

# instantiate an OpenMMWrapper object as the low level wrapper



11_wrapper = mm_wrapper.OpenMMWrapper (sys_info="water.pdb")

# instantiate a Permuted Adaptive Partitioning (PAP) object,
# varying Rmin and Rmax (Angstroms)
pl = qumm.PAP(hl_wrapper, 1l _wrapper, sys_info="water.pdb", Rmin=5.0, Rmax=5.5)

P2 = qmmm.PAP(hl_wrapper, 1l _wrapper, sys_info="water.pdb", Rmin=5.0, Rmax=6.0)

# partition the (QM and buffer zone atoms
pl.find_buffer_zone ()

p2.find_buffer_zone ()

# find QM/MM configurations that arise from buffer zone partitioning
pl.find_configurations ()

p2.find_configurations ()

#print Rmin, Rmax, number of qm groups, buffer groups, and QM/MM configurations
print (pl.Rmin, pl.Rmax, pl.n_qm_groups, pl.n_buffer_groups, pl.n_configs)

print (p2.Rmin, p2.Rmax, p2.n_qm_groups, p2.n_buffer_groups, p2.n_configs)

In this case, the API is used as a way to test how different values of Rmin and Rmax (using
a distance partitioning scheme) affect the number of buffer groups that are designated and
the number of QM /MM configurations. For a given system, it might not be immediately
clear to the user what are reasonable Rmin and Rmax values to set. The value of Rmin and
Rmax directly affect the number of atoms in the QM region and buffer zone, and thus also
determine the number of QM/MM configurations that arise (see Figure 1). If Rmin is too
large, the QM region might be too large and not feasible for some QM methods. If the
distance between Rmin and Rmax is too large, there might be too many buffer groups and
thus too many QM /MM configurations. Therefore, it is valuable to easily test different values
of Rmin and Rmax to determine what is appropriate for a specific system before starting a
longer simulation job. With just a little programming knowledge, a user can take advantage

of the API to run jobs more efficiently.
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Minimum interface overhead with external software

Major disadvantages of current interface-based QM /MM packages such as QMMM
PDYNAMO,?! and FLEX-MD, 3435 include the need to reinitialize the QM and MM codes at
each time-step, as well as the number of file transfers needed for communication between
different software. JANUS currently interfaces with OPENMM?5¢57 and Psi4,%%5% both of
which have their own application program interface (API). By calling Psi4 and OPENMM’s
functionalities through APIs, JANUS minimizes the reinitialization of external code and
file-transfer mechanisms to achieve more efficient implementations of workflow. In sample
computations performed, only a trivial amount of the time is spent as overhead (< 2%). The
software also uses MDTRAJ® to assist in intermediate trajectory storing and manipulation.
Although not all molecular software packages have an API, there has been an increasing push
to develop APIs for established software (e.g. AMBER,* NWCHEM,*! GROMACS*),
which JANUS can take advantage of. Furthermore, initiatives from the Molecular Software
Sciences Institute (MolSSI), such as the QCEngine package and the MolSSI Driver Interface
Project, are encouraging API based interfaces for a variety of molecular software pack-
ages.5263 These developments are expected to provide a way for JANUS to interface with

more codes without the use of a file-based communication mechanism.

Easy software expansion through modular design

JANUS is designed with a modular approach to allow for easy method implementation
and package expansion. Figure 3 shows the relationship between the four main modules in
Janus. The MM wrapper module (green) contains the interface to any molecular mechanics
code, while the QM wrapper module (pink) contains the interface to any quantum mechanics
code. As Figure 3 shows, each specific QM or MM software will be interfaced through its
own subclass within the module. The QM/MM module (blue) includes the QMMM class
as well as the AQMMM class, and contains all functionalities for traditional and adaptive

QM/MM. Each adaptive method is a separate subclass that has its own set of method-
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Figure 3: An overview of the class structure of JANUS. Dashed gray arrows from class A
to B indicate that A calls functions from B. Solid black arrows from class A to B indicates
that A is a subclass of B and inherits from B.

dependent functions in addition to the functions inherited from AQMMM. The Partition
module contains schemes for defining the buffer zone, as described in Step 2 of Figure 1.
Currently, two schemes are implemented: the distance-based scheme first pioneered by Rode
and coworkers® and the hysteretic scheme of Bernstein and coworkers.2?° Distance partitioning
has been described previously in Figure 1. Hysteretic partitioning still involves defining a
radial boundary for a QM and buffer region, but contains an additional set of boundaries
(Figure 4). As the name suggests, the scheme uses information from the previous step to
temper drastic changes in the number of QM and buffer atoms during a simulation.

The independence of separate modules allows for great flexibility both in application
and implementation, and makes JANUS a great tool for testing new adaptive QM/MM

approaches. In order to add a new adaptive method, add a new partitioning method, or
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Figure 4: The hysteretic partitioning scheme. All molecules in region A are designated as
QM molecules. Molecules in region B are designated as QM molecules if they were QM
molecules in the previous time-step, and buffer atoms otherwise. Molecules in region C are
designated as buffer atoms. Molecules in region D are designated as buffer atoms if they
were buffer atoms in the previous time-step, and MM molecules otherwise.

to interface to a new package, one simply has to create a subclass that takes advantage
of the existing infrastructure without changing the rest of the code. This allows quick
implementation of currently existing methods and relatively easy package expansion with
other software. In addition, the separation of the Partition module from the QM/MM
module allows users to test different combinations of partitioning schemes and adaptive
methods to develop new approaches. For example, adaptive approaches such as ONIOM-
XS? and the adaptive partitioning family (PAP, SAP)?" are traditionally implemented with
distance partitioning. However, with the modular implementation of different partitioning
schemes one can easily test the use of hysteretic partitioning in these methods. Thus, JANUS
can be used both to develop new methods as well as test untried combinations of existing

approaches.
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Sample Applications

A primary application for adaptive QM /MM methods is to study the coordination num-
ber of a system in explicit solvent. A radial distribution function (RDF) is often used to
quantify this property, and gives the probability of finding a molecule within a certain dis-
tance of another molecule. Peaks in the RDF correspond to the solvation shells around the
center system.

