
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, X 1

Service Candidate Identification from Monolithic
Systems based on Execution Traces

Wuxia Jin, Ting Liu, Member, IEEE, Yuanfang Cai, Member, IEEE Rick Kazman, Senior Member, IEEE,
Ran Mo, Qinghua Zheng, Member, IEEE,

Abstract—Monolithic systems increasingly suffer from maintainability and scalability issues as they grow in functionality, size, and
complexity. It is widely believed that (micro)service-based architectures can alleviate these problems as each service is supposed to
have the following characteristics: clearly defined functionality, sufficient modularity, and the ability to evolve independently. Industrial
practices show that service extraction from a legacy monolithic system is labor-intensive and complex. Existing work on service
candidate identification aims to group entities of a monolithic system into potential service candidates, but this process has two major
challenges: first, it is difficult to extract service candidates with consistent quality; second, it is hard to evaluate the identified service
candidates regarding the above three characteristics. To address these challenges, this paper proposes the Functionality-oriented
Service Candidate Identification (FoSCI) framework to identify service candidates from a monolithic system. Our approach is to record
the monolith’s execution traces, and extract services candidates using a search-based functional atom grouping algorithm. We also
contribute a comprehensive service candidate evaluation suite that uses interface information, structural/conceptual dependency, and
commit history. This evaluation system consists of 8 metrics, measuring functionality, modularity, and evolvability respectively of
identified service candidates. We compare FoSCI with three existing methods, using 6 widely-used open-source projects as our
evaluation subjects. Our results show that FoSCI outperforms existing methods in most measures.

Index Terms—Microservice, monolith decomposition, service candidate, execution trace, functionality, modularity, evolvability.

F

1 INTRODUCTION

MOnolithic software systems increasingly suffer from
maintainability and scalability issues as they grow in

functionality, size, and complexity. It is widely believed that
service-based (including microservice-based) architectures can
help alleviate these problems as each service is supposed to
exhibit well-defined functionality and high modularity. Most
importantly, each service should be able to evolve indepen-
dently1 [2][3]. To migrate a monolithic system to a services-
based system, there are two major options: rewriting from
scratch, or extracting services from the legacy source code. If
the legacy code has high value, the latter is recommended2

[3]. Large enterprises, such as Netflix and Amazon, have
adopted the second option, which includes two phases,

• W. Jin and Q. Zheng are with Ministry of Education Key Labora-
tory of Intelligent Networks and Network Security (MOEKLINNS),
Xi’an Jiaotong University, China. Email: wx jin@stu.xjtu.edu.cn,
qhzheng@mail.xjtu.edu.cn.

• T. Liu is corresponding author. He is with the MOEKLINNS and
School of Cyber Security, Xi’an Jiaotong University, China. Email:
tingliu@mail.xjtu.edu.cn

• Y. Cai and R. Mo are with the Department of Computer Science, Drexel
University, USA. Email: yfcai@cs.drexel.edu, rm859@drexel.edu

• R. Kazman is with the Department of Information Technology Manage-
ment, University of Hawaii, USA. Email: kazman@hawaii.edu

• This paper is an extended version of our conference paper on IEEE
ICWS 2018[1]. We redefine the problem as service candidate identification,
design a new framework and enhance the method by introducing search-
based functional atom grouping, and improve the measurement system by
adding Modularity and designing Independence of Evolvability. Moreover,
the experiments have be re-designed, by adding three new large projects
and extra discussion on test case coverage.

1. https://martinfowler.com/articles/microservices.html
2. https://martinfowler.com/articles/break-monolith-into-

microservices.html

splitting design and code implementation. Splitting design is
used to identify the boundaries to split a monolith into
multiple functional units, where each separable function
becomes a service candidate [2]. Code implementation then
realizes service candidates as physical services. Our work
focuses on splitting design, which is complex and laboring-
intensive [4][5].

To alleviate the burden of splitting design, researchers
have proposed various methods to automate Service Can-
didate Identification, that is splitting entities (e.g., meth-
ods, classes) of a monolithic system into multiple function
groups, each of which corresponds to a potential service
candidate [5][6]. Service Candidate Identification is similar to
traditional software decomposition or software clustering
techniques, such as Bunch [7] and ACDC [8], with the
assumption that the clustered entity groups should follow
the principles of high cohesion and low coupling [9][10][11].
Existing work for service candidate identification faces two
major challenges: (1) It is difficult to produce high quality
service candidates in terms of well-defined functionality,
sufficient modularity, and independent evolvability; (2)
There is no systematic way to measure these qualities
quantitatively and consistently.

This paper introduces our approaches to address the
above challenges. We first propose a Functionality-oriented
Service Candidate Identification (FoSCI) framework to iden-
tify service candidates, through extracting and processing
execution traces. This framework consists of three major
steps: extracting representative execution traces, identifying
entities using a search-based functional atom grouping al-
gorithm, and identifying interfaces for service candidates.
We also present a comprehensive measurement system to

https://martinfowler.com/articles/microservices.html

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, X 2

quantitatively evaluate service candidate quality in terms of
functionality, modularity, and evolvability.

FoSCI framework. There is prior research
([12][13][14][15][16]) that aims to split a monolithic
system based on source code structure. These methods
usually model the structure of the monolith as a graph, in
which a node represents a class, and an edge represents
either a class-to-class structural relation [12][13][14], or
semantic similarity [15][16]. To achieve high cohesion and
low coupling [9][10][11], edges with weaker relations were
removed to split into subgraphs. These methods only
consider graph structure, without considering functionality.
Consequently, as we will show, the resulting service
candidates may not have well-defined functionality. In
addition, these methods cannot be applied when the source
code is not available.

FoSCI addresses this challenge by utilizing execution
traces collected from logs to guide service candidate identi-
fication. The rationale is that execution traces can precisely
reveal program functionality [17][18][19]. To evaluate FoSCI,
we first collected 3,349,253,852 method call records from
execution logs of widely-used projects. After that, we re-
constructed, reduced, and extracted representative execu-
tion traces. Using these execution traces, FoSCI first gener-
ates Functional Atoms, each being a coherent and minimal
functional unit. The assumption is that a set of classes
that frequently appear in the same set of execution traces
are dedicated to related functionality. Next, FoSCI assigns
functional atoms to service candidates by optimizing four
objectives from execution traces. Finally, FoSCI identifies the
interface classes with operations for each candidate. Using
execution traces, FoSCI can thus identify service candidates
even when the source code of the monolithic application is
not available.

Evaluation Framework. There are multiple ways to
extract service candidates, but there currently exists no
systematic evaluation framework to assess the functional-
ity, modularity and evolvability of the resulting services
candidates [2][3]. Functionality describes visible functions
provided by a service, which should be a business capability
accessible by external clients. Modularity [3] measures if
internal entities within a service behave coherently, while
entities across services are loosely coupled. Evolvability [2]
measures a service’s ability to evolve independently: a
system may have tens or even hundreds of services [20];
if changes to one service frequently affect other services,
it would be challenging for services to evolve exclusively.
There is prior research on quantifying some of these quali-
ties. For example, Bogner et al. [21] proposes cohesion and
coupling measures for services. But measuring the evolv-
ability of service candidates has not been explored.

We have constructed a comprehensive evaluation suite
to systematically measure service candidates from the three
aspects, using 8 measures: 1) Independence of Functionality is
measured by integrating Interface Number (IFN), Cohesion at
Message Level (CHM), and Cohesion at Domain Level (CHD). 2)
Modularity is measured by extending the Modularity Qual-
ity measure proposed by Mancoridis [22]. These metrics
measure both structural and conceptual modularity of ser-
vice candidates. 3) Independence of Evolvability is quantified
using 3 measures we designed: Internal Co-change Frequency

(ICF), External Co-change Frequency (ECF), and Ration of ECF
to ICF (REI). These measures can be derived from the revi-
sion history of the original system. A project’s revision his-
tory, stored in its version-control system, provides a unique
view of the actual evolution path of a software system
[23][24]. The revision history holds a wealth of software
evolution information including the changes and metadata
about changes, such as who made each change, what is the
purpose of the change, and when the change was made. As
we will show, these 8 metrics comprehensively quantify the
three critical quality aspects of service candidates.

In summary, our contributions are as follows:

• The FoSCI framework to identify service candidates,
including entity and interface identification. FoSCI
employs execution traces because they accurately
reveal functional groupings in software systems.

• An evaluation suite for service candidates, which
consists of 8 metrics to quantify the three quality
criteria of service candidates: Independence of Func-
tionality, Modularity and Independence of Evolvability.

The rest of this paper is as follows. Section 2 describes
our proposed functionality-oriented service candidate iden-
tification framework. Section 3 illustrates the measures for
quantifying Independence of Functionality, Modularity and In-
dependence of Evolvability. Section 4 and Section 5 present
experiment setup and evaluation results. Section 6 discusses
limitations and threats to validity. Section 7 surveys the
related works. Section 8 provides conclusions and discusses
future work.

2 METHODOLOGY

In this section, we first introduce basic definitions related
to service candidates. After that, we illustrate the FoSCI
framework using JPetstore3 (Monolithic version 6.0.2) as a
running example. The intermediate results and tables of
this example can be found in our repository4. The symbol
notations we use are listed in Table 1.

2.1 Definitions

A Service Candidate is an intermediate product in the splitting
design phase during a migration from a monolithic system
into a (micro)service-based architecture. It has the potential
and is subject to further refinement to be actually imple-
mented as a physical Service. We formally define Service
Candidate as follows:

SC = (Eser, I, O) (1)

where, Eser denotes a set of entities which compose SC. I
is a set of Interface Classes of SC. O represents a set of fine-
grained Operations of I . In this paper, an entity is a class
of the original monolith. An interface class is a class entity
that has the potential to be publicly published. Through
the published interface class, a service candidate provides
functionality visible to external clients. An operation is a
method publicly provided by an interface class.

3. https://github.com/mybatis/jpetstore-6
4. https://github.com/wj86/FoSCI

https://github.com/wj86/FoSCI

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, X 3

Fig. 1: The FoSCI Method

TABLE 1: The basic symbols globally used

Symbol Description

m A Method.
c A Class.
e = (mi,mj) A Method Call in which mi invokes mj .

tr : 〈e1, e2, ..., en〉
Execution Trace: a sequence of Method
Calls.

ctr = {c1, c2, ..., cl} A set of Classes involved in tr.

Otr = {tr} Execution Trace Set: a set of Execution
Traces collected originally.

Rtr
Representative Execution Trace Set, re-
duced from Otr . Rtr ⊆ Otr .

fa A Functional Atom.
SC A Service Candidate.
Eser A set of entities that compose SC.
I A set of Interface Classes of SC.
O A set of Operations of I .

2.2 FoSCI Framework Overview

Figure 1 depicts our Functionality-oriented Service
Candidate Identification (FoSCI) framework with three
steps:

Step 1: Representative Execution Trace Extraction. We
apply a tracing tool, Kieker 1.13 [25], to collect execution
traces of a monolithic executable software, using a set of
pre-determined Functional test suite. These executions are
recorded in Log files, from which we extract a Representative
Execution Trace Set, Rtr.

Step 2: Entity Identification. We first identify Functional
Atoms based on execution traces, and then modify a Non-
dominated Sorting Genetic Algorithm-II, a multi-objective
optimization technique, to group Functional Atoms as the
class entities Eser for each service candidate.

