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Using cross-sectional data for making ecological inference started as a practical means of pooling data to
enable meaningful empirical model development. For example, limnologists routinely use sample av-
erages from numerous individual lakes to examine patterns across lakes. The basic assumption behind
the use of cross-lake data is often that responses within and across lakes are identical. As data from
multiple study units across a wide spatiotemporal scale are increasingly accessible for researchers, an
assessment of this assumption is now feasible. In this study, we demonstrate that this assumption is
usually unjustified, due largely to a statistical phenomenon known as the Simpson's paradox. Through
comparisons of a commonly used empirical model of the effect of nutrients on algal growth developed
using several data sets, we discuss the cognitive importance of distinguishing factors affecting lake
eutrophication operating at different spatial and temporal scales. Our study proposes the use of the
Bayesian hierarchical modeling approach to properly structure the data analysis when data from mul-

tiple lakes are employed.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Ecologists have a long history of using data from multiple lakes,
summarized at various levels of spatial and temporal aggregation,
to estimate empirical models (Vollenweider, 1968, 1975; Schindler,
1977; Wagner et al., 2011). Dillon and Rigler (1973) set an early
precedent using reported sample averages from a combination of
46 North American lakes, lake years, and segments of lakes to es-
timate a simple linear regression model relating chlorophyll a (chla)
concentration to total phosphorus (TP) concentration. Numerous
papers followed, applying regression approaches to estimate
similar models using data from other lakes, sometimes comparing
their estimated equations to the equation obtained by Dillon and
Rigler (Jones and Bachmann, 1976; Canfield and Bachmann, 1981;
Canfield, 1983; Prepas and Trew, 1983). The practice of estimating
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models using data from multiple lakes is common, fostered by in-
creases in computational capacity and corresponding advances in
statistical software which now facilitates the estimation of
nonlinear models, using large data sets (Filstrup et al., 2014).

These approaches are typically based on an implicit assumption
that the chla and TP means from multiple lakes can be described by
a dose-response equation (e.g., McCauley et al. (1989)) such as:

log(tcniq) = Bo + B1 log(urp) + & (1)

where pcy, is the mean of chla concentration for a specified time
period (such as summer of a particular year) and lake (or lake
segment), ugp is the mean TP concentration for a corresponding, but
not necessarily the same, time period (spring TP may be related to
summer chla, for example), o and §; are the intercept and slope
parameters, respectively, and & is the model error term usually
assumed to be normally distributed with a constant variance (Qian,
2016). Because the underlying “true” mean values are always un-
known, sample averages are typically used as surrogates, although
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occasionally sample medians have been used (Reckhow, 1993). This
regression-based modeling approach has influenced lake man-
agement practices beyond the modeling of the chla-nutrient rela-
tionship. For example, Yuan and Pollard (2017) used data from the
National Lake Assessment (NLA), a cross-lake data set including
randomly selected lakes in all 48 contiguous states of the United
States (Pollard et al., 2018), to develop a dose-response model to
describe the relationship between microcystin (MC) concentration
and total nitrogen (TN) concentration. The resulting model was
used to propose a national nitrogen criterion for controlling
harmful algal blooms.

The implicit premise of this approach is that a relationship
estimated using sample averages from many lakes can be applied to
set criteria for individual lakes, because criteria compliance
assessment is typically lake-specific. However, we see two potential
problems with this supposition:

1. Using sample averages as surrogates for the “true,” unknown
means, violates two assumptions of regression analysis: the
variance of the response variable is constant and the predictor
variables are observed without error. On the one hand, violating
the equal variance assumption makes an estimated parameter
and model error variances ambiguous; it is unclear what un-
certainty bands calculated from these values, such as 95% con-
fidence or prediction intervals, represent. On the other hands,
the consequence of violating the observation error assumption
has been well-studied; it is widely recognized that this “errors-
in-variables” problem causes slope coefficient estimators to be
biased toward zero (Fuller, 1987; Carroll et al., 2006).

