
Understanding Evolutionary Coupling by
Fine-grained Co-change Relationship Analysis

Daihong Zhou∗†‡, Yijian Wu∗†, Lu Xiao§, Yuanfang Cai¶, Xin Peng∗†‡, Jinrong Fan∗, Lu Huang∗ and Heng Chen∗
∗School of Computer Science, Fudan University, Shanghai, China

Email: {dhzhou17, wuyijian, pengxin, 18212010084, 18210240090, 15212010001}@fudan.edu.cn
†Shanghai Key Laboratory of Data Science, Fudan University, Shanghai, China

‡Shanghai Institute of Intelligent Electronics & Systems, Shanghai, China
§School of Systems and Enterprises, Stevens Institute of Technology, Hoboken, NJ, United States; Email: lxiao6@stevens.edu

¶Department of Computer Science, Drexel University, Philadelphia, PA, United States; Email: yfcai@cs.drexel.edu

Abstract—Frequent co-changes to multiple files, i.e., evolu-
tionary coupling, can demonstrate active relations among files,
explicit or implicit. Although evolutionary coupling has been used
to analyze software quality, there is no systematic study on the
categorization of frequent co-changes between files which may
used for characterizing various quality problems. In this paper,
we report an empirical study on 27,087 co-change commits of 6
open-source systems with the purpose of understanding the ob-
served evolutionary coupling. We extracted fine-grained change
information from version control system to investigate whether
two files exhibit particular kinds of co-change relationships. We
consider code changes on 5 types of program entities (i.e., field,
method, control statement, non-control statement, and class)
and identified 6 types of dominating co-change relationships.
Our manual analysis showed that each of the 6 types can be
explained by structural coupling, semantic coupling, or implicit
dependencies. Temporal analysis further shows that files may
exhibit different co-change relationships at different phases in the
evolution history. Finally, we investigated co-changes among mul-
tiple files by combining co-change relationships between related
file pairs and showed with live examples that rich information
embedded in the fine-grained co-change relationships may help
developers to change code at multiple locations. Moreover, we
analyzed how these co-change relationship types can be used to
facilitate change impact analysis and to pinpoint design problems.

Index Terms—Co-change Analysis, Evolutionary Coupling, Co-
change Relationship, Change Types, Empirical Study

I. INTRODUCTION

Evolutionary coupling, also known as logical coupling [1]

or change coupling [2], reflects how files change together

in the evolution of a software system [3]–[5]. Evolutionary

coupling indicates both active structural dependencies and,

more importantly, implicit dependencies between program

entities.

Analyzing evolutionary coupling between files contributes

to multiple software comprehension and maintenance tasks

such as predicting source code changes [3], [6]–[8], locating

architectural design problems [9]–[12], and identifying cross-

cutting concerns [13]–[15].

Thanks to the wide usage of modern version control systems

(VCS), evolutionary coupling can be easily measured by lever-

aging co-change information of files embedded in commits [1].

There also have been handy tools and algorithms that identifies

fine-grained changes from evolution history [16]–[18], which

simplifies the process on history data.

However, leveraging co-change information for software

maintenance tasks is still challenging because there has not

been comprehensive understanding of how and why files co-

change. Some studies have shown substantial evidence that

structurally coupled class pairs are usually evolutionary cou-

pled [19], while some others have shown that most structural

coupled program entities do not co-evolve [20], [21]. This

chaos also exists the other way round: co-evolving entities

may or may not be structurally coupled [20], [22]. There is

not yet a categorization of co-evolutions that help to clarify

the relationship between evolutionary coupling and other types

of coupling.

Considering the recurring nature of evolutionary coupling,

researchers have been trying a pattern-based perspective [23]–

[25]. For example, Mondal et al. [23] took an investigation

on a particular pattern of continuously co-changed methods.

Silva et al. [24] looked at the topology of the co-changed file

clusters and summarized three co-change patterns. However,

there has not been a single study that constructs an in-

depth understanding of the underlying reasons of file co-

change relationships with consideration of frequently recurring

changes applied to files. For example, one observes that, when

Class A add a method, Class B usually add an invocation to the

method. Then, is this co-change (e.g., addition of a method in

A and addition of a method invocation in B) common enough

in general between A and B? Under what circumstances this

type of co-change is normal, or may indicate design problems?

How can the co-change information be used by developers to

understand the logic of the program and to analyze possible

impacts of changes? The phenomenon of co-changes and the

rationale behind need to be analyzed and understood to support

engineering tasks.

To address these questions, we conduct an empirical study

on six open source systems. We extract co-change information

from 27,087 commits in the evolution history of the six open-

source systems. We developed co-change pixelmaps base on

the co-change information and further identified 6 types of

dominating co-change relationships. Each of the co-change

271

2019 IEEE/ACM 27th International Conference on Program Comprehension (ICPC)

978-1-7281-1519-1/19/$31.00 ©2019 IEEE
DOI 10.1109/ICPC.2019.00046

relationship types indicates frequent co-occurring change types

and bring insights into how files co-change. Temporal analysis

on evolution history revealed that co-change relationships may

change and evolve at different periods of time. We also reveal

how files co-change as a cluster and find evidences to show

chained, spread, and convergent change propagations, which

may help developers in their maintenance tasks.

The contributions of this paper include: 1) 6 co-change

relationship types that categorize evolution couplings and

bring insights into how files co-change differently in terms

of change types; 2) 3 typical evolutionary trends of co-

change relationships between files, i.e., enhancing/weakening

the same relationship, switching relationships, and mixing

up relationships, that depict the dynamics of evolutionary

couplings between files; 3) 3 change propagation cases that are

valuable to provide guidance and suggestions on observed co-

change relationship types for developers’ maintenance action;

and 4) a commit-based fine-grained co-change data set on six

open source systems.

The rest of the paper is structured as follows. Section II

presents basic concepts of evolutionary coupling and clarifies

definitions of key concepts in our work. Section III details

our research methodology, including the research questions,

subject systems, and data collection and analysis processes.

Section IV reports the identified co-change relationship types

and the results of temporal and spacial analysis of the co-

change relationships. Section V presents in-depth reflections

based on the reported co-change relationship types. Sec-

tion VI discusses the threats to validity of the empirical study.

Section VII summarizes related research work. Section VIII

concludes our work and presents possible research directions.

II. CONCEPTS AND DEFINITIONS

A. Evolutionary Coupling

Evolutionary coupling describes the relationship between

parts of software systems which are frequently changed to-

gether [2], [26]. Evolutionary coupling is commonly expressed

by association rules in the form of A ⇒ B where A and B

are two sets of program entities. A ⇒ B means that when A

is changed, B is also changed [3], [20]. The strength of the

coupling can be measured by support count and confidence [3].

Support count of rule A ⇒ B describes how many times A

and B are changed together while confidence describes how

many co-changes of A and B have occurred in all changes

of A. For example, if A has changed 11 times among which

10 were observed as a co-change with B, the support count

count(A ⇒ B) is 10; the confidence conf(A ⇒ B) is

10/11. According to this definition, count(A ⇒ B) is equal

to count(B ⇒ A) since both of them denote the occurrence

frequency [3] of the co-changes between A and B.

Rules mined from evolution history are helpful to answer

the questions like “what else were changed when these were

changed”, and further “what else need to be changed if these

are changed”.

