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Abstract Climate change can have strong effects on aquatic ecosystems, including disrupting nutrient

cycling and mediating processes that affect primary production. Past studies have been conducted mostly

on individual or small groups of ecosystems, making it challenging to predict how future climate change

will affect water quality at broad scales. We used a subcontinental‐scale database to address three objectives:

(1) identify which climate metrics best predict lake water quality, (2) examine whether climate influences

different nutrient and productivity measures similarly, and (3) quantify the potential effects of a

changing climate on lakes. We used climate data to predict lake water quality in ~11,000 north temperate

lakes across 17 U.S. states. We developed a novel machine learning method that jointly models different

measures of water quality using 48 climate metrics and accounts for properties inherent in macroscale data

(e.g., spatial autocorrelation). Our results suggest that climate metrics related to winter precipitation and

summer temperature were strong predictors of lake nutrients and productivity. However, we found variation

in the magnitude and direction of the relationship between climate and water quality. We predict that a

likely future climate change scenario of warmer summer temperatures will lead to increased nutrient

concentrations and algal biomass across lakes (median ~3%–9% increase), whereas increased winter

precipitation will have highly variable effects. Our results emphasize the importance of heterogeneity in the

response of individual ecosystems to climate and are a caution to extrapolating relationships across space.

1. Introduction

Air temperature and precipitation can have strong effects on ecosystem structure and function at a variety of

spatiotemporal scales. For example, changes in climate have led to species range shifts, changes in primary

production and elemental cycling, and alterations to species interactions in terrestrial, freshwater, and mar-

ine ecosystems (Grimm et al., 2013; Hoegh‐Guldberg & Bruno, 2010; Parmesan, 2006; Walther et al., 2002).

Ecologists are increasingly being asked to predict ecosystem responses to a changing climate at macroscales

—regions, continents, and the globe. However, much of our understanding of ecosystem change is based on

a relatively small number of long‐term studies of individual or groups of ecosystems within regions.

Therefore, to forecast the effects of future climate change at macroscales, we must extrapolate the effects

of climate change to broader scales and capture the full range of variation in individual ecosystem responses.

In this study, we address this problem by using a spatially and temporally extensive database and a novel

machine learning method to simultaneously make predictions about thousands of lakes using climate data.

Lakes are ideal models for examining the effects of climate at macroscales because they have discrete bound-

aries, making them well suited for comparisons across individual ecosystems, and they are low points in the

landscape that integrate environmental and climate impacts on their watersheds, making them sentinels of

climate change (Adrian et al., 2009; Williamson et al., 2009). Understanding the relationship between cli-

mate and lake water quality may be particularly important if a changing climate has a strong influence on

water quality, thus altering the capacity for freshwaters ecosystems to provide important services. Many
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connections between climate and lake ecosystems have been made based on conceptual reviews (e.g.,

Jeppesen et al., 2014; Moss, 2012; Whitehead et al., 2009; Williamson et al., 2009) or studies of a small

number of well‐studied lakes (e.g., Bertahas et al., 2006; Crossman et al., 2013; Haldna et al., 2008;

Pierson et al., 2013; Preston et al., 2016), but analyses at regional to global scales have become more

common in recent years (e.g., O'Reilly et al., 2015; Rose et al., 2017).

In this study, our measures of water quality (lake nutrients and productivity) are directly and indirectly

affected by climate‐mediated processes. Previous work suggests that both precipitation and temperature

are mechanistically linked to lake ecosystems (Figure 1), precipitation through the delivery of nutrients from

watersheds to lakes (e.g., Arvola et al., 2015; Rose et al., 2017), and temperature by influencing processing

rates (e.g., decomposition or primary production) and physical aspects of lakes like stratification (e.g.,

Kraemer et al., 2015; Kraemer, Chandra, et al., 2017) that can have a strong influence on biology and nutri-

ent cycles. Because different measures of nutrients and productivity are often correlated, modeling them

jointly can improve predictions (Wagner & Schliep, 2018).

