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Abstract—In large-scale software systems, error-prone or change-prone files rarely stand alone. They are typically architecturally
connected and their connections usually exhibit architecture problems causing the propagation of error-proneness or
change-proneness. In this paper, we propose and empirically validate a suite of architecture anti-patterns that occur in all large-scale
software systems and are involved in high maintenance costs. We define these architecture anti-patterns based on fundamental design
principles and Baldwin and Clark’s design rule theory. We can automatically detect these anti-patterns by analyzing a project’s
structural relationships and revision history. Through our analyses of 19 large-scale software projects, we demonstrate that these
architecture anti-patterns have significant impact on files’ bug-proneness and change-proneness. In particular, we show that 1) files
involved in these architecture anti-patterns are more error-prone and change-prone; 2) the more anti-patterns a file is involved in, the
more error-prone and change-prone it is; and 3) while all of our defined architecture anti-patterns contribute to file’s error-proneness
and change-proneness, Unstable Interface and Crossing contribute the most by far.

Index Terms—Software Architecture, Software Maintenance, Software Quality
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1 INTRODUCTION

In long-lived software projects, bug-prone and change-
prone files consume the majority of overall maintenance
effort. Numerous bug prediction [2], [3], [4] or localiza-
tion [5], [6], [7] approaches have been proposed to locate
bug-prone or change-prone “units” in source code. It has
typically been difficult for developers to modify a single file
without unexpected changes to other files, and multiple files
often need to be changed together for a maintenance task.
Our prior work [8], [9], [10] revealed that bug-prone files
in a project are usually connected, and their connections
often exhibit architecture problems.1 These anti-patterns,
as we will show, propagate bug-proneness among files.
For example, a buggy interface can propagate to the files
implementing it; when this interface is changed, its concrete
classes often need to be changed as well.

Researchers have proposed various methods to iden-
tify problematic areas within source code, such as code
smells [11], architecture smells [12] or anti-patterns [13].

• This article is an extended version of [1] presented at the 12th Working
IEEE / IFIP Conference on Software Architecture(WICSA) in 2015. We
have extended our work as follows: 1) In this paper, we have formally de-
fined one new Architecture anti-pattern, Crossing; 2) We have improved
the algorithms for Clique and Modularity Violation Group; 3) we have
added pairwise comparisons for all types of architecture anti-patterns to
examine and discuss the severity of each type of anti-patterns in terms of
maintenance costs; 4) we have extended the simple tool support described
in our conference paper to a full functional tool; 5) in the original paper,
we only studied ten projects, but in this paper, we studied 19 projects in
total (including 15 open source projects and 4 commercial projects).

1. In prior work [1], we called these architecture problems “issues”
or “hotspots”. Since these terms were over-loaded, we chose to use the
term ”architecture anti-pattern”.

Existing tools like SonarQube2, AiReviewer3, Designite4 etc.
support the detection of such smells.

These tools like SonarQube often report large numbers of
low-level smells, not architecture-level violations, and many
of these low-level problems do not incur high maintenance
costs [14], [15]. For example, cloned code that never changes
may not need attention. Tools like AiReviewer and Desig-
nite also report many types of problems based on violations
of design principles, but no empirical evidence has been
offered to show if and to what extent these problems have
severe consequences in terms of bug-proneness and change-
proneness. Different from design smells or architecture
smells proposed in previous studies, our objective is to
pinpoint architectural problems with severe consequences,
identified through the combination of structural information
and revision history records.

In this paper, we present our approach to detecting
architecture anti-patterns, defined as connections among files
that violate design principles and impact bug-proneness
and change-proneness5. Different from existing work [11],
[13], [12], [16], our definition uses both a project’s structural
information and its revision history to detect anti-patterns.
After examining the source code and revision histories of
over 100 open-source and industrial software projects, we
have observed that there are just a few distinct types of
architecture anti-patterns that occur in all the projects we
have studied. We will show that files involved in these
anti-patterns tend to have more bugs, more changes, and
consume more effort, and thus they should be identified.
To improve the quality and productivity of a project, the
architectural problems behind these file groups should be

2. https://www.sonarqube.org/
3. http://www.aireviewer.com/
4. http://www.designite-tools.com/
5. In this paper, a file means a source file, which contains one or more

classes
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fixed first. We summarize the six architecture anti-patterns
as follows:

1) Unstable Interface. Based on design rule theory [17]
and prevailing design principles [18], an influential interface
with many dependents should remain stable. In reality, we
have observed that if influential files have high change rates,
then multiple files depending on them have to be changed
as a consequence.

2) Modularity Violation Groups. Based on design rule
theory [17], truly independent modules should evolve in-
dependently. Our prior work [1] introduced the concept of
Implicit Cross-module Dependency to identify modules that
have changed together frequently, as evidenced in revision
history, but have no structural dependency. In this paper,
we modified the algorithm to detect the Modularity Violation
Group, which contains a set of modularity violation file pairs
(two files without structural relations but changed together
frequently in revision history) .

3) Unhealthy Inheritance Hierarchy. This anti-pattern iden-
tifies the violation of the Liskov Substitution principle [18],
[19] or Dependency Inversion Principle [18]. This anti-
pattern includes cases where the parent class depends on
one or more of this subclasses, or the client of an inheritance
hierarchy depends on both the parent class and its children.
These cases undermine the objective of an inheritance hi-
erarchy to enable polymorphism. As a result, this structure
propagates bugs and changes to files that depend on this
inheritance hierarchy.

4) Crossing. In this paper, we extend our prior work [1]
with a newly defined architecture anti-pattern, which we
call Crossing: a file that has both high fan-in and high fan-
out, and changes often together with its dependents and the
files it depends on, is often at the center of maintenance
activities. Since files involved in this anti-pattern form a
cross shape in a Design Structure Matrix [17], we call it
Crossing.

5) Clique. Cyclic dependency is a well-know design
problem. Instead of detecting pair-wise cycles [1], we define
Clique as a set of files that form a strongly connected
graph with direct or indirect cycles among files. Files in
each Clique instance are tightly coupled with one or more
dependency cycles.

6) Package Cycle. Dependency cycles between packages
violates the basic design principle of forming a hierarchical
structure [20]. We have observed that changes to a file in
one package often cause unexpected changes to files in other
packages due to the cycle of dependencies between them.

To evaluate these architecture anti-patterns, we investi-
gate following research questions:

• RQ1: Do the files involved in architecture anti-
pattern consume significantly more maintenance ef-
fort than other files in a project?

• RQ2: If a file is involved in greater numbers of archi-
tecture anti-patterns, is it more error-prone and/or
change-prone?

• RQ3: Do different types of architecture anti-patterns
have different impacts on a file’s overall error-
proneness and change-proneness?

To answer these questions, we present the analysis of
fifteen open source projects and four commercial projects.

These projects have different sizes, ages, and domains. Our
results show that these six architecture anti-patterns are
strongly correlated with higher bug-proneness and change-
proneness—files that are involved in these anti-patterns
are more bug-prone or change prone. After analyzing files
involved in 0 to 6 anti-patterns, we observed that their bug
rates and change rates increase dramatically as the number
of architecture anti-patterns in which they are involved
increases. Furthermore, we identify and quantify the most
severe anti-patterns in software systems. Of all 6 patterns,
our analysis shows that Unstable Interface and Crossing have
the most significant contributions to error-proneness and
change-proneness.

This paper is an extension of our prior work [1], in which
5 hotspot patterns were defined. In this paper, we have
added one more anti-pattern, Crossing, and improved the
algorithms for detecting Clique and Modularity Violation
Group. An industrial case study of the tool presented in this
paper has been recently published [21]; this paper focuses
on the detailed formalization and thorough empirical eval-
uation of the underlying technology.

2 BACKGROUND

In this section, we introduce the conceptual foundations of
our work.

Design Rule Theory. According to Baldwin and Clark’s
Design Rule Theory [17], software should be structured by
design rules and independent modules. In a software system,
design rules are often manifested as the important design
decisions, which decouple the rest of the system into in-
dependent modules. A design rule is typically manifested as
an interface or abstract class. For example, if an Observer
Pattern [22] is used in a code base, then there must exist
an observer interface that decouples the subject and con-
crete observers into independent modules. As long as the
interface is stable, addition, removal, or changes to concrete
observers should not influence the subject. In this case, the
observer interface is considered as a design rule, decoupling
the subject and concrete observers into two independent
modules. For another example, if a Strategy Pattern [22] is
implemented, then the strategy interface is considered as
the design rule which decouples the context and concrete
strategies into independent modules.

Design Rule Hierarchy (DRH). To automatically iden-
tify the design rules and independent modules in software
systems, our prior work introduced a clustering algorithm—
Design Rule Hierarchy (DRH) [23], [24], [25], which clusters
the file relation of a system into a hierarchical structure.
Within such a hierarchy, files in layer Li should only depend
on files in the higher layers, Li−1 to L1, and files in layer
Li should not depend on files in the lower layers, Li+1

to Ln. Hence files in the first layer, L1, should contain
most influential interfaces or abstract classes, which do not
depend on files in other layers. In addition, files in the same
layer are decoupled into a set of modules that are mutually
independent from each other. Thus the changes, addition,
even replacement to a module will not influence other mod-
ules within the same layer. Accordingly, independent modules
in the bottom layer of a design rule hierarchy are most
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valuable, because changes to these modules will not affect
the rest of the system.

Design Structure Matrix (DSM). We use a Design Struc-
ture Matrix (DSM) to visualize file relations. A DSM is a
square matrix, in which rows and columns are labeled with
file names in the same order. An annotation in the cell in row
x, column y, c(rx, cy), indicates that there is a dependency
relation between file x and file y: file x either structurally
depends on file y, or file x and file y were changed together
as recorded in the project’s commit history.

The DSM in Figure 1 presents a design rule hierarchy
(DRH) with 3 layers: L1 : (rc1 − rc2), L2 : (rc3 − rc11),
L3 : (rc12 − rc32). The first layer, L1, contains the most
influential design rules that should remain stable. Files in
L2 only depend on files in L1. Similarly, files in L3 only
depend on files in the first two layers. Within each layer, files
are grouped into mutually independent modules. Taking the
bottom layer L3 as an example: it is grouped into 8 mutually
independent modules: M1 : (rc12), M2 : (rc13 − rc16),
M3 : (rc17 − rc18), etc. We can see that there are no
dependencies between these modules.

The text in a cell is used to indicate specific types of
dependencies between the files. For example, cell(r4, c1)
in Figure 1 is marked with ”dp”, which means Expression-
Builder java “depends on” (calls methods from) Expression-
Definition java. As we mentioned before, a DSM can also
represent evolutionary coupling between files—the number
of times two files were changed together. In Figure 2, a
cell with just a number means that there is no structural
relation between these two files, but they have been co-
committed. For example, cell(r8, c3) is only marked with
“4”, which means that there is no structural relation between
BeanExpression java and MethodNotFoundException java, but
they were changed together 4 times. A cell with both a num-
ber and text means that the two files have both structural and
evolutionary coupling relations. For example, cell(r22, c1) is
marked with ”dp, 3”, which means that XMLTokenizerEx-
pression java depends on ExpressionDefinition java, and they
were changed together 3 times.