2. Lake-specific factors may cause individual lakes to exhibit
differing stressor-response relationships (Jones and Bachmann,
1976; Wagner et al, 2011; Malve and Qian, 2006). Using
aggregated measures, such as sample averages to estimate
among-lake relationships can produce results that poorly
represent the individual lakes in the analysis. In extreme cases,
the sign of the estimated slope parameter can be reversed
(Fig. 1), an example of Simpson's Paradox (Simpson, 1951).
Clearly, such a model should not be used to develop lake-specific
management strategies (Smith and Shapiro, 1981; Reckhow,
1993; Liang et al., 2018).

Simpson's paradox is a well-discussed topic in social and po-
litical sciences. An early case was the Berkeley graduate admission
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Fig. 1. Hypothetical data from four lakes illustrate the worst case scenario for
combining lake-means for developing empirical models. Within each lake, chla is
positively correlated with TP (black lines). The correlation between lakes means of chla
and TP is, however, negative (shaded dots and line). The best case scenario is realized
when the four datasets overlap (four lakes are identical).

paradox (Bickel et al., 1975), where the campus-wide aggregated
graduate admission rate showed a bias against female applicants,
whereas disaggregated data showed neutral or favorable rates to-
wards female applicants in most departments. More recently, the
apparent switch of allegiance of the two major US political parties
(blue states are more affluent than red states) was contradicted by
data showing that wealthy people are more likely to vote for
Republican candidates (Gelman, 2009). There are numerous sta-
tistical studies on the topic, with two that are particularly helpful in
developing strategies to avoid the paradox. Lindley and Novick
(1981) explained the paradox from a statistical inference perspec-
tive, that is, statistical inference is the application of a model
developed based on data from the population to a new individual.
They suggested that the cause of Simpson's paradox is that the new
individual is not “exchangeable” with individuals in the population.
In Fig. 1, we present two groups of models: models for individual
lakes and the model of lake means. From a statistical inference
perspective, both groups of models are valid. But the models are
intended for two different populations: individual observations in a
particular lake and lake means of chla and TP. The model developed
using lake means may give the false impression that chla and TP are
inversely correlated. Such inverse correlations can often be
explained by factors not included in the model, as suggested by
Pearl et al. (2016): Simpson's paradox is a problem of confounding
factors and thus can be easily resolved under a causal inference
framework, where effects of these confounders are explicitly
accounted through the use of a causal diagram. This conclusion is
supported by many cross-scale studies. For example, Li et al. (2019)
show that parameters of a precipitation-stream flow model vary by
region due to region-specific confounding factors.

In lake eutrophication studies, quantifying the effects of nutri-
ents (nitrogen and phosphorous) on algal growth is almost always
the primary concern, given that excessive nutrient input is a well-
established cause of algal proliferation. If we can identify impor-
tant confounding factors of this relationship, than adopting the
causal inference approach is likely more suitable. When analyzing
data from multiple lakes (as in Fig. 1), each lake may have different
confounding factors, statistical inference using a hierarchical
modeling approach, such as the ones used in Cha and Stow (2014)
may be more effective.

In this paper, we use two large data sets to illustrate the po-
tential hazards of using data from multiple lakes without properly
addressing the among-lake variation that is often defined as
changes in regression model coefficients when the model is fit to
data from different lakes. The among-lake variation can also be
reflected in the changes in model coefficients when the same
model is fit using two data sets collected using the same protocol,
even when the number of lakes included in the data is large. We
illustrate the effects of the among-lake variation on regression-
based lake models by comparing models fit using lake sample av-
erages from several cross-sectional datasets. We then present a
Bayesian hierarchical modeling (BHM) approach for the hierarchi-
cal data structure and an empirical Bayes interpretation of a BHM's
hyper-parameter distribution to facilitate the use of cross-lake data
for lake-specific inference. As the BHM approach is consistent with
the shrinkage estimator of Stein's paradox (Qian et al., 2015), our
paper provides a Stein's paradox solution to a Simpson's paradox
problem.