Based on prior studies and first principles (Figure 1), we expect some climate metrics like winter precipita-

tion (Pierson et al., 2013) and summer temperature (Kraemer, Chandra, et al., 2017) to be important predic-

tors of nutrients and productivity in many lakes. However, recent studies have found heterogeneity in lake

responses to climate such that these general predictions might not apply to all lakes. For example, the

response of lake water temperature and chlorophyll to changes in air temperature varies globally across

lakes (Kraemer, Mehner, et al., 2017; O'Reilly et al., 2015). Similarly, the effects of precipitation on water

clarity can interact with factors such as land use and lake morphometry (Rose et al., 2017). This

Figure 1. Conceptual figure showing pathways for temperature and precipitation effects on lake water quality response
variables (productivity, water clarity, and total nutrients).
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complexity highlights the need for models that can account for differences across lakes, regions, and ecosys-

tem response variables.

Our goal in this study was to examine whether nutrients and productivity in thousands of lakes across a het-

erogeneous landscape could be predicted from climate metrics quantified at annual, seasonal, and monthly

time scales, including precipitation, air temperature, and several climate indices. Quantifying these relation-

ships is the first step in being able to forecast the response of lake water quality to climate change at macro-

scales, that is, across regions with broad gradients in climate, land use, and other characteristics. Our three

specific objectives were to (1) determine which climate metrics measured at which temporal scales are most

important for predicting nutrients and productivity in lakes, (2) evaluate the level of heterogeneity across

lakes in their responses to climate, and (3) examine how anticipated climate changes might alter water qual-

ity across a diverse population of lakes.

To achieve these objectives, we developed a machine learning method to predict multiple nutrient and pro-

ductivity variables simultaneously, even in lakes with missing data. Our model was designed to take advan-

tage of two common characteristics of macroscale data—multicollinearity of response variables and spatial

autocorrelation (e.g., Cheruvelil et al., 2013; Lapierre et al., 2018). We expected that temperature would have

a strong effect on physical processes that control lake productivity, and precipitation would have a strong

effect on the delivery of nutrients to the water column (hypotheses outlined in Figure 1), and that

seasonal‐scale climate metrics would be more important than annual‐scale data. Second, we expected to

observe a high degree of heterogeneity in the specific climate metrics that predict water quality across lakes

given the variety of responses documented in the literature and the diversity of lakes in our study area.

2. Methods

2.1. Limnological and Climate Data

We conducted our analysis on11,882 lakes with annual nutrient, water clarity, or primary productivity data

in the LAke GeOSpatial Database (LAGOS; Soranno et al., 2015, 2017). Measures of algal biomass

(chlorophyll‐a, henceforth referred to as chlorophyll), water clarity (measured as Secchi disk depth), total

phosphorus (TP), and total nitrogen (TN) were obtained from LAGOS‐NELIMNO v. 1.087.1, which spans a

17‐state, 1,800,000‐km2 region of the Midwestern and Northeastern United States (Soranno & Cheruvelil,

2017). We used median observations of chlorophyll (as a proxy for primary productivity), Secchi, TP, and

TN from the summer stratified season (15 June to 15 September) of each year from 1980 to 2011. We used

the inverse of Secchi measurements so they were positively correlated with other response variables, and

the direction of effects all different responses were the same (i.e., positive effects on response variables

indicate increases in nutrients and algal biomass and declines in water clarity).

We quantified 48 climate metrics at a range of temporal resolutions (Table 1), related to temperature, preci-

pitation, and climate indices. Additional climate‐related factors (e.g., wind) can also be important, but we

limited our focus to temperature and precipitation for this analysis because data were readily available in

LAGOS‐NE. First, we calculated annual, seasonal, and monthly averages for precipitation and temperature

for the summer in which each water quality response variable was sampled, as well as for the previous

spring, winter, and fall. For seasonal data, summer was defined as June, July, and August; Fall as

September, October, and November; Winter as December, January, and February; and Spring as March,

April, and May. Temperature and precipitation data were from the PRISM climate database and were calcu-

lated at the watershed scale (hydrologic unit code‐12; HUC‐12).