Although there have been studies on co-evolution between

software artifacts other than source code [27]–[29], we only

consider source code files in the target systems.

B. Terminology

We collect source code change information from Git, a

state-of-the-art version control system (VCS), where source

code changes are organized in commits. A commit may touch

multiple files. Any pair of files that are touched by one commit

are considered co-changed once. We define count(A ∪ B) =
count(A ⇒ B) = count(B ⇒ A) as the count of commits

by which two files1 A and B are touched; and conf(A ⇒ B)
as the confidence of A ⇒ B.

Each file in a commit may have one or more changes, such

as add a method m1, add a method invocation to C.mx, and

add an IF statement in method m2. Each change is of a specific

change type [16], [30], such as addition of a method, insertion
of a method invocation, and insertion of an IF statement.

For each pair of co-changed files A and B, we define

the support count count(ct1, ct2) of a pair of change types

(ct1, ct2) on the file pair as the number of commits in which

ct1 is a change type on File A and ct2 is a change type on

File B. We also define the support (percentage) supp(ct1, ct2)
of the co-occurrence of change types ct1 and ct2 as

supp(ct1, ct2) =
count(ct1, ct2)

count(A ∪B)
. (1)

The support of a pair of change types is symmetric, i.e.,

supp(ct1, ct2) = supp(ct2, ct1).
2

The co-change relationship between a co-changed file pair

(A, B) describes the most frequent types of changes applied

to files A and B when they are co-changed. The co-change
relationship between files A and B is represented by a tuple

(ctsA, ctsB), where ctsA is an ordered set (i.e., a sequence)

of the most frequent change types on File A that appear in co-

changes with File B, and ctsB is an ordered set of the most

frequent change types on File B that appear in co-changes

with File A. Whether a change type is “frequent enough in

co-changes” is determined by thresholds of support count and

support percentage which are set experimentally.

Figure 1 gives an example of co-change relationship. We

consider three co-changing files A, B, and C, and observe 5

commits. A commit may touch all three files (as in Commit

1 and 3) or only some of them (as in Commit 2, 4, and 5).

Change types on each file are denoted by various geometric

icons if the file is changed in the commit. In this example,

Files A and B co-changed three times, while Files B and C

co-changed four times and Files A and C only co-changed

1It is possible that three or more files are changed together. However, any
co-changes involving a group of files can be regarded as combinations of
co-changes between any two files in the file group. Therefore, considering
co-changes between two files is a reasonable start point of co-change analysis.

2We decide to use the number of all co-change commits instead of the
number of all commits as the base for calculating supp because the number
of all commits is too large and brings a lot of noise. Using the number
of all co-change commits as the base makes the percentage reasonable and
meaningful.

272

Fig. 1. An Example of File Co-change Relationship

twice. Whenever File A has “circle” and “diamond” changes,

File B has a “trapezoid” change, and vice versa. The support

values of (“circle”, “trapezoid”) and (“diamond”, “trapezoid”)

are both 1.0, but the support of (“triangle”, “pentagon”) is 1/3.

By applying data mining approaches with certain parameter

settings (e.g., support need to be larger than 0.5), one may

claim that File A and File B have a co-change relationship as

depicted on the upper-right part of the figure. Files B and C

also has a co-change relationship as depicted on the lower-right

part of the figure. However, Files A and C only co-changed

twice out of total five commits, which is less likely that they

have a co-change relationship at all.

In this example, we also notice that the change types in co-

change relationship A-B and those in co-change relationship

B-C are quite different in terms of the participating change

types. We define co-change relationship type to describe the

difference. So Files A and B are of co-change relation type

((“circle”, “diamond”),(“trapezoid”)) and Files B and C are of

co-change relation type ((“pentagon”), (“hexagon”, “circle”)).

The motivation we define co-change relationship is as

follows. 1) Files showing different types of dependencies have

the tendency to co-change differently. Co-change relationship

may characterize the difference of various dependencies. 2)

Different co-change relationships may reveal possible reason

of the evolutionary coupling, without the need to parse source

code structure.

III. METHODOLOGY

A. Research goals and questions

This section discusses the research questions to be answered

in this paper.

RQ1: Are there dominating co-change relationships
among files that frequently change together? What are
the typical co-change relationships that contribute to the
co-changes? This RQ aims at revealing the underlying causes

of high co-changes among files. We conjecture that there

exist dominating co-change relationships between two files

that cause them to frequently change together. In addition,

we categorize the discovered relationships based on how two

files co-change in terms of change types. The contribution of

this RQ is to fill the gap in current literature that an in-depth

understanding of possible causes of co-changes is lacking.

RQ2: Whether and how do the co-change relationships
among files dynamically change with time? “The only thing
that does not change is change itself.”. This very much applies

to software systems. Therefore, we assume that the dominating

co-change relationships (i.e., the underlying causes of the co-

changes) among files will also change along with time, espe-

cially when major maintenance events, like refactoring, take

place. This RQ investigates how the co-change relationships

among files change with the evolution of the system. For

example, if the developers refactor the code, it is possible that

the co-change relationship among the refactored files will also

change. To answer this question, we will conduct the temporal

analysis of the co-changes among files.

RQ3: How can the co-change relationships be helpful
in software maintenance? The ultimate goal of co-change

relationship analysis to support maintenance. In this RQ, we

will present three typical change clusters formed by the co-

change relationships. Since each co-change relationship has

very specific meaning. The change clusters based on co-change

relationship can provide insights to developers in maintenance.

B. Subject Systems

Our empirical study uses six open-source Java projects of

the Apache Software Foundation as the subject systems. They

are: 1) Camel [31], an integration framework based on known

enterprise integration patterns; 2) Cassandra [32], a distributed

database system; 3) CXF [33], a services framework which

helps users build and develop services using frontend pro-

gramming APIs like JAX-WS and JAX-RS; 4) Hadoop [34],

a framework that allows for the distributed processing of

large data sets across clusters of computers; 5) HBase [35],

the Hadoop database, a distributed, scalable, big data storage

infrastructure; 6) Wicket [36], a component-oriented Java web

application framework.

The information of these systems is shown in Table I, in-

cluding the analyzed time period, number of commits, number

of releases, number of files, and approximate size in LOC.

We choose these projects for the following reasons. First,

these systems have been used as subject systems in previous

studies on co-change analysis [12], [28], [37]–[39], thus we

have a basis for comparison. Second, each of these projects

has a long evolution history and is still under maintenance

at the time of data collection. A long and active change

history is suitable for analyzing source code co-changes. Third,

these projects are of industry-scale and being collaboratively

developed within the open-source community so they are more

likely to convey common practices in software development,

which would be valuable for other projects. Fourth, they have

well maintained issue databases, which is useful for answering

our research questions.

C. Data Preparation

The goal of data preparation is two-fold: 1) sanitize the

commits to retrieve qualified changes; and 2) prepare co-

changed file pairs.