2. Materials and methods
2.1. Data

We used data from both the National Lakes Assessment (NLA)
conducted by the US Environmental Protection Agency (EPA) (U.S.
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EPA, 2009, 2016) and the LAke multiscaled GeOSpatial and tem-
poral database (LAGOSNE) (Soranno et al., 2017) to illustrate po-
tential statistical issues that may arise when analyzing large data
sets encompassing multiple lakes. The NLA consists of 1,152 lakes
sampled in 2007 (NLA2007) and 1,099 lakes sampled in 2012
(NLA2012). Data were collected in each year using an identical
sampling protocol. Lakes included in the NLA were selected using a
probabilistic sampling design in an attempt to accurately represent
the overall population of lakes in the United States. In contrast to
the NLA, the LAGOSNE database contains information on lakes with
monitoring data from federal, state, or citizen science monitoring
programs across 17 states in the northeast of the US. We used 27
lakes from LAGOSNE that were also included in NLA2007 for
detailed analysis. These lakes have at least 10 observations in
LAGOSNE (Fig. 2). The selection of these 27 lakes was for the pur-
pose of methods comparison only. A summary of the data is in
Table 1.

These data sets were used to illustrate (1) the effects of among-
lake variation on regression-based lake modeling and (2) the
Bayesian hierarchical modeling approach to properly account for
the among-lake variation.

The two NLA data sets include a large number of lakes and were
collected to be representative of lakes in the US. Using these two
data sets, we illustrate how the among-lake variation may be re-
flected in regression models developed using the data sets sepa-
rately, and fit to the combined data. To contrast the NLA, which
includes only a small number of observations for each lake (such
that lake means are highly variable), we compare the three models
fit using NLA data sets (models developed based on NLA2007,
NLA2012, and NLA2007 + NLA2012) to a model fit to a subset of
LAGOSNE that includes 27 lakes that are represented in NLA2007
with at least 10 observations in each lake. For this comparison, we
use lake mean concentrations of chila, TP, and TN as the observa-
tions for developing the regression model discussed in the next
section.

Using data of the 27 lakes in LAGOSNE we show how Bayesian
hierarchical modeling approach can be used to partially pool data
from different lakes to avoid the potential problems of Simpson's
paradox (Fig. 1).

2.2. Statistical modeling

2.2.1. lllustrating among-lake variation in model coefficients
We first developed a regression model (equation (2)) to

Table 1
Summary of data used in the analysis.
NLA2007 NLA2012 LAGOSNE
No. of obs. 1328 1230 1340
No. of lakes 1152 1099 27
No. of obs per lake 1-2 1-2 17-192
No. of years 1 1 9-29

NLA2007: data from 2007 NLA; NLA2012: data from 2012 NLA; LAGOSNE: data from
27 lakes in LAGOSNE with more than 10 observations that were also present in
NLA2007.

demonstrate the variability of model coefficients between data sets.
The model used both TP, TN, and their interaction as predictor
variables:

log(chla;) = By + 61 log(TP;) + B, log(TN;)
+ B3 log(TP;)log(TN;) + & (2)