To demonstrate this usage in JANUS, we performed test simulations on a cluster of 1099
water molecules. The flexible TIP3P%* forcefield was used. No cutoff was used for nonbonded
interactions. In all cases, the water box was equilibrated for 25 ps in the canonical (NVT)
ensemble using a Langevin integrator at a temperature of 298 K, a friction coefficient of
1 ps™!, and a step size of 0.5 fs. A production run in the canonical (NVT) ensemble was
then performed. The pure MD simulation ran for 30 ps with a step size of 0.5 fs. For
the QM/MM and adaptive QM/MM runs, an MD simulation using molecular mechanics
forces only was run for 25 ps in the NVT ensemble before starting the QM /MM or adaptive
QM/MM portion for 5 ps. For the QM/MM run, the QM region was set to be one water
molecule. For the adaptive schemes, the same water molecule from QM/MM was set to
be the QM center. Mechanical embedding was used. While electrostatic embedding is
available for traditional QM /MM, electrostatic embedding for adaptive QM /MM is not yet
implemented. The QM computations were performed using Hartree-Fock theory (using a
RHF reference), along with either the 6-31+G*% or Dunning’s aug-cc-pVDZ®® basis set.
Other parameters used defaults set in JANUS, and can be found on the JANUS website
(https://ceqe.github.io/janus/). Distance partitioning was used for adaptive test runs.

All computations were run using JANUS, calling Psi4 for the QM computations and
OPENMM for the MM computations and time-step integration. Three separate simulations
were run with the conditions above and averaged to obtain the RDF. RDFs were generated
with PYTRAJ®"®® and used the distance between the central water molecule and the other

water molecules. Figure 5 shows the Oc-O, Oc-H, and He—H RDF of the water box averaged
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over the last 5 ps of the NVT simulation of three separate simulations for each test case. We
demonstrate that JANUS not only runs adaptive QM /MM but can also perform traditional
QM/MM and MD simulations to use for comparison purposes.

The results obtained are qualitatively in line with experiment and other computational
RDFs previously published.®® We note that for adaptive runs, a keyword change in the input

is all that is necessary to redefine the buffer zone or QM approach.
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Figure 5: Radial distribution function for water. Oc-O was computed with the oxygen of
the central water vs. all other water oxygens. Oc-H was computed with the oxygen of the
central water vs. all other water hydrogens. Hc-H was computed with the hydrogens of
the central water vs. all other water hydrogens. The blue curve corresponds to a pure MM
simulation. The green curve corresponds to a non-adaptive QM /MM simulation. The purple
curve corresponds to a Hot-Spot adaptive simulation with the buffer zone defined as Rpin
= 3.0 A and Ryper = 3.5 A, and using the 6-31+G* basis set for QM computations. The red
curve corresponds to a Hot-Spot adaptive simulation with the buffer zone defined as R,,,i, =
3.0 A and R4, = 3.5 A, and using the aug-cc-pVDZ basis set. The yellow curve corresponds
to a Hot-Spot adaptive simulation with the buffer zone defined as Ry, = 3.3 A and Rypar =
3.5 A, and using the 6-314+G* basis set. The cyan curve corresponds to a Hot-Spot adaptive
simulation with the buffer zone defined as Ry, = 3.5 A and Rypee = 3.7 A, and using the
6-31+G* basis set.

Figure 6 shows how the QM region is changing for a 10 ps NVT simulation of the Hot-
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Figure 6: Number of water molecules in the QM region. The top corresponds to a Hot-Spot
adaptive simulation with the buffer zone defined as Ry, = 3.3 A and Ryee = 3.5 A, and
using the 6-31+G* basis set for QM computations. The bottom corresponds to a Hot-Spot
adaptive simulation with the buffer zone defined as Ry, = 3.5 A and Ryee = 3.7 A, and
using the 6-31+G* basis set for QM computations.

Spot adaptive approach with the SCF/6-31+G* QM method. The top graph shows the
number of water molecules in a QM region (including buffer zone) with a radius of 3.5 A.
The graph shows the number of water molecules in a QM region (including buffer zone) with
a radius of 3.7 A. As the figure shows, throughout the simulation the number of waters in
the smaller QM region varies from four to ten, while the number of molecules in the bigger
QM region varies from four to twelve. Thus we see the adaptive approach correctly capture
the movement of the water cluster and update the QM region as needed.