273

TABLE I
SUBJECT SYSTEMS

System Period #Cmts. #Rels. #Files #LOC
Camel 03/2007-06/2017 28,881 113 6,697 1.17M
Cassandra 03/2009-06/2017 23,082 225 1,593 323K
CXF 04/2008-06/2017 13,180 123 3,371 713K
Hadoop 05/2009-06/2017 16,119 247 5,162 2.26M
HBase 04/2007-06/2017 13,577 551 2,218 1.25M
Wicket 09/2004-06/2017 19,989 244 1,822 246K
Note: Cmts.=Commits Rels.=Releases

TABLE II
STATISTICS ON SELECTED COMMITS

System #Commits touching 2-30 files (%) #Files involved(%)
Camel 8,278 (29%) 1,361 (20.3%)
Cassandra 4,920 (21%) 822 (51.6%)
CXF 4,045 (31%) 608 (18.0%)
Hadoop 5,590 (35%) 921 (17.8%)
HBase 4,230 (31%) 778 (38.1%)
Wicket 4,663 (23%) 786 (43.1%)

1) Selecting commits: While VCS captures all commits

made to a software project, but not all of them are relevant

to the co-change analysis.We sanitize the commits based on

three criteria and rationale.

First, we discard commits simply for merging prior changes

to branches because these commits do not actually introduce

new changes to the source code. Second, we discard commits

that only contain non-source-code files (e.g., configuration files

or read-me files) and test files. Although there is other work

considering artefacts other than source code [27], [28], [40],

our study focuses on co-changes among the functional source

code only. Last, we only consider commits touching 2 to

30 source files. Commits touching only a single file do not

introduce file co-changes so the change information in these

commits does not add value to co-change analysis. Commits

touching a massive number (>30) of files are usually con-

sidered as house-keeping the repository [3], [24], [41]. These

commits are usually excluded from studies. The numbers of

selected co-change commits are show in Table II. Files that do

not show in these commits are not considered co-changed with

other files. The percentage of files that ever co-changed with

other files are also shown in the table. Note that Cassandra

has the most co-changed files, involving more than half of all

files. Hadoop and CXF have only less than 20% files involved.

2) Selecting co-change file pairs: Next, we calculated all

the co-changed file paris from the selected commits. In a

commit that changed n files, we generate C2
n pairs of files.

However, not all file pairs are qualified for co-change analysis.

Some of the file pairs may be changed in the same commits

coincidentally. We filter out potential coincidences using two

heuristics: 1) discard file pairs change in less than 10 commits,

as such the co-change pairs all change together more than

10 times, and 2) discard the file pairs whose confidence

values from both sides (i.e., both conf(File1 ⇒ File2) and

conf(File2 ⇒ File1)) are less than 0.5, as such when one

file in a co-change file pair changes, there is more than 50%

chance that the other file changes together.

Among all the involved files, we finally have 1,752 co-

changed file pairs under consideration. Hadoop contributed

562 file pairs, the highest in the six systems; while CXF

contributed 102 file pairs, the least of all six systems.

D. Co-change Relationship Analysis

Our co-change relationship analysis consists of five main

steps. First, we extract fine grained file changes from all

selected commits. Then, we pair up the change types according

to the prepared co-change file pairs and generate co-change

information. After that, we develop a visualization-based ap-

proach to summarize co-change relationship types to answer

how files co-change. Fourth, we conduct temporal analysis

to find how the co-change relationships between files evolve.

Finally, we group the co-change file pairs that share files in

common into co-change clusters in order to reveal potential

benefits on maintenance tasks.

1) Extract fine-grained source code changes: We con-

sider 68 types of changes that have been applied on

16 types of source code statements. The 68 change

types3 are derived from the 47 change types generated

by ChangeDistiller [16], a widely-used general-purpose

code change extraction tool working on object-oriented

languages. ChangeDistiller originally produces types of

fine-grained source code changes such as Statement In-
sert/Delete/Update/ParentChange/OrderingChange and Con-
trol Structure Condition Expression Change [30]. However,

we notice that these change types are not sufficient for our co-

change analysis. We make the following two improvements:

First, ChangeDistiller differentiates five change operation

types (i.e., insertion/deletion/update/ordering-change/parent-
change) to a Statement, without distinguishing the type of

the Statement. Capturing the different types of Statements is

important for understanding how a co-change happens. In fact,

ChangeDistiller’s internal data structures already differentiate

23 types of statements, such as method invocation, assert, and

assignment, but they are not reported. Therefore, we extract

the internal statement types. Furthermore, we find that some

statement types have similar semantics. For example, loops

are recognized as four statement types: For/Foreach/While/Do.

We group the statement types that have similar semantics

and finally expand a single Statement type into 16 grouped

statement types (GST), as listed in Table III.

Second, we notice that the original change type Condition
Expression Change reported by ChangeDistiller is related to

both Loop-structures (GST 4) and If-structure (GST 9) (5

internal statement types marked with a star (*) in Table III).

Updating a statement on the condition expression can also

provide information about how the code is related to other

changes. We then elaborate Condition Expression Change into

2 change types for GST 4 and 9, respectively.

Finally, we determine the set of change types that we are

interested. We first discard the changes types only related to

comments and inline documentations. Then we group part

of the change types to avoid over-categorizing. For exam-

ple, Ordering-change and Parent-change on any statements

may both indicate moving the statement; Updating a Break

3The full list is available at https://github.com/FudanSELab/FCCRA.

274

TABLE III
GROUPED STATEMENT TYPES REFINED FROM INTERNAL Statement TYPE

IN CHANGEDISTILLER

GST Internal Stmt. Types Comments/Examples
1 Assert Statement assert(a==b);
2 Assignment i = 0;
3 Method Invocation cypher.encode();

4

For Statement *

Loop structure
Foreach Statement *
While Statement *
Do Statement *

5 Continue Statement continue; in a loop
6 Break Statement break; in a loop

7
Try Statement

Exception handling structureCatch Clause
Throw Statement

8
Switch Statement

Switch-Case structure
Switch Case Clause

9 If Statement * if statement, including else
10 Return Statement return from a method
10 Class Instance Creation new Person();
12 Constructor Invocation inherited;
13 Synchronized Statement Starting with synchronized
14 Variable Decl. Statement int i;
15 Labeled Statement A label followed by a “:”

16
Postfix Expression

++i or i++
Prefix Expression

∗Internal statement types related to Condition Expression Change

statement may be similar to moving the statement; Parameter
Insert/Delete/Type-change are all method parameter updates.

The grouping allows for integrating essential changes and

prevents data fragmentation. Due to limited space, we put the

full list of the 68 change types online for your reference. The

change types cover changes on 5 program entities, including

field, method, control statement, non-control statement, and

class.

2) Generate detailed co-change information: Instead of just

counting how many times a two files change together, we

generate the detailed co-change information based on the fine-

grained changes on each file.

We first record the detail of each co-change in the

format (X , Y , ctX , ctY , countchangetypes, countfiles,

supportchangetypes), where X , Y are co-changed

files; ctX and ctY are change types on files X and

Y , respectively; countchangetypes = count(ctX , ctY);
countfiles = count(X ∪ Y); and supportchangetypes =
supp(ctX , ctY). For example, a record (NodeCmd.java,
NodeProbe.java, METHOD_INVOCATION_INSERT,
ADDITIONAL_FUNCTIONALITY, 65, 128, 0.5078)

means that NodeCmd.java and NodeProbe.java
change together when the former has change type:

METHOD_INVOCATION_INSERT and the latter has

change type: ADDITIONAL_FUNCTIONALITY, and this

pair of change types happened in 65 commits out of total

128 commits where the two files co-change, showing 50.78%

support rate. Since two files often exhibit multiple co-change

types, the support values of all co-change types between two

files may depict how two files co-change. We then use the

distribution of the support values of all co-change types for

summarizing co-change relationships.