where chlaj, TP}, and TN; are sample average concentrations for chla,
TP, and TN for the jth lake. Frequently, TP is used as the only pre-
dictor because phosphorus is usually assumed as the limiting
nutrient; we did not make that a priori assumption for all the lakes
in the data (Malve and Qian, 2006). Furthermore, TP and TN are
often correlated, which can imply an interaction effect (Qian, 2016).
For example, an oligotrophic lake may be limited by both phos-
phorus and nitrogen; thus increasing phosphorus may lead to an
increased nitrogen demand, constituting a positive interaction. The
most commonly used statistical modeling approach to account for
the interaction effect is to include the product of the two predictors
(known as the interaction term in statistics (Qian, 2016)) in the
regression model. For example, in an analysis of Finnish lakes,
Malve and Qian (2006) and Qian (2016) showed that including both
TP and TN, and their interaction term can lead to a more infor-
mative model. Specifically, the magnitude of the coefficient §; may
be indicative of a lake's trophic level (Qian, 2016). A lake is likely to
be oligotrophic when (3 >0 (both P and N are limiting), mesotro-
phic when #3=0 (P is likely the limiting nutrient), and eutrophic
when (3 <0 (perhaps neither P nor N is limiting). Because of the
inclusion of the interaction term, the effects of TP and TN on chla are
no longer constants. The effect of TP depends on the value of TN and
vice versa. The meanings of software reported values of §; and §,
are the TP and TN effects for specific values of TN and TP, respec-
tively (Qian, 2016). Specifically, the reported §; (65) is the TP (TN)
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Fig. 2. Locations of NLA2007 lakes (shaded pluses), NLA2012 lakes (shaded triangles), and the 27 lakes included in both NLA2007 and LAGOSNE (black dots).
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effect when log(TN) = 0 (log(TP) = 0). In this paper, we centered
both predictors by subtracting the respective log means of TP and
TN; such that, the reported slopes (i.e., 6; and ;) are the TP and TN
effects when the other predictor value is at the geometric mean of
27 LAGOSNE lakes. Because the geometric means of 27 LAGOSNE
lakes do not have the same reference value for all lakes (e.g., the
geometric mean of TP represents a high phosphorus level for some
lakes and a low level for other lakes), the software reported §; and
B, values are not comparable among lakes. Consequently, we focus
on the comparisons of § and f5. See Qian (2016) for more detailed
explanations.

2.2.2. Using BHM to account for among-lake variation

Next, we developed a Bayesian hierarchical or multilevel model
to incorporate the hierarchical structure inherent in multi-lake
data. We constructed a two-tier multilevel model; at the lake
level, we use a form of equation (2):

log(chlaj;) = Bo; + 61 1og(TP;) + B, log(TN;)
+ ﬁ3j log(TPU)log(TNij) + &jj (3)

where the subscript ij represents the ith observation from the jth
lake. Above the individual lake level, the BHM captures the varia-
tion of among lake-specific model coefficients. As the regression
model represents a basic well-studied limnological relationship, we
expect that the log-log linear relationship to hold for all lakes, but
model coefficients (y.3; may differ by lake. Statistically, these lakes
are regarded as exchangeable with respect to model coefficients
because without additional information we would not know how
these coefficients might differ. Thus, the lake-specific model co-
efficients are modeled as random variables from a common
distribution:

Boj K,
i | Cmun || o | s (4)
Baj K,
B3 K,

where MVN represents a multivariate normal distribution. Equa-
tions (3) and (4) combined form a two-tier hierarchical model. The
multivariate normal distribution on the right-hand-side of equa-
tion (4) is often known as the hyper-parameter distribution. The
rationale of using the BHM is discussed by Qian et al. (2015) in the
context of estimating mean concentrations of water quality vari-
ables for multiple water bodies. Compared to coefficients estimated
using lake-specific data (one lake at a time), BHM estimated model
coefficients are more accurate overall. More importantly, the hier-
archical model specified in equations (3) and (4) separates within-
lake models (specified by §.3;) from the among-lake model (,uﬂmj ).
As a result, a lake-specific inference can be made more accurately
(Stow et al., 2009).

2.3. Modeling road map
Our analyses consist of two parts:

1. The model represented by equation (2) was fit to lake sample
average chla, TP, and TN concentrations from (1) NLA2007 data
alone, (2) NLA2012 alone, (3) combined NLA2007 and NLA2012
data, and (4) LAGOSNE to illustrate the variability of the esti-
mated model coefficients as a function of the data set used.