We also used JANUS to study the structure and solvation of N-methylacetamide (NMA) in
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a water cluster of 576 water molecules. NMA is the simplest model for a peptide bond and as
a result has been subject to numerous experimental and theoretical studies. %2 The flexible
TIP3P% forcefield was used for the water molecules and the Amber ff99SB®*#* protein
forcefield was used for NMA. No cutoff was used for nonbonded interactions. The system
was equilibrated for 25 ps in the canonical (NVT) ensemble using a Langevin integrator at a
temperature of 300 K, a friction coefficient of 1 ps™!, and a step size of 0.5 fs. A production
run in the microcanonical (NVE) ensemble was then performed for 35 ps total. The use
of QM/MM forces started after 15 ps. The QM/MM run treated NMA with QM and the
rest with MM. Mechanical embedding was used. The QM portion was performed using both
Hartree-Fock theory and density-fitted second-order Mgller-Plesset (MP2) theory with an
RHF reference, along with the STO-3G® and Dunning cc-pVDZ (DZ)% basis sets. For
clarity purposes, QM /MM computations will be referenced using the notation [QM method]
[QM basis set]/[MM] (e.g., MP2 STO-3G/MM).

Figure 7 shows the labeled NMA molecule (used by Tables 2 and 3 and Figure 8) along
with a snapshot of the MP2 DZ /MM simulation. The snapshot reveals two water molecules
acting as hydrogen bond donors to the carbonyl oxygen and one water molecule acting as a
hydrogen bond acceptor to the amide hydrogen. This is representative of the most common
type of hydrogen bonded complex seen for all the simulations. The average numbers of water
molecules hydrogen bonded with the carbonyl carbon during the 20 ps simulation are: 1.5
(MM), 1.7 (HF STO-3G/MM), 1.9 (HF DZ/MM), 1.7 (MP2 STO-3G/MM), and 1.7 (MP2
DZ/MM). For the amide hydrogen, the average numbers are: 1.0 (MM), 1.1 (HF STO-
3G/MM), 1.0 (HF DZ/MM), 1.1 (MP2 STO-3G/MM), and 1.1 (MP2 DZ/MM). Average
bonds were measure by tabulating the number of hydrogen bonds present at each time step
and taking the mean. Hydrogen bonds were identified using the Baker-Hubbard®® scheme
as implemented in MDTRAJ® with the criteria 7 __acceptor < 2.5 A.

Table 2 shows the geometry parameters obtained by our simulations as compared to ab

initio MD and experiment. We note that although most parameters are comparable with one
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Figure 7: The NMA molecule and a snapshot of a hydrogen-bonded NMA-—water complex
during the MP2 cc-pVDZ/MM simulation generated with VMD.%6:57

another, the /H-N-C-O torsion angle is highly dependent on the basis set. Table 3 shows
the hydrogen bonding geometric parameters as compared with other QM /MM results in the
literature. The average angles obtained by our results are lower than the ones in previous
literature. The large variation in the standard deviation of the angles is partly due to the
fact that we are averaging over all the waters that form hydrogen bonding interactions with
the carbonyl carbon and amide hydrogen, as discussed above.

Figure 8 shows the RDF of various parts of the NMA molecule and the waters. Results
obtained agree with those obtained by previous studies.”®" Traditional "™ and ab initio

MD™ results qualitatively match our results for the amide hydrogen and water RDF's as
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well as the carbonyl oxygen and water RDFs. Our QM /MM results also qualitatively match

other QM/MM studies. ”>™ The O4-Hyq RDF has a more pronounced peak than the one

obtained with ABEEM/MM, ™ but is in agreement with a HF 3-21G/MM study. ™

Table 2: Geometry parameters of NMA in a water cluster

MM HF STO-3G/MM HF DZ/MM  MP2 STO-3G/MM MP2 DZ/MM Ref 70° Ref 76° Ref 73°
Bond Lengths (A)
C1-N2 1.462 £+ 0.034 1.478 £ 0.026 1.448 £+ 0.024 1.5074 £ 0.029 1.4542 £+ 0.030 1.477 £0.031 1.465(13) 1.458
N2-C3 1.333 £ 0.022 1.442 £ 0.029 1.356 £ 0.024 1.4793 £ 0.034 1.3744 £ 0.026 1.351 £ 0.028 1.290(13) 1.351
C3-Cs 1.510 £+ 0.031 1.543 £ 0.028 1.512 £+ 0.029 1.5666 £ 0.031 1.5185 £ 0.031 1.520 £ 0.035 1.536(16) 1.515
C3-04 1.230 £+ 0.020 1.223 £ 0.020 1.205 £ 0.023 1.2658 £ 0.020 1.2351 £ 0.027 1.268 £ 0.022 1.236(12) 1.243
N2-H6 1.013 £ 0.027 1.036 £ 0.040 1.004 £+ 0.028 1.0614 £ 0.030 1.0217 £ 0.029 1.031 £ 0.032 1.010
Bond Angles (°)
£C1-N2-C3 124.85 £+ 3.23 113.84 £ 3.52 119.22 £+ 3.16 110.59 + 3.61 117.58 £ 3.63 120.5 122.4
£N2-C3-04 123.32 £ 2.80 120.38 £ 2.61 121.06 £ 2.44 120.45 £ 2.82 120.76 £ 2.84 123.0 121.7
£N2-C3-C5 116.70 £ 2.93 115.58 £ 2.91 117.18 £ 2.78 114.57 £ 3.09 116.57 £+ 3.11 116.5 116.9
£04-C3-C5 119.68 £ 3.02 123.64 £ 2.86 121.60 £ 2.66 124.31 £ 3.03 122.34 + 3.10 120.5
/H6-N2-C3 116.98 + 3.31 113.67 £ 4.65 119.73 £+ 3.82 110.35 £ 5.05 119.68 £ 4.53 119.5 118.9
Torsion Angles (°)
/H-N-C-O 172,40 £5.74 14744 £ 1261  168.31 £ 8.40 141.12 £ 11.67 165.81 £ 9.68 173.98 £ 10.75 180.00
LC-N-CC 171.93 £ 6.06 166.28 £ B.86 171.42 £ 6.16 166.11 £ B.71 171.01 £ 6.72 178.46 + 10.70 180.00

Number after + is the standard deviation.

a. Parameters determined by ab initio MD.

b. Parameters determined by X-ray crystal diffraction.

c. Paramters determined by B3LYP/6-314+-G(d,p) in the IEF continuum.