3) Categorizing Co-change Relationships: In order to make

the categorization of the co-change relationship types, we

developed a pixelmap view for co-change file pairs to visualize

the co-changes between files. The pixelmap is similar to the

one used by Zimmermann [42] except that the horizonal and

vertical axes are the fine-grained change types of the two files.

The horizonal axis represents change types on one file (named

A) while the vertical axis represents change types on the other

(named B). The scales shown in different colors represent the

change types on different statement types, as pointed out in

Figure 2. As such, each pixel in the pixelmap represents a

pair of change types between two files. A darker pixel shows

higher support value of the change type pair.

Fig. 2. Co-change Pixelmap. Take the vertical axis for example, the change
types are roughly (from lower to upper) on fields, methods, control logic(e.g.,
If, Loop...), detailed internal implementation(e.g., method invocations), and
classes.

To categorize the co-change relationships, we first consider

the co-change pixelmaps that show similar mosaic layouts to

be of the same co-change relationship type. Since swapping

the two axes of a co-change pixelmap does not change the

semantic but only flips the mosaic layout by 90 degrees,

we normalize the mosaic layouts to the same orientation

in order to simplify recognition of similar mosaic layouts.

Then we read the source code of the file pairs with similar

mosaic layouts and check whether the dominant changes

types share a common reason. If they do, we accept the co-

change relationship type; otherwise, we reject the co-change

relationship type and all related file pairs remain undecided.

It is possible that the co-changes between files show a

mixture of different co-change relationships, which is hard

for us to make a single decision. In order to get a confident

understanding of each co-change relationship, we do not count

these file pairs in any co-change relationship types but set them

as open for further analysis.
4) Temporal Analysis: Co-change relationship between

files may evolve along with time. To capture the evolution

of co-change relationship among files, we split the history

of each subject system into consecutive time windows. We

applied two strategies to separate the windows. One is base

275

on the count of commits: each time window contains the same

number of commits. The other is based on the span of time:

each time window covers the same length of time.
We identify the change of the mosaic patterns in different

time windows, since the drastic change in the pixelmap

indicates the change of the co-change relationship between

two files. In particular, we are interested in cases where

structural dependencies between two files remain stable, but

the pixelmap displays drastic change. Such cases indicates

implicit triggers instead of the explicit structural dependencies

that cause the co-change relationship to happen.
5) Clustering Co-changed Files for Fine-grained Manual

Analysis: In order to further understand how files co-change

with other files, we connect co-changed file pairs on the shared

file and get a co-changed file graph. In this graph, we look

for the files that exhibit high connection with other files and

then conduct fine-grained manual analysis on them in order

to identify which program entities are changed most together

with which other files. This helps to understand what changes

have been made in the evolution of the file and may provide

insight into how it will be changed in the future.

IV. RESULTS

In this section, we report data analysis results regarding to

the research questions.

A. Categorizing Evolutionary Couplings (RQ1): Co-change
Relationship Types

We identified 6 co-change relationship types from the co-

change data collected from the six open source systems.

Table IV lists the types and corresponding number of co-

change file pairs that belong to the type.
We find that 749 (43% of total 1,752) co-changed file pairs

belong to one of the co-change relationship types. Others do

not meet our criteria that we set in our study. It is still possible

that some co-change file pairs match one or more types during

a different time period. In this case, the file pairs may not seem

to belong to a single type when we consider the co-change

history as a whole. We did not count these file pairs but leave

them in temporal analysis and discussions in Subsection IV-B.

In the following discussions, we use classes instead of files

since our target is object-oriented and most files consist of

one class.
1) Type1: Public-Field-Driven Relationship: This co-

change relationship type describes when additional fields in

one class (A) are added, many types of changes happen in

the other class (B). This is usually because class B depends

on public fields in class A. Figures 3(a) depicts an example

of this type. Class Config (A) only changes fields when

DatabaseDescriptor (B) shows many types of changes.
2) Type2: Interface-Driven Relationship: This co-change

relationship type describes additional/removal/updating meth-

ods happened in one class (A), many types of changes happen

on the other class (B). Usually A is an abstract class or an

interface and class B inherits or implements A. Figure 3(b)

shows an example, in which class StorageService imple-

ments the interface StorageServiceMBean.

3) Type3: Method-Invocation-Targeted Relationship: This

co-change relationship type features recurring and dominant

changes in method invocations but few changes of other

types in class A while class B suffers multiple types of

changes at many places. This is usually caused by a contract

change between A and B where A calls a method of B. The

change of the contract is initiated inside B with many internal

logic changes, resulting changing the signature of a method

implementing the contract. For A, it is a small change on

the invocation of B’s method and A itself is stable compared

to B. But for B, many changes have to be made before

upgrading the contract to a new version. Figure 3(c) shows an

example with FormEncodingProvider (A) and FormUtils
(B). FormUtils changes multiple places to add new method

and change existing method. FormEncodingProvider pri-

marily update method invocation according to the changes in

FormUtils. This indicates that the coupling is mainly on the

change of the signature of the methods.

4) Type4: Benign Private-Field-Driven Relationship: This

co-change relationship type describes that dominant changes

in class A are method invocation, while many differ-

ent types of changes happen on class B, most of which

are additional fields and additional methods. Figure 3(d)

shows an example with CamelNamespaceHandler (A) and

CamelContextFactoryBean (B). In this case, field addi-

tions in CamelContextFactoryBean are primarily private

fields; the method additions are usually getters/setters.

We consider this relationship type benign because this is

usually the case of A visiting B’s fields through getter/setter
methods. But developers still need to keep an eye how B’s

field to avoid a data class smell [43].

5) Type5: Private-Field-Driven Relationship Affecting In-
ternal Logic: This co-change relationship type describes when

many additional fields and methods were added in class A,

many change types including method invocation changes and

internal logic changes happen in class B. Figure 3(e) depicts

an example of S3Configuration (A) and S3Endpoint (B).

S3Configuration primarily add methods and add fields,

while S3Endpoint insert new method invocations and insert

IF statements correspondingly. S3Endpoint encapsulates an

object typed S3Configuration which provides configuration

for the Endpoint. There are additional IF-statement changes

involved in S3Endpoint. Usually this indicate more complex

logic has been introduced in the system, which may need

developers attentions.

This is usually a bad case that need developers’ attention.

6) Type6: Sibling-Evolution Relationship: This co-change

relationship type features symmetric change types from ei-

ther side of the two files. This is usually because both

classes inherit the same super class or implement the same

interface. Therefore, the two files may share certain as-

sumptions from their common ancestor. Figure 3(f) shows

an example with Check (A) and Radio (B) from Wicket.

The two files are inherited from the same ancestor class

WebMarkupContainer. They implement two UI compo-

nents correspondingly. While this case seems to be ok regard-

276

TABLE IV
STATISTICS ON CO-CHANGE RELATIONSHIP TYPES

ID Co-change Relshp. Reason of co-change #FilePairs #File Pairs in Subject Systems
Type Camel Cassandra CXF Hadoop HBase Wicket

1 Public-Field-Driven Class B depends on public fields in Class A. 41 7 6 3 13 10 2
2 Interface-Driven Class B depends on public methods in Ab-

stract Class/Interface A.
251 31 39 2 105 56 18

3 Method-Invocation-
Targeted

Class B depends on private methods in Class
A.

