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a b s t r a c t

Using cross-sectional data for making ecological inference started as a practical means of pooling data to

enable meaningful empirical model development. For example, limnologists routinely use sample av-

erages from numerous individual lakes to examine patterns across lakes. The basic assumption behind

the use of cross-lake data is often that responses within and across lakes are identical. As data from

multiple study units across a wide spatiotemporal scale are increasingly accessible for researchers, an

assessment of this assumption is now feasible. In this study, we demonstrate that this assumption is

usually unjustified, due largely to a statistical phenomenon known as the Simpson's paradox. Through

comparisons of a commonly used empirical model of the effect of nutrients on algal growth developed

using several data sets, we discuss the cognitive importance of distinguishing factors affecting lake

eutrophication operating at different spatial and temporal scales. Our study proposes the use of the

Bayesian hierarchical modeling approach to properly structure the data analysis when data from mul-

tiple lakes are employed.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Ecologists have a long history of using data from multiple lakes,

summarized at various levels of spatial and temporal aggregation,

to estimate empirical models (Vollenweider, 1968, 1975; Schindler,

1977; Wagner et al., 2011). Dillon and Rigler (1973) set an early

precedent using reported sample averages from a combination of

46 North American lakes, lake years, and segments of lakes to es-

timate a simple linear regressionmodel relating chlorophyll a (chla)

concentration to total phosphorus (TP) concentration. Numerous

papers followed, applying regression approaches to estimate

similar models using data from other lakes, sometimes comparing

their estimated equations to the equation obtained by Dillon and

Rigler (Jones and Bachmann, 1976; Canfield and Bachmann, 1981;

Canfield, 1983; Prepas and Trew, 1983). The practice of estimating

models using data from multiple lakes is common, fostered by in-

creases in computational capacity and corresponding advances in

statistical software which now facilitates the estimation of

nonlinear models, using large data sets (Filstrup et al., 2014).

These approaches are typically based on an implicit assumption

that the chla and TP means frommultiple lakes can be described by

a dose-response equation (e.g., McCauley et al. (1989)) such as:

logðmChlaÞ¼b0 þ b1 logðmTPÞ þ ε (1)

where mChla is the mean of chla concentration for a specified time

period (such as summer of a particular year) and lake (or lake

segment), mTP is themean TP concentration for a corresponding, but

not necessarily the same, time period (spring TP may be related to

summer chla, for example), b0 and b1 are the intercept and slope

parameters, respectively, and ε is the model error term usually

assumed to be normally distributed with a constant variance (Qian,

2016). Because the underlying “true” mean values are always un-

known, sample averages are typically used as surrogates, although
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occasionally sample medians have been used (Reckhow,1993). This

regression-based modeling approach has influenced lake man-

agement practices beyond the modeling of the chla-nutrient rela-

tionship. For example, Yuan and Pollard (2017) used data from the

National Lake Assessment (NLA), a cross-lake data set including

randomly selected lakes in all 48 contiguous states of the United

States (Pollard et al., 2018), to develop a dose-response model to

describe the relationship between microcystin (MC) concentration

and total nitrogen (TN) concentration. The resulting model was

used to propose a national nitrogen criterion for controlling

harmful algal blooms.

The implicit premise of this approach is that a relationship

estimated using sample averages frommany lakes can be applied to

set criteria for individual lakes, because criteria compliance

assessment is typically lake-specific. However, we see two potential

problems with this supposition:

1. Using sample averages as surrogates for the “true,” unknown

means, violates two assumptions of regression analysis: the

variance of the response variable is constant and the predictor

variables are observed without error. On the one hand, violating

the equal variance assumption makes an estimated parameter

and model error variances ambiguous; it is unclear what un-

certainty bands calculated from these values, such as 95% con-

fidence or prediction intervals, represent. On the other hands,

the consequence of violating the observation error assumption

has been well-studied; it is widely recognized that this “errors-

in-variables” problem causes slope coefficient estimators to be

biased toward zero (Fuller, 1987; Carroll et al., 2006).

2. Lake-specific factors may cause individual lakes to exhibit

differing stressor-response relationships (Jones and Bachmann,

1976; Wagner et al., 2011; Malve and Qian, 2006). Using

aggregated measures, such as sample averages to estimate

among-lake relationships can produce results that poorly

represent the individual lakes in the analysis. In extreme cases,

the sign of the estimated slope parameter can be reversed

(Fig. 1), an example of Simpson's Paradox (Simpson, 1951).