Step 3: Interface Class Identification. For each service
candidate, its interface classes I with operations O are
identified. Combining them with Eser , a service candidate
SC = (Eser, I, O) is produced.

2.3 Step 1: Representative Execution Trace Extraction

This step has the following parts:
Execution Monitoring. We use a tracing tool, Kieker 1.13

[25], to insert probes into the target software. The probes
monitor method executions, and the execution paths are
recorded in log files.

To obtain execution traces that accurately capture the
functionality of the target system, functional test suites
and the executable software (executable instance built from
the targeted monolithic software) are required. Executing
functional test cases under Functional Testing will allow us
to identify independent functions to be split into service
candidates. Functional Testing5 is a black-box testing against
the functionality of the system, as opposed to Unit Testing
that aims to test a class (or class set) or a method (or method
set).

Execution Trace Extraction. In an execution log file,
each record contains several items, including ThreadID—a
globally unique ID to identify a thread trace; Eoi and Ess—
the calling order and the depth of the calling stack of the
invoked method. From a record set with same ThreadID, we
can extract an Execution Trace tr : 〈e1, e2, ..., en〉, a sequence
of Method Calls that correspond to the executions of a slice of
function [1]. By processing all records, we can re-construct
an Execution Trace Set: Otr = {tr}.

Execution Trace Reduction. The original execution trace
set, Otr, typically contains a large number of redundant
execution traces. We created an algorithm, as shown in Al-
gorithm 1, to reduce Otr and form a Representative Execution
Trace Set, Rtr . Rtr ⊆ Otr.

As shown in Algorithm 1, we use set(trk) to denote a
set of method calls involved in trk. Assume tri ∈ Otr , and
trj ∈ Rtr. If set(tri) ⊆ set(trj), tri will not be added into
Rtr . Conversely, if set(trj) ⊂ set(tri), trj will be replaced
by tri. If set(tri) 6⊆ set(trj) and set(tri) 6⊇ set(trj), then
keep trj in Rtr and add tri in Rtr. Finally, we obtain the
Representative Execution Trace Set, Rtr.

In the JPetstore example, we collected 47 original execu-
tion traces. After reduction, we finally obtained 15 represen-
tative execution traces.

2.4 Step 2: Entity Identification
To identify class entities, Eser , for a service candidate,
we first generate functional atoms based on the reduced
execution traces, and then derive four optimization objec-
tives for functional atom grouping. After that, we modify
a Non-dominated Sorting Genetic Algorithm-II, a search-
based technique, to conduct functional atom grouping. Class

5. https://en.wikipedia.org/wiki/Functional testing

https://en.wikipedia.org/wiki/Functional_testing

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, X 4

Algorithm 1: Execution trace reduction algorithm

Input: Otr = {tr1, tr2, ..., trn}
Output: Rtr = {tr1, tr2, ..., trm}, Rtr ⊆ Otr

1 tr1 ∈ Otr, Rtr ← tr1; // Initialize Rtr.

2 for each tri in Otr do
3 if ∃trj ∈ Rtr ∧ set(trj) ⊂ set(tri) then

// trj is replaced by tri.

4 Rtr .delete(trj);
5 Rtr .add(tri);
6 end
7 else if ∃trj ∈ Rtr ∧ set(tri) ⊆ set(trj) then
8 continue; // Keep trj and ignore tri.

9 end
10 else
11 Rtr .add(tri); // Keep both tri and trj.

12 end
13 end
14 return Rtr;

entities in each group will be the class entities within the
service candidate.

2.4.1 Functional Atom Generation
We define Functional Atom, fa, as a minimal coherent unit, in
which all the entities are responsible for the same functional
logic. Since an execution trace reflects a slice of software
logic, a set of classes that often appear together in the same
traces can correspond to a fa.

We employ a classic hierarchical clustering algorithm
based on execution traces to generate functional atoms.
There are two inputs in the clustering algorithm: diff —the
threshold condition when the clustering should stop, and
{ctr}: for ∀ctri ∈ {ctr}, ctri = {c1, c2, ..., cl} is a set of
Classes whose methods are involved in the tri.

Initially, each functional atom contains just one class:
fai = {ci}. During the clustering process we use a Jaccard
Coefficient fjaccard based on Ti of fai and Tj of faj to
compute the similarity between fai and faj :

fjaccard(fai, faj) =
|Ti ∩ Tj |
|Ti ∪ Tj |

(2)

where, Ti is a set of ctr that contains ci.
The fai and faj with the maximum of fjaccard are

merged as a new functional atom, fa′i. At the same time,
T ′i of the new fa′i is updated: T ′i = Ti ∪ Tj .

The above clustering is repeated until newDiff > diff:

newDiff = min(|Ti ∪ Tj | − |Ti ∩ Tj |), ∀i, j, i < j (3)

According to the observations described in Section
4, we suggest setting diff = 3. After the clustering,
FA={fa1, fa2, ..., fam} is obtained, where ∀i, fai =
{ci,1, ci,2, ..., ci,ik}.

In the example of JPetstore, we initialize functional atom
with classes: fai = {ci}. After employing the above algo-
rithm, we finally generate 8 function atoms:

fa1 = {c3}, fa2 = {c4}, fa5 = {c9}
fa0 = {c0, c1, c2}, fa6 = {c10, c11, c13, c14}

fa7 = {c12}, fa3 = {c5, c6} , fa4 = {c7, c8, c15}

2.4.2 The Objectives of Functional Atom Grouping
Functional Atom Grouping. This step aims to combine
multiple functional atoms into one group, forming Eser
for a service candidate. Related functional atoms should be
put together while non-related ones should be separated.
That is, the grouping process requires maximizing the intra-
connectivity inside service candidates while minimizing
the inter-connectivity across candidate boundaries. We for-
malize the grouping objectives based on the information
revealed in execution traces.

Structural and Conceptual Intra-Connectivity. In terms
of structural and conceptual information recorded in exe-
cution traces, we define two objectives based on the intra-
connectivity formula in work of Mancoridis [22]. More
specifically,

(1) structural intra-connectivity, formulated as
1
K

∑K
i=1

ui

N2
i

. where, Ni is the number of functional
atoms inside SCi. ui is the number of edges between the
functional atoms inside SCi. In execution traces, a call
relationship between a class in fai and that in faj will
indicate an edge between fai and faj . K is the number of
functional atom clusters.

(2) conceptual intra-connectivity. It is similar to the
above formula. The only difference is that an edge between
fai and faj exists when the intersection between the term
set (a set of textual terms presented in class identifiers) of
fai and that of faj is not empty.

Structural and Conceptual Inter-Connectivity. Similarly,
we define other two objectives for functional atom clusters
based on the inter-connectivity defined by work of Man-
coridis [22]. More specifically,

(1) structural inter-connectivity, formalized as
1

K(K−1)/2
∑K
i6=j

σi,j

2(Ni×Nj)
, where Ni or Nj is the number of

elements inside atom cluster i or cluster j. σi,j denotes the
number of edges between cluster i and cluster j.

(2) conceptual inter-connectivity. Its formula is similar
with the above, except for the edge difference as illustrated
in the definition of conceptual intra-connectivity.

Optimization Objectives. In summary, the functional
atom grouping has four optimization objectives:

• Maximizing structural intra-connectivity.
• Maximizing −(structural inter-connectivity).
• Maximizing conceptual intra-connectivity.
• Maximizing −(conceptual inter-connectivity).

2.4.3 Search-based Functional Atom Grouping
Functional Atom Grouping aims to produce service candi-
dates through different combinations of functional atoms,
by optimizing the above four objectives.

To address this multi-objective problem, we tailored
the Non-dominated Sorting Genetic Algorithm-II (NSGA-
II) [26] to the context of functional atom grouping. NSGA-
II has been widely exploited in software remodularization
[11]. This efficient genetic technique can search for well-
distributed Pareto fronts where approximately optimal so-
lutions are located. The tailoring of NSGA-II to our context
of functional atom grouping is described next.

Initial Population. Given the set of functional atoms
FA = {fa1, fa2, ..., fam} obtained in section 2.4.1, an in-
dividual or a chromosome is a partition P of the set FA:

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, X 5

P = {q1, q2, ..., qk}

where, ∀qi 6= ∅, ∪i=1,2,...,k qi = FA and ∀i,∀j, qi ∩ qj = ∅.
A partition P of FA into N non-empty groups is called

a N-partition of FA. A N-partition of FA corresponds to
producing N service candidates. We randomly generate a
set of P from FA as initial population.

Fitness Functions. We define F as a vector of objective
functions, composed of four fitness functions:

F = (f1, f2, f3, f4)

where, f1, f2, f3 and f4 correspond to the previous four op-
timization objectives, respectively. Functional atom group-
ing searches for near-optimal solution P to maximize F .

Crossover. We employ single-parent crossover to generate
offspring, each of which is a neighbor partition of an individ-
ual P . A neighbor partition (NP) [22] is still a partition of FA,
and is generated by moving a functional atom fa from an
element of P to a different element of P . The moving fa
between elements of P manifests two strategies of monolith
splitting: pull up and move strategies [1]. The move strategy
merges one functional atom into a service candidate. The
pull up strategy separates out one functional atom to be a
new service candidate.

Mutation. With a mutation probability, we randomly se-
lect an offspring generated in Crossover. Then, we randomly
choose one NP of this offspring as the mutation result.

Post-processing. The NSGA-II to Functional Atom Group-
ing outputs a Pareto front, consisting of a set of near-optimal
solutions (i.e., partitions). We consider one partition P as
the best solution if P is the knee point. As a compromise
of all optimization objectives, the knee point Pknee [27]
presents the smallest euclidean distance from its fitness
values to the fitness values (Fideal) of Pideal. Pideal is an
ideal solution with best fitness values Fideal in the Pareto
front: Fideal = (max(f1),max(f2),max(f3),max(f4)). The
classes in each element of the Pknee will compose a Eser
for a service candidate.

In the example of JPetstore, when initializing popula-
tions, we randomly generate N-partitions (Assuming N =
4) of FA as individuals. An individual is a partition (P) of
FA:

FA = {fa1, fa2, fa3, fa4, fa5, fa6, fa7}.

P = {fa0, fa5}, {fa1}, {fa3, fa6}, {fa2, fa4, fa7}}.

After processing the populations through the tailored
NSGA-II above, we choose the knee point from the Pareto
front as the best solution. By extending the elements of Pknee
with classes of fa, the class entities in each element will
form one identified Eser :

Eser3 = {c5, c6, c9}
Eser2 = {c7, c8, c15}

Eser1 = {c10, c11, c13, c14}
Eser0 = {c0, c1, c2, c3, c4, c12}

2.5 Step 3: Interface Class Identification

According to Rtr and the identified Eseri for service candi-
date SCi, we further recognize the potential interface classes
Ii and operations Oi that can be published.

We first detect entry methods from execution traces. We
consider an entry method always the first m in tr ∈ Rtr
to process functional requests from external clients. Meth-
ods related with common logic such as configuration and
context are excluded from the entry methods, since they are
irrelevant to the business capabilities and appear in almost
all execution traces.

After that, for a service candidate SCi, we regard the
entry methods located in classes of Eseri as Operations (Oi)
to be published.