59 7 12 2 25 8 5

4 Benign Private-Field-
Driven

Class B depends on private fields in Class
A via getter/setter methods, but the depen-
dency does not affect B’s internal logic.

73 9 14 2 32 10 6

5 Private-Field-Driven
Affecting Internal Logic

Class B’s internal logic depends on private
fields in Class A via getter/setter methods

79 19 10 5 25 15 5

6 Sibling-Evolution Class A and Class B are inherited from the
same ancestor class or implement the same
interface.

246 34 42 32 29 61 48

Total 749 107 123 46 229 160 84

(a) Type 1 (Example: Config(A) vs.
DatabaseDescriptor(B))

(b) Type 2 (Example: StorageSer-
viceMBean(A) vs. StorageService(B))

(c) Type 3 (Example: FormEncoding-
Provider(A) vs. FormUtils(B))

(d) Type 4 (Example: CamelCon-
textFactoryBean(A) vs. CamelNames-
paceHandler(B))

(e) Type 5 (Example: S3Configur-
ation(A) vs. S3Endpoint(B))

(f) Type 6 (Example: Check(A) vs.
Radio(B))

(g) Complicated Internal Changes
(Example 1: JAXRSInInterceptor(A)
vs. JAXRSUtils(B))

(h) Complicated Internal Changes
(Example 2: StorageService(A) vs.
NodeProbe(B))

Fig. 3. Examples of Co-change Relationship Types. In all figures, horizonal scale represents change types on file A while vertical scale represents change
types on file B.

ing the design, we need to be alert of implicit dependencies

indicated by the same changes. In some cases, co-changed

parts may be pulled up to the ancestor class if possible.

There are still cases that have not been clearly categorized.

Figure 3(g) and 3(h) are examples. These cases reflect com-

plicated internal logic changes. The circled pixels reveal many

method body co-changes (mainly on method invocations,

variable declarations, and control statements) in both Classes

A and B. Widely-spread changes of different change types

show that there can be implicit dependencies between them

or either class burdens from the complicated internal logic

structure. These files need further maintenance attentions.
We also notice that the left strip of mosaics in Fig-

ure 3(h) (shown by an orange rectangle) appears simi-

lar to those of Type2. After code investigation, we be-

lieve it is because the class StorageService is the bridge

that connects StorageServiceMBean and NodeProbe
and thus the co-changes between StorageServices and

StorageServiceMBean can be seen in the co-changes be-

tween StorageService and NodeProbe. It is a sign for

developers to consider the co-changed files as a cluster, as

will be discussed in Subsection IV-C.
Reasons behind co-changes. The co-change relationship

277

types indicate that two files usually change together for the

following four reasons.

1) Increasing/Decreasing Existing Structural Dependency:

In this case, the same type of dependency is in-

creased/decreased by adding/deleting fields/methods that

are directly coupled. Types 1,2,5, as well as additional

fields/methods in Type 4 belong to this case. Fields and

methods are added/deleted during the evolution because of

different responsibilities assigned to the classes.

2) Propagating Interface Changes via Existing Dependency:

In this case, two files co-change because of changes to

method signatures via method call dependencies. Co-change

relationship Type 3 and part of Type 4 support this case in

that method invocations are often changed (in class A as in

Figure 3(c) and 3(d)) due to the changes of method definitions

in the other file (class B as in the figures).

3) Propagating Internal Changes via Existing Dependency:

In this case, two files co-change due to internal changes

in one file. The changes may propagate via method call

dependencies. This case is supported by part of co-change

relationship types 4 and 5 and many co-change cases that we

have not assign a type to. Take Type 5 for example, class

B suffers a lot of internal changes not because of directly

calling methods/visiting fields of A but because of other

logic changes, such as a new configuration setting. The new

setting changed the business logic and class B have to change

accordingly.

4) Parallel Changes due to Implicit Dependency: In this

case, two files are not directly structurally coupled. Their

co-changes are caused by certain implicit dependencies or

dependencies to a third entity. Co-change relationship Type

6 supports this case. The classes may share the same ancestor

class or have dependencies to the same interface/class. There

are also other case such as both files depend on database

schema or SQL statements, which is out of the scope of this

paper.

Although the identified co-change relationship types may

not be complete, they show a way to understand the evolu-

tionary coupling.

B. Evolution of Co-change Relationships (RQ2)

After analyzing the mined co-change relationship types,

we investigate how the file pairs show a “live” coupling as

they co-evolve. Based on temporal analysis, we find three

basic scenarios that co-change relationships show themselves

differently.

1) Sticking to the same co-change relationship type but
the coupling can be strengthened or weakened: In this

scenario, co-change relationship type remains stable but

the coupling between the two co-changed files may in-

crease or decrease. For example, class DatabaseDescriptor
and Config in Cassandra shows a pixelmap (as in Fig-

ure 3(a)) with a dark additional-field-and-additional-method

pixel, reflecting the increasing field access dependencies from

DatabaseDescriptor to Config. When Config adds a new

field, DatabaseDescriptor adds corresponding getter/setter

methods for it. Along time, as more fields have been added, the

coupling is strengthened. The increasing dependency may be

an indicator of improper distribution of responsibilities among

different classes. In the previous example, class Config sends

out a “data class” smell and attracts “feature envy” from

DatabaseDescriptor.

2) Co-change relationships disappear: Co-change relation-

ships between files may disappear. The co-evolution of classes

DatabaseDescriptor and CassandraDaemon is an exam-

ple. The history from April 2009 to March 2014 shows that,

when DatabaseDescriptor adds a field and a corresponding

getter method, CassandraDaemon adds a method call. How-

ever, after March 2014, although DatabaseDescriptor still

added some fields and getter methods, CassandraDaemon
no longer added corresponding method calls. This trend shows

that some evolutionary dependencies are no longer active

and is reflected by the changing darkness in the pixelmap.

There are two main causes behind the trend. One is that

the corresponding requirements and design became stable and

similar change operations no longer occur. The other is that

refactoring or design modification changes the evolutional

dependencies of the co-change group. In the latter case, some

classes in a co-change group undergo similar changes but other

classes in the group are no longer impacted by these changes.

3) Interleaving co-change relationship types: There are

files that show a pure and benign co-change relationship at the

early phase of the history but the design gradually deteriorated

and showed a mixture of multiple co-change relationships.

In extreme cases, multiple co-change relationship types may

interleave, which results in a vague and non-categorized

co-change relationship overall. Classes StorageService and

NodeProbe in Cassandra, for example, show a mixture of

Type2 and Type6. For some time, the two classes acted

just like a Java interface and the implementation class;

for some other time, they seemed like two classes derived

from the same ancestor. The reason is that both classes are

related to StorageServiceMBean: NodeProbe integrates

a StorageServiceMBean and calls its methods whereas

StorageSerivce implements StorageServiceMBean.

Interleaving or mixture of multiple co-change relationship

types may indicate possible structural or logical mixture. In

fact, most co-changed file pairs that exhibit multiple co-change

relationship types embody complicated logical couplings that

cannot be easily understood. Analysis on a cluster of files may

help to distinguish such mixtures.

C. Guidance for Maintenance Tasks (RQ3)

In order to answer the third research question, we focus

on co-change file clusters and the files that show the most

coupling with other files. Maintaining co-changed files con-

sumes extra effort because changes can propagate via various

co-change relationships. Therefore, we investigate how fine-

grained change operations may be inferred and what potential

actions are needed to improve the design. In other words, what

actions are probably suitable for which part of the code?