Clearly, such amodel should not be used to develop lake-specific

management strategies (Smith and Shapiro, 1981; Reckhow,

1993; Liang et al., 2018).

Simpson's paradox is a well-discussed topic in social and po-

litical sciences. An early case was the Berkeley graduate admission

paradox (Bickel et al., 1975), where the campus-wide aggregated

graduate admission rate showed a bias against female applicants,

whereas disaggregated data showed neutral or favorable rates to-

wards female applicants in most departments. More recently, the

apparent switch of allegiance of the two major US political parties

(blue states are more affluent than red states) was contradicted by

data showing that wealthy people are more likely to vote for

Republican candidates (Gelman, 2009). There are numerous sta-

tistical studies on the topic, with two that are particularly helpful in

developing strategies to avoid the paradox. Lindley and Novick

(1981) explained the paradox from a statistical inference perspec-

tive, that is, statistical inference is the application of a model

developed based on data from the population to a new individual.

They suggested that the cause of Simpson's paradox is that the new

individual is not “exchangeable”with individuals in the population.

In Fig. 1, we present two groups of models: models for individual

lakes and the model of lake means. From a statistical inference

perspective, both groups of models are valid. But the models are

intended for two different populations: individual observations in a

particular lake and lake means of chla and TP. The model developed

using lake meansmay give the false impression that chla and TP are

inversely correlated. Such inverse correlations can often be

explained by factors not included in the model, as suggested by

Pearl et al. (2016): Simpson's paradox is a problem of confounding

factors and thus can be easily resolved under a causal inference

framework, where effects of these confounders are explicitly

accounted through the use of a causal diagram. This conclusion is

supported by many cross-scale studies. For example, Li et al. (2019)

show that parameters of a precipitation-stream flowmodel vary by

region due to region-specific confounding factors.

In lake eutrophication studies, quantifying the effects of nutri-

ents (nitrogen and phosphorous) on algal growth is almost always

the primary concern, given that excessive nutrient input is a well-

established cause of algal proliferation. If we can identify impor-

tant confounding factors of this relationship, than adopting the

causal inference approach is likely more suitable. When analyzing

data from multiple lakes (as in Fig. 1), each lake may have different

confounding factors, statistical inference using a hierarchical

modeling approach, such as the ones used in Cha and Stow (2014)

may be more effective.

In this paper, we use two large data sets to illustrate the po-

tential hazards of using data from multiple lakes without properly

addressing the among-lake variation that is often defined as

changes in regression model coefficients when the model is fit to

data from different lakes. The among-lake variation can also be

reflected in the changes in model coefficients when the same

model is fit using two data sets collected using the same protocol,

even when the number of lakes included in the data is large. We

illustrate the effects of the among-lake variation on regression-

based lake models by comparing models fit using lake sample av-

erages from several cross-sectional datasets. We then present a

Bayesian hierarchical modeling (BHM) approach for the hierarchi-

cal data structure and an empirical Bayes interpretation of a BHM's

hyper-parameter distribution to facilitate the use of cross-lake data

for lake-specific inference. As the BHM approach is consistent with

the shrinkage estimator of Stein's paradox (Qian et al., 2015), our

paper provides a Stein's paradox solution to a Simpson's paradox

problem.

2. Materials and methods

2.1. Data

We used data from both the National Lakes Assessment (NLA)

conducted by the US Environmental Protection Agency (EPA) (U.S.

Fig. 1. Hypothetical data from four lakes illustrate the worst case scenario for

combining lake-means for developing empirical models. Within each lake, chla is

positively correlated with TP (black lines). The correlation between lakes means of chla

and TP is, however, negative (shaded dots and line). The best case scenario is realized

when the four datasets overlap (four lakes are identical).
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EPA, 2009, 2016) and the LAke multiscaled GeOSpatial and tem-

poral database (LAGOSNE) (Soranno et al., 2017) to illustrate po-

tential statistical issues that may arise when analyzing large data

sets encompassing multiple lakes. The NLA consists of 1,152 lakes

sampled in 2007 (NLA2007) and 1,099 lakes sampled in 2012

(NLA2012). Data were collected in each year using an identical

sampling protocol. Lakes included in the NLAwere selected using a

probabilistic sampling design in an attempt to accurately represent

the overall population of lakes in the United States. In contrast to

the NLA, the LAGOSNE database contains information on lakes with

monitoring data from federal, state, or citizen science monitoring

programs across 17 states in the northeast of the US. We used 27

lakes from LAGOSNE that were also included in NLA2007 for

detailed analysis. These lakes have at least 10 observations in

LAGOSNE (Fig. 2). The selection of these 27 lakes was for the pur-

pose of methods comparison only. A summary of the data is in

Table 1.