Indices describing anomalies in climate conditions can also be important for lake ecosystems and water

quality (Marce et al., 2010; Straile, 2002), so we also examined three climate indices: Palmer Hydrological

Drought Index (PHDI), ENSO precipitation index (ESPI), and North Atlantic Oscillation (NAO). PHDI data

were acquired from the National Oceanographic and Atmospheric Administration (NOAA) at the climate

division scale, which is the finest spatial unit at which they are available. We used PHDI rather than other

available drought metrics because PHDI reflects hydrological rather than meteorological drought and thus

may better represent groundwater, lake, and reservoir conditions (Karl & Knight, 1985). We assigned PHDI

data to each lake by identifying the climate division encompassing the lake or, in instances where the lake

was along the U.S. border and did not fall in a climate division, by calculating the distance to the nearest
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climate division (Bivand et al., 2013; Pebesma & Bivand, 2005). ESPI describes the strength of the El Nino

Southern Oscillation based on precipitation anomalies in two regions in the Pacific Ocean. NAO is based

on anomalies in sea level pressure at a station in the North Atlantic Ocean and can be associated with

climate patterns in Europe and North America. ESPI and NAO data are not spatially explicit and were

calculated at the annual scale. All features were normalized prior to analysis to have zero mean and unit

variance. A full list of monthly, seasonal, and annual climate predictors is summarized in Table 1 and data

are archived with the Environmental Data Initiative (Collins et al., 2018).

2.2. Prediction With Multitask Learning

We used a novel machine learning model to predict lake nutrients, chlorophyll, and water clarity (Secchi)

using the 48 climate metrics. Although this analysis included data from many lakes at a broad spatial extent

and up to 30 years of data in some lakes, data availability was unbalanced across both space and time. Our

modeling approach was designed to overcome the challenges of limited or missing data in making predic-

tions about lake nutrients and productivity with climate data.

Specifically, multitask learning (MTL) allows a complex prediction problem to be decomposed into smaller

subproblems or tasks that are solved simultaneously by exploiting the joint relationship between the tasks

(Caruana, 1997). For example, in our data set with N lakes andM response variables, the modeling of a water

quality response variable (i.e., chlorophyll, nitrogen, phosphorus, or water clarity) in each lake is considered

a separate task. The conventional approach would be to solve each modeling task separately; assuming a

linear relationship between climate predictors and a response variable, the regression coefficients for each

response variable in each lake are often derived independently of other lakes or response variables.

However, our approach incorporates two factors that we expect to greatly improve predictions of water

quality in lakes: first that different water quality response variables can be correlated (Dillon & Rigler,

1974; Downing & McCauley, 1992; Filstrup et al., 2017) and second that water quality response variables

are known to be spatially autocorrelated (Lapierre et al., 2015, 2018). Our model leverages both spatial rela-

tionships and joint responses to improve model performance. Spatial autocorrelation is estimated based on

the spatial distance, though it can also be inferred from their correlation in the training data. If the spatial

autocorrelation is low or does not exist, then the MTL approach reduces to training the model for each lake

independently. Nevertheless, the beauty of our proposed formulation is that it can still exploit the dependen-

cies between correlated response variables to improve the model, which is especially helpful when there are

limited training samples available for some response variable.

Our multitask learning approach models the response variables for all the lakes by optimizing the following

joint objective function:

min
βf g

∑
M

j¼1
∑
N

i¼1
X iβij−yij

�

�

�

�

�

�

2
þΩ βð Þ

where Xi is a matrix containing the time series of climate predictors for the ith lake, yij is the time series for

the jth response variable of the ith lake, and βij is the regression coefficient vector for the ith lake and jth

Table 1

A Description of the Climate Metrics Used in the Analysis

Time periods Variables

Annual data Sample year Annual Mean temperature, maximum temperature, minimum temperature,
precipitation, El Nino Southern Oscillation, and North Atlantic Oscillation

Previous year Annual Mean temperature, maximum temperature, minimum temperature,
precipitation, El Nino Southern Oscillation, and North Atlantic Oscillation

Seasonal data Sample year Winter, spring, and summer Mean temperature, precipitation, and Palmer drought index
Previous year Fall Mean temperature, precipitation, and Palmer drought index

Monthly data Sample year January, February, March, April,
May, June, July, August

Mean temperature and precipitation

Previous year September, October, November,
and December

Mean temperature and precipitation

Note. Sample year indicates that data were from the same calendar year as the response variable observation; previous year indicates that data were from the
calendar year before the response variable observation.