2. The hierarchical model of equations (3) and (4) was fit using
data from the 27 lakes in LAGOSNE to demonstrate the use of a
BHM to properly account for the among-lake variation.

All models were fit with log TP and log TN centered at the
respective means of log TP and TN concentrations of the 27 lakes in
LAGOSNE. As a result, the intercept (8y) of these models represents
the log mean chla concentrations when TP and TN are at the (log)
mean levels of the 27 lakes (log TP mean of 3.112, or geometric
mean of 22.5 ug/L, and log TN mean of 6.296, or geometric mean of
542.7 ug/L).

All statistical models were implemented in R (R Core Team,
2018), using function Im() for linear regression models and the
function Imer from package Ime4 (Bates and Maechler, 2010) for
BHM in equations (3) and (4) (Gelman and Hill, 2007). Annotated R
code can be found at GitHub (https://github.com/songsqian/
simpsons).

3. Results
3.1. Variability in model coefficients

__ The linear model fit to the 27 LAGOSNE lakes has a much smaller
B3, as compared to the same coefficient estimated for the three
linear models fit to NLA2007, NLA2012, and NLA2007 + NLA2012
(Fig. 3, Table 2). In addition, the LAGOSNE model coefficients have
much larger standard errors because the LAGOSNE model is based
on 27 sets of lake sample average concentrations (n = 27) whereas
the three NLA models are based on sample averages from over
1,000 lakes. The estimated model coefficients based on NLA2007
and NLA2012 also differ, and the model coefficients based on the
combined NLA data are closer to coefficients of the model fit to
NLA2012. The interpretations of these model coefficients, especially
the slopes, are ambiguous. 3, is the expected log chla for lakes with
TP and TN concentrations near the respective geometric means of
the 27 LAGOSNE lakes. However, the meanings of the three slopes
of these models are no longer clear. Mathematically, §; is the ex-
pected change in log(chla) for every unit change in log(TP), while
TN is held unchanged. By using a regression model, we assume that
changes in log(chla) due to factors not included in the model will
not affect the estimated slope and can be lumped into the error
term. This assumption, however, requires that the within-lake and
among-lake relationship between log(chla) and log(TP) be the
same. As shown in the four hypothetical lakes in Fig. 1, this
assumption is likely unrealistic.

The ambiguity of model coefficients, manifested in the differ-
ences among the estimated coefficients of the four models, sug-
gests that the practice of using lake means for developing an
empirical model is potentially misleading. The difference in the
estimated model coefficients from the two data sets collected for
the same purposes (NLA2007 and NLA2012) suggests that the best
case scenario discussed in the captions of Fig. 1 is highly unlikely.

3.2. BHM for among-lake variation

The hierarchical model fit to data from the 27 LAGOSNE lakes
shows a large among-lake variation in model coefficients (Fig. 4).
The estimated intercepts (8g) are the expected log chla concen-
tration for these 27 lakes when they all have the same TP and TN
concentrations (the respective geometric means). As such, values of
Bo in Fig. 4 show the relative productivity of the 27 lakes (sorted
based on their intercept values). The visible opposite trends be-
tween (g and (3 are indicative of the value of §3 in understanding a
lake's trophic level. Because the value of 8y is dependent on the
baseline values of TP and TN, while the value of (5 is invariant, the
interaction slope (3 is a more direct indicator of a lake's trophic
status. The wide range of (3 shows that these lakes have different
trophic levels, indicating that nutrient effects on lake primary
productivity vary by lake.
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Fig. 3. Model coefficients (fy.3) estimated using lake mean concentrations from NLA2007 (07), NLA2012 (12), NLA2007 and NLA2012 combined (07 + 12), and the 27 LAGOSNE
lakes (LAGOS). Dots are the estimated means and thin and thick horizontal lines are the mean plus one and two standard errors, respectively. The shaded vertical line references

63 =0.