Table 3: Hydrogen bond parameters of NMA in a water cluster

04--- Hwax(f\)ﬂ O4—me§_owax (0) 03_04_Hmt (a) H6- - - O‘wat (A) NQ—HWGI_OWE‘ (0)

MM 1.933 £ 0.220  156.03 + 13.28
HF STO-3G/MM 1.932 £ 0.223  156.02 + 13.49
HF DZ/MM 1.959 + 0212  155.29 + 13.13
MP2 STO-3G /MM 1.930 + 0.218  157.66 + 12.30
MP2 DZ/MM 1.919 £ 0.220  157.34 + 12.64
OPLS™ 1.78
AM1/MM™ 1.70
HF 3-21G/MM™ 1.99
*B3LYP/6-31+G(d,p) ™ 1.83

125.16 + 19.49
128.11 + 18.78
12437 + 19.61
126.77 + 19.42
126.82 + 18.34

141

144

143

2.141 £ 0.181
2.134 £ 0.186
2.198 £ 0.169
2.173 £ 0.188
2.195 £ 0.182

1.94

1.77

2.10

1.90

153.64 £+ 13.36
153.15 £+ 12.98
152.32 £ 13.79
149.56 + 14.01
150.70 £ 13.86

175

176

168

Number after + is the standard deviation.
a. O4-Hyg: related parameters are averaged over any hydrogen bond interactions with O4 at a given time.
b. Performed in IEF continuum
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Figure 8: Radial distribution function of NMA and water. The H6—0O,,,¢ RDF was computed
with the amide hydrogen and water oxygen atoms. The H6—H,,o; RDF was computed with
the amide hydrogen and water hydrogen atoms. The O4—0,,,; RDF was computed with
the carbonyl oxygen and water oxygen atoms. The O4—H,,,; RDF was computed with the
carbonyl oxygen and water hydrogen atoms. The blue curve corresponds to a pure MM
simulation. The red, green, purple, and yellow curves correspond to QM/MM simulations
at various levels of QM theory.
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Summary

Several disadvantages exist in currently available software for adaptive QM /MM, includ-
ing licensing restrictions, limited selection of methods, and developer-focused usage. The
growing field of adaptive QM /MM can greatly benefit from a user-friendly platform with ef-
ficiently implemented methods, both to explore untested applications and to promote novel,
problem-driven approaches. In the present paper, we describe JANUS, an adaptive QM /MM
Python library that seeks emphasizes usability and promotes method development. JANUS
is freely available to download and install at https://github.com/CCQC /janus and is made
open-source. Contributions from the community are highly welcome and encouraged, facili-
tated by rigid automated testing and continuous integration. Simple input file structures and
detailed documentation make it accessible to non-developers while advanced users can take
advantage of the full capabilities of the Python library. An API is offered to give users great
flexibility with how to use the code and allows rapid testing of various adaptive approaches.
The modular design of JANUS makes it easy to either implement an existing method or test
new methods. In addition, interfaces to other software packages can be added on with little
modification to existing code. It is our hope that JANUS will promote the use of adaptive
QM/MM methods and that the growth of the software will be sustained and guided by user

needs.

Acknowledgements

B.Z. is supported by a fellowship from The Molecular Sciences Software Institute®263

under NSF grant ACI-1547580. J.M.T and H.F.S acknowledge support by the U.S. National
Science Foundation under grant CHE-1661604. B.Z. thanks Adam Abbott for careful reading

of the manuscript.

21



References

(1)

(2)

(3)

(4)

()

(6)

(7)

(8)

Warshel, A.; Karplus, M. Calculation of ground and excited state potential surfaces of
conjugated molecules. [. Formulation and parametrization. J. Am. Chem. Soc. 1972,

9/, 5612-5625.

Warshel, A.; Levitt, M. Theoretical studies of enzymic reactions: Dielectric, electro-
static and steric stabilization of the carbonium ion in the reaction of lysozyme. J. Mol.

Biol. 1976, 103, 227-249.

Pezeshki, S.; Lin, H. Recent developments in QM /MM methods towards open-boundary
multi-scale simulations. Mol. Sim. 2015, /1, 168-1809.

Duster, A. W.; Wang, C. H.; Garza, C. M.; Miller, D. E.; Lin, H. Adaptive quantum/-
molecular mechanics: what have we learned, where are we, and where do we go from

here? Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2017, 7, 1-21.

Kerdcharoen, T.; Liedl, K. R.; Rode, B. M. A QM /MM simulation method applied to
the solution of Li+ in liquid ammonia. Chem. Phys. 1996, 211, 313-323.