Design Rule Space. We recently proposed the concept
of Design Rule Space (DRSpace) [8], [9] to model the fact
that the architecture of a software system can and should
be represented as a set of overlapping design spaces, each
reflecting an unique aspect of the architecture. For example,
each feature implemented, or each pattern applied can be
modeled as an individual design space. Each DRSpace con-
tains one or more “leading files”, typically design rules that
all the other files within the design space depend on directly
or indirectly. In other words, files within a DRSpace are
architecturally connected. For example, if a strategy pattern
is applied, all the files in the pattern can be represented as a
DRSpace, and the strategy interface will be the “leading file”
that all other files depend on. If an inheritance hierarchy is
implemented, all files involved in the inheritance tree could
form a DRSpace led by the parent class. More generally,
a DRSpace is a subset of files connected by one or more
relations, such as inheritance, call, etc. For any non-trivial
project, there are numerous DRSpaces.

In these prior studies [8], [9], we demonstrated that the
majority of error-prone files can be captured by just a few
DRSpaces, suggesting that most error-prone files in a project

are architecturally connected. We named these DRSpace Ar-
chitecture Roots, and argued that these roots typically contain
architectural design problems which could propagate error-
proneness among multiple files.

3 ARCHITECTURE ANTI-PATTERNS

In this paper, we define a suite of architecture anti-patterns
based on Baldwin and Clark’s design rule theory [17] and
widely accepted design principles, especially the SOLID
principles proposed by Robert Martin [18]. We have ob-
served that the design rule theory explains these informal
principles so that they can be visualized and possibly quan-
tified. According to design rule theory, a well-modularized
system should have the following features: first, design
rules have to be stable—neither error-prone nor change-
prone. Second, if two modules are truly independent, then
they should only depend on design rules, but not on each
other. More importantly, independent modules should be
able to be changed, or even replaced, without influencing
each other, as long as the design rules themselves remain
unchanged. The importance of design rules, that is, abstrac-
tions, are also reflected in the Liskov substitution, Inter-
face segregation, and Dependency inversion principles. The
Single responsibility and Open-closed principles suggest
the importance of module independence. After analyzing
a large number of industrial and open source projects,
we have summarized six types of recurring problems into
a suite of Architecture Anti-Patterns, each violating one or
more design principles and/or design rule theory. Next we
define some basic terms and introduce the rationale and
formalization of these anti-patterns.

3.1 Definitions
We use the following terms to model the basic concepts used
in our definition:
F—the set of all the files: F = {fi | i ∈ N}

We use the following notions to model structural and
evolutionary relation among files of a project:

depend(x, y): x depends y, i.e., x calls methods from y.
inherit(x, y): x inherits from or realizes y, e.g., y is the

parent class of x, or y is an interface and x implement it.
#cochange(x, y): the number of times x was committed

together with y in a given period of time based on the
revision history. Gall et al.’s [2] proposed that evolution-
ary coupling between two files could be reflected by how
often they were committed together as recorded in the
revision history. The more often two files change together,
the stronger their evolution coupling.

SRelation(x, y): structural relations from file x to file y,
such as Implement, Extend, depend, etc.

3.2 Architecture Anti-Patterns
For each architecture anti-pattern, we now introduce its
rationale, description, and formalization.

1. Unstable Interface (UIF).
Rationale: According to the design rule theory [17] and
design principles [18], important and influential abstrac-
tions (design rules) should be stable. Otherwise their bugs
and changes can be propagated to multiple files. We have
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Fig. 1: An example of DRH exhibiting structural relations among files

ex: Extend; im: Implement dp: Depend

observed that unstable or poorly-designed abstractions are
often related to high-maintenance, and deserve special at-
tention.

Description: If a highly influential file (files with a large
number of dependents) is changed frequently with other
files as shown in the revision history, then we call it an
Unstable Interface (UIF).

Formalization:
StructImpactthr: the threshold of the structural impact
scope of a file, fi. If the number of its dependents is larger
than the threshold, we consider fi to be a candidate unstable
interface.

HistoryImpactthr : the threshold of the number of co-
changed dependents of fi. This requires that fi not only
has more than StructImpactthr dependents, but also has
more than HistoryImpactthr of these dependents changed
together frequently with it.

cochangethr : the threshold of co-change frequency. If
two files are committed together more times than this
threshold, we consider these two files to have changed
together “frequently” and that they are evolutionarily coupled.

For a file fi, if it has more than StructImpactthr de-
pendents, and more than HistoryImpactthr of these de-
pendents changed together with it more than cochangethr
times, we consider fi to be an Unstable Interface. Formally:

∃f1 ∈ F | {Fset S : ∀fi ∈ Fset S | SRelation(fi, f1)}∧
{Fset H : ∀fj ∈ FSet H | #cochange(fj , f1) > cochangethr}
∧ (|FSet| > StructImpactthr)

∧ (|FSet S ∩ Fset H | > HistoryImpactthr)
(1)

where i ∈ {1, 2, 3, ..., n}, n is the number of files in Fset S ,
j ∈ {1, 2, 3, ...,m}, m is the number of files in Fset H .
StructImpactthr, cochangethr and HistoryImpactthr are
the thresholds that are configurable.

Figure 3 depicts an instance of Unstable Interface in the
Cassandra project. An ”x” in a cell indicates a structural
dependency between the file on the row and the file on
the column; a number represents the historical co-change
frequency of these two files. We can see that multiple files
structurally depend on StreamSession java and that these
files have changed together frequently with it as evidenced
by the project’s revision history.

2. Modularity Violation Group (MVG).
Rationale: Baldwin and Clark’s Design Rule theory [17]
proposed that independent modules can be changed or even
replaced without influencing each other. Wong et al. intro-
duced the term Modularity Violation [26], which describes
two structurally independent modules that change together
frequently, meaning that they are not truly independent. The
more often two structurally unrelated files change together,
the more likely that there are implicit dependencies between
them [26], [27]. In this paper, we extend our prior work [1]
to calculate the minimal number of file groups with modu-
larity violations.
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Fig. 2: An example of DRH exhibiting structural relations and evolutionary coupling among files

ex: Extend; im: Implement dp: Depend

Fig. 3: An example of Unstable Interface

x indicates structural dependencies, such as extend, depend, etc.

Description: A Modularity Violation Group (MVG) contains
a set of modularity violation files. We calculate the minimal
number of MVGs so that their union covers all violated file
pairs (two files without structural relations but changed
together) in a project. In a Modularity Violation Group, there
exists a core file, fcore, which all other files are not struc-
turally related to, but have frequently changed together
with. To identify a Modularity Violation Group (MVG), our
tool first generates all filesets by considering each file in
a project as a core file, then greedily searches a fileset that
covers most violated file pairs as a MVG, until the union of
all the MVGs covers all violated file pairs in a project.

Formalization:

MVG1 ∪MVG2 ∪MVG3 ∪ · · · ∪MVGn = P

| fcore ∈MVGi,∀fj ∈MVGi, fj 6= fcore |
¬SRelation(fcore, fj) ∧ ¬SRelation(fj , fcore)

∧ (#cochange(fcore, fj) > cochangethr)

(2)

where i ∈ {1, 2, 3, ..., n}, n is the minimal number of
MVGs whose union covers all violated file pairs. P is the
set of all violated file pairs. fj is a file that is structurally
independent from fcore, but frequently changes together
with it. cochangethr is a configurable threshold of co-change
frequency, above which we consider the two files as evolu-
tionarily coupled.

Figure 4 shows an instance of MVG detected in Apache
Cassandra. There are no structural dependencies between
DropIndexStatement java and the other files. However, the
cells annotated with a number in the DSM reveal that all
other files changed together with DropIndexStatement java,
the core file. Here, we uniformly assume a cochangethr of 2.

3. Unhealthy Inheritance Hierarchy (UIH).
Rationale: We have encountered a surprisingly large number
of cases where basic object-oriented design principles are
violated in the implementation of an inheritance hierarchy.
The two most frequent problems are: (1) a parent class
depends on one of its children; and (2) a client class of the
hierarchy depends on both the base class and its children.
Both cases violates Liskov Substitution principle6 [19], since
the parent class can no longer be a placeholder substitutable
by any of its children. They also violates the Design Rule
Theory [17] because the parent class cannot be a decoupling

6. https://sites.google.com/site/unclebobconsultingllc/getting-a-
solid-start
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Fig. 4: An example instance of Modularity Violation Group

Each number indicates the co-changes between two files

design rule. They violate the Dependency Inversion Princi-
ple [18] since a client should depend on abstractions, not on
concretions.

Description: We consider an inheritance hierarchy to be
problematic if it falls into one of the following two cases:

1) Given an inheritance hierarchy containing one
parent file, fparent, and one or more children,
Fchild, there exists a child file fi satisfying
depend(fparent, fi)

2) Given an inheritance hierarchy containing one par-
ent file, fparent, and one or more children, Fchild,
there exists a client fj of the hierarchy, that depends
on both the parent and one or more of its children.

Formalization:

∃fparent, Fchild ∈ F ∧ ∃fi ∈ Fchild | depend(fparent, fi)∨
[∃fj ∈ F | depend(fj , fparent) ∧ ∃fi ∈ Fchild | depends(fj , fi)]

(3)
where i, j ∈ [1, 2, 3, ..., n], fj /∈ Fchild and fj 6= fparent.

Figure 5 presents several instances of Unhealthy Inher-
itance Hierarchy: 1) the parent file, ProcessorDefinition java
depends on its child file AggregateDefinition java; 2) the
parent file, JmsEndpoint java depends on its child file Jm-
sQueueEndpoint java; 3) the client file DefaultManagementO-
bjectStrategy java depends on the parent file ManagedPerfor-
manceCounter java and all of its children.

Fig. 5: Instances of Unhealthy Inheritance Hierarchy
architecture

dp: depend, ex: extend

4. Crossing (CRS).
Rationale: If a file has both a large number of dependents and
depends on a large number of other files, i.e., with both high
fan-in and high fan-out, it is unlikely that this file follows

Single Responsibility Principle [18]. We observe that if such
a file also changes frequently with its dependents and the
files it dependents on, it is often the center of error- and
change-proneness.

Description: If a file is changed frequently with its de-
pendents and the files that it depends on, then we consider
these files to follow a Crossing anti-pattern (CRS).

Formalization:
cochangethr : the co-change frequency threshold. If two

files change together more than the threshold, they are
considered to be evolutionarily coupled.

crossingthr : the threshold of fan-in and fan-out of a file.
If the numbers of dependents and dependees of the file are
both larger than the threshold, we consider this group of
files as a candidate Crossing.

∃fi, fj , fc ∈ F | (|SRelation(fi, f1)| > crossingthr∧
|#cochange(fi, fc) > cochangethr| > crossingthr)

∧ (|SRelation(fc, fj)| > crossingthr∧
|#cochange(fc, fj) > cochangethr| > crossingthr)

(4)

where i, j ∈ {2, 3, 4, ..., n}, n is the number of files in
a project’s DSM. cochangethr and crossingthr are config-
urable thresholds. In a DSM, fc will show up at the center
of a cross shape, and we call such a file as the center file of a
crossing instance.

Figure 6 shows an instance of Crossing. We can see that
the center file, DefaultErrorHandlerBuilder java, was changed
frequently with its dependents and dependees in the revi-
sion history.

Fig. 6: An example of Crossing

x indicates structural dependencies, such as extend, depend, etc.

5. Clique (CLQ).
Rationale: It is widely accepted the cyclical dependencies
should be avoid. In our prior work [1], we proposed Cross-
Module Cycle to detect dependency cycles among source
files. In order to reduce the number of instances the user
has to examine, in this paper, we define Clique as a set of
files whose structural relations form a strongly connected
graph, so that changes to any files can be propagated to any
other files within the group.

Description: If there is a subset of files that form a strongly
connected component based on their structural relations, we
consider this file group as a Clique instance.