278

1) Chained Propagation: Files in the co-change file clus-

ter form a chain of change propagation, passing changes

from one file to another. Take StorageService from Cas-

sandra for example. It is a class implementing Interface

StorageServiceMBean, showing a Type2 co-change rela-

tionship. It is also implicitly referenced by class NodeProbe.

Any changes in either StorageService or NodeProbe may

transitively affect all files in the chain. This type of structural

relationships reflects the propagation of change impact along

a series of evolutionary dependencies.

2) Spread Propagation : This co-change file cluster con-

sists a center class that propagate changes to other classes in

the cluster. An example from Cassandra involves three classes:

ColumnFamilyStore, NodeCmd, and Memtable. After

analyzing the changes on source code, we found that some of

the changes on ColumnFamilyStore spread to NodeCmd,

some others spread to Memtable, and the two kinds of

changes are on different parts of class ColumnFamilyStore.

Therefore, maintainers have to be careful to make changes on

the appropriate part.

3) Convergent Changes: This co-change file cluster has

a class that may be affected by other classes. Classes

NodeCmd, ColumnFamilyStore and NodeProbe from

Cassandra forms such a co-change file cluster. NodeCmd
have to follow the changes in ColumnFamilyStore and

NodeProbe by adding method calls, for example, to the added

methods. Therefore maintainers need to be aware that parts of

NodeCmd are impacted by the changes of various classes.

V. DISCUSSION

In this section, we present in-depth reflections based on the

results reported in the previous section.

A. Investigating Fine-grained Architectural Debt Formation

Architectural flaws, such as modularity violations and un-

stable interfaces, can form expensive architectural debts [12].

The existing tools only identifies the classes/files involved in

these flaws [9], [10], [12]. But there is no systematic approach

to understand the actual causes of the debt, nor its occurrence,

accumulation, and disappearance over time.

In comparison, in this paper, we investigated how classes

change together in a fine granularity, interpreted as the 6 types

of co-change relationships. These types of relationships have

the potential to provide insights to understand the formation

and evolution of the design problems that contribute to in-

creased maintenance effort in a project.

For example, we observed that the “unstable concept” could

be in various forms.

1) The interface responsibilities are unstable and usu-

ally increasing. In other words, the interface is declaring

more methods, and thus the concrete classes add the re-

spective method implementations. For example, in Cassan-

dra, StorageServiceMBean and StorageService of Type2

co-change relationship exhibit more and more responsibili-

ties in the development history because the Java interface

StorageServiceMBean often adds method declarations.

2) The method signatures of the interface are unsta-

ble (e.g., adding/removing parameters) and thus cause the

client classes to change accordingly. For example, in Cas-

sandra, ColumnFamilyStore frequently adds new or re-

moves existing parameters. Whenever this happens, four

client classes of ColumnFamilyStore: MemTable, Table,

SSTableWriter, and StorageService, update the respec-

tive method calls(i.e., Add/Remove Parameter-Change Method

Call).

3) The business logic within a method is unstable and thus

causes the calling condition in the client to change accordingly.

For example, in Cassandra, when the internal implementation

of the getKeyRange method from class StorageProxy is

changed, the corresponding method call in CassandraServer
is moved into a try/catch block, showing complicated internal

logic changes.

Similarly, for modularity violations, existing tools [9], [12]

only identify which classes are involved, without answering

what are the “shared secrets” among classes that underly the

violations. Our fine-grained analysis provides the possibility to

reveal the “secret”. For example, both AlterTableStatement
and CreateColumnFamilyStatement call the same

methods in ClusteringComparator, CFPropDefs, and

CFMetaData, which may lead developers to reconsider the

design.

In summary, fine-grained co-change relationship analysis

provides a systematic way to investigate the design concepts

that may cause architectural flaws.

B. Early Indicating Potential Architectural Debt

Existing architectural debt identification approach usually

works in a retrospective manner, and require significant

amount of revision history to identify a debt [12].

Co-change relationship analysis has the potential to provide

early warning of a potential architectural debt. For example,

we are able to identify StorageServiceMBean as an unsta-

ble interface as soon as it co-changes with StorageService
on specific change types for the third time within a short

period of time. This, again, is because we identify not only

which classes are involved, but also the underlying “unstable”

concept: StorageServiceMBean is providing an increasing

number of method signatures.

We have discovered many similar cases in our analysis. We

believe that some co-change relationship types can be used as

an early indicator for architectural debts.

C. Suggesting Refactoring for Cross-cutting Design Problems

In our study, we observed classes that are involved in

multiple co-change relationships. Usually, these classes are

called hotspot classes [10], which either (in some cases,

both) dominantly propagate changes to or (and) submissively

change with a large number of other classes. They usually

contain cross-cutting design problems that cause high-impact

and expensive co-changes.

For example, co-change relationships involving

StorageService show co-changes with 15 classes. These

279

15 classes are the clients calling the methods implemented

in StorageService. Actually, whenever StorageService
implements a new method, the other class adds a call

to the newly added method. Some of the methods in

StorageService are implementing the declarations in

StorageServiceMBean while the majority others are

irrelevant to StorageServiceMBean. NodeProbe is the

only class in the 15 classes that calls the methods declared

in StorageServiceMBean. Meanwhile, the other 14 clients

of StorageService call the implemented methods that are

irrelevant to StorageServiceMBean. Hence, we believe

that StorageService is a refactoring point to decouple

the cross-cutting (involving 15 classes) design problem. A

possible solution would be splitting StorageService into

multiple interfaces of separate responsibilities by providing

independent methods for different clients.

We have observed multiple classes with cross-cutting design

problems and we hypothesize that each of these classes

presents refactoring opportunity to alleviate cross-cutting

maintenance difficulties.

VI. THREATS TO VALIDITY

Our results and findings in the empirical study suffer from

several internal and external threats.

A major internal threat to validity lies in both the definition

of change types and the categorization of the change types.

Using various differencing tools may get a different set of

change types and thus affects the result of co-change types.

However, our selection of the differencing tool ChangeDis-
tiller is a widely-used mature one and the results are widely

accepted, which mitigates the threat to validity. Nevertheless,

if other tools should be applied, our methodology still apply.

A major external threat to validity lies in the fact that we

only considered six open source systems in our study and all

of them were developed in Java. Our findings may not apply

to much larger software systems, systems that are developed in

other languages, or enterprise software systems. However, the

six systems are carefully selected and may represent a large

portion of the open source system. So our reported results and

findings reflect certain generality.

VII. RELATED WORK

Co-change analysis is widely used in multiple software

engineering tasks, such as change impacts analysis [27], [44]–

[46], defects prediction [2], [47]–[49], revealing architectural

weakness and design problems [9], [11], [39], [50], [51], and

identifying crosscutting concerns [13]–[15].

Understanding why and how parts of software co-change

has always been a problem due to the complexity of software.

Evolution history embeds rich information about change and

numerous studies have been conducted. Yu [22] conducted

a study on Linux evolution history and found a linear cor-

relation between evolutionary coupling and structural cou-

pling. Wong et al. [7] formalized evolutionary coupling as

a stochastic process using a Markov chain model. Ajienka

and Capiluppi [19] reported a large scale study on open

source system and concluded that structural coupling usually

causes evolutionary coupling but not all co-changed classes

has structural dependencies. These empirical studies reveal

complicate relations between evolutionary coupling and other

types of software dependencies.