We identify interface classes of service candidates in a
direct way. We intuitively group Operations in terms of their
owner classes [28], each of which is then regarded as an
Interface Class. All interface classes compose Ii provided by
a service candidate SCi.

For JPetstore, the identified operations and interface
classes are method members and classes with a prefix of
org.mybatis.jpetstore.web.actions. Table 2 illus-
trates the identified service candidates from JPetstore. We
can observe that the generated service candidates are sepa-
rated into independent functions: ”Catalog service”, ”Order
service”, ”Account service” and ”Cart service”. Obviously,
even though some classes (e.g., domain.Account, do-
main.Product) are organized in the same code package
of the original monolith, these classes are divided into
different service candidates, each having a clearly-defined
functionality.

3 EVALUATION MODEL

In this section, we introduce an evaluation system to assess
the quality of service candidates from three aspects:

1) External: Independence of Functionality. A service
should provide well-defined, independent, and coherent
functionality to its external clients, following the Single
Responsibility Principle (SRP).

2) Internal: Modularity. If a service is well-modularized,
its internal entities should be cohesive, and entities across
service boundaries should be loosely coupled.

3) Evolvability: Independence of Evolvability. Being able to
evolve independently, without changing other services, is
the most desirable property of services, meaning that they
can flexibly accommodate future changes.

3.1 Independence of Functionality

To quantitatively and objectively assess functional indepen-
dence, we leverage information from published interfaces
that expose the functionality of a module (e.g., a service)
[29]. From the interface classes I of identified service can-
didates, we use three measures to objectively quantify Inde-
pendence of Functionality [1] as follows.

1) ifn (interf ace number), measures the number of pub-
lished interfaces of a service. The smaller the ifn, the more
likely the service assumes a single responsibility. IFN is the
average of all ifn. The formal definitions are as follows:

IFN =
1

N

N∑
j=1

ifnj (4)

ifnj = |Ij | (5)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, X 6

TABLE 2: The service candidates extracted from JPetstore

SC Eser I O

SC0

org.mybatis.jpetstore.domain.Category
org.mybatis.jpetstore.service.CatalogService
org.mybatis.jpetstore.web.actions.CatalogActionBean
org.mybatis.jpetstore.domain.Product
org.mybatis.jpetstore.domain.Item
org.mybatis.jpetstore.domain.Sequence

CatalogActionBean

ForwardResolution viewCategory()
ForwardResolution searchProducts()
ForwardResolution viewProduct()
ForwardResolution viewItem()

SC1

org.mybatis.jpetstore.domain.LineItem
org.mybatis.jpetstore.web.actions.OrderActionBean
org.mybatis.jpetstore.service.OrderService
org.mybatis.jpetstore.domain.Order

OrderActionBean

Resolution newOrder()
boolean isConfirmed()
org.mybatis.jpetstore.domain.Order getOrder()
Resolution newOrderForm()
void clear()
void setOrderId(int)
Resolution viewOrder()
Resolution listOrders()

SC2

org.mybatis.jpetstore.domain.Cart
org.mybatis.jpetstore.domain.CartItem
org.mybatis.jpetstore.web.actions.CartActionBean

CartActionBean

void clear()
Resolution removeItemFromCart()
Resolution updateCartQuantities()
org.mybatis.jpetstore.domain.Cart getCart()
Resolution addItemToCart()

SC3

org.mybatis.jpetstore.service.AccountService
org.mybatis.jpetstore.web.actions.AccountActionBean
org.mybatis.jpetstore.domain.Account

AccountActionBean

boolean isAuthenticated()
String getUsername()
void setPassword(String)
void setUsername(String)
Resolution newAccount()
org.mybatis.jpetstore.domain.Account getAccount()
Resolution signoff()
void clear()

where, Ij is the published interfaces (or interface classes) of
service j.N is the number of services that provide published
interfaces in the service-based system.

2) chm (cohesion at message level), measures the cohe-
siveness of interfaces published by a service at the message
level. The higher the chm of a service, the more cohesive the
service is, from an external perspective. CHM is the average
functional cohesiveness. We define chm as a variation of
LoCmsg (Lack of Message-level Cohesion), proposed by
Athanasopoulos et al. [30]. chm+ LoCmsg = 1.

CHM =
1

N

N∑
j=1

chmj (6)

chmj =


∑

(k,m)

fmsg(oprk,oprm)

1
2 |Oj |×(|Oj |−1)

, if |Oj | 6= 1

1, if |Oj | = 1
(7)

fmsg(oprk, oprm) =
(|retk∩retm||retk∪retm| +

|park∩parm|
|park∪parm|)

2
(8)

where, oprk, oprm ∈ Oj are union operations on Ij , and
k < m. retm and parm are sets of return values and input
parameters of oprm. fmsg computes the similarity between
two operations at message level, denoting the average of
similarity of input messages (parameters) and output mes-
sages (return values). N is the same with that of IFN.

3) chd (cohesion at domain level), measures the cohe-
siveness of interfaces provided by a service at the domain
level. The higher the chd, the more functionally cohesive this
service is. Similarly, CHD is the average of all chd within the
system. We define chd as a variation of LoCdom (Lack of

Domain-level Cohesion) defined by Athanasopoulos et al.
[30]. chd+ LoCdom = 1.

CHD =
1

N

N∑
j=1

chdj (9)

chdj =


∑

(k,m)

fdom(oprk,oprm)

1
2 |Oj |×(|Oj |−1)

, if |Oj | 6= 1

1, if |Oj | = 1
(10)

fdom(oprk, oprm) =
|fterm(oprk) ∩ fterm(oprm)|
|fterm(oprk) ∪ fterm(oprm)|

(11)

where, opr and O are same symbols as those defined
in chm. fdom computes the similarity between operations.
fterm(opri) describes the set of domain terms contained in
the signature of opri.

3.2 Modularity
Modularity of a component or service can be measured
from multiple perspectives, such as structural, conceptual,
history, and dynamic dimensions [11]. Here we extend the
Modularity Quality (MQ) defined by Mancoridis [22] with
structural and conceptual dependencies, using Structural
Modularity Quality and Conceptual Modularity Quality to
assess the modularity of services candidates.

1) SMQ (Structural Modularity Quality), measures mod-
ularity quality from a structural perspective. The higher the
SMQ, the better modularized the service is.

SMQ =
1

N

N∑
i=1

scohi −
1

N(N − 1)/2

N∑
i6=j

scopi,j (12)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, X 7

Fig. 2: Independence of Evolvability measures of different splitting for JPetstore example

scohi =
ui

N2
i

, scopi,j =
σi,j

2(Ni×Nj)

Consistent with intra-connectivity and inter-connectivity
[22], scoh measures the structural cohesiveness of a service,
while scopi,j measures coupling between services. ui is the
number of edges inside a service i. σi,j is the number of
edges between service i and service j. Ni or Nj is the
number of entities inside service i or j. If there is a structural
call dependency between two entities, an edge exists. The
bigger scoh, and the smaller scop, the better.

2) CMQ (Conceptual Modularity Quality), similarly
measures modularity quality from a conceptual perspective.
The higher the CMQ, the better.

CMQ =
1

N

N∑
i=1

ccohi −
1

N(N − 1)/2

N∑
i6=j

ccopi,j (13)

ccohi =
ui

N2
i

, ccopi,j =
σi,j

2(Ni×Nj)

The formalisms of CMQ, ccoh, and ccop are similar to
SMQ, scoh, and scop. The only difference is that in the
CMQ definition an edge between two entities exists if the
intersection between the textual term set of the entities is
not empty.

3.3 Independence of Evolvability
Ideally, we should evaluate Independence of Evolvability of
services by examining and tracking the revision history of
the implemented services, but this is impossible at the ser-
vice design phase. We thus propose to measure a service’s
(or candidate’s) Independence of Evolvability by studying the
revision history of its original monolithic software. The
rationale is: if classes that change together frequently are
grouped into one service, and other classes (that do not
change together with these chosen classes) are grouped into
different services, we assume that the designed services will
evolve relatively independently. Based on this rationale, we
propose three measures as follows.

1) icf (internal co-change frequency), measures how
often entities inside a service change together as recorded in
the revision history. Higher icf means that the entities inside

this service will be more likely to evolve together. ICF is the
average of all icf within the system.

ICF =
1

N

N∑
j=1

icfj (14)

icfj =
1

|Eserj |

|Eserj
|∑

m=1

1

|Eserj |

|Eserj
|∑

n=1

fcmt(cm, cn) (15)

where, fcmt(cm, cn) is the number of commits in which
entity cm and cn changed together. cm, cn ∈ Eserk . cm, cn ∈
Eserj . fcmt(cm, cn) = 0 if m = n.

2) ecf (external co-change frequency), measures how
often entities assigned to different services change together,
according to the revision history. A lower ecf score means
that entity pairs located in different services are expected to
evolve more independently. Similarly, ECF is the average ecf
of all services within the system.

ECF =
1

N

N∑
j=1

ecfj (16)

ecfj =
1

|Eserj |

|Eserj
|∑

m=1

1

|Ecserj |

|Ec
serj
|∑

n=1

fcmt(cm, cn) (17)

where, ecfj computes the co-change frequency between
entities in Eserj of service j and entities in Ecserj .
Ecserj is a set of entities not located in Eserj . Ecserj =
∪k=1,2,...,NEserk , k 6= j. fcmt(cm, cn) is same as that de-
fined in icf. cm ∈ Eserj , cn ∈ Ecserj . ecfj = 1 if |Eserj | = 1.

3) REI (Ratio of ECF to ICF), measures the ratio of
co-change frequency across services vs. the co-change fre-
quency within services. The ratio is expected to be less
than 1.0, if co-changes happen more often inside a service
than across different services. The smaller the ratio is, the
less likely co-changes happen across services, and the ex-
tracted services tend to evolve independently. Ideally, all
co-changes should happen inside services.

REI = ECF/ICF (18)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, X 8

where, ECF and ICF are notions defined above.
4) An example with JPetstore. We will use the JPetstore

example, introduced in section 2, to intuitively explain ICF,
ECF, and REI. Figure 2 shows that this example includes 6
classes and 3 commits, and the classes will be grouped into 3
service candidates. Figure 2 shows three splitting scenarios.
In Figure 2(a), each commit revision happens within a ser-
vice, which means each service can change independently.
At the other extreme, in Figure 2(c), each commit revision
crosses a service boundary, which means changes to each
service will always influence another service. Figure 2(b) is
an intermediate case: one service can change by itself while
the others cannot. From Case a to Case b to Case c, the
value of ICF becomes smaller while the values of ECF and
REI become larger. It can be seen that the measures (ICF,
ECF, REI) are able to reflect the change of Independence of
Evolvability in different splittings.

4 EXPERIMENTAL SETUP

In this section, we first introduce the investigated subjects,
and then present how we obtained test cases and collected
execution traces. After that, we introduce the parameter
configurations used in our method, illustrate the baseline
methods, and present the evolution history data we col-
lected. Finally, we show the evaluation configuration in the
experiments.