Formalization:

∀fi ∈ Fcq,∀fj ∈ Fcq, i 6= j |
[depend(fi, fj) ∧ depend(fj , fi)] ∪ [∃f1, ...fn ∈ Fcq, n ≥ 1 |
depend(fi, f1) ∧ depend(f1, f2) ∧ · · · ∧ depend(fn, fj)]

(5)
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where i, j /∈ {1, 2, 3, ..., n}, Fcq is the set of files in a clique.
Figure 7 shows an instance of Clique. Files in this ex-

ample are highly coupled with each other through multiple
dependency cycles, such as, ActivityRules java ↔ Process-
Rules java, ActivityRules java→ TimeExpression java→ Tem-
poralRule java→ ActivityRules java, etc.

Fig. 7: An example of Clique

dp: depend

6. Package Cycle (PKC).
Rationale: Ideally, the package structure of a software system
should form a hierarchical structure [20]. As with the Clique
anti-pattern, a cycle among packages reduces the understand-
ability and maintainability of a system.

Description: Given two packages Pa, Pb in the DSM, there
exists a file f1 in Pa and a file f2 in Pb. Given another file
fj in Pb and fi in Pa, if depend(f1, fj) and depend(f2, fi),
then we consider that these two packages create a Package
Cycle, that is, a cycle of dependencies between the packages.

Formalization:

∃f1, fi ∈ Pa ∧ ∃f2, fj ∈ Pb | depend(f1, fj) ∧ depend(f2, fi)
(6)

where Pa, Pb are the packages of the system, i, j ∈
[1, 2, 3, 4, ..., n], n is the number of files in the system.

Figure 7 shows an instance of Package Cycle, in
which AvroOutputFormat java in package mapred depends
on HadoopCodecFactory java in package file, and SortedKey-
ValueFile java in package file depends on FsInput java in
package mapred, forming a dependency cycle between pack-
age mapred and package file.

Fig. 8: An example of Package Cycle

dp: depend

4 TOOL SUPPORT

Figure 9 depicts the framework for the detection of Archi-
tecture anti-pattern instances, with the following steps:

First, we collected two types of data from a project
repository: 1) the source code of a project snapshot that will
be processed using a commercial reverse-engineering tool,

Understand7, to generate a XML report of file structural
dependencies. 2) A specified period of revision history of
the project, extracted from Git or SVN repositories.

Second, given the XML file dependency report and se-
lected revision history as inputs, the DSM Generator au-
tomatically generates SDSM (Structural DSM) and HDSM
(History DSM) files. The SDSM file contains structural re-
lations among files, and the HDSM file contains their pair-
wise co-change information.

Third, given the SDSM and HDSM files, our Architecture
Anti-pattern Detector automatically identifies all architecture
anti-pattern instances, captures the involved files, and out-
puts a summary of the detection results. Each instance will
be exported as a DSM presenting how the involved files are
connected structurally or evolutionarily.

These DSMs can be viewed using DV88, an architecture
analysis tool that has been used by many industrial prac-
titioners9 and academic researchers [21]. The architecture
anti-pattern detector has been integrated into DV8.

Tool Complexity The run-time complexity of our tool
chain is now discussed, step by step:

1. Downloading revision history and generating a file
dependency report using third-party tools: a) We download
each projects revision history from GitHub or SVN, and this
step typically takes just a few minutes. b) Using source code
as input, we the used Understand reverse-engineering tool
to generate a report of file dependencies; the time expense of
this step is related to the size of a project. For Apache Camel,
which is the largest project studied in this work, this step
completes in 10 minutes on an average PC (Memory: 16GB,
Processor: Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz).

2. Using our DSM generator to automatically generate
the SDSM and HDSM: a) the time complexity of SDSM
generation is O(V + E), where V is the number of files
in a project, E is the number of structural dependencies
among these files, that is, the number of marked cells in this
project’s SDSM; b) the time complexity of HDSM generation
is O(m*n), where m is the number of commits in the studied
revision history, n is the number of files in a project.

3. Given SDSM and HDSM files, detecting architecture
anti-patterns: the worst-case time complexity of detection is
O(n3), where n is the number of files in a project. Using
Apache Avro (Size: 301 files), Hadoop (Size: 4,519 files), and
Camel (Size: 11,732 files) as examples, this step completes
in 4, 17, and 76 seconds respectively, on an average PC
(Memory: 16GB, Processor: Intel(R) Core(TM) i7-8550U CPU
@ 1.80GHz).

5 EVALUATION

In this section, we present our evaluation subjects, methods,
and results.

5.1 Research Questions
To evaluate whether the 6 architecture anti-patterns
have significant impact on error-proneness and change-
proneness, and hence deserve special attention when mak-

7. https://scitools.com/
8. https://www.archdia.net/products-and-services/
9. https://www.archdia.net
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TABLE 1: Researched Projects

Subjects Release #Commits #Bugs History Length #Files LOC Description
Avro 1.7.7 1,278 495 63 months 301 178K Serialization system
Camel 2.15.5 21,655 1,931 113 months 11,732 934K Integration framework
Cassandra 3.1 19,333 3,270 89 months 1,765 331k Distributed database
CXF 3.1.4 11,160 2,278 96 months 5,960 708K Services framework
Derby 10.12.1.1 8,058 3,214 78 months 2,770 760K Relational database
Hadoop 2.7.2 12,506 1,785 86 months 4,519 1.6M Tool for distributed Big Data processor
HBase 0.98.16.1 11,329 4,848 105 months 1,556 744K Hadoop database
Ivy 2.4.0 2,518 641 106 months 613 309K Tool for dependency management
Mahout 0.11.1 3,377 567 94 months 1,158 125K Scalable machine learning libraries
OpenJPA 2.4.1 4,729 1,575 116 months 3,579 494k Java persistence project
PDFBox 1.8.10 4,337 1,203 95 months 738 122k Library for manipulating PDF documents
Pig 0.15.0 2,754 1,072 75 months 1,150 369K Platform for analyzing large data sets
Tika 1.10 2,717 735 102 months 718 86K Content analyzer
Wicket 7.1.0 18,963 2,786 132 months 3,090 288K Java web application framework
ZooKeeper 3.5.1 1,364 707 86 months 402 134K Tool provides centralized services
Comm 1 - 360 186 25 months 491 198K Tool for HMI engineering
Comm 2 - 1,668 560 41 months 1541 422K Platform for engineering tool
Comm 3 - 2,568 482 72 months 6,948 988K Tool for client/server-based integration
Comm 4 - 39,074 5,268 72 months 7,754 834K Tool for harmony controller

Fig. 9: Framework of Architecture Anti-pattern Detection

ing maintenance and refactoring decisions, we investigate
the following research questions (RQs):

RQ1. Do the files involved in these anti-patterns consume
significantly more maintenance effort than other files?
This question examines whether files participated in these
anti-patterns are truly error-prone and/or change-prone. A
positive answer would suggest that when we make changes
or fix bugs in these files, we have to consider their archi-
tectural connections, which could be problematic and have
significant impact on files’ maintenance.

RQ2. If a file participates in more anti-patterns, then is it
more error-prone/change-prone?
The answer to this question will indicate how strongly these
anti-patterns impact error-proneness and change-proneness
of a file. If the more anti-patterns a file participates in, the
more error-prone/change-prone it is, then files involved
in multiple anti-patterns should have higher priority for
refactoring, and the refactoring for these files will be more
complicated.

RQ3. Do different types of anti-patterns have different impacts
on error-proneness and change-proneness?
The answer to this question will advance our understanding
regarding to if and how these anti-patterns differ from each

other in terms of their impact on maintainability.

5.2 Subjects

We chose a total of 19 projects as our experimental subjects,
including 15 Apache open source projects and 4 commercial
projects from our industrial collaborators. These projects
differ in size, age, domain and other project characteristics.
Table 1 shows their basic demographic facts.

The first column indicates the version of each project
we selected. The column “#Commits” shows the number
of revisions we examined; this data is calculated from a
project’s revision history, from the beginning to the selected
version. All revision histories were extracted from Git10 or
SVN version control systems. “#Bugs” indicates the num-
ber of bug reports, as recorded in a project’s issue tracking
system. For open source projects, bug reports are extracted
from their JIRA11 archives; for commercial projects, each
collaborator provided us with bug reports from their issue
tracking system. “#HistoryLength” shows the number of
months of each project’s revision history we studied, from
its beginning to the selected release date. The fifth and sixth
columns present the size of each project, measured by the
number of files and LOC. The last column describes the
domain of each project.

For each project, we selected its latest version as our
subject. Using a project’s source code only, our tool chain
can detect files involve in Unhealthy Hierarchy, Clique
or Package Cycle. If the project’s revision history is also
available, we can detect the other three anti-patterns. The
user can select any period of revision history as input to
the tool. For evaluation purposes, we studied all the history
from the beginning to the selected version.

5.3 Evaluation Methods

For our analyses, we applied our detection tool on the
nineteen projects. For each project, our tool detects architec-
ture anti-patterns (and the associated set of files). We then
investigated the error-proneness and change-proneness of
the involved files.

10. https://git-scm.com/
11. https://www.atlassian.com/software/jira
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To quantitatively estimate the maintenance effort spent
on each file, we adopted the following history measures:

• Bug Frequency (BF): the number of times a file partic-
ipated in bug-fixing commits. The higher the score,
the more error-prone the file is. We extract bug data
from issue tracking systems and revision history. We
used the pattern matching method in [28] to locate
bug-fixing commits. A commit was considered as
a bug fix if a bug ticket ID recorded in the issue
tracking system is identified in its change message.

• Bug Churn (BC): the number of added and deleted
lines of code (“churn”) to a file by bug-fixing com-
mits.

• Change Frequency (CF): the number of times a file
was committed in the revision history. The higher
the value, the more change-prone it is.

• Change Churn (CC): the number of changed LOC in
a file committed for any issues.

These measures manifest how frequently a file was
changed and how costly (in terms of churn) the file was
during maintenance. These measures were calculated by:
1) mining a project’s revision history from its beginning
to the selected release date; 2) calculating the measure
values of each file based on the corresponding definitions.
Bug frequency and bug churn were calculated by mining
both revision history and the bug reports extracted from a
project’s issue tracking system.

Table 2 presents a summary of the detected anti-patterns
for each project. Some files are involved in multiple anti-
patterns, so the total ’#Files’ shows the total number of
distinct files involved in each anti-pattern. The following
% indicates the percentage to the total number of files in
a project. The first observation to make is that these anti-
patterns occurred in all the studied projects, and they are
indeed ubiquitous. Every project had at least one instance
(ins) of each anti-pattern, and in some cases there were
hundreds of instances and thousands of files implicated.
Architecture anti-patterns are real and frequently recurring.

5.4 Quantitative Analysis

Given the measures of maintenance effort, Bug Frequency
(BF), Bug Churn (BC), Change Frequency (CF), Change
Churn (CC), we now present and analyze our results to
answer these research questions. For the rest of the paper,
we call files participated in anti-patterns as infected files, and
other files as non-infected files.

RQ1. Do infected files consume significantly more mainte-
nance effort than non-infected files? To answer this question,
we need to validate whether infected files were changed
more frequently and consumed substantially more effort.
For each project, we calculated scores of the four measures
for each file, and for each measure, we calculate its average
value for infected files as avg af measurei, and the aver-
age value for non-infected files as avg non af measurei.