10.1029/2018WR023088Water Resources Research

COLLINS ET AL. 2711



response variable. Note that the first term in the objective function corresponds to the sum of residual errors

between the observed and predicted response values, whereas the second term enforces a set of constraints

on the regression coefficients found for the different tasks. Specifically, we designed Ω(β) to ensure that the

estimated regression coefficients would preserve the spatial autocorrelation between lakes and the correla-

tion between response variables:

Ω βð Þ ¼ λ1∑
N
i¼1∑

M
j¼1∑

M
k¼1cjk βij−βik

�

�

�

�

�

�

2
þ λ2∑

M
j¼1∑

N
p¼1∑

N
q¼1apq βpj−βqj

�

�

�

�

�

�

2
þ λ3 βk k1

where cjk is the absolute correlation between the jth and kth response variables and apq is the spatial proxi-

mity between the pth and qth lakes. Conceptually, the first term of Ω(β) restricts the regression coefficients

to be similar if two response variables are strongly correlated with each other and the second term ensures

that the regression coefficients for two nearby lakes should not differ substantially. The last term inΩ(β) cor-

responds to a lasso regularization term, which is used to control sparsity of the regression coefficients (i.e., it

helps accommodate the fact that many climate predictors are correlated with one another). Increasing the

value of λ3 would zero out many of the regression coefficients, which is beneficial to improve model inter-

pretability and control model overfitting. However, if λ3 is too large, this may underfit the model and lead

to higher prediction error. We tested a range of λ3 values and selected an intermediate value (0.03) to avoid

model overfitting and underfitting.

To evaluate the performance of the model, we randomly chose two thirds of the data as our training data set

and the remaining one third as our test data set. Lakes with only a single observation were included in the

test set. We iterated this procedure 10 times to evaluate how sensitive the model was to the train‐test data

partition. We found that the standard deviation of the root‐mean‐square error (RMSE) over those 10 runs

was low, suggesting low sensitivity (results in supporting information Table S1). We performed cross valida-

tion on the training set to determine the hyperparameter values that minimized RMSE over the four

response variables. The MTL model allowed us to estimate the regression coefficients and make predictions

even when there were no training data for an individual lake. We identified which climate metrics were

important predictors across all lakes by summing the number of times each climate metric was among

the most important (i.e., had one of the three largest absolute value standardized regression coefficients)

for each lake using the MTL model. To determine whether all lakes had similar responses to climate, we

examined the lake‐specific regression coefficients from the MTL graphically using heat maps. We also clus-

tered the coefficients using two clustering approaches (k‐means and hierarchical) to determine whether

lakes could be clustered into groups that had a similar relationship with climate predictors. Our attempts

at clustering included a wide range of possible k values in k‐means and cutoff heights for the hierarchical

approach. Finally, we mapped the lake‐specific RMSE for each response variable to determine whether

model fit varied geographically and correlated RMSE to the number of observations for each lake and to

the median value of the response variable.

To quantify the likely effect of climate change on lake water quality by 2050, we summarized the direction

and magnitude of the most important climate predictors and used those predictors to quantify the expected

percent change in lake ecosystem properties. First, we calculated the median summer temperature or winter

precipitation for each lake across the study sites. Then, we added a conservative estimate of anticipated tem-

perature (1.7 °C) or precipitation (15%) change for our study area to the medians, based on downscaled cli-

mate projections for the Great Lakes region based on an RCP4.5 emissions scenario in Byun and Hamlet

(2018). Finally, using the sum of the winter precipitation or summer temperature regression coefficients

from the MTL model, we calculated the percent change in each response variable for each lake under this

climate change scenarios. This is a highly simplified approach intended to give context to our results and

estimate how lakes might respond to changing climate based on the strength of the relationship between cli-

mate and water quality. More complex modeling exercises to make lake‐specific projections for all climate

predictors would be useful extensions of this work.

Data manipulation, preparation, and summaries of the model results were conducted in R (R Core Team,

2017), and the code and data are available on Github (https://github.com/smc322/LAGOSclimate). The

MTL modeling was conducted in Matlab and is also available on Github (https://github.com/shuaiyuan‐

msu/csi‐mtmr).
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3. Results

We observed a wide range of nutrient concentrations, algal biomass, and water clarity in the study lakes

(Table 2). Data availability varied across the four response variables, with the most observations for Secchi

depth, followed by an intermediate number for TP and chlorophyll, and the smallest number for TN

(Table 2). Despite having samples from many lakes, most response variables included only a few years of

observations per lake and few lakes included long time series of 15 or more years (Table 2).