4.1 Subjects

We collected six web applications for our experiments.
Project Introduction of Table 3 illustrates these projects. Col-
umn Version shows the version of the project that we an-
alyzed. Column Start date and End date denote the time
range under examination. LOC and #Class are the lines
of code and the number of classes implemented in Java.
Springblog6 and Solo7 are blogging systems. JForum8 is a
discussion board. Apache Roller9 is a full-featured, multi-
user and group-blog server. Agilefant10 is an open-source
agile project management tool. Xwiki-platform11 is a generic
wiki platform offering runtime services. Xwiki-platform
project contains more than 100 modules and supports ex-
tensions. These projects are heterogeneous in their sizes and
business domains. Most of these systems—such as JForum,
Apache Roller, Agilefant, and Xwiki-platform—are popular
and widely used in practice.

These web applications follow classical multi-layered
architectures, such as three-layer (Presentation-Business-
Persistence) and four-layer (Presentation-Application-
Business-Persistence) [31][32]. We chose web applications
as subjects because the back end (server side) of a web
application is typically packaged into a single unit, such
as a WAR or EAR file. Such monolithic web applications
usually suffer from maintainability and scalability issues
because of their rapid growth.

6. https://github.com/bvn13/SpringBlog
7. https://github.com/b3log/solo
8. https://sourceforge.net/projects/jforum2
9. https://roller.apache.org
10. https://www.agilefant.com
11. http://platform.xwiki.org

Our experiments decompose the back end of these sub-
jects into service candidates, excluding the front end (Pre-
sentation Layer) and databases. Various patterns [33] can be
adopted for designing the front end decomposition, which is
beyond the scope of our current research. Object-Relational
Mapping12 is employed in the investigated systems to inter-
act with the databases, and the schema of the database in
each case corresponds to Entity [32] classes. Thus, when we
decompose software systems at the class level, the database
tables would also be naturally re-organized, forming a new
schema for each service candidate.

4.2 Test Case and Execution Trace Collection
As mentioned earlier, Functional Testing is required in our
method. Functional Testing is black-box testing of the entire
application. Different from Unit Testing, Functional Testing
requires that the tested application is physically executable.
In the experiment, we use both automatic and manual
approaches to conduct the testing:

(1)Automation Functional Testing for Xwiki-platform. The
repository of the Xwiki-platform project includes functional
test cases in 38 modules, which we have confirmed with
their developer community. It has an automation test in-
frastructure, so these test cases can be carried out automati-
cally13. In total, we executed 4020 functional test cases in the
experiment.

(2)Manual Functional Testing for Other Projects. Spring-
blog, Solo, JForum, Apache Roller and Agilefant projects
contain unit testing suites, but do not provide test suites
for functional testing. We thus designed and manually con-
ducted functional testing for each subject project, following
four steps :

a) Determine the functionality that needs to be tested by
checking the project specification documentation;

b) For each function to be tested, design the test scenarios
to cover the maximum amount of application functionality;

c) Build the project to generate an executable WAR
package, and deploy it in Apache Tomcat;

d) Manually execute the test scenarios by manipulating
the application through a web browser. We used Apache
JMeter14 to record the operations while executing each test
scenario. JMeter supports a fully featured test IDE that
allows test plan recording from browsers. We configured
JMeter and selected “Functional Testing” for “Test Plan
Object”, and set the proxy server. As a user explores the
GUI through the browser, JMeter intercepts the HTTP(S) re-
quests and records transactions in test scripts. Each recorded
transaction corresponds to a test case.

These recorded test cases can be repeatedly executed
using JMeter to automate the testing. In total, we manually
executed 250 test scenarios and recorded 1,886 test cases by
JMeter in the experiment.

For all subjects, Collected Execution Trace in Table 3
presents the execution data extracted from the monitoring
log. #TC(#TS) is the number of functional test cases (Test
Scenarios). |Otr| is the number of extracted Execution Traces
(Otr). |Ocall| is the number of method calls invoked in

12. https://en.wikipedia.org/wiki/Object-relational mapping
13. https://dev.xwiki.org/xwiki/bin/view/Community/Testing
14. https://jmeter.apache.org/

https://github.com/bvn13/SpringBlog
https://github.com/b3log/solo
https://sourceforge.net/projects/jforum2
https://roller.apache.org
https://www.agilefant.com
http://platform.xwiki.org
https://dev.xwiki.org/xwiki/bin/view/Community/Testing
https://jmeter.apache.org/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, X 9

TABLE 3: Summary of projects and collected execution traces

Subject Project Introduction Collected Execution Trace
Version Start date End date #Class? LOC #TC(#TS) |Otr| |OCall| |Rtr| |Rcall|

Springblog 2.8.0 2015-09-26 2017-12-22 85 3,583 371(28) 102 1,390 33 311
Solo 2.7.0 2012-04-10 2018-03-06 148 17,046 257(42) 166 18,650 71 7,425
JForum 2.1.9 2003 2010-10-05 340 29,550 201(37) 323 484,157 69 119,160
Apache Roller 5.2.0 2005-06-07 2017-11-06 534 47,602 174(78) 511 1,499,763 87 305,064
Agilefant 3.5.4 2006-10-12 2015-07-03 389 26,327 883(65) 859 29,618 113 4,899
Xwiki-platform 10.8 2006-10-13 2018-09-24 2,749 368,432 4,020(-) 26,809 3,347,220,274 2,766 778,162,767

Total 5,906(-) 28,770 3,349,253,852 3,139 778,599,626
? Inner classes and classes located in test suites are excluded.

Fig. 3: The percentage of functional atoms change with diff
increases

Otr . |Rtr| and |Rcall| count the Representative Execution Trace
(Rtr) and method calls in Rtr . In total, 3,139 representative
execution traces were obtained from 28,770 original execu-
tion traces.

To ensure reproducibility, all projects, specification doc-
uments, the description of test scenarios, the test plan files
containing test cases recorded by JMeter, and the collected
execution traces can be found at https://github.com/wj86/
FoSCI.

4.3 Parameter Setting in Our Method
The FoSCI method requires several parameters: diff, popu-
lation size, crossover probability, mutation probability, maximum
generations.

diff is the stopping condition of Functional Atom Gener-
ation. We have observed that the minimum and coherent
functional atoms are formed when diff is equal to 3. Figure
3 illustrates the change in the number of functional atoms
(as a percentage of the initial number of classes) as diff is set
from 1,2,..., to 10 in all investigated subjects. It can be seen
that the number of functional atoms flattens when diff =3.
Thus, we recommended and set diff to be 3.

Search-based Functional Atom Grouping involves param-
eters due to the NSGA-II technique. We calibrated these
parameters based on existing work on NSGA-II. We set
the population size equal to 20 individuals, since this set-
ting achieves a balance between effectiveness and efficiency

TABLE 4: The class percentage by different methods

Subject LIMBO WCA MEM FoSCI

Springblog 91.76% 91.76% 85.88% 72.94%
Solo 98.65% 98.65% 74.32% 68.92%
JForum 97.15% 97.15% 60.76% 61.47%
Apache Roller 96.22% 96.22% 77.94% 77.15%
Agilefant 94.34% 94.34% 74.81% 61.44%
Xwiki-platform 97.93% 97.93% 81.41% 46.82%

according to our experiments. We used 0.8 as crossover
probability and 0.04 × log2(n) as the mutation probability as
suggested by Candela et al.[11]. We configured maximum
generations to be 200. The search process is repeated 30
times to reduce the bias caused by the randomness of the
genetic algorithm. As a result, we got 30 sets of the nearest
optimal solutions after completing our method execution for
each subject. We merged the solutions and chose the non-
dominated individuals. Among them, we selected the knee
point (as explained in section 2.4.3) as the solution of service
candidate identification.

4.4 Baseline Methods
We compare FoSCI with three baseline methods: LIMBO
[34], WCA [12], and MEM (Microservice Extraction Model)
[5]. WCA is a hierarchical clustering method that lever-
ages two measures to determine the similarity between
classes: Unbiased Ellenberg (UE) and Unbiased Ellenberg-
NM (UENM). We employed UENM in our work since it
outperforms UE [13]. LIMBO uses information loss to mea-
sure the distance between classes for software clustering.
MEM cuts the class graph of the original monolith, and the
relations on the edges are extracted using three strategies:
logical, semantic, and contributor couplings. In this paper,
the semantic coupling-based approach was selected in MEM
because the other two strategies cover a very small number
of the classes in our target projects.

Table 4 shows the class percentage covered by all four
methods: WCA, LIMBO, MEM and FoSCI. Class percentage
refers to the proportion of classes that are analyzed by
various methods. The class percentage rarely equals 100%.
The class percentage in LIMBO and WCA is always the
same, as both methods are based on structural dependencies
parsed from source code. The percentages in MEM and
FoSCI are less than those of LIMBO and WCA. We will
discuss the uncovered classes in FoSCI in Section 5.

To ensure that all methods identify service candidates
from the same set of classes and the comparisons are unbi-

https://github.com/wj86/FoSCI
https://github.com/wj86/FoSCI

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, X 10

TABLE 5: Analysis of commit history

Subject #Total #Co-change #Class (%)

Springblog 148 84 57 (67.06%)
Solo 2,044 282 147 (99.32%)
JForum 10 0 0 (0%)
Apache Roller 4,126 337 379 (70.91%)
Agilefant 5,166 1,853 314 (80.72%)
Xwiki-platform 35,290 12,045 1,827 (66.46%)

Total 46,784 14,601 -

ased, we use the intersection of the classes of all methods as
our data standard. In the experiments, we first run these
methods using all classes, and then filter out the results
based on the classes shared by all methods to evaluate their
performance.

4.5 Revision History Collection
We collected commit information from the revision history
to evaluate the Independence of Evolvability. As shown in
Table 5, #Total is the number of total commits during the
evolution period. Many commits are irrelevant to class
evolution, such as adding new files, modifying front-end
files (.css, .html), modifying configuration files (.xml), and
updating licenses15. By removing these irrelevant commits,
14601/46787 = 31.21% of all commits are selected. Because
of the incomplete revision history of JForum, the number of
co-change commits and involved classes is 0.

4.6 Evaluation Configuration
The baseline methods require configuring the number N of
service candidates to be identified. Similar to the software
modularization, it is not a trivial task to define N , since it is
highly related to the targeted subjects[11]. Modularization
work in [11] uses M

2 (M is the number of elements or classes
to be clustered) as the maximum number of generated mod-
ules. For identifying services from a monolithic software,
the domain experts of the investigated project should ideally
recommend N in terms of their knowledge of their system’s
business logic[20]. We set N based on the functionality fea-
tures (as illustrated in our data repository) for the subjects
in study. To address the comparison more rigorously, we
supplemented four extra settings by usingN−2,N−1,N+1
and N + 2 as inputs. As a result, Springblog, Solo, JForum,
Agilefant, Apache Roller and Xwiki-platform were split into
6-10, 7-11, 7-11, 9-13, 14-18, and 50-54 service candidates
respectively.

Thus we conducted 5×6 = 30 group experiments in our
evaluation. For each group, WCA, LIMBO, MEM and our
method are applied. In each group, our method is repeated
30 times, with the configurations described in section 4.3.

5 EVALUATION

The objective of our evaluation is to assess whether FoSCI
can produce effective service candidates, in terms of Indepen-
dence of Evolvability, Independence of Functionality, and Mod-
ualarity. We compare FoSCI with three baseline methods,

15. In project Solo, commit #5bcd9d6 shows the commit message
“update license”, modifying 128 classes out of total 147 (87.04%).

LIMBO, WCA, and MEM, and explore how the performance
of FoSCI changes when the coverage of execution traces
differs.