Figure 10 (a) - (d) presents the average values of all
measures. The blue bars present results for infected files.
The red bars present the values for non-infected files. For
each measure we also calculated the relative increases

between infected and non-infected files:

measurei inc =
avg af measurei − avg non af measurei

avg non af measurei

Table 3 shows the differences in average values for each
project. These results show that the average values of all
measures of infected files are larger than the average values
of non-infected files. Using the Camel project as example
(Figure 10c), we can observe that its avg af CF is 7.68, but
its avg non af CF is 1.04. According to Table 3, its CF inc
is calculated as 640%, meaning that its infected files were
changed more than 6 times as much as non-infected files.
The greatest increase is 11,968%, Bug Frequency (BF) of
Cassandra, meaning that its infected files were changed for
bug-fixes about 120 times more than non-infected files. In
Figure 10 (a), we can see that the avg af BF of Cassandra
is 3.54, but its avg non af BF is only 0.03. All of these
results indicate that infected files are far more error-prone
and change-prone than non-infected files.

To substantiate this claim, we employ the Wilcoxon
signed-rank test, a non-parametric statistical hypothesis
test for comparing two related samples, to test whether
the population of avg af measurei is significantly larger
than the population of avg non af measurei over the 19
projects. We defined the hypotheses as follows:

Null Hypothesis: H0, the population of avg af measurei
is not significantly larger than the population of
avg non af measurei.

Alternative Hypothesis: H1, the population of
avg af measurei is significantly larger than the population of
avg non af measurei.

For all measures, the p-values of tests are less than
0.01 (From BF to CC, the p-values are 3.5E-6, 2.8E-6, 4E-
6 and 1.2E-5 respectively), so that H1 is accepted for all
the tests. The results indicate that the differences between
avg af measurei and avg non af measurei across all 19
projects are statistically significant. In addition, we lever-
aged the Hedges’g [29] to indicate the effect size [30], [31]
to test the difference between two populations. For all
measures, the effect sizes are large than 0.8 (from BF to CC,
the effect sizes are 1.8, 1.2, 2.7 and 1.8 respectively). Based
on the rule of thumb interpretation [32], [33] of the effect
size, we can conclude that there exists significant differences
between avg af measurei and avg non af measurei.

Our results demonstrate that the four measures are con-
sistently and significantly greater for infected files. There-
fore, we have strong evidence to believe that files participat-
ing in anti-patterns will be more error-prone and change-
prone, consuming much higher maintenance efforts.

RQ2. If a file is involved in greater numbers of architec-
ture anti-patterns, then is it more error-prone/change-prone? To
answer this question, we need to investigate whether the
files participating in multiple architecture anti-patterns incur
greater maintenance costs.

For each file in each project, we first calculated its
four measures, then calculated how many architecture anti-
patterns the file participates in. After that, we categorized
the files based on the number of participated anti-patterns,
and calculated the average measures for each category.
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TABLE 2: Identified architecture anti-patterns for all 19 projects

Avro Camel Cassandra CXF Derby Hadoop HBase
Type #Ins #Files (%) #Ins #Files (%) #Ins #Files (%) #Ins #Files (%) #Ins #Files (%) #Ins #Files (%) #Ins #Files (%)
UIF 5 76 (25%) 23 995 (8%) 55 750 (42%) 12 408 (7%) 48 768 (28%) 30 780 (17%) 61 751 (48%)
MVG 34 141 (47%) 1,139 5,524 (47%) 134 974 (55%) 505 2,373 (52%) 282 1,440 (25%) 339 1,665 (37%) 143 909 (58%)
UIH 17 57 (19%) 149 1,085 (9%) 86 343 (19%) 196 887 (15%) 211 680 (25%) 271 987 (22%) 94 299 (19%)
CRS 7 56 (19%) 145 1,360 (12%) 83 643 (36%) 70 659 (11%) 117 742 (27%) 140 1,039 (23%) 85 601 (39%)
CLQ 9 41 (14%) 156 1,064 (9%) 7 562 (32%) 71 394 (7%) 54 766 (28%) 93 760 (17%) 26 306 (20%)
PKC 17 113 (38%) 179 2,822 (24%) 279 1,332 (75%) 209 1,548 (26%) 100 985 (36%) 305 2,193 (49%) 119 1,050 (67%)

Ivy Mahout OpenJPA PDFBox Pig Tika Wicket
#Ins #Files (%) #Ins #Files (%) #Ins #Files (%) #Ins #Files (%) #Ins #Files (%) #Ins #Files (%) #Ins #Files (%)

UIF 17 175 (29%) 4 115 (10%) 26 378 (11%) 20 299 (25%) 14 180 (16%) 6 71 (10%) 19 543 (18%)
MVG 62 263 (43%) 126 650 (56%) 184 1,021 (29%) 88 506 (42%) 83 430 (37%) 84 333 (46%) 319 1,386 (45%)
UIH 33 131 (21%) 34 152 (213%) 136 508 (14%) 33 122 (10%) 49 177 (15%) 24 219 (31%) 84 394 (13%)
CRS 23 161 (26%) 21 185 (16%) 53 405 (11%) 26 237 (20%) 19 141 (12%) 9 83 (12%) 44 491 (16%)
CLQ 7 153 (25%) 13 41 (4%) 77 651 (18%) 10 222 (18%) 10 415 (36%) 14 48 (7%) 28 251 (8%)
PKC 97 354 (58%) 34 260 (22%) 57 843 (24%) 60 389 (32%) 118 758 (66%) 26 205 (29%) 312 1,593 (52%)

ZooKeeper Comm 1 Comm 2 Comm 3 Comm 4
#Ins #Files (%) #Ins #Files (%) #Ins #Files (%) #Ins #Files (%) #Ins #Files (%)

UIF 9 128 (32%) 1 16 (3%) 58 652 (42%) 19 197 (3%) 17 208 (3%)
MVG 26 158 (39%) 19 53 (11%) 87 858 (56%) 31 287 (4%) 140 676 (9%)
UIH 20 86 (21%) 9 46 (9%) 68 257 (17%) 83 328 (5%) 73 263 (3%)
CRS 19 108 (27%) 1 6 (1%) 81 368 (24%) 26 153 (2%) 68 414 (5%)
CLQ 7 66 (16%) 21 89 (18%) 26 322 (21%) 116 1,379 (20%) 140 1,684 (22%)
PKC 16 259 (64%) 67 173 (35%) 175 499 (32%) 140 2,825 (41%) 253 3,194 (41%)

TABLE 3: Average measure increases for all projects

Project BF inc BC inc CF inc CC inc
Avro 1,252% 1,096% 840% 714%
Camel 759% 296% 640% 379%
Cassandra 11,968% 5,170% 4,566% 2,533%
CXF 849% 441% 750% 547%
Derby 740% 417% 1,180% 458%
Hadoop 219% 429% 1,874% 1,416%
Hbase 3,226% 3,279% 4,357% 1,712%
Ivy 2,250% 1,018% 1,357% 898%
Mahout 903% 897% 757% 540%
OpenJPA 117% 14% 334% 332%
PDFBox 4,152% 4,375% 3,093% 1,811%
Pig 1,594% 1,864% 1,439% 661%
Tika 765% 563% 729% 458%
Wicket 1,029% 744% 1,117% 1,001%
ZooKeeper 2,330% 1,571% 1,850% 1,125%
Comm 1 539% 1,540% 400% 1,197%
Comm 2 2,565% 11,424% 1,773% 6,222%
Comm 3 476% 1,307% 360% 1,188%
Comm 4 606% 869% 449% 958%

BF, BC, CF and CC inc: the increases of average measure values

Finally, we analyzed the relations between the number of
anti-patterns and the average measure values. In this way,
we were able to investigate whether there is a correlation
between the number of architecture anti-patterns a file par-
ticipates in and its error-proneness and change-proneness.

Table 4 presents the results relevant to this research ques-
tion. Column #AF indicates the number of architecture
anti-patterns that a file participates in. ”a.measurei” means
the average measure of files involved in a particular number
of anti-patterns. The table shows that the more anti-patterns
a file is involved in, the more maintenance effort it has
incurred. Consider the a.BF of Apache Avro12 as an example.
The files involved in six anti-patterns exhibit the greatest

12. http://openjpa.apache.org/

average bug frequency—12.0—which is substantially higher
than the average bug frequency of files which are only
involved in five anti-patterns, where the average value is 4.4.
The files involved in four anti-patterns have an even smaller
average value of 3.5. The files not involved in any anti-
patterns have the smallest average bug frequency value, 0.3.

To answer this question more rigorously, we conducted
a Pearson Correlation Analysis—a measure of the strength
of correlation between two sets of variables—to test the
relations between the number of anti-patterns a file par-
ticipates in (#AF ) and the average values of its four
measures. Using Pearson Analysis, we investigated whether
each measure would increase as the number of involved
anti-patterns increased from 0 to 6. The r row of Table 4
shows the Pearson Correlation Coefficient for each measure.
The pv row shows the p− value of the correlation analysis,
indicating the significance of the correlations. The values of
r and the p-values in Table 4 indicate the average measures
(a.measurei) are significantly correlated to #AF . That is,
the more architecture anti-patterns a file participates in, the
more maintenance effort it will incur. Our analysis indicates
that all of these anti-patterns have a significant impact on
the error-proneness and change-proneness of files.

RQ3. Do different architecture anti-patterns have different
impacts on error-proneness and change-proneness? We first ana-
lyze to what extent each anti-pattern influences file error- or
change-proneness, and which anti-pattern has the greatest
influence, and hence contribute most to technical debt.

For each project, we first calculated all four measures
for each file, and the average measures for each anti-
pattern, avg archTypej measurei. After that, we calcu-
lated average measures of files not involved in a given
anti-pattern as avg non archTypej measurei, and made
comparison. This way, we could investigate each archi-
tecture anti-pattern independently, and compare the de-
gree to which each affects file’s error-proneness and
change-proneness. As an example, for Unstable Interface,
we calculated avg UIF measurei, and compare it with
the measures for files not involved in this anti-pattern,
avg non UIF measurei. The comparison reveals whether
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Fig. 10: Histogram of average measuresi of files participated in architecture anti-patterns or not

(a) Comparison between avg af BF and avg non af BF (b) Comparison between avg af BC and avg non af BC

(c) Comparison between avg af CF and avg non af CF (d) Comparison between avg af CC and avg non af CC

avg af BF, BC, CF and CC: the average bug frequency, bug churn, change frequency and change churn of infected files;
avg non af BF, BC, CF and CC: the average bug frequency, bug churn, change frequency and change churn of non-infected files

the files affected by UnstableInterface are more error-
prone and change-prone, and by how much.

Tables 5-10 present the results of our analysis. Columns
2-5 report the average measures for files involved in a partic-
ular anti-pattern. Columns 6-9 report the average measures
for files not involved in the same anti-pattern. Columns
10-13 report the differences. From these results, we first
observe that almost all the measures increased, over all
projects and all anti-patterns, as expected, and revealed
by Tables 5 to 10. To explore which anti-pattern has the
highest impact, we conduct pairwise comparisons among
anti-patterns using Paired Wilcoxon signed-rank tests. For each
pair of anti-patterns, we defined the hypotheses as follows:

Null Hypothesis: H0, the average measures of anti-pattern i
are not different than the average measures of anti-pattern j.

Alternative Hypothesis: H1, the average measures of anti-
pattern i are significantly different from the average measures of

anti-pattern j.

where, i and j indicate different anti-patterns, and i 6= j.