Various visualization tools have been proposed to help ana-

lyzing co-changes. D’Ambros et al. [52] presented a radar-like

visualization to display logically coupled entities at various

levels of granularity. Zimmermann et al. [42] used pixelmaps

to depict the spread and strength of file-level co-changes.

However, there has not been visualization work for refined

change types that have happened on files.

There has been work that focuses on the developers’ view.

Beck et al. [39] investigate developers’ opinions on the congru-

ence between coupling concepts such as evolutionary coupling

and the modularization of the system in practice. Silva et

al. [24] discovered co-change patterns in terms of how co-

changed program entities spread within a subsystem or across

multiple systems and evaluated them with developers. Bavota

et al. [53] empirically investigate how class coupling captured

by structural, dynamic, semantic, and logical coupling mea-

sures aligns with developers’ perception of coupling. Robbes

et al. [54] took a look into the development process and

analyzed the fine-grained changes made during a development

session and extract changes from programmers’ interactions

with the development environment [55]. Although program-

mers help a lot in identifying the reason for evolutionary

coupling, it is still difficult and effort-consuming to explain

an specific evolutionary coupling.

There are also researches on the co-change analysis between

code and build configuration [27], [28], [40] or between code

and documents [29], which may construct our future work.

VIII. CONCLUSION

In this paper, we report an empirical study on six open

source systems to understand evolutionary coupling by fine-

grained co-change relationship analysis. We identify 6 co-

change relationship types based on change operations extracted

from co-change commits. The co-change relationship types

are visualized in pixelmaps and can be used for understanding

the co-evolution of file pairs. The empirical study also shows

that the co-change relationships themselves change along time

and points out which classes are to be refactored and possible

ways for refactoring. Our findings indicate that fine-grained

co-change analysis has the potential to support more precise

change impact analysis and early architectural flaw detection.

Our future work includes refining the identified co-change

relationship types and developing refactoring recommendation

techniques based on the co-change relationship types.

ACKNOWLEDGMENTS

This work was supported (in part) by National Key Re-

search and Development Program of China under Grant No.

2016YFB1000801 and Shanghai Science and Technology De-

velopment Funds under Grant No. 16JC1400801.

280

REFERENCES

[1] H. C. Gall, K. Hajek, and M. Jazayeri, “Detection of logical coupling
based on product release history,” in 1998 International Conference
on Software Maintenance, ICSM 1998, Bethesda, Maryland, USA,
November 16-19, 1998, 1998, pp. 190–197.

[2] M. D’Ambros, M. Lanza, and R. Robbes, “On the relationship between
change coupling and software defects,” in 16th Working Conference on
Reverse Engineering, WCRE 2009, 13-16 October 2009, Lille, France,
2009, pp. 135–144.

[3] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Mining
version histories to guide software changes,” Transactions on Software
Engineering, vol. 31, no. 6, pp. 429–445, 2005.

[4] T. Ball, J. Kim, A. A. Porter, and H. P. Siy, “If your
version control system could talk...” 1997. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.87.137

[5] I. S. Wiese, R. T. Kuroda, R. Ré, G. A. Oliva, and M. A. Gerosa,
“An empirical study of the relation between strong change coupling and
defects using history and social metrics in the apache aries project,”
in Open Source Systems: Adoption and Impact - 11th IFIP WG 2.13
International Conference, OSS 2015, Florence, Italy, May 16-17, 2015,
Proceedings, 2015, pp. 3–12.

[6] H. H. Kagdi, M. Gethers, D. Poshyvanyk, and M. L. Collard, “Blending
conceptual and evolutionary couplings to support change impact analysis
in source code,” in 17th Working Conference on Reverse Engineering,
WCRE 2010, 13-16 October 2010, Beverly, MA, USA, 2010, pp. 119–
128.

[7] S. Wong and Y. Cai, “Generalizing evolutionary coupling with stochastic
dependencies,” in 26th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE 2011), Lawrence, KS, USA, November
6-10, 2011, 2011, pp. 293–302.

[8] T. Rolfsnes, S. Di Alesio, R. Behjati, L. Moonen, and D. W. Binkley,
“Generalizing the analysis of evolutionary coupling for software change
impact analysis,” in IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering, SANER 2016, Suita, Osaka,
Japan, March 14-18, 2016 - Volume 1, 2016, pp. 201–212.

[9] S. Wong, Y. Cai, M. Kim, and M. Dalton, “Detecting software modu-
larity violations,” in International Conference on Software Engineering,
Honolulu, HI, USA, 2011, pp. 411–420.

[10] R. Mo, Y. Cai, R. Kazman, and L. Xiao, “Hotspot patterns: The formal
definition and automatic detection of architecture smells,” in Working
Conference on Software Architecture, Montreal, QC, Canada, 2015, pp.
51–60.

[11] F. Palomba, G. Bavota, M. D. Penta, and R. Oliveto, “Detecting bad
smells in source code using change history information,” in International
Conference on Automated Software Engineering, Silicon Valley, CA,
USA, 2013, pp. 268–278.

[12] L. Xiao, Y. Cai, R. Kazman, R. Mo, and Q. Feng, “Identifying and
quantifying architectural debt,” in International Conference on Software
Engineering, Austin, TX, USA, 2016, pp. 488–498.

[13] G. Canfora, L. Cerulo, and M. D. Penta, “On the use of line co-change
for identifying crosscutting concern code,” in 22nd IEEE International
Conference on Software Maintenance (ICSM 2006), 24-27 September
2006, Philadelphia, Pennsylvania, USA, 2006, pp. 213–222.

[14] S. Breu and T. Zimmermann, “Mining aspects from version history,”
in 21st IEEE/ACM International Conference on Automated Software
Engineering (ASE 2006), 18-22 September 2006, Tokyo, Japan, 2006,
pp. 221–230.

[15] B. Adams, Z. M. Jiang, and A. E. Hassan, “Identifying crosscutting
concerns using historical code changes,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume
1, ICSE 2010, Cape Town, South Africa, 1-8 May 2010, 2010, pp. 305–
314.

[16] B. Fluri, M. Würsch, M. Pinzger, and H. C. Gall, “Change distilling:
Tree differencing for fine-grained source code change extraction,” IEEE
Trans. Software Eng., vol. 33, no. 11, pp. 725–743, 2007.

[17] M. Pawlik and N. Augsten, “RTED: A robust algorithm for the tree edit
distance,” PVLDB, vol. 5, no. 4, pp. 334–345, 2011.

[18] J. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
“Fine-grained and accurate source code differencing,” in ACM/IEEE
International Conference on Automated Software Engineering, ASE ’14,
Vasteras, Sweden - September 15 - 19, 2014, 2014, pp. 313–324.

[19] N. Ajienka and A. Capiluppi, “Understanding the interplay between the
logical and structural coupling of software classes,” Journal of Systems
and Software, vol. 134, pp. 120–137, 2017.

[20] G. A. Oliva and M. A. Gerosa, “On the interplay between structural
and logical dependencies in open-source software,” in 25th Brazilian
Symposium on Software Engineering, SBES 2011, Sao Paulo, Brazil,
September 28-30, 2011, 2011, pp. 144–153.