These data sets were used to illustrate (1) the effects of among-

lake variation on regression-based lake modeling and (2) the

Bayesian hierarchical modeling approach to properly account for

the among-lake variation.

The two NLA data sets include a large number of lakes and were

collected to be representative of lakes in the US. Using these two

data sets, we illustrate how the among-lake variation may be re-

flected in regression models developed using the data sets sepa-

rately, and fit to the combined data. To contrast the NLA, which

includes only a small number of observations for each lake (such

that lake means are highly variable), we compare the three models

fit using NLA data sets (models developed based on NLA2007,

NLA2012, and NLA2007 þ NLA2012) to a model fit to a subset of

LAGOSNE that includes 27 lakes that are represented in NLA2007

with at least 10 observations in each lake. For this comparison, we

use lake mean concentrations of chla, TP, and TN as the observa-

tions for developing the regression model discussed in the next

section.

Using data of the 27 lakes in LAGOSNE we show how Bayesian

hierarchical modeling approach can be used to partially pool data

from different lakes to avoid the potential problems of Simpson's

paradox (Fig. 1).

2.2. Statistical modeling

2.2.1. Illustrating among-lake variation in model coefficients

We first developed a regression model (equation (2)) to

demonstrate the variability ofmodel coefficients between data sets.

The model used both TP, TN, and their interaction as predictor

variables:

log
�
chlaj

�
¼b0 þ b1 log

�
TPj

�
þ b2 log

�
TNj

�

þ b3 log
�
TPj

�
log

�
TNj

�
þ εj (2)

where chlaj, TPj, and TNj are sample average concentrations for chla,

TP, and TN for the jth lake. Frequently, TP is used as the only pre-

dictor because phosphorus is usually assumed as the limiting

nutrient; we did not make that a priori assumption for all the lakes

in the data (Malve and Qian, 2006). Furthermore, TP and TN are

often correlated, which can imply an interaction effect (Qian, 2016).

For example, an oligotrophic lake may be limited by both phos-

phorus and nitrogen; thus increasing phosphorus may lead to an

increased nitrogen demand, constituting a positive interaction. The

most commonly used statistical modeling approach to account for

the interaction effect is to include the product of the two predictors

(known as the interaction term in statistics (Qian, 2016)) in the

regression model. For example, in an analysis of Finnish lakes,

Malve and Qian (2006) and Qian (2016) showed that including both

TP and TN, and their interaction term can lead to a more infor-

mative model. Specifically, the magnitude of the coefficient b3 may

be indicative of a lake's trophic level (Qian, 2016). A lake is likely to

be oligotrophic when b3 >0 (both P and N are limiting), mesotro-

phic when b3z0 (P is likely the limiting nutrient), and eutrophic

when b3 <0 (perhaps neither P nor N is limiting). Because of the

inclusion of the interaction term, the effects of TP and TN on chla are

no longer constants. The effect of TP depends on the value of TN and

vice versa. The meanings of software reported values of b1 and b2
are the TP and TN effects for specific values of TN and TP, respec-

tively (Qian, 2016). Specifically, the reported b1 (b2) is the TP (TN)

Fig. 2. Locations of NLA2007 lakes (shaded pluses), NLA2012 lakes (shaded triangles), and the 27 lakes included in both NLA2007 and LAGOSNE (black dots).

Table 1

Summary of data used in the analysis.

NLA2007 NLA2012 LAGOSNE

No. of obs. 1328 1230 1340

No. of lakes 1152 1099 27

No. of obs per lake 1e2 1e2 17e192

No. of years 1 1 9e29

NLA2007: data from 2007 NLA; NLA2012: data from 2012 NLA; LAGOSNE: data from

27 lakes in LAGOSNE with more than 10 observations that were also present in

NLA2007.
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effect when logðTNÞ ¼ 0 (logðTPÞ ¼ 0). In this paper, we centered

both predictors by subtracting the respective log means of TP and

TN; such that, the reported slopes (i.e., cb1 and cb2 ) are the TP and TN

effects when the other predictor value is at the geometric mean of

27 LAGOSNE lakes. Because the geometric means of 27 LAGOSNE

lakes do not have the same reference value for all lakes (e.g., the

geometric mean of TP represents a high phosphorus level for some

lakes and a low level for other lakes), the software reported b1 and

b2 values are not comparable among lakes. Consequently, we focus

on the comparisons of b0 and b3. See Qian (2016) for more detailed

explanations.