Pairwise comparisons requires more strict p-values to in-
dicate the significance of each test. We leveraged Benjamini
and Hochberg correction [34] to adjust the p-values. This
correction helps to control for the fact that small p-values
(less than 0.05) can occasionaly happen by chance, which
could lead to incorrectly rejecting the true null hypotheses.
We reported all p-values of the tests in Table 11. A cell
in row x, column y, cell(x, y) presents the p-value from
the analysis, which tests whether the average measures of
anti-pattern x are significantly different than the average
measures of anti-pattern y. P-values less than 0.05 are high-
lighted.

From Table 11, we can observe that the measures of
Unstable Interface and Crossing, are significantly different
from the others. We also calculated the effect size using
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TABLE 4: Average values of files involved in different numbers of architecture anti-patterns

Avro Camel Cassandra CXF
#AF a.BF a.BC a.CF a.CC a.BF a.BC a.CF a.CC a.BF a.BC a.CF a.CC a.BF a.BC a.CF a.CC
0 0.3 5.7 1.9 95.6 0.1 6.4 1.7 69.1 0.2 11.5 2.1 134.9 0.2 8.8 1.3 52.2
1 0.6 14.1 3.5 166 0.3 9.5 4.4 134 0.3 18.4 2.9 175.3 0.6 18.8 4.1 145.7
2 0.9 22.5 5.5 219.5 0.5 13.5 7.0 193.7 0.6 23.6 5 226.7 1.2 28.8 7.2 239.6
3 1.5 32.4 6.4 251 0.9 18.2 10.0 254.8 1.4 41.3 9.7 397.2 2.4 59.8 13 395.4
4 3.5 49 13.6 764.9 1.8 35.2 16.8 394.2 3.7 95.5 19.6 569.1 4 87.6 19.3 543.5
5 4.4 56.8 19.2 1,012.8 3.6 65.2 33.4 704.3 7.1 272.5 33.4 1,539.2 6.9 135.8 29.7 772.3
6 12.0 169.7 43 1,358.7 6.1 107.8 53.6 1,103.5 17.8 453.5 71.6 2,000.9 15.1 267.5 57 1,553.6
r 0.85 0.83 0.87 0.94 0.91 0.9 0.91 0.92 0.84 0.87 0.87 0.9 0.88 0.9 0.91 0.91
pv 0.02 0.02 0.01 2E-3 0.01 0.01 4E-3 3E-3 0.02 0.01 0.01 0.01 0.01 0.01 4E-3 4E-3

Derby Hadoop HBase Ivy
#AF a.BF a.BC a.CF a.CC a.BF a.BC a.CF a.CC a.BF a.BC a.CF a.CC a.BF a.BC a.CF a.CC
0 1.4 65.3 2 209.6 1.0 103.0 1.2 56.8 1.2 64.8 2.0 325 0.3 16.4 1.9 88
1 2.5 77.6 3.9 273.6 0.9 119.5 2.3 105.8 1.9 231.6 3.6 473.6 0.4 10.5 2.2 71.4
2 3.3 119 6.7 437.8 1.3 192.2 4.8 211.5 2.9 279.2 7.2 910.2 0.9 16.8 3.9 109.1
3 4.6 146.1 10.1 537.6 1.3 176.1 8.2 324 3.9 373.8 10.2 1980.1 2.3 46.8 8 222
4 5.3 132.8 12.1 405.5 1.8 350.9 13.8 502.6 6.7 277.1 14.7 598.9 3.1 81 10.3 358.9
5 7.1 172.5 17.3 561.7 2 463.5 29.3 987.6 14.2 697 31.8 1375.3 4.4 85.3 15.4 411.9
6 10.5 283.4 26.7 952.3 3.5 997.5 61.6 2,214.5 36.6 1,522.2 84.2 3,701.2 10.4 285.6 30.8 1,154.0
r 0.96 0.91 0.96 0.88 0.88 0.86 0.87 0.86 0.82 0.83 0.82 0.75 0.88 0.81 0.9 0.84
pv 5E-4 4E-3 6E-4 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.05 0.01 0.03 0.01 0.02

Mahout OpenJPA PDFBox Pig
#AF a.BF a.BC a.CF a.CC a.BF a.BC a.CF a.CC a.BF a.BC a.CF a.CC a.BF a.BC a.CF a.CC
0 0.2 8 2.1 108.8 0.8 76.7 1.5 77 0.5 20.5 2.7 188.9 0.4 9.1 1.2 96
1 0.7 21.1 5.4 216.8 0.8 65.8 2.9 145.6 0.8 57.6 4 215.4 0.7 19.8 2.4 126.8
2 1 35.6 8.7 341.1 0.9 72.9 4.2 284.4 1.7 66.8 7.9 244.9 1 25 3.2 134.6
3 1.8 47.2 13.4 496.9 1.4 64.6 6.7 331.2 1.9 74.9 8 332.9 1.5 51.3 4.7 169.1
4 3 106.2 18.7 726 3 160.2 12.9 701.5 2.8 117.4 12.9 531.4 4.1 112.3 10.6 382.7
5 5.6 195.4 30.6 988 4.5 158.9 16.6 842.5 6.4 257 24.9 1050.4 5 120.5 12.6 388.8
6 6.9 330.9 25.1 919 12.1 332.3 36.5 1527.2 11.8 564.2 38.3 1,893.8 11.8 301.1 34 1,171.1
r 0.95 0.91 0.95 0.98 0.82 0.82 0.89 0.93 0.87 0.84 0.91 0.87 0.87 0.88 0.85 0.81
pv 1E-3 5E-3 1E-3 2E-4 0.02 0.02 0.01 2E-3 0.01 0.02 4E-3 0.01 0.01 0.01 0.02 0.03

Tika Wicket ZooKeeper Comm 1
#AF a.BF a.BC a.CF a.CC a.BF a.BC a.CF a.CC a.BF a.BC a.CF a.CC a.BF a.BC a.CF a.CC
0 0.6 34.8 2.6 188 0.4 17.1 1.8 60 0.4 20.5 1.4 114.3 0.2 4.9 0.4 7.7
1 1 61.8 4.3 220.9 0.7 24.3 3.2 102.1 0.4 27.6 1.5 107 0.6 37 1.1 46.9
2 2.8 117.5 10.2 482 1.2 39.1 6 203 0.5 24 2.4 229.5 1 60.7 1.5 70.8
3 4.2 145.6 16.3 599.5 2.3 58.8 9.5 328.8 1.4 45.8 4.8 331.5 4.5 228.6 7.5 270.3
4 4.2 109.2 14.9 1001.9 2.9 64.8 12.5 300.6 2.6 105 8.2 412.1 14.9 949.1 22.8 1,251.9
5 6.6 204.9 24.2 1,295.8 6.1 190 22.4 608 7.4 189.5 18.7 639.3 8.3 289.8 13.3 386.8
6 6.2 136.2 41.8 1,472 16.6 382.3 66 1,911 15.7 571.2 37.2 1,939.5
r 0.97 0.8 0.93 0.98 0.82 0.84 0.81 0.79 0.84 0.8 0.86 0.8 0.80 0.65 0.82 0.65
pv 3E-4 0.03 0.002 7E-5 0.02 0.02 0.03 0.03 0.02 0.03 0.01 0.03 0.05 0.16 0.05 0.16

Comm 2 Comm 3 Comm 4
#AF a.BF a.BC a.CF a.CC a.BF a.BC a.CF a.CC a.BF a.BC a.CF a.CC
0 0.2 0.7 0.7 2.2 0 0.6 0.2 2.7 0.4 10.9 2 36.7
1 0.4 1.7 2.2 5.1 0.1 4.1 0.4 11 1.4 43.3 5.1 144.7
2 1 11 4.1 26.9 0.2 2.5 0.6 13.4 2.7 91.3 9.9 338.9
3 3.3 66.5 9.1 112.9 1 36.2 2.8 139.9 5.3 190.2 20.4 667.5
4 3.7 74.3 9.2 115 1.6 36 6 308.2 11.3 303.5 43.1 1,411.1
5 2.1 56.2 7.7 91.3 2.4 85.9 8.2 411.1 25.4 1,058.2 81.6 3,759
6 1.8 77.7 5.8 117.9 4.2 231 11.5 803 43.5 1,985.7 116.8 6,505.5
r 0.61 0.89 0.72 0.87 0.93 0.83 0.95 0.92 0.89 0.85 0.93 0.88
pv 0.14 0.01 0.07 0.01 2E-2 0.02 8E-4 4E-3 7E-4 0.014 2E-3 9E-3

#AF: the number of architecture anti-patterns a file is involved in; a.BF, a.BC, a.CF and a.CC: average bug frequency, bug churn, change frequency and
change churn of files participating in #AF anti-patterns

Hedge’s [29] method. Based on the rule of thumb interpre-
tation [32], [33] for the effect size, we consider values from
0.2 to 0.5 to indicate a small difference; values from 0.5 to
0.8 indicate a medium difference; and values larger than 0.8
indicate a large difference.

Using each of four history measures, we calculated the
effect size by comparing the measure’s average of files
infected with the anti-pattern i versus files infected with
the anti-pattern j, where i 6= j. Tables 12–15 present the
results of all pairwise comparisons based on different his-
tory measure. We only report the effect sizes that indicate
at least a small difference. Considering Table 15 as an
example, “0.93” is the effect size between avg UIF CC
and avg MV G CC over all projects, meaning that there
exists a large difference (the effect size is larger than 0.8)
between the average change churn of files involved in Unsta-

ble Interface and that of files involved in Modularity Violation
Group. Tables from 11 to 15 indicate that, Unstable Interface
and Crossing have most impact on error-proneness and
change-proneness, while Package Cycle has smaller impact.
In other words, all the architecture anti-patterns we defined
contribute to maintenance costs, in terms of bug frequency,
change frequency, bug churn and change churn, but Unstable
Interface and Crossing have contributed by far the most.

5.5 Evaluation Summary
In summary, our analysis leads to the following conclusions:
First, files infected with architecture anti-patterns we de-
fined have significantly higher error-proneness and change-
proneness than files that are not infected. Second, the more
anti-patterns a file participates in, the more error-prone
and change-prone it is. Third, all anti-patterns contribute to
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TABLE 5: Average measures for files involved in, vs. not involved in, Unstable Interface (UIF)

Subjects avg UIF measurei avg non UIF measurei measurei inc
BF BC CF CC BF BC CF CC BF BC CF CC

Avro 3.8 57.8 15.7 647.4 0.6 12.5 3.1 158.1 563% 362% 413% 310%
Camel 2.5 46.4 22.0 461.0 0.3 8.9 3.9 123.3 856% 420% 468% 274%
Cassandra 6.7 197.0 30.5 1041.8 0.3 16.5 3.7 196.5 1,928% 1,093% 723% 430%
CXF 5.7 121.8 25.4 710.1 0.6 17.2 3.7 127.5 866% 609% 591% 457%
Derby 7.4 226.3 17.8 783.8 2.1 68.0 3.6 229.3 249% 233% 400% 242%
Hadoop 2.2 479.8 27.9 970.9 1.0 135.5 2.9 131.1 116% 254% 865% 641%
Hbase 11.5 596.3 26.4 1685.9 1.8 152.1 3.6 379.9 553% 292% 633% 344%
Ivy 4.5 105.6 14.3 447.6 0.5 14.8 2.8 96.7 732% 615% 405% 363%
Mahout 3.0 102.7 18.2 668.9 0.7 20.2 5.2 214.1 361% 408% 253% 212%
OpenJPA 5.7 185.8 19.3 921.7 0.9 74.4 2.5 132.0 569% 150% 676% 598%
PDFBox 4.3 179.7 16.8 700.6 1.0 53.0 5.0 232.4 324% 239% 238% 202%
Pig 6.1 152.0 16.7 549.4 0.9 24.6 2.6 130.8 610% 518% 532% 320%
Tika 4.4 142.5 18.4 971.3 1.5 70.6 6.0 294.7 185% 102% 207% 230%
Wicket 4.5 114.8 17.5 465.2 0.7 25.4 3.5 123.0 518% 352% 398% 278%
ZooKeeper 5.5 172.1 14.3 697.9 0.5 28.5 1.9 127.2 1,010% 505% 669% 449%
Comm 1 10.9 583.9 16.6 727.2 0.5 27.4 0.9 35.3 2,074% 2,033% 1,700% 1,960%
Comm 2 2.5 53.7 7.6 89.0 0.3 2.5 1.5 6.7 706% 2,089% 408% 1,234%
Comm 3 2.3 93.7 7.6 416.2 0.1 2.1 0.3 7.4 2,574% 4,288% 2,317% 5,551%
Comm 4 21.5 768.4 69.7 2887.4 1.3 39.2 5.0 141.2 1,619% 1,862% 1,305% 1,945%

avg UIF measurei: average measures of files involved in UIF; avg non UIF measurei: average measures of files not involved in UIF