Schwenk, C. F.; Loefler, H. H.; Rode, B. M. Structure and dynamics of metal ions in
solution: QM/MM molecular dynamics simulations of Mn?** and V?*. J. Am. Chem.

Soc. 2003, 125, 1618-1624.

Hofer, T. S.; Pribil, A. B.; Randolf, B. R.; Rode, B. M. Structure and dynamics of
solvated Sn(II) in aqueous solution: An ab initio QM/MM MD approach. J. Am.
Chem. Soc. 2005, 127, 14231-14238.

Rode, B. M.; Hofer, T. S.; Randolf, B. R.; Schwenk, C. F.; Xenides, D.; Vchirawongk-
win, V. Ab initio quantum mechanical charge field (QMCF) molecular dynamics: a

QM/MM-MD procedure for accurate simulations of ions and complexes. Theor. Chem.
Ace. 2006, 115, 77-85.

22



9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

Azam, S. S.; Hofer, T. S.; Randolf, B. R.; Rode, B. M. Hydration of sodium (I) and
potassium (I) revisited: a comparative QM /MM and QMCF MD simulation study of
weakly hydrated ions. J. Phys. Chem. A 2009, 113, 1827-1834.

Rowley, C. N.; Roux, B. The solvation structure of Na* and K* in liquid water de-
termined from high level ab initio molecular dynamics simulations. J. Chem. Theory

Comput. 2012, 8, 3526-3535.

Lev, B.; Roux, B.; Noskov, S. Y. Relative free energies for hydration of monovalent ions

from QM and QM/MM simulations. J. Chem. Theory Comput. 2013, 9, 4165-4175.

Kabbalee, P.; Sripa, P.; Tongraar, A.; Kerdcharoen, T. Solvation structure and dynam-
ics of K* in aqueous ammonia solution: Insights from an ONIOM-XS MD simulation.

Chem. Phys. Lett. 2015, 633, 152-157.

Kabbalee, P.; Tongraar, A.; Kerdcharoen, T. Preferential solvation and dynamics of
Li™ in aqueous ammonia solution: an ONIOM-XS MD simulation study. Chem. Phys.
2015, 446, 70-75.

Watanabe, H. C.; Kubillus, M.; Kuba, T.; Stach, R.; Mizaikoff, B.; Ishikita, H. Cation
solvation with quantum chemical effects modeled by a size-consistent multi-partitioning

quantum mechanics/molecular mechanics method. Phys. Chem. Chem. Phys. 2017, 19,
17985-17997.

Park, K.; Gotz, A. W.; Walker, R. C.; Paesani, F. Application of adaptive QM/MM
methods to molecular dynamics simulations of aqueous systems. J. Chem. Theory Com-

put. 2012, 8, 2868-2877.

Vérnai, C.; Bernstein, N.; Mones, L.; Csanyi, G. Tests of an adaptive QM /MM calcu-
lation on free energy profiles of chemical reactions in solution. J. Phys. Chem. B 2013,

117, 12202-12211.

23



(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

Pezeshki, S.; Davis, C.; Heyden, A.; Lin, H. Adaptive-partitioning QM /MM dynamics
simulations: 3. Solvent molecules entering and leaving protein binding sites. J. Chem.

Theory Comput. 2014, 10, A765-4776.

Pezeshki, S.; Lin, H. Adaptive-Partitioning QM /MM for Molecular Dynamics Simula-
tions: 4. Proton Hopping in Bulk Water. J. Chem. Theory Comput. 2015, 11, 2398—
2411.

Jiang, T.; Boereboom, J. M.; Michel, C.; Fleurat-Lessard, P.; Bulo, R. E. In Quantum
Modeling of Complex Molecular Systems; Rivail, J.-L., Ruiz-Lopez, M., Assfeld, X.,
Eds.; Springer: Cham, 2015; Vol. 21; pp 51-91.

Boereboom, J. M.; Fleurat-Lessard, P.; Bulo, R. E. Explicit Solvation Matters: Per-
formance of QM /MM Solvation Models in Nucleophilic Addition. J. Chem. Theory
Comput. 2018, 1/, 1841-1852.

Duster, A. W.; Garza, C. M.; Aydintug, B. O.; Negussie, M. B.; Lin, H. Adaptive Par-
titioning QM /MM for Molecular Dynamics Simulations: 6. Proton Transport through
a Biological Channel. J. Chem. Theory Comput. 2019, DOI: 10.1021 /acs.jctc.8b01128.

Takenaka, N.; Kitamura, Y.; Koyano, Y.; Nagaoka, M. The number-adaptive multiscale
QM/MM molecular dynamics simulation: Application to liquid water. Chem. Phys.
Lett. 2012, 52/, 56-61.

Takenaka, N.; Kitamura, Y.; Koyano, Y.; Nagaoka, M. An improvement in quan-
tum mechanical description of solute-solvent interactions in condensed systems via the
number-adaptive multiscale quantum mechanical /molecular mechanical-molecular dy-
namics method: Application to zwitterionic glycine in aqueous solution. J. Chem. Phys.

2012, 137, 024501.

Waller, M. P.; Kumbhar, S.; Yang, J. A density-based adaptive quantum mechanical /-
molecular mechanical method. ChemPhysChem 2014, 15, 3218-3225.

24



(25)

(26)

(27)

(28)

(29)

(30)

1)

(32)

(33)

Kerdcharoen, T.; Morokuma, K. ONIOM-XS: An extension of the ONIOM method for
molecular simulation in condensed phase. Chem. Phys. Lett. 2002, 355, 257-262.