2.2.2. Using BHM to account for among-lake variation

Next, we developed a Bayesian hierarchical or multilevel model

to incorporate the hierarchical structure inherent in multi-lake

data. We constructed a two-tier multilevel model; at the lake

level, we use a form of equation (2):

log
�
chlaij

�
¼b0j þ b1j log

�
TPij

�
þ b2j log

�
TNij

�

þ b3j log
�
TPij

�
log

�
TNij

�
þ εij (3)

where the subscript ij represents the ith observation from the jth

lake. Above the individual lake level, the BHM captures the varia-

tion of among lake-specific model coefficients. As the regression

model represents a basic well-studied limnological relationship, we

expect that the log-log linear relationship to hold for all lakes, but

model coefficients b0:3j may differ by lake. Statistically, these lakes

are regarded as exchangeable with respect to model coefficients

because without additional information we would not know how

these coefficients might differ. Thus, the lake-specific model co-

efficients are modeled as random variables from a common

distribution:

0
BBBB@

b0j
b1j
b2j
b3j

1
CCCCA

� MVN

2
66664

0
BBBB@

mb0

mb1

mb2

mb3

1
CCCCA

;S

3
77775

(4)

where MVN represents a multivariate normal distribution. Equa-

tions (3) and (4) combined form a two-tier hierarchical model. The

multivariate normal distribution on the right-hand-side of equa-

tion (4) is often known as the hyper-parameter distribution. The

rationale of using the BHM is discussed by Qian et al. (2015) in the

context of estimating mean concentrations of water quality vari-

ables for multiple water bodies. Compared to coefficients estimated

using lake-specific data (one lake at a time), BHM estimated model

coefficients are more accurate overall. More importantly, the hier-

archical model specified in equations (3) and (4) separates within-

lake models (specified by b0:3j) from the among-lake model (mb0:3j
).

As a result, a lake-specific inference can be made more accurately

(Stow et al., 2009).

2.3. Modeling road map

Our analyses consist of two parts:

1. The model represented by equation (2) was fit to lake sample

average chla, TP, and TN concentrations from (1) NLA2007 data

alone, (2) NLA2012 alone, (3) combined NLA2007 and NLA2012

data, and (4) LAGOSNE to illustrate the variability of the esti-

mated model coefficients as a function of the data set used.

2. The hierarchical model of equations (3) and (4) was fit using

data from the 27 lakes in LAGOSNE to demonstrate the use of a

BHM to properly account for the among-lake variation.

All models were fit with log TP and log TN centered at the

respective means of log TP and TN concentrations of the 27 lakes in

LAGOSNE. As a result, the intercept (b0) of these models represents

the log mean chla concentrations when TP and TN are at the (log)

mean levels of the 27 lakes (log TP mean of 3.112, or geometric

mean of 22.5 mg/L, and log TN mean of 6.296, or geometric mean of

542.7 mg/L).

All statistical models were implemented in R (R Core Team,

2018), using function lm() for linear regression models and the

function lmer from package lme4 (Bates and Maechler, 2010) for

BHM in equations (3) and (4) (Gelman and Hill, 2007). Annotated R

code can be found at GitHub (https://github.com/songsqian/

simpsons).