TABLE 6: Average measures for files involved in, vs. not involved in, Crossing (CRS)

Subjects avg CRS measurei avg non CRS measurei measurei inc
BF BC CF CC BF BC CF CC BF BC CF CC

Avro 4.3 65.5 17.0 752.9 0.7 14.5 3.8 173.9 486% 352% 350% 333%
Camel 2.0 37.0 18.8 423.5 0.2 8.8 3.7 116.3 723% 319% 413% 264%
Cassandra 7.4 219.6 33.6 1173.6 0.6 20.7 4.5 201.5 1,228% 959% 649% 482%
CXF 3.8 76.6 18.6 534.6 0.6 17.8 3.5 121.7 540% 329% 432% 339%
Derby 6.7 172.2 16.2 626.8 2.4 89.9 4.3 293.8 174% 92% 274% 113%
Hadoop 1.9 392.1 22.5 793.1 1.1 136.1 2.6 121.7 76% 188% 757% 552%
Hbase 13.2 651.0 30.2 1844.6 2.2 187.5 4.7 485.1 491% 247% 539% 280%
Ivy 4.7 106.4 15.0 458.7 0.6 17.3 2.9 103.6 658% 516% 410% 343%
Mahout 2.4 80.4 16.6 588.9 0.6 18.5 4.5 196.6 300% 334% 266% 199%
OpenJPA 5.2 181.5 18.7 903.1 0.9 74.0 2.4 127.7 495% 145% 677% 607%
PDFBox 4.6 193.1 18.6 807.8 1.3 62.3 5.6 239.6 261% 210% 234% 237%
Pig 6.4 171.3 17.9 609.1 1.0 26.8 3.0 138.6 521% 539% 497% 340%
Tika 3.8 92.1 16.1 820.4 1.6 75.9 6.0 301.6 140% 21% 167% 172%
Wicket 4.6 115.6 18.3 522.9 0.8 27.0 3.7 118.9 473% 328% 400% 340%
ZooKeeper 6.6 213.5 16.6 728.3 0.4 23.1 1.9 154.8 1,522% 826% 797% 370%
Comm 1 8.2 678.0 14.8 941.8 0.8 37.7 1.3 46.9 985% 1,699% 1,074% 1,908%
Comm 2 2.9 68.4 8.5 109.4 0.7 10.2 2.7 20.2 291% 568% 217% 441%
Comm 3 2.6 91.3 8.1 443.5 0.1 2.8 0.4 9.4 2,584% 3,178% 2,211% 4,619%
Comm 4 13.1 457.8 46.6 1802.2 1.2 36.2 4.4 125.3 1,035% 1,164% 947% 1,338%

avg CRS measurei: average measures of files involved in CRS; avg non CRS measurei: average measures of files not involved in CRS

high-maintenance, but Unstable Interface and Crossing have
the largest impact, and Package Cycle has the smallest impact.

Given that the files that participated in each anti-pattern
instance can be determined, to compare the impact of dif-
ferent instances of the same anti-pattern, we calculate the
history measures for each file involved in each instance.
Based on this information, we can rank the detected in-
stances of the same anti-pattern. Table 16 shows the size
and total history measures of each identified Unstable Inter-
face instance detected from Apache Avro. Developers could
use this information to prioritize the instances for scrutiny
and plan possible refactoring activities based on their own
needs.

Using DSMs, the user can visualize how files involved
in each anti-pattern are connected (structurally or evolu-
tionarily) with each other. And this information provides
direct guidance to the architect in terms of how to address
the underlying problem. For example, given a set of the
files infected by Unhealthy Inheritance, it is clear that either
the dependency from the parent to its children need to be
removed, or, the hierarchy need to be improved to follow
Liskov Substitution Principle.

5.6 Industry Impact.

Our approach has also demonstrated its value in real-world
industrial projects. In one industrial case study [10], we
detected architecture roots [8]—a set of file groups cov-
ering most problematic files. In that study we detected 6
roots, each containing multiple architecture anti-patterns.
Feedback from the development team was encouraging: our
collaborators confirmed that the problems that we reported
are the root cause of the maintenance difficulty they expe-
rienced, and they initiated refactoring actions based on our
results.

In our most recent case study on eight industrial
projects [21], we detected more than 6,500 instances of anti-
patterns over the 8 studied projects (the number of instances
detected in each project ranged from 54 to 2,188). The prac-
titioners confirmed that these anti-patterns indeed effec-
tively identified architecture problems responsible for high-
maintenance within their projects. Six of the eight projects
we studied planned to refactor, or have already embarked
upon refactoring, based on our reported anti-patterns. And
our architecture anti-pattern detection techniques have been
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TABLE 7: Average measures for files involved in, vs. not involved in, Modularity Violation Group (MVG)

Subjects avg MVG measurei avg non MVG measurei measurei inc
BF BC CF CC BF BC CF CC BF BC CF CC

Avro 2.5 41.7 10.8 447.7 0.4 8.3 2.2 135.3 533% 401% 385% 231%
Camel 0.8 18.1 9.4 239.1 0.1 6.8 1.9 74.4 512% 166% 406% 221%
Cassandra 5.3 158.7 25.3 904.3 0.2 12.6 2.5 126.4 2,376% 1,161% 923% 615%
CXF 2.0 46.7 10.7 334.0 0.3 9.5 1.5 57.1 693% 391% 630% 485%
Derby 5.3 167.1 12.5 583.6 1.7 52.2 2.1 165.8 210% 220% 499% 252%
Hadoop 1.6 307.1 16.8 614.1 1.1 129.6 1.6 78.9 48% 137% 956% 679%
Hbase 10.0 576.0 23.1 1577.1 1.6 72.2 2.6 213.8 533% 698% 784% 638%
Ivy 3.5 79.7 11.8 367.4 0.3 11.4 1.8 68.8 979% 601% 545% 434%
Mahout 1.3 39.9 9.8 372.7 0.3 13.6 2.2 114.2 317% 193% 337% 226%
OpenJPA 2.8 126.0 10.3 509.7 0.8 70.3 1.9 97.9 269% 79% 455% 420%
PDFBox 3.1 134.3 12.9 548.7 0.7 39.0 3.0 145.8 335% 244% 333% 276%
Pig 3.6 92.0 10.2 368.6 0.5 16.2 1.7 93.3 584% 470% 516% 295%
Tika 3.1 116.5 12.0 556.2 0.7 44.2 3.0 193.2 330% 164% 298% 188%
Wicket 2.4 64.0 10.7 310.9 0.5 22.5 2.1 79.2 346% 184% 403% 292%
ZooKeeper 4.7 150.9 12.4 613.2 0.4 24.5 1.6 111.8 1,075% 515% 685% 448%
Comm 1 5.4 347.7 8.9 431.0 0.3 8.9 0.5 12.7 1,789% 3,793% 1,596% 3,294%
Comm 2 2.0 42.4 6.7 72.4 0.2 1.2 0.8 2.8 788% 3,304% 780% 2,526%
Comm 3 2.2 83.0 6.5 339.3 0.1 1.4 0.3 5.2 3,321% 6,009% 2,350% 6,484%
Comm 4 12.1 401.6 41.2 1564.3 0.8 26.0 3.4 86.0 1,384% 1,446% 1,114% 1,720%

avg MV G measurei: average measures of files involved in MVG; avg non MV G measurei: average measures of files not involved in MVG

TABLE 8: Average measures for files involved in, vs. not involved in, Clique (CLQ)

Subjects avg CLQ measurei avg non CLQ measurei measurei inc
BF BC CF CC BF BC CF CC BF BC CF CC

Avro 4.2 60.0 16.4 650.4 1.0 18.3 4.7 223.5 347% 228% 253% 191%
Camel 1.7 30.5 18.5 437.7 0.3 10.3 4.1 123.4 438% 197% 352% 255%
Cassandra 5.7 146.2 25.7 772.0 1.8 68.4 10.1 454.6 216% 114% 154% 70%
CXF 3.4 71.5 14.4 395.8 0.8 21.0 4.5 151.2 347% 241% 220% 162%
Derby 5.8 148.4 13.1 471.1 2.7 98.0 5.4 349.4 115% 51% 142% 35%
Hadoop 2.0 469.3 22.9 865.5 1.1 139.5 4.0 156.9 87% 236% 468% 452%
Hbase 18.4 820.3 41.8 1816.2 3.5 255.4 7.9 812.9 420% 221% 426% 123%
Ivy 3.0 79.1 10.0 333.0 1.2 27.9 4.8 151.6 147% 183% 105% 120%
Mahout 3.2 97.2 16.3 543.8 0.8 25.9 6.1 248.8 306% 276% 167% 119%
OpenJPA 2.9 119.7 9.9 456.4 1.0 78.7 3.0 161.8 187% 52% 233% 182%
PDFBox 4.1 169.8 16.8 715.8 1.6 76.2 6.8 295.7 151% 123% 148% 142%
Pig 3.2 85.7 8.5 309.4 0.8 21.3 2.7 132.4 277% 303% 211% 134%
Tika 4.1 170.7 17.8 920.7 1.7 71.1 6.4 321.5 148% 140% 176% 186%
Wicket 4.9 124.0 20.5 642.9 1.1 33.8 4.7 142.5 348% 267% 336% 351%
ZooKeeper 7.6 236.8 18.6 838.2 1.0 42.3 3.3 204.9 667% 460% 464% 309%
Comm 1 1.5 63.1 2.3 85.2 0.7 41.6 1.2 51.8 121% 52% 81% 65%
Comm 2 2.0 51.4 5.6 81.7 1.0 16.9 3.7 30.9 92% 204% 50% 164%
Comm 3 0.3 10.4 1.0 48.6 0.1 3.3 0.4 11.7 139% 213% 142% 316%
Comm 4 4.2 160.8 14.8 554.9 1.1 30.4 4.4 120.5 278% 429% 233% 360%

avg CLQ measurei: average measures of files involved in CLQ; avg non CLQ measurei: average measures of files not involved in CLQ

integrated into DV813, an architecture analysis tool that has
been used by many industrial practitioners.

The take-away message is clear: to reduce maintenance
difficulties in a project, developers should focus on the
files involved in architecture anti-patterns. Our approach
also quantifies the severity of each anti-pattern instance,
which could help architects with selecting and prioritizing
potential refactorings.

6 LIMITATIONS AND THREATS TO VALIDITY

In this section, we discuss the limitations of our tool, and
threats to validity.