As described in section 4.6, we conducted 5 test groups
for each subject. Section 5.1 illustrates all 5 groups for each
subject. Due to the consistent performance of methods in
different N for a subject, section 5.2 and 5.3 just illustrate
3 groups (N − 2, N,N + 2). The complete tables with all
groups are available in our repository.

5.1 The Evaluation of Evolvability
Table 6 presents the ICF,ECF and REI measures for service
candidates generated by all four methods. Each row corre-
sponds to the measures of one case (group). For example,
the first row of Springblog shows the evaluation results
when identifying N = 6 service candidates. To rigorously
compare FoSCI with other methods, we employ Wilcoxon’s
signed-rank test, a non-parametric statistical hypothesis to
test whether the sample of one metric measurement from
FoSCI is significantly better than the sample of that from
each of the other methods over all cases. The P-values are
illustrated in the last row of the table.

5.1.1 Analysis of Results
Recall that REI measures the evolvability feature by inte-
grating ICF and ECF. The smaller the REI, the better. From
Table 6, we observe that only FoSCI has all REI scores
less than 1.0 except for one outlier (in gray color). Most
scores in LIMBO, WCA and MEM are much larger than
1.0, indicating poor evolvability of the service candidates
they generated. The P-value is less than 0.001 (denoted
as ***) respectively when FoSCI is compared with LIMBO,
WCA and MEM with regard to REI, suggesting that FoSCI
significantly outperforms the other methods.

According to Table 6, service candidates produced by
FoSCI perform by far the best in terms of REI among all
methods. Moreover, FoSCI can ensure that co-changes are
better constrained within services instead of crossing service
boundaries. In addition, Table 6 shows that, even though for
different values ofN of one subject, the performance of each
method is quite consistent.

ICF, ECF and REI measures the overall level of evolv-
ability. It is interesting to investigate the performance of
each individual service candidate (measured by icf,ecf) in
each case. We selected 4 large subjects to present their
distribution of icf and ecf : Solo, Apache Roller, Agilefant,
and Xwiki-platform. Since the performance of each method
is consistent under different target number of services, N , as
shown in Table 6, we present the results using a randomly
picked N , as shown in Figure 4.

Figure 4 shows that the co-changes (indicated by icf) in-
side service candidates are more frequent than those across
services (indicated by ecf) in FoSCI. Its positive difference
from icf to ecf by FoSCI is significantly higher than others.
Moreover, WCA and MEM may generate service candidates
with negative difference from icf to ecf , indicating that
these services can hardly evolve independently.

The box plots reveal that the difference from icf to ecf
by FoSCI is bigger (with expected positive value) than that
by the baseline methods. This observation is consistent with
that from Table 6.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, X 11

TABLE 6: Measurement results of ICF, ECF and REI

Subject LIMBO WCA MEM FoSCI
ICF ECF REI ICF ECF REI ICF ECF REI ICF ECF REI

Springblog

0.0856 0.1417 1.6554 0.0270 0.3966 14.6701 0.0940 0.5154 5.4829 0.3795 0.1304 0.3435
0.0719 0.1295 1.8000 0.0228 0.3689 16.2013 0.1584 0.4575 2.8883 0.4347 0.1488 0.3423
0.0691 0.2455 3.5554 0.0228 0.3689 16.2013 0.1424 0.5250 3.6878 0.4037 0.1312 0.3251
0.0692 0.2318 3.3518 0.0228 0.3689 16.2013 0.1300 0.5773 4.4410 0.3645 0.1559 0.4277
0.0654 0.2141 3.2748 0.0288 0.3253 11.2890 0.1736 0.5289 3.0477 0.3229 0.1415 0.4382

Solo

0.1780 0.1718 0.9650 0.0706 0.1960 2.7745 0.0968 0.7640 7.8958 0.2460 0.1877 0.7627
0.1632 0.1706 1.0455 0.0288 0.3105 10.7822 0.1479 0.6733 4.5535 0.2789 0.2133 0.7646
0.1687 0.1712 1.0149 0.0288 0.3105 10.7822 0.1314 0.7106 5.4096 0.3369 0.1669 0.4954
0.1682 0.1781 1.0584 0.0252 0.5205 20.6533 0.1186 0.7386 6.2265 0.2311 0.1571 0.6797
0.1687 0.1764 1.0454 0.0252 0.5205 20.6533 0.1082 0.7616 7.0381 0.4001 0.1956 0.4888

Agilefant

0.2214 0.2310 1.0433 0.0509 0.0366 0.7197 0.0264 0.8964 34.0120 2.5298 0.2389 0.0944
0.2256 0.2319 1.0280 0.0452 0.1422 3.1442 0.0239 0.9060 37.8620 1.8916 0.2528 0.1336
0.2301 0.2345 1.0190 0.0452 0.1422 3.1442 0.0219 0.9144 41.7175 1.9864 0.2314 0.1165
0.2264 0.2306 1.0183 0.0407 0.1291 3.1725 0.0203 0.9211 45.4483 2.0392 0.2471 0.1212
0.2164 0.2216 1.0241 0.0375 0.1180 3.1493 0.0189 0.9268 49.1187 1.5147 0.2254 0.1488

Apache Roller

0.7703 0.7920 1.0282 0.2777 0.6959 2.5064 0.2619 0.9338 3.5661 1.1587 0.9099 0.7853
0.7714 0.7953 1.0310 0.2182 0.7173 3.2883 0.2444 0.9386 3.8407 0.9236 0.8128 0.8800
0.7631 0.7910 1.0366 0.2182 0.7173 3.2883 0.2291 0.9423 4.1125 1.0313 0.8567 0.8307
0.7646 0.7935 1.0378 0.1703 0.7386 4.3377 0.2157 0.9674 4.4855 0.8970 0.7920 0.8829
0.7816 0.8063 1.0317 0.1596 0.7902 4.9502 0.2035 0.9699 4.7652 0.7591 0.7647 1.0074

Xwiki-platform

0.0083 0.0072 0.8632 0.0402 0.1036 2.5760 0.0621 0.6807 10.9657 0.1461 0.0055 0.0376
0.0081 0.0071 0.8764 0.0394 0.1016 2.5772 0.0609 0.6869 11.2879 0.1045 0.0060 0.0571
0.0081 0.0071 0.8797 0.0387 0.1189 3.0747 0.0597 0.6930 11.6101 0.1059 0.0055 0.0516
0.0083 0.0071 0.8609 0.0379 0.1543 4.0688 0.0714 0.6799 9.5243 0.1038 0.0058 0.0554
0.0086 0.0071 0.8338 0.0362 0.1517 4.1904 0.0701 0.6858 9.7888 0.1190 0.0052 0.0441

P-value >, *** >, *** >, *** −

> means the value of former (LIMBO,WCA,MEM) is statistically bigger than the latter (FoSCI), and < vice versa.
= means there is no statistical difference between the two group of results.
*** means the 0.001 significant level (p-value < 0.001).
** means the 0.01 significant level (p-value < 0.01).
* means the 0.05 significant level (p-value < 0.05).
Note: JForum is excluded from this table, since the co-change revision data was missing, as shown in Table 5.

5.1.2 Summary of the Evaluation of Evolvability

As indicated by ICF (and icf), ECF (and ecf) and REI, FoSCI
can aggregate frequently co-changed entities within a mono-
lith into one service candidate, while placing infrequently
co-changed entities into different candidates. In contrast,
for service candidates generated by LIMBO, WCA and
MEM, change across service boundaries are more common
than those within services. Consequently, these services
are unable to evolve independently. In conclusion, FoSCI
can generate service candidates with significantly greater
Independence of Evolvability than the other three baseline
methods.

5.2 The Evaluation of Functionality

The analysis in this section is similar to that in section 5.1.
Table 7 shows IFN, CHM and CHD measures for service can-
didates identified by the four methods. To further observe
individual service candidates, Figure 5 shows the distribu-
tion of ifn, chm and chd measures of service candidates in
four cases, the same as we reported in section 5.1.

5.2.1 Analysis of Results

Recall that the smaller the IFN, the better a split will be.
Column IFN of Table 7 shows that, compared with WCA
and MEM, FoSCI and LIMBO have the better performance
considering IFN. The IFN value of FoSCI and LIMBO can

be even about 10 times smaller than that of WCA and MEM
in Agilefant and Apache Roller cases. The P-values indicate
that, in all statistical tests, except for the comparison with
LIMBO, FoSCI significantly outperforms WCA and MEM in
terms of IFN.

Similarly, Figure 5(a)s shows ifn distribution for each
service candidate in the same four cases as reported in
section 5.1. Consider a large-size Xwiki-platform case: WCA
assigns most published functionality into a singe service,
so that this service candidate has to provide more than
700 interfaces (ifn > 700). The same phenomenon can be
seen in other cases too. Both FoSCI and LIMBO, however,
identify services with less interfaces. We can see these results
from ifn box plots are consistent with those from IFN
analysis.

In terms of Column CHM and CHD, Table 7 shows that
the three baseline methods perform the worst in several
cases, but FoSCI never ranks the worst except for one case
highlighted in gray. The P-values indicate that FoSCI signifi-
cantly surpasses LIMBO. But there is no statistical difference
between the results of FoSCI and MEM (and WCA).

To understand these observations, we investigate the
distribution of chd and chm shown in Figure 5(b)s and
(c)s. In particular, for Xwiki-platform, the result of MEM
is much higher than that of FoSCI, because MEM produced
one large service (providing more than 700 interfaces) and
a lot of tiny services (providing 1 interface), as indicated in

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, X 12

Fig. 4: The distribution of icf,ecf measures for service candidates

TABLE 7: Measurement results of IFN, CHM and CHD

Subject IFN CHM CHD
LIMBO WCA MEM FoSCI LIMBO WCA MEM FoSCI LIMBO WCA MEM FoSCI

Springblog
2.600 13.000 4.000 2.600 0.494 0.297 0.656 0.681 0.472 0.308 0.556 0.632
2.167 13.000 3.000 2.167 0.512 0.297 0.747 0.573 0.468 0.308 0.670 0.558
2.167 13.000 3.000 2.167 0.512 0.297 0.747 0.589 0.468 0.308 0.669 0.607

Solo
3.286 23.000 23.000 5.750 0.823 0.847 0.847 0.864 0.452 0.449 0.449 0.508
2.875 23.000 23.000 4.600 0.849 0.847 0.847 0.880 0.526 0.449 0.449 0.595
2.556 23.000 23.000 4.600 0.868 0.847 0.847 0.894 0.579 0.449 0.449 0.648

JForum
3.857 13.500 27.000 4.500 0.531 0.758 0.508 0.701 0.227 0.578 0.152 0.463
3.375 13.500 27.000 3.857 0.526 0.758 0.508 0.610 0.233 0.578 0.152 0.440
3.000 13.500 27.000 3.857 0.575 0.758 0.508 0.559 0.225 0.578 0.152 0.457

Agilefant
3.889 17.500 35.000 4.375 0.727 0.619 0.735 0.721 0.282 0.433 0.199 0.388
3.889 17.500 35.000 4.375 0.727 0.619 0.735 0.861 0.282 0.433 0.199 0.486
3.500 17.500 35.000 4.375 0.740 0.619 0.735 0.809 0.283 0.433 0.199 0.509

Apache Roller
1.667 15.000 15.000 2.143 0.744 0.779 0.779 0.748 0.558 0.385 0.385 0.579
1.667 15.000 15.000 2.143 0.744 0.779 0.779 0.724 0.558 0.385 0.385 0.525
1.500 15.000 15.000 1.667 0.753 0.779 0.779 0.791 0.602 0.385 0.385 0.585

Xwiki-platform
16.580 21.256 27.667 16.939 0.176 0.367 0.701 0.256 0.091 0.372 0.751 0.253
16.255 21.256 27.667 16.600 0.177 0.367 0.701 0.231 0.091 0.372 0.751 0.216
15.942 20.725 26.774 16.275 0.178 0.361 0.711 0.233 0.092 0.378 0.759 0.250

P-value <, *** >, *** >, *** − <, *** = = − <, *** = = −

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, X 13

Fig. 5: The distribution of ifn,chm,chd measures for service candidates

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, X 14

Figure 5(a). These tiny interfaces have the best chm = 1
and chd = 1, shown in Figure 5(b) and (c). Consequently,
the general results of MEM have exceptionally higher CHM
and CHD than those of FoSCI.