Bulo, R. E.; Ensing, B.; Sikkema, J.; Visscher, L. Toward a Practical Method for
Adaptive QM / MM Simulations. J. Chem. Theory Comput. 2009, 5, 2212-2221.

Heyden, A.; Lin, H.; Truhlar, D. G. Adaptive partitioning in combined quantum me-
chanical and molecular mechanical calculations of potential energy functions for mul-

tiscale simulations. J. Phys. Chem. B 2007, 111, 2231-2241.

Pezeshki, S.; Lin, H. Adaptive-partitioning redistributed charge and dipole schemes for
QM /MM dynamics simulations: On-the-fly relocation of boundaries that pass through
covalent bonds. J. Chem. Theory Comput. 2011, 7, 3625-3634.

Bernstein, N.; Varnai, C.; Solt, I.; Winfield, S. A.; Payne, M. C.; Simon, I.; Fuxre-
iter, M.; Csanyi, G. QM/MM simulation of liquid water with an adaptive quantum
region. Phys. Chem. Chem. Phys. 2012, 14, 646-656.

Watanabe, H. C.; Kubar, T.; Elstner, M. Size-consistent multipartitioning QM/MM:
A stable and efficient adaptive QM /MM method. J. Chem. Theory Comput. 2014, 10,
4242-4252.

Bulo, R. E.; Michel, C.; Fleurat-Lessard, P.; Sautet, P. Multiscale modeling of chemistry

in water: Are we there yet? J. Chem. Theory Comput. 2013, 9, 5567-5577.

Zheng, M.; Waller, M. P. Adaptive quantum mechanics/molecular mechanics methods.

Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2016, 6, 369-385.

Csanyi, G.; Albaret, T'.; Payne, M. C.; De Vita, A.” Learn on the fly”: A hybrid classical
and quantum-mechanical molecular dynamics simulation. Phys. Rev. Lett. 2004, 93,

1-4.

25



(34)

(35)

(36)

37)

(38)

(39)

(40)

(41)

(42)

Jacob, C. R.; Beyhan, S. M.; Bulo, R. E.; Gomes, A. S. P.; Gotz, A. W.; Kiewisch, K_;
Sikkema, J.; Visscher, L. PyADF - A scripting framework for multiscale quantum chem-
istry. J. Comput. Chem. 2011, 32, 2328-2338.

Te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisber-
gen, S. J.; Snijders, J. G.; Ziegler, T. Chemistry with ADF. J. Comput. Chem. 2001,
22, 931-967.

Lin, H.; Zhang, Y.; Pezeshki, S.; Wang, B.; Truhlar, D. G. QMMM2015; University of

Minnesota: Minneapolis, 2015.

Gaussian16, Available at: http://www.gaussian.com.

Duster, A.; Wang, C.-H.; Lin, H. Adaptive QM /MM for Molecular Dynamics Simula-
tions: 5. On the Energy-Conserved Permuted Adaptive-Partitioning Schemes. Molecules
2018, 23, 2170-2186.

Mones, L.; Jones, A.; Gotz, A. W.; Laino, T.; Walker, R. C.; Leimkubhler, B.; Csanyi, G.;
Bernstein, N. The adaptive buffered force QM /MM method in the CP2K and amber
software packages. J. Comput. Chem. 2015, 36, 633-648.

Hutter, J.; lannuzzi, M.; Schiffmann, F.; Vandevondele, J. CP2K: Atomistic simulations
of condensed matter systems. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2014, 4, 15—
25.

Salomon-Ferrer, R.; Case, D. A.; Walker, R. C. An overview of the Amber biomolecular
simulation package. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2013, 3, 198-210.

Okamoto, T.; Yamada, K.; Koyano, Y.; Asada, T.; Koga, N.; Nagaoka, M. A mini-
mal implementation of the AMBER-GAUSSIAN interface for ab initio QM/MM-MD
simulation. J. Comput. Chem. 2011, 32, 932-942.

26



(43) Zheng, M.; Kuriappan, J. A.; Waller, M. P. Toward more efficient density-based adap-
tive QM /MM methods. Int. J. Quant. Chem. 2017, 117, €25336.

(44) Zheng, M.; Waller, M. P. Yoink: An interaction-based partitioning API. J. Comput.
Chem. 2018, 39, 799-806.

(45) Watanabe, H. Improvement of performance, stability and continuity by modified
size-consistent multipartitioning quantum mechanical /molecular mechanical method.

Molecules 2018, 23, 1882-1897.

(46) Abraham, M. J.; Murtola, T.; Schulz, R.; Pall, S.; Smith, J. C.; Hess, B.; Lindahl, E.
GROMACS: High performance molecular simulations through multi-level parallelism

from laptops to supercomputers. SoftwareX 2015, 1-2, 19-25.

(47) Bockmann, M.; Doltsinis, N. L.; Marx, D. Adaptive switching of interaction potentials
in the time domain: An extended Lagrangian approach tailored to transmute force field

to QM /MM simulations and back. J. Chem. Theory Comput. 2015, 11, 2429-2439.
(48) CPMD, Available at: http://www.cpmd.org.

(49) Boereboom, J. M.; Potestio, R.; Donadio, D.; Bulo, R. E. Toward Hamiltonian Adaptive
QM/MM: Accurate Solvent Structures Using Many-Body Potentials. J. Chem. Theory
Comput. 2016, 12, 3441-3448.