3.1. Comparison of Climate Metrics

We found that a small number of the 48 climate metrics calculated at different temporal scales were consis-

tently among the top predictors across all lakes (Figure 2). These included metrics associated with precipita-

tion from the previous winter (November and January monthly precipitation and winter seasonal

precipitation) and temperature during the summer in which nutrients and productivity were sampled

(May and June monthly mean temperatures and summer seasonal mean temperature, Figure 2).

Table 2

Descriptive Statistics for Lake Water Quality Data Used in the Analysis

Chlorophyll Secchi depth TP TN

Number of observations 35,820 70,218 33,713 8,828
Number of lakes 7,393 10,247 8,245 2,398
Mean 17 μg/L 3.1 m 33 μg/L 819 μg/L
Median 5.6 μg/L 2.7 m 16 μg/L 541 μg/L
Maximum 696 μg/L 18 m 1123 μg/L 19,691 μg/L
Minimum 0 μg/L 0 m 0 μg/L 0 μg/L
Average number of years with at least one observation 5 7 4 4
Lakes with 2+ years of observations 5,383 7,065 4,424 1,315
Lakes with 5+ years of observations 2,490 4,271 2,079 584
Lakes with 15+ years of observations 456 1,738 559 91

Note. TP is total phosphorus, and TN is total nitrogen.

Figure 2. Count of themost important predictors (i.e., the three predictors with highest effect sizes for each lake) across all
lakes for each response variable. Climate metrics related to summer temperature (i.e., mean temperature, abbreviated
TM, for May and June, and the summer season, shown in shades of orange) and winter precipitation (i.e., monthly
precipitation, abbreviated PPT, for January and November, and precipitation for the winter season, shown in shades of
blue) were consistently the top predictors for many lakes. For each lake in our study population (~12,000), three values for
the top three effect sizes are represented in each bar, for a total count of ~35,000 in this analysis.
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3.2. Heterogeneity of Lake Responses to Climate and Projected Climate Change Effect on Lakes

The effects of climate on lake water quality varied geographically, and we found spatial patterns in the

quality of predictions. The lake‐specific RMSE from the MTL model shows large differences in the

amount of error associated with predictions across lakes and regions (Figure 3). In particular, for chlor-

ophyll, TP, and TN, RMSE was relatively high for lakes located in the Midwestern U.S. (Figures 3 and

S1–S3). RMSE was not significantly correlated to the number of observations for each individual lake

(Figures 3 and S1–S3) but was related to the median concentration of each response variable

(Figure 4). Specifically, error was lowest in lakes with low nutrient or chlorophyll concentrations and

lowest in lakes with intermediate Secchi values.

Althoughmonthly or seasonal predictors related to winter precipitation and summer temperature were con-

sistently important for all water quality responses, there was large variation in the identity of important pre-

dictors across lakes, and in the direction of relationships (Figure 5). Despite this variation across lakes, both

k‐means and hierarchical clustering on the regression coefficients assigned all lakes into a single cluster.

This result suggests that all lakes responded similarly enough to key climate predictors of lake water quality

that there are no uniquely distinguishable groups. Despite the fact that groups of lakes could not be distin-

guished with clustering, some lakes had more obvious, strong responses to the dominant climate predictors,

while others had more uniform responses to all predictors (Figure 5). There was also more cross‐lake varia-

tion in the importance of individual predictors to Secchi than there was for nutrients (both TN and TP),

which were more uniformly associated with the consistently important winter precipitation and summer

temperature metrics (Figure 5).

The sum of the effect sizes for the most important winter precipitation and summer temperature metrics

demonstrates a cross‐lake difference in the direction and variability of the effects of winter precipitation ver-

sus summer temperature (Figure 6a). Specifically, combined summer temperature effects are positive for the

four response variables in most lakes. This is in contrast with the generally negative winter precipitation

effects for the four response variables that also showed more variability in directionality and effect

size (Figure 6a).