5.2.2 Summary of the Evaluation of Functionality
As indicated by IFN(and ifn), FoSCI and LIMBO are more
capable of splitting the business responsibilities within a
monolith into reasonable services candidates, while MEM
and WCA tend to heavily mix the functions together into
fewer services, and even one very large service. Further-
more, in terms of CHM,CHD (and chm,chd), FoSCI performs
better than LIMBO. For WCA and MEM, their CHM and
CHD may be better than those of FoSCI when they decom-
pose a monolith into one super larger service (i.e., still a
“monolith”) and lots of tiny services. This phenomenon will
be more obvious when decomposing a large-scale software
system (such as the Xwiki-platform).

5.3 The Evaluation of Modularity
Table 8 presents the measures of SMQ and CMQ for all cases.
Concretely, Figure 6(a) illustrates the distribution of scoh
and scop of individual service candidates in four cases, same
as those in section 5.1. Likewise, the distribution of ccoh and
ccop are in Figure 6(b).

5.3.1 Analysis of Results
In the column SMQ of Table 8, FoSCI always has the best
value among all cases. For CMQ, FoSCI outperforms others
except for two outliers in gray color. In particular, the SMQ
and CMQ of LIMBO, WCA and MEM even have some mea-
sures less than 0, indicating poor modularity. Statistically, all
the P-values in the last row indicate statistical significance
of the comparison between FoSCI and others.

Figure 6(a) shows the structural cohesion (scoh) and
coupling (scop) for individual service candidates. We ob-
serve that service candidates produced by FoSCI exhibit
distinctively positive differences from scoh to scop. The
other methods are unable to achieve high cohesion and
low coupling. In terms of conceptual cohesion (ccoh) and
coupling (ccop), the observation is similar, as shown in
Figure 6(b). It can bee seen that the observations from Figure
6 and Table 8 are consistent.

5.3.2 Summary of the Evaluation of Modularity
Both structural and conceptual modularity measurements
suggest that FoSCI can split a monolith into service can-
didates with considerably better modularity. Entities inside
service candidates by FoSCI tend to function more coher-
ently than those generated by the other three methods.

5.4 The Influence of Coverage on FoSCI
Since FoSCI depends on functional test suites, we investi-
gated how the test coverage level may influence the results.
First, through manually inspecting the source code, we cat-
egorized the entities not covered by the collected execution
traces. After that, we designed experiments to investigate
the service candidates generated by FoSCI and how their
performance differ under different level of coverage.

5.4.1 Category of Non-covered Entities
To figure out why some classes in our experiments were
not covered by execution traces as shown in Table 4, we
manually inspected the source code of four16 investigated
projects: Springblog, Solo, JForum, and Apache Roller. We
categorize these uncovered classes into 8 types, as shown in
Table 9. The examples of these types can be found in our
data repository mentioned before.

Based on the categories, Figure 7 illustrates the distri-
bution of classes in the four projects. Taking Springblog as
an example, the execution traces collected in experiment
cover 72.94% of all classes. Among the uncovered classes,
3rdPartyService classes account for 9.41% of all classes. Other
classes account for 2.35%, 10.88%, 11.49% and 3.75% in
Springblog, JForum, Solo and Apache Roller. We can see that
it is difficult for execution traces to cover all code entities.

5.4.2 The Coverage Influence on FoSCI
It is interesting to observe how FoSCI will perform when
the coverage of execution traces changes. First, we introduce
two variables, Coveragetr and Coveragec:

Coveragetr denotes the coverage of execution traces, the
ratio of the number of used execution traces to the entire
execution traces collected.

Coveragec denotes the coverage of classes, the ratio of the
number of covered classes to the number of classes covered
by the entire execution traces.

We use all 6 projects as investigation subjects, and con-
duct experiments with differentCoveragetr: 20%, 40%, 60%,
80%, 100%, that is, 5× 6 = 30 experimental groups in total.

For each experimental group, we observe how
Coveragec will change along with the increase of
Coveragetr . For each group, we repeated 30 times to ran-
domly select the execution traces by a specified Coveragetr.
Figure 9 presents the statistics labeled with the median of
Coveragec. We observe that, individually, the Coveragec
in the lower Coveragetr sometimes may be larger than
that in the higher Coveragetr . But, statistically, the me-
dian of Coveragec tends to increase with the increase of
Coveragetr . Therefore, we selected the execution trace set of
a specified Coveragetr in experiment if the corresponding
Coveragec is equal to the median labeled.

To rigorously conduct the evaluation, we set the num-
ber of service candidates being identified (N) for different
groups based on Coveragec. As shown in Figure 9, assume
N = k in Solo project is set when Coveragetr = 100%.
When Coveragetr = 20%, N = int(58.33%× k) will be set.
k is the same value with the N configured as introduced
in section 4.6. Other parameters in FoSCI are the same with
those in section 4.3.

How many entities in a service candidate remain the in
same service candidate when coverage changes? To answer
this question, we define Hi,p for service candidate SCi
generated under Coveragetr = p:

Hi,p =
MAX
|SCi|

where, |SCi| is the size of service candidate SCi; MAX is the
maximum number of classes (∀c ∈ SCi) that remain in the

16. Due to the manual labor, large project, such as Agilefant and
Xwiki-platform, were not included.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, X 15

Fig. 6: The distribution of (scoh,scop) and (ccoh,ccop) measures for service candidates

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, X 16

TABLE 8: Measurement results of SMQ and CMQ

Subject SMQ CMQ
LIMBO WCA MEM FoSCI LIMBO WCA MEM FoSCI

Springblog
0.0116 −0.0180 0.0928 0.3403 −0.0106 −0.037 0.2071 0.4713
−0.0028 −0.0130 0.1361 0.3725 −0.0165 −0.0060 0.2207 0.3762
0.0186 −0.0141 0.1572 0.3713 −0.0045 0.0347 0.2071 0.3368

Solo
−0.0166 −0.0004 −0.0009 0.3007 −0.0110 0.0060 0.0742 0.2494
−0.0188 −0.0001 −0.0007 0.3033 −0.0145 0.0052 0.1103 0.1863
−0.0170 0.0001 0.0002 0.2500 −0.0117 0.0049 0.0914 0.2215

JForum
−0.0048 0.0053 0.0359 0.1110 0.0024 −0.0060 0.1713 0.1929
−0.0024 0.0036 0.0172 0.0756 0.0042 −0.0077 0.1921 0.1334
0.0005 0.0032 0.0069 0.3872 0.0048 −0.0059 0.1800 0.3199

Agilefant
−0.0035 0.0003 −0.0549 0.1337 −0.0072 −0.0234 0.0018 0.3264
−0.0021 0.0004 −0.0358 0.1099 −0.0045 −0.0358 −0.0011 0.3348
−0.0021 0.0004 −0.0250 0.0849 −0.0070 −0.0341 −0.0146 0.3466

Apache Roller
−0.0013 0.0070 0.0557 0.1609 0.0013 0.0355 0.0878 0.0500
0.0003 0.0069 0.0471 0.1750 0.0003 0.0084 0.0703 0.1045
−0.0002 0.0064 0.0421 0.1202 −0.0008 0.0011 0.0545 0.3965

Xwiki-platform
0.0001 0.0004 0.0486 0.0489 0.0001 0.0002 0.1124 0.1276
0.0004 0.0005 0.0468 0.1121 −0.0003 0.0010 0.1024 0.1556
0.0005 0.0004 0.0471 0.0816 0.0000 0.0083 0.1151 0.1152

P-value <, *** <, *** <, *** − <, *** <, *** <, *** −

Springblog JForum Solo Apache Roller

7.06%
2.35%

9.41%

4.71%

2.35%

1.18%
0%

Covered

NoBehavior

Exception

3rdPartyService

Constant

Abstraction

ProvidedService

Extension

Other

10.88%

7.35%
1.76

%
2.65%

7.94%

0.59%

11.49%

0%

3.75%

Fig. 7: The distribution of classes in four subjects

TABLE 9: Categories of uncovered classes

Type Description

NoBehavior A class only having member variables or con-
structors, but having no member methods.

Exception A class responsible for exceptions.
3rdPartyService A class accessing third party services.

Constant A class only having static variables which are
initialized with constants.

Abstraction An abstract super-class.

ProvidedService A class responsible for providing APIs or web-
services for external systems.

Extension A class for extending modules.
Other A class only used by developers, or other reasons.

same candidate under Coveragetr = 100%. For example, in
Figure 8, H1,80% of service candidate SC1 is 66.67%.

In Figure 10, the distribution of Hi,p indicates that over
50% (the value of Hi,p) classes of a service candidate remain
in the same candidate when Coveragetr differs. In the
largest project (Xwiki-platform), Hi,p is a little lower with
the median equal to 40% when Coveragetr = 20%. In
general, the average of Hi,p for Springblog, Solo, JForum,
Apache Roller, Agilefant, and Xwiki-platform is 71.36%,

64.72%, 59.48%, 55.75%, 74.15%, and 49.21%, respectively.

In terms of the three quality criteria, how does our
method perform differently when the coverage differs?
For each investigated subject, Table 10 illustrates the mean
and standard deviation (σ) of the sample that is composed
of measures under different coverages. We observe that
(45− 6)/45 = 86.67% of the σ values is “<= 0.2”.

Summary. These data show that the service
candidates and the quality evaluation results are
influenced when the coverage differs. However,
the results suggest that our method offers ac-
ceptable stability, as indicated by Hi,p ((71.36%
+64.72%+59.48%+55.75%+74.15%+49.21%)/6=62.45%)
and σ (<= 0.2). In addition, when test coverage varies from
20% to 80% for a subject, its impact on FoSCI is not linear,
nor following an obvious pattern. One possible reason is
that, when the execution traces differ, other control variables
change too, such as the set of classes being covered and
being changed. One observation is that, coverage rate has
most impact on the largest project (Xwiki-platform). We
will further investigate the coverage influence in our future
work.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, X 17

TABLE 10: Measures in different coverage

Subject/Metric IFN CHD CHM SMQ CMQ ICF ECF REI

Springblog 2.399±0.56 0.459±0.10 0.523±0.11 0.301±0.13 0.336±0.19 0.531±0.29 0.140±0.09 0.241±0.15
Solo 3.441±0.58 0.665±0.07 0.905±0.02 0.282±0.11 0.358±0.13 0.210±0.04 0.145±0.03 0.715±0.20
JForum 3.286±0.47 0.416±0.07 0.681±0.09 0.375±0.06 0.394±0.05 - - -
Roller 2.848±1.56 0.592±0.09 0.773±0.06 0.219±0.10 0.248±0.10 1.048±0.20 0.843±0.09 0.825±0.13
Agilefant 4.567±0.50 0.419±0.05 0.798±0.08 0.147±0.07 0.344±0.05 1.419±0.62 0.278±0.13 0.206±0.08
Xwiki-platform 16.539±0.24 0.217±0.03 0.235±0.02 0.070±0.02 0.158±0.04 0.168±0.07 0.006±0.00 0.043±0.02

Note: ICF, ECF, REI value for JForum are invalid since JForum’s revision data was missing shown in Table 5.