3. Results

3.1. Variability in model coefficients

The linear model fit to the 27 LAGOSNE lakes has amuch smaller
bb3, as compared to the same coefficient estimated for the three

linear models fit to NLA2007, NLA2012, and NLA2007 þ NLA2012

(Fig. 3, Table 2). In addition, the LAGOSNE model coefficients have

much larger standard errors because the LAGOSNE model is based

on 27 sets of lake sample average concentrations (n ¼ 27) whereas

the three NLA models are based on sample averages from over

1,000 lakes. The estimated model coefficients based on NLA2007

and NLA2012 also differ, and the model coefficients based on the

combined NLA data are closer to coefficients of the model fit to

NLA2012. The interpretations of thesemodel coefficients, especially

the slopes, are ambiguous. b0 is the expected log chla for lakes with

TP and TN concentrations near the respective geometric means of

the 27 LAGOSNE lakes. However, the meanings of the three slopes

of these models are no longer clear. Mathematically, b1 is the ex-

pected change in logðchlaÞ for every unit change in logðTPÞ, while

TN is held unchanged. By using a regression model, we assume that

changes in logðchlaÞ due to factors not included in the model will

not affect the estimated slope and can be lumped into the error

term. This assumption, however, requires that the within-lake and

among-lake relationship between logðchlaÞ and logðTPÞ be the

same. As shown in the four hypothetical lakes in Fig. 1, this

assumption is likely unrealistic.

The ambiguity of model coefficients, manifested in the differ-

ences among the estimated coefficients of the four models, sug-

gests that the practice of using lake means for developing an

empirical model is potentially misleading. The difference in the

estimated model coefficients from the two data sets collected for

the same purposes (NLA2007 and NLA2012) suggests that the best

case scenario discussed in the captions of Fig. 1 is highly unlikely.

3.2. BHM for among-lake variation

The hierarchical model fit to data from the 27 LAGOSNE lakes

shows a large among-lake variation in model coefficients (Fig. 4).

The estimated intercepts (bb0) are the expected log chla concen-

tration for these 27 lakes when they all have the same TP and TN

concentrations (the respective geometric means). As such, values of

b0 in Fig. 4 show the relative productivity of the 27 lakes (sorted

based on their intercept values). The visible opposite trends be-

tween b0 and b3 are indicative of the value of b3 in understanding a

lake's trophic level. Because the value of b0 is dependent on the

baseline values of TP and TN, while the value of b3 is invariant, the

interaction slope b3 is a more direct indicator of a lake's trophic

status. The wide range of b3 shows that these lakes have different

trophic levels, indicating that nutrient effects on lake primary

productivity vary by lake.
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The difficulty in interpreting linear regression model slopes

disappears when the coefficients are allowed to differ by lake. The

hierarchical model estimated b0:3j are lake-specific, while the

hyper-parameters mb0:3
are the means of the respective lake-specific

coefficients. Consequently, the meaning of these estimated co-

efficients is unambiguous.

4. Discussion

Lakes in both NLA2007 and NLA2012 were selected based on a

probabilistic sampling protocol such that analytical results can be

“(extrapolated) to national scales” (Pollard et al., 2018). It is

tempting to interpret the difference in model coefficients between

NLA2007 and NLA2012 (e.g., a decrease in b0) as a result of

improved overall lake condition from 2007 to 2012. Because these

coefficients were estimated using lake sample average concentra-

tions of chla, TP and TN, we cannot directly interpret the differences

in the models as a result of changes in lake conditions over time. A

more reasonable explanation of these difference is the random

sampling variability. Furthermore, the large variability in lake-

specific model coefficients (Fig. 4) suggests that an overall

“average” model is unlikely to be informative, especially for

developing management strategies that will be implemented to

individual lakes.

Many early lake water quality models were based on simple

mechanistic principles and model parameters were estimated

using statistical methods (Reckhow and Chapra, 1983). These

models relied on data from multiple lakes, with each lake or lake

segment contributing one observation (Stow and Reckhow, 1996).

As we accumulated a larger amount of data from multiple lakes,

these simple modeling methods are increasingly being used as

the basis for analyzing cross-sectional data. In the age of fast

computers, the successful tools of the past can be easily applied

to big data. Our study demonstrates the potential problems of

analyzing “big” (multiple lakes) data using conventional

methods. The hierarchical structure in the data (i.e., from indi-

vidual observations to lake-specific features to regional charac-

teristics shared by many lakes) should be properly reflected in

our empirical models. The Bayesian hierarchical modeling

approach provides a flexible tool for modeling the hierarchical

structure inherent to most of our “big data.” When a dominant

confounding factor can be identified, we can incorporate the

confounding factor into the BHM (also known as the multilevel

model) framework (Tang et al., 2019).

Without properly modeling the hierarchical structure, we risk

misinterpreting the data (e.g., Fig. 1), a situation that has long been

recognized in statistics as the Simpson's paradox (Simpson, 1951).