Figure 3. Root‐mean‐square error (RMSE) for predictions in each lake for chlorophyll, with an inset showing the
relationship between RMSE and the number of observations for each lake. Corresponding figures for other response
variables are included in supporting information.
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We also found large variation in the direction and magnitude of potential percent changes in lake water

quality as a result of anticipated changes in summer temperature or winter precipitation (Figure 6). Our

model results suggest that on average, lakes are likely to experience positive changes in all response variables

with increasing summer temperature (median 3.3% to 8.6% across the four response variables) but that indi-

vidual lakes vary substantially in their predicted response (Figure 6b). In contrast, increasing precipitation

may have a more neutral average effect on all responses (median −1.1% to −0.5% across the four response

variables), but that variation in magnitude and directionality remained large (Figure 6b). The negative

effects of precipitation in many lakes suggest that there may be context dependency in the relationship,

and perhaps, the overall amount of precipitation influences the relationship between precipitation and

water quality.

4. Discussion

Our results demonstrate that summer temperature and winter precipitation are consistently important pre-

dictors of lake water quality but that there is also heterogeneity in responses across lakes. Studies of indivi-

dual lakes and theory (summarized in Figure 1) provide strong support for these summer temperature and

winter precipitation effects. For example, summer temperature can have strong effects on physical processes

Figure 4. Relationships between median water quality condition (nutrient or chlorophyll concentrations, or Secchi
depth) and RMSE of climate predictions. Error was lowest in relatively oligotrophic lakes based on nutrient or chloro-
phyll concentrations and lowest in lakes with intermediate water clarity based on Secchi depth.
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like water column stratification, which in turn can influence mixing depth and phytoplankton biomass.

Previous work confirms this mechanism, demonstrating that abnormally high summer temperatures can

lead to very high thermal stability and hypolimnetic oxygen depletion (Jankowski et al., 2006). Summer

temperature is also related to rates of primary production and other biological processes that have a

strong effect on primary production, N and P cycling, and water clarity.

Moreover, higher temperatures have been liked to altered timing and reduced duration of ice cover

(Magnuson et al., 2000) and winter conditions can influence subsequent summer concentrations of nutrients

(Hampton et al., 2017). Winter precipitation, on the other hand, can affect the amount of light available in

the water under ice (Hampton et al., 2017; Leppäranta, 2015) and is strongly related to spring nutrient load-

ing, which is directly related to summer nutrient concentrations, primary production, and water clarity.

Consequently, future changes in summer temperature and winter precipitation are most likely to alter nutri-

ent dynamics and production in lakes, which we quantified through a simplistic forecasting exercise.

Although these general patterns appear to apply to most lakes in our heterogeneous study area, we also

observed relatively high across lake variation in relationships and model fit, suggesting that caution should

be exercised when extrapolating results from individual regions or lakes to broad spatial scales. In particular,

our results suggest that error is highest in lakes with high nutrient and chlorophyll concentrations. This

increased error might relate to the number of other stressors (e.g., land use and increased nutrient loading)

that obscures the effects of climate on water quality.

Figure 5. Heat maps showing the standardized regression coefficients from the MTL model for each climate predictor
(rows) in each lake (columns, arranged by longitude) for (a) chlorophyll, (b) Secchi depth, (c) TP, and (d) TN. The
types of climate predictors are indicated by time scale (annual, monthly, and seasonal) and type (temperature, precipita-
tion, and index). The most important climate predictors are labeled on the left. TP is total phosphorus, and TN is total
nitrogen. Secchi effects are reversed because inverse of data were used in the model.
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4.1. Heterogeneity in the Effect Sizes of Climate Predictors

Across Lakes

Our results confirm our expectation that seasonal climate metrics (includ-

ing both the seasonal average and monthly data during those seasons) are

the most relevant temporal scale for predicting water quality in lake eco-

systems. However, there is substantial variation in predictions across

lakes, suggesting that extrapolation from one ecosystem to another may

be difficult. This large variability suggests that some lakes may be much

more sensitive to climate change than others, emphasizing the need for

lake‐specific predictions about the effects of climate. Further, the varia-

tion in directionality means that the effects of temperature and precipita-

tion on lakes may be contradictory and could obscure each other.