Fig. 8: An example for Hi,p definition

5.5 Summary
To sum up, it is evident that our FoSCI can produce efficient
service candidates that can consistently exhibit reasonable
functionality, modularity and evolution characteristics. Fur-
thermore, FoSCI shows acceptable stability in terms of split
results and quality evaluation when the coverage of execu-
tion traces differs.

6 LIMITATIONS AND THREATS TO VALIDITY

The FoSCI and service candidate evaluation framework
proposed in this paper only focus on functionality, mod-
ularity, and evolvability, without considering other quality
attributes, such as performance, security, or reliability. The
FoSCI framework is open to incorporate other quality at-
tribute assessments in the future.

Our method relies on (black-box) execution traces in-
stead of (white-box) source code. This black-box method is
appropriate in the following scenarios: a) The source code
of the monolithic application is not available. b) Only part
of the functionality within a monolith needs to be extracted
into service candidates, such as core business capabilities,
commonly-used functions, or frequently-updated features
[4][35]. In practice, the transition process is usually incre-
mental. c) Both the executable monolith and its sufficient
functional test suite are available.

Even though migration from monolithic application to
service-based architecture brings benefits such as better
maintainability and scalability, the process is complex and
costly. Most importantly, microservice architecture is not a
silver bullet, nor is the only way to improve maintainability.
Not all applications should be designed as microservices. If

the objective is to improve the quality of a poorly-designed
system, the architect should first consider refactoring rather
than migrating to microservices.

In this paper, we selected widely-used web applications
as evaluation subjects. Web applications often suffer from
maintainability and scalability issues because of their rapid
evolution and growth in size and complexity. However,
it is hard to guarantee that the evaluation results can be
generalized to other types of systems, such as embedded
systems. To mitigate this threat, we selected web projects
of different sizes, architectural structures, and technology
stacks. We plan to conduct experiments using more types
of systems in the future, to further address this threat to
validity.

Due to the lack of comprehensive and reliable quality
evaluation methods to assess and compare service candi-
dates [36][37], we constructed a systematic measurement
suite to quantitatively and consistently assess service candi-
dates against three quality criteria (i.e., functionality, mod-
ularity, evolvability) using 8 metrics. These metrics are
derived from the service interface information, structural/-
conceptual dependency, and revision history. The evaluation
indicated that our method outperforms other three baseline
methods with respect to these metrics, but it still deserves
further evaluation if more reliable metrics become available.

7 RELATED WORK

7.1 Software Decomposition

Decomposition methods. The goal of software decomposition
is to split a large system into small, manageable modules or
components (e.g. Parnas et al. [38], Bavota et al. [39]). WCA
and LIMBO are classic methods that take static structural
relations extracted from source code as input [12][13][14].
They both employ hierarchical clustering but use differ-
ent distance measurements. Other studies employed in-
formation retrieval techniques [15][16]. These techniques
considered source files as their text corpora, ignoring the
structure of their programming languages. Using the natural
language approach, each source code file is represented as
a vector of keywords or a distribution of topics, extracted
from source code and comments. Lutellier et al. [40] and
Garcia et al. [13] performed a comparative analysis of six
clustering techniques.

Search-based approaches also have been explored. Man-
coridis et al. treated module clustering as a single-objective
optimization problem using modular quality as the opti-
mization objective [7]. Praditwong et al. defined software
modularization as a multi-objective optimization problem
[41]. The objectives included cohesion, coupling and others.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, X 18

Fig. 9: The statistic of Coveragec under different Coveragetr

Fig. 10: Hi,p distribution under different Coveragetr

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, X 19

These existing methods rarely consider software func-
tionality. Most of them are motivated by the assumption that
developers pursue modules with high cohesion and low
coupling [9][10][11]. However, Candela et al. [11] pointed
out that factors other than cohesion and coupling might
need to be taken into account. In contrast, our method
is functionality-oriented, generates functional atoms before
further clustering, and models multiple optimization objec-
tives based on execution traces.

Evaluation of methods. Bavota et al. [16] and Praditwong et
al. [41] evaluated their methods by measuring the improve-
ment of cohesion and the reduction of coupling. Garcia et
al. [13] and Lutellier et al. [40] proposed a suite of metrics to
assess the accuracy of architecture recovery by comparing
with benchmark architectures.

As mentioned above, in addition to cohesion and cou-
pling, other quality criteria for evaluation should be consid-
ered. In addition, oracle architectures normally do not exist.
By contrast, our work employs measures extracted from
service candidate interfaces and revision history, which is
novel and more objective.

7.2 Service Candidate Identification

Identification methods. Service candidate identification is a
form of software decomposition in the realm of service-
based architecture, a counterpart of traditional software
decomposition. We classify existing methods into two cat-
egories: data-oriented and structure-oriented.

Data-oriented methods begin with splitting a data source
or database. Levcovitz et al. [6] partitioned database tables
into several groups. Then they gathered classes, which
access the same group of tables, to compose a service
candidate. Chen et al. [42] presented a data-flow based
method. The data flow diagrams of business logic need to be
provided by the users. Structure-oriented methods employ
structural relations from source code. Gysel et al. [43] and
Mazlami et al. [5] designed graph-cutting algorithms to
generate service candidates.

In general, data-oriented methods start with database
partitions or the analysis of data flow graphs of business
logic, which cannot be automated. Structure-based methods
can relieve manual operation, but these may come at the
expense of ignoring high-level business functionality.

Evaluation of methods. Since the research in service extrac-
tion especially microservice extraction is still in its infancy,
only a few works have conducted evaluations to validate
their methods. Mazlami et al. [5] concluded that their meth-
ods could produce microservices with the benefits of team
size reduction and less domain redundancy. They have not
compared their proposed method with others yet. Chen et
al. [42] conducted experiments on two use cases.

None of the prior work conducted comparative and com-
prehensive evaluations. In this paper, we have conducted
experiments using 6 widely-used open-source projects, and
extracted execution traces from 3,349,253,852 records in ex-
ecution logs. More importantly, our method has been eval-
uated against 8 metrics, assessing Independence of Functional-
ity, Modularity and Independence of Evolvability respectively.

7.3 Cloud Service Extraction

Another branch of related work is cloud service extraction.
It aims to transitioning an application to use cloud-based
services, taking the advantage of cloud resources. Kwon et
al. [44] described two mechanisms to recommend which
class should be transformed into cloud-based services by
taking into factors such as application performance penalty
and business functionality. Moreover, they developed and
implemented a set of refactoring techniques and reduced
the manual efforts involved in the code transformation.
Gholami et al. [45] surveyed the research of migrating legacy
applications to the cloud, and discussed relevant issues,
approaches and concerns. Tilevich et al. [46] addressed
the problem of cloud offloading, i.e., executing the energy-
intensive portion of a mobile application in a remote cloud
server. The work of Zhang Y. et al. [47] is similar, with
the purpose of mobile performance improvement or energy
optimization.

7.4 Dynamic Analysis Based on Execution Traces

Dynamic analysis based on execution traces has a rich
history in program comprehension [48]. It has been recog-
nized that execution data can not only accurately expose
actual software behavior [49], but can also reveal the specific
functionality of programs [17] [18].

Many works have utilized execution traces for feature
localization [48]. Rohatgi et al. [50] combined static analysis
and dynamic analysis for feature location. Safyallah et al.
[51] analyzed patterns from execution traces. Li et al. [17]
relied on analysis of executions of test cases to accurately
recognize entities that contribute to a function.

Some research employs execution traces to help form
a high-level view of a program. Hamou-Lhadj et al. [52]
summarized the content of execution traces, generating
UML sequence diagrams. Alimadadi et al. [18] inferred
hierarchical motifs from execution traces, which can be used
to discover specific functions of the program. Based on
the same rationale, our work leverages execution traces to
extract service candidates.

8 CONCLUSION AND FUTURE WORK

In this paper, we proposed the FoSCI framework for service
candidate identification from monolithic software systems.
Moreover, we created a comprehensive measurement sys-
tem to evaluate service candidates. Compared with three
baseline methods, our evaluation results indicate that FoSCI
can identify service candidates with better Independence of
Functionality, Modularity, and Independence of Evolvability.
Identifying service boundaries from monolithic software is
a complicated task. Our research will focus on two areas to
improve our method in the future:

Guided and interactive service candidate identification. In
practice, service identification from monoliths is an iterative
and incremental process. To better assist architects or devel-
opers, it is important to consider expert knowledge during
the design of services. We intend to improve our methods
by allowing the user to integrate feedback and guidance.

Further refining service candidates to create executable ser-
vices. Service candidates are just intermediate products that

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, X 20

have the potential to be further implemented as services.
The transition from service candidates to deployable ser-
vices is another goal of our future work.

REFERENCES

[1] W. Jin, T. Liu, Q. Zheng, D. Cui, and C. Yuanfang, “Functionality-
oriented microservice extraction based on execution trace cluster-
ing,” in Web Services (ICWS), 2018 IEEE International Conference on.
IEEE, 2018, pp. –.

[2] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, “Microservices: yesterday, today, and
tomorrow,” in Present and Ulterior Software Engineering. Springer,
2017, pp. 195–216.

[3] S. Newman, Building microservices: designing fine-grained systems. ”
O’Reilly Media, Inc.”, 2015.

[4] H. Knoche and W. Hasselbring, “Using microservices for legacy
software modernization,” IEEE Software, vol. 35, no. 3, pp. 44–49,
2018.

[5] G. Mazlami, J. Cito, and P. Leitner, “Extraction of microservices
from monolithic software architectures,” in Web Services (ICWS),
2017 IEEE International Conference on. IEEE, 2017, pp. 524–531.

[6] A. Levcovitz, R. Terra, and M. T. Valente, “Towards a
technique for extracting microservices from monolithic enterprise
systems,” CoRR, vol. abs/1605.03175, 2016. [Online]. Available:
http://arxiv.org/abs/1605.03175

[7] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner, “Bunch:
A clustering tool for the recovery and maintenance of software
system structures,” in Software Maintenance, 1999.(ICSM’99) Pro-
ceedings. IEEE International Conference on. IEEE, 1999, pp. 50–59.

[8] V. Tzerpos and R. C. Holt, “Accd: an algorithm for comprehension-
driven clustering,” in Reverse Engineering, 2000. Proceedings. Sev-
enth Working Conference on. IEEE, 2000, pp. 258–267.