Table 2

Model coefficients estimated using different methods.
Models 07 12 07 + 12 LAGOS BHM
Bo 2.058 (0.033) 1.837 (0.039) 1.9448 (0.025) 2.096 (0.067) 1.984 (0.098)
61 0.404 (0.030) 0.330 (0.039) 0.3376 (0.022) 1.430 (0.143) 0.850 (0.073)
8 0.616 (0.045) 0.732 (0.044) 0.7088 (0.031) —0.139 (0.204) 0.390 (0.104)
83 —0.045 (0.013) —0.004 (0.020) —0.0218 (0.011) —0.377 (0.075) —0.014 (0.091)

Estimation standard errors are in parentheses. Models: “07” is the model fit to NLA2007 data, “12” is fit to NLA2012, “07 + 12" is fit to the combined NLA data, “LAGOS” is fit
using the mean concentrations of the 27 lakes from LAGOSNE, BHM is the Bayesian hierarchical model (hyper-parameters, i5’s).

The difficulty in interpreting linear regression model slopes
disappears when the coefficients are allowed to differ by lake. The
hierarchical model estimated @y.3; are lake-specific, while the
hyper-parameters ug . are the means of the respective lake-specific
coefficients. Consequently, the meaning of these estimated co-
efficients is unambiguous.

4. Discussion

Lakes in both NLA2007 and NLA2012 were selected based on a
probabilistic sampling protocol such that analytical results can be
“(extrapolated) to national scales” (Pollard et al., 2018). It is
tempting to interpret the difference in model coefficients between
NLA2007 and NLA2012 (e.g., a decrease in () as a result of
improved overall lake condition from 2007 to 2012. Because these
coefficients were estimated using lake sample average concentra-
tions of chla, TP and TN, we cannot directly interpret the differences
in the models as a result of changes in lake conditions over time. A
more reasonable explanation of these difference is the random
sampling variability. Furthermore, the large variability in lake-
specific model coefficients (Fig. 4) suggests that an overall
“average” model is unlikely to be informative, especially for
developing management strategies that will be implemented to
individual lakes.

Many early lake water quality models were based on simple
mechanistic principles and model parameters were estimated
using statistical methods (Reckhow and Chapra, 1983). These
models relied on data from multiple lakes, with each lake or lake
segment contributing one observation (Stow and Reckhow, 1996).
As we accumulated a larger amount of data from multiple lakes,
these simple modeling methods are increasingly being used as
the basis for analyzing cross-sectional data. In the age of fast
computers, the successful tools of the past can be easily applied

to big data. Our study demonstrates the potential problems of
analyzing “big” (multiple lakes) data using conventional
methods. The hierarchical structure in the data (i.e., from indi-
vidual observations to lake-specific features to regional charac-
teristics shared by many lakes) should be properly reflected in
our empirical models. The Bayesian hierarchical modeling
approach provides a flexible tool for modeling the hierarchical
structure inherent to most of our “big data.” When a dominant
confounding factor can be identified, we can incorporate the
confounding factor into the BHM (also known as the multilevel
model) framework (Tang et al., 2019).

Without properly modeling the hierarchical structure, we risk
misinterpreting the data (e.g., Fig. 1), a situation that has long been
recognized in statistics as the Simpson's paradox (Simpson, 1951).
Although the mathematics behind the Simpson's paradox is
straightforward, the implications of the paradox are still not widely
recognized in our field. Frequently, we do not analyze data at
different levels of aggregation, thereby we fail to notice the para-
doxical phenomenon, which can lead to misinterpretation of the
results. Lakes are naturally different (Fig. 4); forcing a single model
on all lakes is undesirable.