Nonetheless, a simple forecasting exercise revealed that expected changes

in summer temperature and winter precipitation may result in ecologi-

cally meaningful changes in lake water quality. The effect sizes from the

model suggest that changes in temperature under climate change scenar-

ios projected to 2050 might lead to 3%–8% changes in water quality.

Changes in precipitation led to more variable changes, with some lakes

increasing and some decreasing. A more detailed forecasting exercise that

considers the different climate projections for lakes over space and a full

suite of climate predictors would be required to quantify water quality

responses to climate change accurately, but this simplified version

demonstrates a consistent effect of summer temperature across thousands

of lakes, which may result in increased lake nutrients and productivity

within a few decades.

While we did identify variation in the magnitude and direction of the

effects of climate predictors across lakes, it was not possible to organize

those effects into groups that we could associate with lake or watershed

characteristics or regions. While climate‐related predictors are one impor-

tant driver of lake water quality, there are other known drivers that were

not included in our model and may obscure effects of climate, including

land use (e.g., Arbuckle & Downing, 2001; Collins et al., 2017;

Fraterrigo & Downing, 2008), lake morphometry and internal lake pro-

cesses (e.g., Read et al., 2015), atmospheric deposition (e.g., Crowley

et al., 2012), and hydrological connectivity (e.g., Cardille et al., 2007;

Fergus et al., 2017). Incorporating those factors into our MTL approach

was not possible because they are relatively static through time or have

undocumented temporal variation, which is required for treating indivi-

dual lakes as separate tasks in the model. If clustering approaches had grouped lakes into more than one

cluster, we might have been able to relate cluster membership to spatial variables (e.g., land use or land

cover), but we were not able to distinguish groups of lakes.

Our modeling approach required temporal data and was designed to make predictions about water quality

data with temporally resolved climate data, but other spatial variables are also likely important.

Unpublished analyses of our study lakes suggest much stronger spatial variation than temporal variation

in lake and landscape variables (e.g., climate, land use, and atmospheric deposition). Despite documented

increases in temperature and precipitation in this region, most lakes have remained relatively unchanged

in nutrients or chlorophyll in recent decades (Oliver et al., 2017), and temporal patterns in water clarity

are less predictable than spatial patterns (Lottig et al., 2017), suggesting that spatial relationships are stron-

ger than temporal ones.

The effects of climate on lakes can interact with eutrophication (Moss et al., 2011), and climate effects are

likely to vary depending on whether a lake is influenced by other stressors (Berthon et al., 2014).

Agricultural land use, and consequently nutrient loading, varies widely in our study area, but the mostly

Figure 6. Violin plot of the standardized regression coefficients for
each lake for (a) the effect of summer temperature (orange, ST) and the
effect of winter precipitation (blue, WP) on water quality response variables
and (b) the percent change in each response variable expected under
anticipated changes in summer temperature and winter precipitation,
colored the same as in panel a. TP is total phosphorus, and TN is total
nitrogen. Secchi effects are reversed because inverse data were used in the
model to accommodate for positive correlations between response variables.
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agricultural region has a relatively small gradient in climate conditions. The error around our predictions

was highest in lakes with high nutrients and chlorophyll, suggesting that the relationship between climate

and water quality is muted in eutrophic lakes or lakes in agricultural landscapes. Other characteristics could

also mediate the strength of the relationship between climate and water quality; for example, deep waters of

small lakes have shown muted responses to warming because of lower physical mixing (Winslow et al.,

2015). Because other variables are known to moderate the effects of climate change on lakes, and the effects

of climate are expected to operate in a relatively homogenous way at broad spatial scales (Gavin et al., 2018;

Lapierre et al., 2018), we hypothesize that the effects of climate will be most clearly expressed in regions with

little temporal change in land use and land cover. We were not able to test these hypotheses in the current

study, but future work should test these ideas more formally.

The climate metrics we examined in this study at annual, seasonal, and monthly time scales are effective in

characterizing climate at coarser temporal resolutions but likely did not capture extreme temperature or pre-

cipitation events that can last on the order of days. In the future, the frequency of extreme climate events is

likely to increase in our study region (Hayhoe et al., 2010; Horton et al., 2014; Pryor et al., 2014) and can have

strong effects on lake carbon and nutrients (Carpenter et al., 2015; Jennings et al., 2012; Strock et al., 2016).