[21] ——, “Experience report: How do structural dependencies influence
change propagation? an empirical study,” in 2015 IEEE 26th Interna-
tional Symposium on Software Reliability Engineering (ISSRE). IEEE,
2015, pp. 250–260.

[22] L. Yu, “Understanding component co-evolution with a study on linux,”
Empirical Software Engineering, vol. 12, no. 2, pp. 123–141, 2007.

[23] M. Mondal, C. K. Roy, and K. A. Schneider, “Insight into a method co-
change pattern to identify highly coupled methods: An empirical study,”
in International Conference on Program Comprehension, San Francisco,
CA, USA, 2013, pp. 103–112.

[24] L. L. Silva, M. T. Valente, M. de A. Maia, and N. Anquetil, “Developers’
perception of co-change patterns: An empirical study,” in International
Conference on Software Maintenance and Evolution, Bremen, Germany,
2015, pp. 21–30.

[25] Y. Wang, N. Meng, and H. Zhong, “An empirical study of multi-entity
changes in real bug fixes,” in International Conference on Software
Maintenance and Evolution, 2018, pp. 316–327.

[26] S. Kirbas, T. Hall, and A. Sen, “Evolutionary coupling measurement:
Making sense of the current chaos,” Sci. Comput. Program., vol. 135,
pp. 4–19, 2017.

[27] X. Xia, D. Lo, S. McIntosh, E. Shihab, and A. E. Hassan, “Cross-project
build co-change prediction,” in International Conference on Software
Analysis, Evolution, and Reengineering, SANER 2015, Montreal, QC,
Canada, 2015, pp. 311–320.

[28] C. Macho, S. McIntosh, and M. Pinzger, “Predicting build co-changes
with source code change and commit categories,” in International
Conference on Software Analysis, Evolution, and Reengineering, SANER
2016, Suita, Osaka, Japan, 2016, pp. 541–551.

[29] Z. Xing and E. Stroulia, “Analyzing the evolutionary history of the
logical design of object-oriented software,” IEEE Trans. Software Eng.,
vol. 31, no. 10, pp. 850–868, 2005.

[30] B. Fluri and H. C. Gall, “Classifying change types for qualifying change
couplings,” in 14th International Conference on Program Comprehen-
sion (ICPC 2006), 14-16 June 2006, Athens, Greece, 2006, pp. 35–45.

[31] “Camel,” http://camel.apache.org/.

[32] “Cassandra,” http://cassandra.apache.org/.

[33] “Cxf,” http://cxf.apache.org/.

[34] “Hadoop,” http://hadoop.apache.org/.

[35] “Hbase,” http://hbase.apache.org/.

[36] “Wicket,” http://wicket.apache.org/.

[37] R. Mo, Y. Cai, R. Kazman, L. Xiao, and Q. Feng, “Decoupling level: a
new metric for architectural maintenance complexity,” in International
Conference on Software Engineering, Austin, TX, USA, 2016, pp. 499–
510.

[38] E. Kouroshfar, “Studying the effect of co-change dispersion on software
quality,” in International Conference on Software Engineering, San
Francisco, CA, USA, 2013, pp. 1450–1452.

[39] F. Beck and S. Diehl, “On the congruence of modularity and code
coupling,” in International Symposium on the Foundations of Software
Engineering, Szeged, Hungary, 2011, pp. 354–364.

[40] S. Mcintosh, B. Adams, M. Nagappan, and A. E. Hassan, “Mining co-
change information to understand when build changes are necessary,”
in International Conference on Software Maintenance and Evolution,
Victoria, BC, Canada, 2014, pp. 241–250.

[41] L. Moonen, S. Di Alesio, D. Binkley, and T. Rolfsnes, “Practical
guidelines for change recommendation using association rule mining,”
in International Conference on Automated Software Engineering, Sin-
gapore, Singapore, 2016, pp. 732–743.

[42] T. Zimmermann, S. Diehl, and A. Zeller, “How history justifies system
architecture (or not),” in 6th International Workshop on Principles
of Software Evolution (IWPSE 2003), 1-2 September 2003, Helsinki,
Finland, 2003, pp. 73–83.

[43] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, “Refactoring:
Improving the design of existing programs,” 1999.

[44] S. Hassaine, F. Boughanmi, Y.-G. Gueheneuc, S. Hamel, and G. Anto-
niol, “A seismology-inspired approach to study change propagation,” in

281

International Conference on Software Maintenance, Williamsburg, VA,
USA, 2011, pp. 53–62.

[45] M. Gethers, B. Dit, H. Kagdi, and D. Poshyvanyk, “Integrated impact
analysis for managing software changes,” in International Conference
on Software Engineering, Zurich, Switzerland, 2012, pp. 430–440.

[46] H. A. Nguyen, A. T. Nguyen, and T. N. Nguyen, “Using topic model to
suggest fine-grained source code changes,” in International Conference
on Software Maintenance and Evolution, Raleigh, NC, USA, 2016, pp.
200–210.

[47] M. Steff and B. Russo, “Co-evolution of logical couplings and commits
for defect estimation,” in 9th IEEE Working Conference of Mining
Software Repositories, MSR 2012, June 2-3, 2012, Zurich, Switzerland,
2012, pp. 213–216.

[48] S. Kirbas, B. Caglayan, T. Hall, S. Counsell, D. Bowes, A. Sen, and
A. Bener, “The relationship between evolutionary coupling and defects
in large industrial software,” Journal of Software: Evolution and Process,
vol. 29, no. 4, 2017.

[49] S. Kirbas, A. Sen, B. Caglayan, A. Bener, and R. Mahmutogullari, “The
effect of evolutionary coupling on software defects: an industrial case
study on a legacy system,” in 2014 ACM-IEEE International Symposium
on Empirical Software Engineering and Measurement, ESEM ’14,
Torino, Italy, September 18-19, 2014, 2014, pp. 6:1–6:7.

[50] H. C. Gall, M. Jazayeri, and J. Krajewski, “CVS release history data for
detecting logical couplings,” in 6th International Workshop on Principles
of Software Evolution (IWPSE 2003), 1-2 September 2003, Helsinki,
Finland, 2003, pp. 13–23.

[51] R. Schwanke, L. Xiao, and Y. Cai, “Measuring architecture quality by
structure plus history analysis,” in International Conference on Software
Engineering, San Francisco, CA, USA, 2013, pp. 891–900.

[52] M. D’Ambros, M. Lanza, and M. Lungu, “Visualizing co-change infor-
mation with the evolution radar,” Transactions on Software Engineering,
vol. 35, no. 5, pp. 720–735, 2009.

[53] G. Bavota, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and
A. De Lucia, “An empirical study on the developers’ perception of soft-
ware coupling,” in International Conference on Software Engineering,
San Francisco, CA, USA, 2013, pp. 692–701.

[54] R. Robbes, D. Pollet, and M. Lanza, “Logical coupling based on
fine-grained change information,” in WCRE 2008, Proceedings of the
15th Working Conference on Reverse Engineering, Antwerp, Belgium,
October 15-18, 2008, 2008, pp. 42–46.

[55] F. Bantelay, M. B. Zanjani, and H. H. Kagdi, “Comparing and combining
evolutionary couplings from interactions and commits,” in 20th Working
Conference on Reverse Engineering, WCRE 2013, Koblenz, Germany,
October 14-17, 2013, 2013, pp. 311–320.

282