[9] A. Marcus, D. Poshyvanyk, and R. Ferenc, “Using the conceptual
cohesion of classes for fault prediction in object-oriented systems,”
IEEE Transactions on Software Engineering, vol. 34, no. 2, pp. 287–
300, 2008.

[10] D. Poshyvanyk and A. Marcus, “The conceptual coupling met-
rics for object-oriented systems,” in Software Maintenance, 2006.
ICSM’06. 22nd IEEE International Conference on. IEEE, 2006, pp.
469–478.

[11] I. Candela, G. Bavota, B. Russo, and R. Oliveto, “Using cohesion
and coupling for software remodularization: Is it enough?” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 25, no. 3, p. 24, 2016.

[12] M. Chatterjee, S. K. Das, and D. Turgut, “Wca: A weighted clus-
tering algorithm for mobile ad hoc networks,” Cluster computing,
vol. 5, no. 2, pp. 193–204, 2002.

[13] J. Garcia, I. Ivkovic, and N. Medvidovic, “A comparative anal-
ysis of software architecture recovery techniques,” in Proceedings
of 28th IEEE/ACM International Conference on Automated Software
Engineering. IEEE, 2013, pp. 486–496.

[14] C. Patel, A. Hamou-Lhadj, and J. Rilling, “Software clustering
using dynamic analysis and static dependencies,” in Software
Maintenance and Reengineering, 2009. CSMR’09. 13th European Con-
ference on. IEEE, 2009, pp. 27–36.

[15] J. Garcia, D. Popescu, C. Mattmann, N. Medvidovic, and Y. Cai,
“Enhancing architectural recovery using concerns,” in Proceedings
of the 2011 26th IEEE/ACM International Conference on Automated
Software Engineering. IEEE Computer Society, 2011, pp. 552–555.

[16] G. Bavota, M. Gethers, R. Oliveto, D. Poshyvanyk, and A. d. Lucia,
“Improving software modularization via automated analysis of
latent topics and dependencies,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 23, no. 1, p. 4, 2014.

[17] Y. Li, C. Zhu, J. Rubin, and M. Chechik, “Semantic slicing of soft-
ware version histories,” IEEE Transactions on Software Engineering,
vol. 44, no. 2, pp. 182–201, 2018.

[18] S. Alimadadi, A. Mesbah, and K. Pattabiraman, “Inferring hierar-
chical motifs from execution traces,” 2018.

[19] P. B. Kruchten, “The 4+ 1 view model of architecture,” IEEE
software, vol. 12, no. 6, pp. 42–50, 1995.

[20] I. Nadareishvili, R. Mitra, M. McLarty, and M. Amundsen, Mi-
croservice Architecture: Aligning Principles, Practices, and Culture. ”
O’Reilly Media, Inc.”, 2016.

[21] J. Bogner, S. Wagner, and A. Zimmermann, “Automatically mea-
suring the maintainability of service-and microservice-based sys-
tems: a literature review,” in Proceedings of the 27th International
Workshop on Software Measurement and 12th International Conference
on Software Process and Product Measurement. ACM, 2017, pp. 107–
115.

[22] S. Mancoridis, B. S. Mitchell, C. Rorres, Y. Chen, and E. R. Gansner,
“Using automatic clustering to produce high-level system organi-
zations of source code,” in Program Comprehension, 1998. IWPC’98.
Proceedings., 6th International Workshop on. IEEE, 1998, pp. 45–52.

[23] H. Kagdi, M. L. Collard, and J. I. Maletic, “A survey and taxonomy
of approaches for mining software repositories in the context
of software evolution,” Journal of Software: Evolution and Process,
vol. 19, no. 2, pp. 77–131, 2007.

[24] H. P. Breivold, I. Crnkovic, and M. Larsson, “A systematic review
of software architecture evolution research,” Information and Soft-
ware Technology, vol. 54, no. 1, pp. 16–40, 2012.

[25] A. Van Hoorn, J. Waller, and W. Hasselbring, “Kieker: A frame-
work for application performance monitoring and dynamic soft-
ware analysis,” in Proceedings of the 3rd ACM/SPEC International
Conference on Performance Engineering. ACM, 2012, pp. 247–248.

[26] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and
elitist multiobjective genetic algorithm: Nsga-ii,” IEEE transactions
on evolutionary computation, vol. 6, no. 2, pp. 182–197, 2002.

[27] J. Branke, K. Deb, H. Dierolf, and M. Osswald, “Finding knees in
multi-objective optimization,” in International conference on parallel
problem solving from nature. Springer, 2004, pp. 722–731.

[28] S. Allier, S. Sadou, H. Sahraoui, and R. Fleurquin, “From
object-oriented applications to component-oriented applications
via component-oriented architecture,” in Software Architecture
(WICSA), 2011 9th Working IEEE/IFIP Conference on. IEEE, 2011,
pp. 214–223.

[29] A. Shatnawi, H. Shatnawi, M. A. Saied, Z. Alshara, H. A. Sahraoui,
and A. Seriai, “Identifying components from object-oriented apis
based on dynamic analysis,” in Program Comprehension (ICPC),
2018 IEEE International Conference on. IEEE, 2018, pp. –.

[30] D. Athanasopoulos, A. V. Zarras, G. Miskos, V. Issarny, and
P. Vassiliadis, “Cohesion-driven decomposition of service inter-
faces without access to source code,” IEEE Transactions on Services
Computing, vol. 8, no. 4, pp. 550–562, 2015.

[31] M. Fowler, Patterns of enterprise application architecture. Addison-
Wesley Longman Publishing Co., Inc., 2002.

[32] S. Millett, Patterns, Principles and Practices of Domain-Driven Design.
John Wiley & Sons, 2015.

[33] H. Harms, C. Rogowski, and L. Lo Iacono, “Guidelines for adopt-
ing frontend architectures and patterns in microservices-based
systems,” in Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering. ACM, 2017, pp. 902–907.

[34] P. Andritsos and V. Tzerpos, “Information-theoretic software clus-
tering,” IEEE Transactions on Software Engineering, vol. 31, no. 2, pp.
150–165, 2005.

[35] M. Stine, “Migrating to cloud-native application architectures,”
2015.

[36] N. Alshuqayran, N. Ali, and R. Evans, “A systematic mapping
study in microservice architecture,” in Service-Oriented Computing
and Applications (SOCA), 2016 IEEE 9th International Conference on.
IEEE, 2016, pp. 44–51.

[37] P. Di Francesco, I. Malavolta, and P. Lago, “Research on archi-
tecting microservices: Trends, focus, and potential for industrial
adoption,” in Software Architecture (ICSA), 2017 IEEE International
Conference on. IEEE, 2017, pp. 21–30.

[38] D. L. Parnas, “On the criteria to be used in decomposing systems
into modules,” Communications of the ACM, vol. 15, no. 12, pp.
1053–1058, 1972.

[39] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto, “Using struc-
tural and semantic measures to improve software modulariza-
tion,” Empirical Software Engineering, vol. 18, no. 5, pp. 901–932,
2013.

[40] T. Lutellier, D. Chollak, J. Garcia, L. Tan, D. Rayside, N. Med-
vidovic, and R. Kroeger, “Measuring the impact of code de-
pendencies on software architecture recovery techniques,” IEEE
Transactions on Software Engineering, 2017.

[41] K. Praditwong, M. Harman, and X. Yao, “Software module clus-
tering as a multi-objective search problem,” IEEE Transactions on
Software Engineering, vol. 37, no. 2, pp. 264–282, 2011.

http://arxiv.org/abs/1605.03175

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, X 21

[42] R. Chen, S. Li, and Z. Li, “From monolith to microservices: A
dataflow-driven approach,” in Asia-Pacific Software Engineering
Conference (APSEC), 2017 24th. IEEE, 2017, pp. 466–475.

[43] M. Gysel, L. Kölbener, W. Giersche, and O. Zimmermann, “Service
cutter: A systematic approach to service decomposition,” in Euro-
pean Conference on Service-Oriented and Cloud Computing. Springer,
2016, pp. 185–200.

[44] Y.-W. Kwon and E. Tilevich, “Cloud refactoring: automated tran-
sitioning to cloud-based services,” Automated Software Engineering,
vol. 21, no. 3, pp. 345–372, 2014.

[45] M. F. Gholami, F. Daneshgar, G. Low, and G. Beydoun, “Cloud
migration processa survey, evaluation framework, and open chal-
lenges,” Journal of Systems and Software, vol. 120, pp. 31–69, 2016.

[46] E. Tilevich and Y.-W. Kwon, “Cloud-based execution to improve
mobile application energy efficiency,” Computer, vol. 47, no. 1, pp.
75–77, 2014.

[47] Y. Zhang, G. Huang, X. Liu, W. Zhang, H. Mei, and S. Yang, “Refac-
toring android java code for on-demand computation offloading,”
in Acm Sigplan Notices, vol. 47, no. 10. ACM, 2012, pp. 233–248.

[48] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature
location in source code: a taxonomy and survey,” Journal of soft-
ware:Evolution and Process, vol. 25, pp. 53–95, 2013.

[49] B. Cornelissen, A. Zaidman, A. Van Deursen, L. Moonen, and
R. Koschke, “A systematic survey of program comprehension
through dynamic analysis,” IEEE Transactions on Software Engineer-
ing, vol. 35, no. 5, pp. 684–702, 2009.

[50] A. Rohatgi, A. Hamou-Lhadj, and J. Rilling, “An approach for
mapping features to code based on static and dynamic analysis,”
in Program Comprehension, 2008. ICPC 2008. The 16th IEEE Interna-
tional Conference on. IEEE, 2008, pp. 236–241.

[51] H. Safyallah and K. Sartipi, “Dynamic analysis of software systems
using execution pattern mining,” in Program Comprehension, 2006.
ICPC 2006. 14th IEEE International Conference on. IEEE, 2006, pp.
84–88.

[52] A. Hamou-Lhadj and T. Lethbridge, “Summarizing the content of
large traces to facilitate the understanding of the behaviour of a
software system,” in Program Comprehension, 2006. ICPC 2006. 14th
IEEE International Conference on. IEEE, 2006, pp. 181–190.

	Introduction
	Methodology
	Definitions
	FoSCI Framework Overview
	Step 1: Representative Execution Trace Extraction
	Step 2: Entity Identification
	Functional Atom Generation
	The Objectives of Functional Atom Grouping
	Search-based Functional Atom Grouping

	Step 3: Interface Class Identification

	Evaluation Model
	Independence of Functionality
	Modularity
	Independence of Evolvability

	Experimental Setup
	Subjects
	Test Case and Execution Trace Collection
	Parameter Setting in Our Method
	Baseline Methods
	Revision History Collection
	Evaluation Configuration

	Evaluation
	The Evaluation of Evolvability
	Analysis of Results
	Summary of the Evaluation of Evolvability

	The Evaluation of Functionality
	Analysis of Results
	Summary of the Evaluation of Functionality

	The Evaluation of Modularity
	Analysis of Results
	Summary of the Evaluation of Modularity

	The Influence of Coverage on FoSCI
	Category of Non-covered Entities
	The Coverage Influence on FoSCI

	Summary

	Limitations and Threats to Validity
	Related work
	Software Decomposition
	Service Candidate Identification
	Cloud Service Extraction
	Dynamic Analysis Based on Execution Traces

	Conclusion and Future Work
	References