Although the mathematics behind the Simpson's paradox is

straightforward, the implications of the paradox are still not widely

recognized in our field. Frequently, we do not analyze data at

different levels of aggregation, thereby we fail to notice the para-

doxical phenomenon, which can lead to misinterpretation of the

results. Lakes are naturally different (Fig. 4); forcing a single model

on all lakes is undesirable.

Developing “national” nutrient criteria using models based on

lake average concentrations is likely counterproductive as nutrient

concentrations are only one of many factors affecting a lake's tro-

phic status. A national standard would be inevitably too stringent

for some lakes and too lenient for others. When the among-lake

variance is considered as in Yuan and Pollard (2017), the resulting

criterion is most likely too stringent, and thereby unachievable, for

most lakes. This result is not surprising as the NLA program was

designed to answer two questions ("what is the current condition

of lakes?" and "how is this condition changing over time?") that are

not directly related to the quantification of the chla-nutrient rela-

tionship (Pollard et al., 2018).

Fig. 3. Model coefficients (b0:3) estimated using lake mean concentrations from NLA2007 (07), NLA2012 (12), NLA2007 and NLA2012 combined (07 þ 12), and the 27 LAGOSNE

lakes (LAGOS). Dots are the estimated means and thin and thick horizontal lines are the mean plus one and two standard errors, respectively. The shaded vertical line references

b3 ¼ 0.

Table 2

Model coefficients estimated using different methods.

Models 07 12 07 þ 12 LAGOS BHM

b0 2.058 (0.033) 1.837 (0.039) 1.9448 (0.025) 2.096 (0.067) 1.984 (0.098)

b1 0.404 (0.030) 0.330 (0.039) 0.3376 (0.022) 1.430 (0.143) 0.850 (0.073)

b2 0.616 (0.045) 0.732 (0.044) 0.7088 (0.031) �0.139 (0.204) 0.390 (0.104)

b3 �0.045 (0.013) �0.004 (0.020) �0.0218 (0.011) �0.377 (0.075) �0.014 (0.091)

Estimation standard errors are in parentheses. Models: “07” is the model fit to NLA2007 data, “12” is fit to NLA2012, “07 þ 12” is fit to the combined NLA data, “LAGOS” is fit

using the mean concentrations of the 27 lakes from LAGOSNE, BHM is the Bayesian hierarchical model (hyper-parameters, mb ’s).

S.S. Qian et al. / Water Research 163 (2019) 114855 5



The goals of the NLA monitoring program are similar to those of

EPA's Environmental Monitoring and Assessment Program (EMAP),

which is optimized for estimating the mean and variance of indi-

vidual environmental/ecological indicators over a national/regional

scale, or of a stratified subpopulation (e.g., small lakes) (Overton

and Stehman, 1996). These programs are purposefully designed to

best support a limited number of objectives (Messer et al., 1991). As

a result, when data from programs such as EMAP and NLA are used

beyond their original design goals, we need to incorporate these

data collection design parameters and plan our analysis

accordingly.

When developing models for individual lakes, mathematical

theories show that a Bayesian estimator with a proper (informa-

tive) prior is always better (compared to a non-Bayesian estimator)

in terms of a model's predictive accuracy (Efron and Morris, 1977;

Efron, 1978). The difficulty in using a Bayesian method is in

obtaining proper informative priors. The most important contri-

bution of our paper is the recognition that such informative prior

can be obtained by analyzing data from multiple lakes: the hyper-

parameter distribution (right-hand-side of equation (4)) is natu-

rally such a proper prior. In other words, an important and valuable

result of analyzing data frommultiple lakes is the hyper-parameter

distribution, which can be used as a proper informative prior for

analyzing data from individual lakes that are not included in the

data used to develop the hierarchical model. This conclusion is not

limited to limnological modeling (Qian et al., 2015).

5. Conclusions

� Empirical models developed using lake average concentrations

of chla, TP, and TN are unlikely coincide with models developed

using data from individual lakes e a statistical phenomenon

known as the Simpson's paradox in statistics literature and

“ecological fallacy” in social science literature.

� Regional differences in relevant natural (e.g., climate, weather,

watershed soil) and cultural (e.g., land use) variables are

attributed as the cause of the phenomenon. These relevant

variables are known as confounding factors in causal analysis

literature.

� When using cross-sectional data without detailed information

about the confounding factors, a Bayesian hierarchical modeling

approach is an appropriate analytic tool.
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