Developing “national” nutrient criteria using models based on
lake average concentrations is likely counterproductive as nutrient
concentrations are only one of many factors affecting a lake's tro-
phic status. A national standard would be inevitably too stringent
for some lakes and too lenient for others. When the among-lake
variance is considered as in Yuan and Pollard (2017), the resulting
criterion is most likely too stringent, and thereby unachievable, for
most lakes. This result is not surprising as the NLA program was
designed to answer two questions ("what is the current condition
of lakes?" and "how is this condition changing over time?") that are
not directly related to the quantification of the chla-nutrient rela-
tionship (Pollard et al., 2018).



6 S.S. Qian et al. / Water Research 163 (2019) 114855
0.0 05 1.0 1.5 -0.5 0.5 1.0
27 —— ——— 27
26 e —e— 26
25 —e —— 25
24 —— —e— 24
23 ——e— —— 23
22 - — — 22
21 ——— —— 21
20 —— —e— 20
19 —e— ——e— ——— —e— 19
18 e e e e 18
17 ——— ——er— 17
16 ——— —— 16
15 ——— L —e— - —e— L —e— 15
14 —— —— 14
13 ——— ——— ——— —— 13
12 e L —e— - —e— o —— 12
11 —e— —— 11
10 —— —— —— —— 10
9 e L —e— —e— —— 9
8 —e— ——— —— ——— 8
7 ——— ——— 7
6 —e— — — — 6
5 ——— — —— B P — 5
4 —— —— 4
3 —e— —— ——— —e— {3
2 C—e— L —e— L —— —— 12
1t——e—— —e— L —e ——e—1
0.5 1.5 2.5 -0.5 0.5 1.5
Bo 54 5o Ba

Fig. 4. BHM estimated lake-specific model coefficients (8o; — 63;) shown a strong negative correlation between f; and f3;. Dots are the estimated means and thin and thick
horizontal lines are the mean plus one and two standard errors, respectively. The shaded vertical lines for 8y, 1, and 8, show the estimated respective hyper-parameters (ug,, g, ,

and pg, ), the vertical line in the 3 panel references §3 = 0.

The goals of the NLA monitoring program are similar to those of
EPA's Environmental Monitoring and Assessment Program (EMAP),
which is optimized for estimating the mean and variance of indi-
vidual environmental/ecological indicators over a national/regional
scale, or of a stratified subpopulation (e.g., small lakes) (Overton
and Stehman, 1996). These programs are purposefully designed to
best support a limited number of objectives (Messer et al., 1991). As
a result, when data from programs such as EMAP and NLA are used
beyond their original design goals, we need to incorporate these
data collection design parameters and plan our analysis
accordingly.

When developing models for individual lakes, mathematical
theories show that a Bayesian estimator with a proper (informa-
tive) prior is always better (compared to a non-Bayesian estimator)
in terms of a model's predictive accuracy (Efron and Morris, 1977;
Efron, 1978). The difficulty in using a Bayesian method is in
obtaining proper informative priors. The most important contri-
bution of our paper is the recognition that such informative prior
can be obtained by analyzing data from multiple lakes: the hyper-
parameter distribution (right-hand-side of equation (4)) is natu-
rally such a proper prior. In other words, an important and valuable
result of analyzing data from multiple lakes is the hyper-parameter
distribution, which can be used as a proper informative prior for
analyzing data from individual lakes that are not included in the

data used to develop the hierarchical model. This conclusion is not
limited to limnological modeling (Qian et al., 2015).

5. Conclusions

e Empirical models developed using lake average concentrations
of chla, TP, and TN are unlikely coincide with models developed
using data from individual lakes — a statistical phenomenon
known as the Simpson's paradox in statistics literature and
“ecological fallacy” in social science literature.
Regional differences in relevant natural (e.g., climate, weather,
watershed soil) and cultural (e.g., land use) variables are
attributed as the cause of the phenomenon. These relevant
variables are known as confounding factors in causal analysis
literature.
e When using cross-sectional data without detailed information
about the confounding factors, a Bayesian hierarchical modeling
approach is an appropriate analytic tool.
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