(50) Field, M. J. An Algorithm for Adaptive QC/MM Simulations. J. Chem. Theory Com-
put. 2017, 13, 2342-2351.

(51) Field, M. J. The pDynamo Library for Molecular Simulations using Hybrid Quantum
Mechanical and Molecular Mechanical Potentials,. J. Chem. Theory Comput. 2008, 4,
1151-1161.

(52) Metz, S.; Kastner, J.; Sokol, A. A.; Keal, T. W.; Sherwood, P. ChemShell-a modular

27



(33)

(54)

(35)

(56)

(57)

(58)

software package for QM /MM simulations. Wiley Interdiscip. Rev.: Comput. Mol. Sci.

2014, /, 101-110.

Lu, Y.; Farrow, M. R.; Fayon, P.; Logsdail, A. J; Sokol, A. A.; Catlow, C.
R. A.; Sherwood, P.; Keal, T. W. Open-Source, Python-Based Redevelopment of the
ChemShell Multiscale QM /MM Environment. J. Chem. Theory Comput. 2018, DOI:
10.1021/acs.jcte.8b01036.

Dohm, S.; Spohr, E.; Korth, M. Developing adaptive QM /MM computer simulations
for electrochemistry. J. Comput. Chem. 2017, 38, 51-58.

Senn, H. M.; Thiel, W. In Atomistic approaches in modern biology; Reiher, M., Ed.;
Springer: Berlin, 2006; Vol. 268; pp 173-290.

Eastman, P.; Friedrichs, M. S.; Chodera, J. D.; Radmer, R. J.; Bruns, C. M.; Ku, J. P;;
Beauchamp, K. A.; Lane, T J.; Wang, L.-P.; Shuka, D.; Tye, T.; Houston, M.; Stich, T';
Klein, C.; Shirts, M. R.; Pande, V. S. OpenMM 4: a reusable, extensible, hardware
independent library for high performance molecular simulation. J. Chem. Theory Com-

put. 2013, 9, 461-469.

Eastman, P.; Swails, J.; Chodera, J. D.; McGibbon, R. T.; Zhao, Y.; Beauchamp, K. A_;
Wang, L. P.; Simmonett, A. C.; Harrigan, M. P.; Stern, C. D.; Wiewiora, R. P
Brooks, B. R.; Pande, V. S. OpenMM 7: Rapid development of high performance
algorithms for molecular dynamics. PLOS Comput Biol 2017, 13, 1-17.

Turney, J. M.; Simmonett, A. C.; Parrish, R. M.; Hohenstein, E. G.; Evangelista, F. A_;
Fermann, J. T.; Mintz, B. J.; Burns, L. A.; Wilke, J. J.; Abrams, M. L.; Russ, N. J;
Leininger, M. L.; Janssen, C. L.; Seidl, E. T.; Allen, W. D.; Schaefer, H. F'.; King, R. A_;
Valeev, E. F.; Sherrill, C. D.; Crawford, T. D. Psi4: An open-source ab initio electronic

structure program. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 556-565.

28



(39)

(60)

(61)

(62)

(63)

(64)

Parrish, R. M.; Burns, L. A.; Smith, D. G.; Simmonett, A. C.; DePrince, A. E.;
Hohenstein, E. G.; Bozkaya, U.; Sokolov, A. Y.; Di Remigio, R.; Richard, R. M.
Gonthier, J. F.; James, A. M.; McAlexander, H. R.; Kumar, A.; Saitow, M.; Wang, X_;
Pritchard, B. P.; Verma, P.; Schaefer, H. F.; Patkowski, K.; King, R. A.; Valeev, E. F.;
Evangelista, F. A.; Turney, J. M.; Crawford, T. D.; Sherrill, C. D. Psi4 1.1: An Open-
Source Electronic Structure Program Emphasizing Automation, Advanced Libraries,

and Interoperability. J. Chem. Theory Comput. 2017, 13, 3185-3197.

McGibbon, R. T.; Beauchamp, K. A.; Harrigan, M. P.; Klein, C.; Swails, J. M.;
Hernandez, C. X.; Schwantes, C. R.; Wang, L.-P.; Lane, T. J.; Pande, V. S. MD-
Traj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories.
Biophys. J. 2015, 109, 1528-1532.

Valiev, M.; Bylaska, E. J.; Govind, N.; Kowalski, K.; Straatsma, T. P.; Van Dam, H. J;
Wang, D.; Nieplocha, J.; Apra, E.; Windus, T. L.; De Jong, W. A. NWChem: A
comprehensive and scalable open-source solution for large scale molecular simulations.

Comput. Phys. Commun. 2010, 181, 1477-1489.

Wilkins-Diehr, N.; Crawford, T. D. NSF's Inaugural Software Institutes: The Science
Gateways Community Institute and the Molecular Sciences Software Institute. Comput.

Sci. Eng. 2018, 20, 26-38.

Krylov, A.; Windus, T. L.; Barnes, T.; Marin-Rimoldi, E.; Nash, J. A.; Pritchard, B.;
Smith, D. G. A.; Altarawy, D.; Saxe, P.; Clementi, C.; Crawford, T. D.; Harrison, R. J.;
Jha, S.; Pande, V. S.; Head-Gordon, T. Perspective: Computational chemistry software

and its advancement as illustrated through three grand challenge cases for molecular

science. J. Chem. Phys. 2018, 149, 180901-1-180901-11.

Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L.

29



(65)

(66)

(67)

(68)

(69)

(70)

(71)

(72)

(73)

Comparison of simple potential functions for simulating liquid water. J. Chem. Phys.

1983, 79, 926-935.

Petersson, G.; Al-Laham, M. A. A complete basis set model chemistry. II. Open-shell
systems and the total energies of the first-row atoms. J. Chem. Phys. 1991, 94, 6081—
6090.

Dunning Jr, T. H. Gaussian basis sets for use in correlated molecular calculations. I.

The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007-1023.

Roe, D. R.; Cheatham III, T. E. PTRAJ and CPPTRAJ: software for processing and
analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 2013, 9,
3084-3095.

Nguyen, H.; Roe, D.; Swails, J.; Case, D. PYTRAJ: Interactive data analysis for molec-

ular dynamics simulations, Available at: https://github.com/Amber-MD /pytraj.

Head-Gordon, T.; Hura, G. Water structure from scattering experiments and simula-

tion. Chem. Rev. 2002, 102, 2651-2670.

Yu, H. A.; Karplus, M.; Pettitt, B. M. Aqueous solvation of n-methylacetamide con-
formers: Comparison of simulations and integral equation theories. J. Am. Chem. Soc.

1991, 113, 2425-2434.

Gaigeot, M. P.; Vuilleumier, R.; Sprik, M.; Borgis, D. Infrared spectroscopy of N-
methylacetamide revisited by ab initio molecular dynamics simulations. J. Chem. The-

ory Comput. 2005, 1, 772-7809.

Qian, P.; Lu, L.-N.; Yang, Z.-Z. Molecular dynamics simulations of N-methylacetamide
(NMA) in water by the ABEEM /MM model. Can. J. Chem. 2009, 87, 1738-1746.

Gao, J.; Freindorf, M. Hybrid ab initio QM /MM simulation of N-methylacetamide in
aqueous solution. J. Phys. Chem. A 1997, 101, 3182-3188.

30



(74)

(75)

(76)

(77)

(78)

(79)

(80)

(81)

(82)

Mennucci, B.; Martinez, J. M. How to model solvation of peptides? Insights from
a quantum-mechanical and molecular dynamics study of N-methylacetamide. 1. Ge-
ometries, infrared, and ultraviolet spectra in water. J. Phys. Chem. B 2005, 109,
9818-9829.

Guo, H.; Karplus, M. Ab initio studies of hydrogen bonding of N-methylacetamide:
structure, cooperativity, and internal rotational barriers. J. Phys. Chem. 1992, 96,
7273-7287.

Han, W.-G.; Suhai, S. Density Functional Studies on N-Methylacetamide- Water Com-
plexes. J. Phys. Chem. 1996, 100, 3942-3949.

Katz, J. L.; Post, B. The crystal structure and polymorphism of N-methylacetamide.
Acta Crystallogr. 1960, 13, 624-628.

Kitano, M.; Fukuyama, T.; Kuchitsu, K. Molecular structure of N-methylacetamide as

studied by gas electron diffraction. Bull. Chem. Soc. Jpn. 1973, /6, 384-387.

Minami, H.; Iwahashi, M. Molecular Self-Assembling of -Methylacetamide in Solvents.
Int. J. Spectrosc. 2011, 2011.

Mirkin, N. G.; Krimm, S. Structure of trans-N-methylacetamide: planar or non-planar

symmetry? J. Mol. Struct.: THEOCHEM 1995, 334, 1-6.

Buck, M.; Karplus, M. Hydrogen bond energetics: a simulation and statistical analysis
of N-methyl acetamide (NMA), water, and human lysozyme. J. Phys. Chem. B 2001,
105, 11000-11015.

Xiao, X.; Tan, Y.; Zhu, L.; Guo, Y.; Wen, Z.; Li, M.; Pu, X_; Tian, A. Effects of the po-
sition and manner of hydration on the stability of solvated N-methylacetamides and the
strength of binding between N-methylacetamide and water clusters: a computational

study. J. Mol. Model. 2012, 18, 1389-1399.

31



(83) Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Com-
parison of multiple Amber force fields and development of improved protein backbone

parameters. Proteins 2006, 65, 712-725.

(84) Hornak, V.; Okur, A.; Rizzo, R. C.; Simmerling, C. HIV-1 protease flaps spontaneously
open and reclose in molecular dynamics simulations. Proc. Natl. Acad. Sci. 2006, 103,

915-920.

(85) Hehre, W. J.; Stewart, R. F.; Pople, J. A. Self-consistent molecular-orbital methods.
I. Use of gaussian expansions of Slater-type atomic orbitals. J. Chem. Phys. 1969, 51,
2657-2664.

(86) Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular dynamics. J. Mol.
Graph. 1996, 1/, 33-38.

(87) VMD, Available at: http://www ks.uiuc.edu/Research/vmd/.

(88) Baker, E.; Hubbard, R. Hydrogen bonding in globular proteins. Prog. Biophys. Mol.
Biol. 1984, /4, 97-179.

32



For Table of Contents use only
Title: JaANUs: An Extensible Open-Source Software Package for Adaptive QM /MM
Methods

Authors: Boyi Zhang, Doaa Altarawy, Taylor Barnes, Justin M. Turney, Henry F. Schaefer

I11

User-
Friendly

Open- Python
Source API

33