We were able to include several indices intended to capture anomalies, but they are calculated at relatively

coarse spatial and temporal scales, so may be unlikely to reflect the signal of some extreme events. Event‐

focused climate metrics may capture crucial periods of carbon and nutrient loading that disproportionately

affect lake ecosystems (Havens et al., 2016; Loecke et al., 2017; Zwart et al., 2016). Extreme events are rare

and require longer‐term and higher‐frequency records to capture their effects; additionally, these effects

are harder to forecast and validate in the future and remain one of the greater uncertainties of climate

change (Palmer & Ralsanen, 2002).

4.2. Incorporating Spatial Autocorrelation and Covariance to Improve Predictions at Macroscales

Modeling lakes in the climate system can be challenging (MacKay et al., 2009), and previous studies exam-

ining spatial variation in the effect of climate drivers on lake characteristics have primarily used clustering or

geospatial interpolation techniques (Jensen et al., 2007; O'Reilly et al., 2015). The results of such studies form

the basis of existing predictions regarding potential change in lake characteristics with continued climate

change (Jensen et al., 2007; Straile, 2002). Our approach makes predictions at macroscales by incorporating

two important factors that are common in many ecological systems. We demonstrate that accounting for

covariance among response variables in combination with spatial autocorrelation can produce accurate

and precise predictions of lake water quality with climate metrics, even in lakes where data availability

is limited.

Both climate metrics (e.g., mean annual temperature and precipitation) and lake ecosystem data (nutrients,

productivity, and water clarity) exhibit high to moderate levels of spatial autocorrelation (Lapierre et al.,

2018), making them well suited for our modeling approach. Many nutrient and productivity response vari-

ables are inherently correlated with one another, partly as a result of coupled biogeochemical cycles

(Schlesinger et al., 2011). In addition, others have argued that the connections between biogeochemical

cycles of different elements make it important to consider multiple nutrients when evaluating the effects

of climate on ecosystems (Whitehead & Crossman, 2012). We found that leveraging information about cor-

related water quality variables improved precision and accuracy compared to traditional approaches that fail

to account for covariance, which is consistent with related studies (Wagner & Schliep, 2018). Correlations

among predictors, responses, and space are often viewed as problems in the data that limit interpretation

and must be dealt with prior to analysis, yet we describe a model that uses those characteristics to inform

the relationship between climate and lake ecosystems outside the spatial and temporal scope of individual

lake data sets.

Another benefit of our approach relates to incomplete data, which is a common problem in ecology at

macroscales. Climate studies often require multiple decades of relatively complete time series data to explain

variation or make predictions. Our modeling framework overcame this constraint because it leveraged data

frommany lakes over broad gradients in climate and other ecological context characteristics to make predic-

tions with incomplete data. Since very few lakes have long‐term data on ecosystem properties, this approach

allowed us to examine the relationship between climate and ecosystems in systems that would not be com-

patible with modeling approaches that require complete time series spanning many years. This method
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identified large variation in the magnitude and direction of climate effects on lake ecosystems, suggesting

that extrapolation from a small number of well‐studied systems is challenging, and it also provides a useful

methodological approach to apply in other macroscale research questions where data are incomplete over

space or time.

5. Conclusions

Our results demonstrate large variation across lakes in how climate predicts ecosystem properties, including

the identity of important climate predictors and the magnitude and direction of their effect on water quality

response variables. Despite this variation, summer temperature and winter precipitation are consistently

important predictors across thousands of lakes, and summer temperature has, on average, positive effects

on nutrients and productivity, while winter precipitation effects are, on average, slightly negative with both

positive and negative effects across lakes. Consequently, we predict that increases in temperature are likely

to increase lake nutrients and productivity, while potential changes in precipitation are likely to vary in

direction across lakes. Our results emphasize the context dependency of climate effects on lakes and the

need to consider individual ecosystems separately to make accurate predictions. Further, water quality is

related to numerous ecosystem services, and understanding predicted changes in water quality across lakes

will lead to more effective mitigation of climate change at local to global scales.
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