6.1 Limitations

First, the detection of three anti-patterns, Unstable Inter-
face, Modularity Violation Group, and Crossing, requires both
structural dependencies and revision history records. The
detection of these anti-patterns depends on the availability

13. https://www.archdia.net/products-and-services/

of the project’s revision history. For projects without this
information, these three anti-patterns cannot be detected.

Second, our architecture anti-pattern detection is a retro-
spective analysis. The anti-patterns are detected by reverse-
engineering the as-built code base and the revision history.
Our approach provides means to help developers identify
and understand the architecture problems that have in-
curred maintenance costs. In this paper, we did not explore
the predictive power of these anti-patterns. It would be
interesting to analyze which anti-pattern is likely to remain
bug-prone or change-prone in the future.

Third, while our approach is scalable in terms of the
number of detectable anti-patterns, so far we only defined
just six. We have no way to prove that these six anti-patterns
have covered all the most significant architecture problems.
However, we have reason to believe that these six anti-
patterns are at least adequate, as we have been pursuing this
work for nearly five years and, over that time, the number of
anti-patterns has only increased by one. If we identify more
types of anti-patterns, it is easy to extend our detection tool.

Forth, when detecting Unstable Interface, Crossing and
Modularity Violation Group, the results depend on the selec-



0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2910856, IEEE
Transactions on Software Engineering

15

TABLE 9: Average measures for files involved, in vs. not involved in, Unhealthy Inheritance Hierarchy (UIH)

Subjects avg UIH measurei avg non UIH measurei measurei inc
BF BC CF CC BF BC CF CC BF BC CF CC

Avro 2.9 40.2 12.1 572.6 1.1 20.2 4.9 213.7 170% 99% 147% 168%
Camel 1.1 27.0 11.9 305.2 0.4 10.6 4.7 136.3 202% 155% 150% 124%
Cassandra 7.9 256.1 34.2 1308.9 1.9 53.9 10.5 374.0 324% 375% 226% 250%
CXF 2.1 49.3 10.1 327.6 0.7 20.0 4.3 139.3 176% 147% 135% 135%
Derby 5.4 135.6 12.0 441.1 3.0 104.2 6.0 364.1 80% 30% 98% 21%
Hadoop 1.5 341.5 15.6 587.9 1.2 154.0 4.9 188.9 35% 122% 221% 211%
Hbase 14.0 597.3 32.5 1489.8 4.7 311.7 10.3 896.1 199% 92% 215% 66%
Ivy 3.3 77.6 11.3 394.1 1.2 30.7 4.7 143.3 166% 153% 141% 175%
Mahout 1.4 59.2 8.5 346.7 0.8 23.7 6.2 246.1 76% 149% 39% 41%
OpenJPA 3.6 146.3 12.9 653.4 1.0 76.3 2.8 142.9 262% 92% 357% 357%
PDFBox 4.9 224.9 17.6 819.2 1.9 80.5 8.2 343.4 166% 180% 114% 139%
Pig 3.9 98.1 10.6 375.8 1.3 34.8 3.8 163.6 203% 182% 179% 130%
Tika 3.1 105.6 11.8 470.5 1.3 65.5 5.2 313.8 149% 61% 127% 50%
Wicket 3.2 96.9 13.3 433.0 1.1 33.0 4.9 146.6 187% 194% 171% 195%
ZooKeeper 5.1 183.0 12.9 637.4 1.2 44.6 3.9 219.5 311% 310% 234% 190%
Comm 1 3.5 174.4 5.8 235.7 0.6 32.2 1.0 39.5 503% 442% 494% 497%
Comm 2 1.9 52.5 5.9 85.6 1.1 18.5 3.7 32.7 68% 184% 60% 162%
Comm 3 0.6 21.3 1.6 84.8 0.1 3.9 0.5 15.7 318% 445% 248% 440%
Comm 4 4.4 185.4 14.8 633.6 1.7 54.3 6.4 200.1 159% 242% 131% 217%

avg UIH measurei: average measures of files involved in UIH; avg non UIH measurei: average measures of files not involved in UIH

TABLE 10: Measures’ average values for the files involved in vs. not involved in Package Cycle (PKC)

Subjects avg PKC measurei avg non PKC measurei measurei inc
BF BC CF CC BF BC CF CC BF BC CF CC

Avro 2.9 45.9 10.9 503.8 0.5 10.8 3.4 148.1 487% 325% 217% 240%
Camel 0.8 18.2 8.3 209.1 0.3 10.2 4.5 133.8 133% 79% 84% 56%
Cassandra 3.8 113.7 18.3 644.2 0.7 30.0 5.2 283.2 442% 279% 252% 127%
CXF 1.7 37.8 8.6 240.2 0.7 19.6 4.0 141.8 156% 93% 115% 69%
Derby 4.8 116.6 10.9 366.9 2.9 109.3 5.7 391.9 70% 7% 93% -6%
Hadoop 1.5 271.7 11.5 421.1 1.0 122.6 3.2 139.3 52% 122% 263% 202%
Hbase 8.5 375.7 18.8 783.9 2.3 347.4 5.9 1479.9 268% 8% 218% -47%
Ivy 2.1 52.3 7.6 247.2 1.0 24.8 4.1 128.2 105% 110% 84% 93%
Mahout 1.5 56.9 9.1 375.5 0.7 20.1 5.7 225.6 114% 182% 60% 66%
OpenJPA 2.9 108.8 10.4 503.5 0.9 79.2 2.4 126.6 217% 37% 340% 298%
PDFBox 3.1 149.5 11.3 498.0 1.5 54.0 8.1 337.4 113% 177% 40% 48%
Pig 2.2 59.2 6.2 221.7 0.8 16.1 2.3 147.1 183% 269% 172% 51%
Tika 2.3 100.0 8.9 475.4 1.6 68.8 6.5 316.1 40% 45% 35% 50%
Wicket 1.9 54.8 7.8 230.2 0.9 26.5 4.1 133.1 123% 107% 92% 73%
ZooKeeper 2.8 98.3 7.9 375.9 0.7 30.6 2.1 187.6 306% 221% 278% 100%
Comm 1 1.3 79.0 2.1 95.8 0.6 27.3 1.1 37.2 137% 190% 91% 158%
Comm 2 1.6 37.9 4.8 59.9 1.1 17.6 3.7 32.7 44% 115% 30% 83%
Comm 3 0.2 8.5 0.8 32.7 0.1 2.2 0.3 9.5 161% 293% 158% 244%
Comm 4 2.8 95.5 10.7 364.4 1.1 33.0 3.9 110.1 162% 189% 176% 231%

avg PKC measurei: average measures of the files involved in PKC; avg non PKC measurei: average measures of the files not involved in PKC

TABLE 11: P-values of the Paired Wilcoxon signed-rank tests

Type UIF CRS MVG CLQ UIH PKC
UIF - 2.8E-13 5.0E-5 2.3E-8 2.8E-13
CRS - 7.5E-13 4.6E-4 1.5E-9 5.3E-13
MVG - 7.9E-10
CLQ - 2.1E-11
UIH - 2.0E-11
PKC -

TABLE 12: Effect sizes based on the average values of BF

Type UIF CRS MVG CLQ UIH PKC
UIF - 0.99 0.35 0.51 0.82
CRS - 1.91 0.38 0.74 1.20
MVG - 0.58
CLQ - 0.28 0.76
UIH - 0.88
PKC -

tion of thresholds. In our evaluation, we set these thresholds
based on our observations and experience. We set the impact
thresholds for Unstable Interface detection to be 10, meaning
that an unstable interface has to structurally and evolution-
arily impact at least 10 other files. When we decrease this
threshold, more trivial instances are detected. For example,

TABLE 13: Effect sizes based on the average values of BC

Type UIF CRS MVG CLQ UIH PKC
UIF - 0.78 0.34 0.50 0.74
CRS - 0.76 0.29 0.50 0.76
MVG - 0.61
CLQ - 0.61
UIH - 0.89
PKC -

TABLE 14: Effect sizes based on the average values of CF

Type UIF CRS MVG CLQ UIH PKC
UIF - 1.14 0.41 0.6 0.98
CRS - 2.55 0.46 0.88 1.51
MVG - 0.68
CLQ - 0.41 1.08
UIH - 1.00
PKC -

when we set the value to be 2, hundreds of trivial instances
were identified within Cassandra. It is intuitive that, with
a smaller threshold, the detected “interfaces” become less
influential, and the problems detected are less significant.
Higher thresholds may results in fewer instances but im-
portant ones may be missed. To evaluate Crossing, we set
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TABLE 15: Effect sizes based on the average values of CC

Type UIF CRS MVG CLQ UIH PKC
UIF - 0.93 0.46 0.56 0.89
CRS - 1.84 0.58 0.84 1.27
MVG - 0.69
CLQ - 0.88
UIH - 0.92
PKC -

TABLE 16: Maintenance effort of Unstable Interface in-
stances in Avro

Index Size Ins. BF Ins. BC Ins. CF Ins. CC
UnstableInterface1 46 228 3,302 889 34,676
UnstableInterface2 38 196 2,749 761 25,213
UnstableInterface3 23 184 2,333 715 28,489
UnstableInterface4 13 10 330 113 3,076
UnstableInterface5 13 67 1,001 229 12,620

Ins. BF, BC, CF and CC: the total bug frequency, bug churn, change
frequency and change churn of all files in each instance.

both fan-in and fan-out threshold be to 4, to avoid trivial
instances.

In addition, the detection of all three history-related anti-
patterns relies on the co-change threshold. In our evaluation,
we set this threshold to be 2, to avoid trivial cases where
two files were changed together just once. Decreasing this
value would identify more instances, since more files will
be considered as evolutionarily coupled. In a project with a
long history, a higher value might be appropriate. We intend
to try different strategies to model the evolutionary coupling
between files, such as change probability [35] or analyzing
the issue reports to determine whether and how often two
files were changed for the same maintenance tasks.

With that being said, we admit that the chosen threshold
is a limitation and a threat to external validity of our
evaluation. Project architects or developers may have better
knowledge to adjust the thresholds, and our tool allows the
user to configure these thresholds. To explore how to best
determine these thresholds is our future work.

6.2 Threats to Validity

Threats to construct validity. First, we cannot guarantee that
the four history measures that we used in our evaluation are
the best proxies for maintenance effort. Ideally, maintenance
effort should be measured by actual effort, in terms of hours
or budgets, spent on each file. But we cannot directly extract
such data; we thus employed four history measures: bug
frequency, bug churn, change proneness and change churn,
that can be extracted from a project’s revision history. We
admit this is a threat to construct validity, since the measures
we proposed may not reflect the true maintenance effort in
terms of bug-proneness and change-proneness. To address
this issue partially, we not only considered the frequency of
a files involved in bug fixes or changes, but also calculated
the lines of code changed in bug fixes or changes. For
example, we calculated both bug frequency and bug churn
to reflect a file’s bug-proneness; it seems reasonable that a
bug-prone file should be involved in more bug fixes and
have more lines of code changed in bug fixes. We will keep
looking for better approximations for maintenance effort,
and plan to compare them with our proxy measures.

Second, we cannot guarantee the accuracy of the mea-
sures. To calculate the bug frequency and bug churn, we
use the pattern matching method in [28] to identify a bug-
fixing commit if its change message contains a bug ticket
ID. A file’s bug frequency will be the number of times a file
is involved in bug-fixing commits, and the bug churn will
be the LOC changed in these commits. However, we cannot
guarantee that the bug data extracted from revision history
are not biased. As prior studies [36], [37] have shown: 1)
a file changed in a bug-fixing commit doesn’t necessarily
means this file is modified for a bug; 2) there is often no
explicit link that can be used for targeting the bug-fixing
commit in revision history. Thus findings with respect to
the research questions could be impacted by the accuracy of
available data. We acknowledge this is a threat to construct
validity and it requires more investigation.

Threats to external validity. A threat to external validity
is in our data set. We only analyzed nineteen projects
implemented in Java or C#. Although the 15 open source
projects have different sizes and domains, all of them are
implemented in Java. The 4 selected industrial projects are
provided by different teams but within the same company,
and they are all implemented in C#. Thus we can not claim
that our results are generalizable across all software projects,
especially for those using non-object-oriented languages.
For example, the Unhealthy Inheritance anti-pattern does not
exist in projects using non-object-oriented languages. To
overcome this issue, we are in process of applying our ap-
proach to more projects implemented in other programming
languages and from different industrial collaborators. Due
to the limitations of our data set, we only processed projects
that use SVN or Git, hence we can not claim that our results
are generalizable to other projects managed by other version
control tools. Extending the experiments to a broader set of
projects is future work.

Threats to internal validity. In our experiment, we used
Understand to derive structural dependencies among files,
and used this dependency information as input to our de-
tection algorithm. Consequently, any imprecision in Under-
stand could have negatively affected our detection results.
However, our approach does not inherently depend on
Understand: any reverse engineering tool that can extract
and export file dependencies, e.g., inheritance, dependency,
into readable formats could be used in our tool chain.

We also admit that an effect of file size could be a threat
to internal validity. Many studies [38], [39], [40], [41], [42]
have shown that file size is correlated with bug rates and
change rates. That is, if a file has more LOC, it is more
likely to be involved in bugs or changes. To partially address
this problem, we investigated whether the identified anti-
pattern instances are not merely a set of large files. Using the
instances of Unstable interface in Avro project as an example,
we found that only 24% of them are in the top 10% largest
files (in terms of LOC). We achieve consistent results for the
other anti-patterns across all projects, which indicates that
the detected anti-patterns are not dominated by large files.

In addition, we acknowledge a possible bias in our
detection in that we do not consider the architectural role
of each file [43], [44], [45]. For example, a dependency cycle
is an intrinsic part of the visitor pattern: the visitor will visit
the element while the element accepts the visitor. Consider
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another example, a utility file often has more dependents
than other files, so changes to this file are likely to cause
more files to be changed together. In this paper, we did not
distinguish such cases due to our limited knowledge about
the analyzed projects. Thus, we consider this to be a threat
to validity, and exploring the impact of such architectural
decisions is our future work.

7 RELATED WORK

In this section, we compare our approach with the following
research areas.

Defect and Change Prediction: Selby and Basili [46]
have investigated the relation between dependency struc-
ture and software defects. There have been numerous
studies of the relationship between evolutionary coupling
and error-proneness [2], [47], [48]. For example, Cataldo et
al.’s [48] work reported a strong correlation between density
of change coupling and failure proneness. And Ostrand
et al. [49]’s study demonstrated file size and file change
information were very useful to predict defects. The relation
between various metrics and software defects has also been
widely studied. For example, Nagappan et al. [3] investi-
gated various complexity metrics and demonstrated that
these metrics are useful and successful for defect prediction.
However, they also reported that, in different projects, the
best metrics for prediction may be different. Besides, defect
localization has also been widely studied [5], [6], [7]. For
example, Jones et al. [5] used the ranking information of
each statement to assist fault location.

In the field of change-proneness prediction, researchers
have proposed numerous studies as well. Alshayeb and
Li [50] investigated the effectiveness of six code metric
for predicting change-proneness in terms of changed LOC.
Catolino et al.’s work [51] demonstrated that developer-
related factor could be used to improve the performance
of change prediction. Lu et al.’s [52] work evaluated the
ability of different object-oriented (OO) metrics for change-
proneness prediction. The evolution-based metrics have
widely studied for change-proneness prediction as well.
Girba et al. [53] studied the changes in the evolution of OO
projects by defining historical measurements and presented
that classes that changed most in recent history would have
high potential to be changed in the near future. Tsantalis et
al. [54] presented a probabilistic approach to estimate the
change proneness of an object-oriented design by assess-
ing the probability that each class will change in a future
modification. Elish and Al-Khiaty [55] proposed a suite of
evolution-based metrics and presented 4 models to predict
change-prone classes. Various learning method have been
used for change-proneness prediction. For example, Ge et
al. [56] proposed a Deep Metric Learning model to detect
change-proneness of classes. Amoui et al. [57] presented a
temporal change prediction method using neural network
to predict future change dates of software entities. Malho-
tra and Khanna [58] used code metrics as features and 6
machine learning methods for change-prediction.

Different from our work, all the above research focuses
on individual files or classes as the unit of analysis, but do
not take architectural relations among files into considera-
tion. Our study focuses on architectural anti-patterns, e.g.,

file relations that violate design principles and incur high
maintenance costs. Both file complexity and architectural
complexity are, we conjecture, contributors to overall error-
proneness in a software system.

In addition, the goal of our work is not to predict defects
or changes in a software system, but to reveal the underly-
ing architectural relations among files that have significant
impact on maintainability.

Architecture Smell Detection: Architecture smells de-
scribe the problems that identified on architecture level [59],
[60]. Various techniques have been widely studied to de-
tect design or architecture smells. Garcia et al.’s [12], [60]
studies reported a catalog of architectural bad smells using
a format similar to the design patterns [22], which pre-
sented possible identifications on these architecture smells.
Le and Nenad [16] extended this catalog by formalizing
and identifying eight new architecture smells, which could
be categorized as Interface-based smells or Change-based
smells. In the recent study of Le et al. [61], they de-
tected multiple types of architecture smells and investigated
the relationships between smells and a project’s issues.
Marinescu [62] presented detection strategies that exploit
metrics-based rules to detect design flaws. Garcia et al. [63]
presented a machine learning-based method to recover an
architecture view which helps detect architecture drift or
erosion. Lenhard et al. [64] selected a set of source code
metrics, such as WMC, code size, etc., and investigated
the relationship between architecture degradation and these
source code metrics. Sharma et al. [65] presented a tool
named Designite14 to detect several structure design smells.
In the studies of Fontana et al. [66], [67], they described three
representative architecture smells and presented a tool, Ar-
can, to support their detection. Instead of investigating de-
tection techniques, Sousa et al.’s work [68] focused on how
developers actually proceed to identify design problems by
using the design problem symptoms.

Researchers have studied the relation between code
smells [11] and architecture design smells. For example,
Macia et al.’s [69] study presented a tool, SCOOP, to detect
code anomalies which are related to architecture problems.
Bertran [70] analyzed software architecture quality based
on code smells relations, and presented that code anoma-
lies could be used for detecting architectural problems.
Yamashita et al. [71] studied two kinds of code smells:
collocated smells — code smells occurring together in the
same file; and coupled smells — code smells interacting
across coupled files. They observed that only considering
collocated smells would affect the accuracy for the detection
of design problems, since coupled smells may reveal critical
design problems. Lenhard et al. [72] used JabRef to investi-
gate the suitability of code smell detection tools for detecting
the problems related to architectural degradation. Oizumi
et al. [73] proposed the concept of agglomerations and
demonstrated that certain forms of agglomerations could
be used to locate architecture design problems.

Multiple commercial tools have been proposed to sup-
port the detection of design or architecture smells. For
example, AiReviewer15 supports the detection of both code

14. http://www.designite-tools.com/
15. http://www.aireviewer.com/
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smells [11] and several design or architectural smells. Sonar-
Graph16 is a commercial tool helping detect violations to
software architecture. Structure 10117 could also detect dif-
ferent kinds of architecture smells.

These detection techniques use static code or architecture
information only. By contrast, our approach integrates code
dependency with history records. A few studies have also
considered evolution history when defining architecture
smells. For example, Le et al. [74] proposed a taxonomy of
architecture smells, two of which are based on evolution
history, but without rigorous formal definitions. Roveda et
al. [75] proposed an Architecture Debt Index (ADI) that
integrates a suite of existing architecture smells, including
some of our anti-patterns, and takes into account their sever-
ity as revealed in a project’s evolution history. Unlike our
approach, these studies did not formalize these architecture
smells, nor did they explicitly demonstrate the feasibility of
their automatic detection. Moreover, these studies did not
empirically demonstrate that these architecture smells have
significant impact on maintenance effort.

We note that various researchers and tools define ar-
chitecture “smells”, “anti-patterns” in different ways based
on different rationales. Our anti-patterns are defined based
on design rule theory and prevailing design principles. We
introduced 5 anti-patterns in our prior work [1] and added
one more after observing numerous open source and indus-
trial projects. It is our goal to minimize overlaps between
detected anti-pattern instances, so that the user can examine,
rank, and prioritize these problems more efficiently.

Architecture Representation and Non-automated Anal-
ysis: Our work is also related to research on software
architecture representation and analysis. There has been
substantial study on the uses of architecture representations
(views) [76], [77], [78], [79], [80] and how they support de-
sign and analysis. For example, Kruchten [77] proposed the
4+1 view model of architecture. Our architecture represen-
tation, DRSpace, focuses on just a single architecture view—
the module view. As one type of module view, DRSpaces are
organized based on design rules and independent modules.

The analysis of architecture has also been widely stud-
ied. Kazman et al. [81] created the Architecture Tradeoff
Analysis Method for analyzing architectures. Gamma et
al. [22] presented a catalog of design patterns to present
generally reusable solutions to recurring problems in soft-
ware design environment. Andrew [13] proposed the anti-
pattern to represent recurring problems that are harmful to
software systems. These methods are not automated, and
hence depend on the skill of the architecture analysts. Our
approach, by contrast, can automatically detect architecture
anti-patterns that impact error- and change-proneness of
files software, and guide the user to diagnose software qual-
ity problems, and prioritize refactoring plans accordingly.

8 CONCLUSION

In this paper, we have formally defined six architecture
anti-patterns that help to identify recurring and high-
maintenance software problems. We defined these anti-

16. https://www.hello2morrow.com/products/sonargraph
17. https://structure101.com/

pattern based on the violation of well-known design prin-
ciples. We presented a tool to automatically detect the
existence of these anti-patterns and the files involved. We
evaluated our approach using fifteen open source projects
and four commercial projects. The results show that all
six anti-patterns are highly associated with error-proneness
and change-proneness of source files: Files involved in any
anti-patterns have higher bug and change frequencies, and
consume more effort to fix bugs and make changes. We also
demonstrated that the more anti-patterns a file is involved
in, the more likely it is to be error-prone, and the more
effort it takes to fix and modify. The data also revealed
that Unstable Interface and Crossing are most severe anti-
patterns because they are associated with much higher level
of error-proneness and change-proneness.

This knowledge can be used by an architect to pin-
point architecture problems, quantify their severity, and
determine priorities for refactoring. DSMs can be used to
visualize each instance of anti-patterns. Paired with anti-
pattern descriptions and the concrete sets of files involved,
this visualization provides direct guidance to the architect
on how each problem should be addressed.

This, we claim, is a powerful technique. This technique
provides a foundation for architects and analysts to strate-
gically address technical debt in a software system. And, as
we have shown in our prior work [10], [21], this technical
analysis can be accompanied by a return-on-investment
analysis which equips architects with the information they
need to choose, prioritize, and justify to management the
areas of technical debt that they most urgently need to
address.
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