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Augmented Multi-Task Learning by Optimal Transport

Boyang Liu*

Abstract

Multi-task learning (MTL) provides an effective ap-
proach to improve generalization error for multiple re-
lated prediction tasks by learning the tasks jointly, as-
suming there is a common structure shared by their
model parameters. Despite its successes, the shared pa-
rameter assumption is ineffective when the sample sizes
for some tasks are too small to infer the task relation-
ships correctly from data. To overcome this limitation,
we propose a novel framework for increasing the effective
sample size of each task by augmenting it with pseudo-
labeled instances generated from the training data of
other related tasks. Incorporating training data from
other tasks is a challenge for regression problems as their
data distributions may not be consistent due to the co-
variate shift and response drift problems. Our proposed
framework addresses this challenge by coupling multi-
task regression with a series of optimal transport steps
to iteratively learn the pseudo-labeled instances by iden-
tifying relevant training instances from other source do-
mains and refining the pseudo-labels until they are con-
sistent with the training instances of the target domain.
Experimental results on both synthetic and real-world
data showed that our framework consistently outper-
formed other state-of-the-art MTL methods.

1 Introduction

The booming growth of data in recent years has made it
possible to train sophisticated learning models for solv-
ing complex prediction problems. In particular, tech-
niques such as multi-task learning (MTL) [26, 24] have
been developed to address large-scale problems that can
be decomposed into multiple related prediction tasks.
By training the prediction models of these tasks jointly,
MTL can improve generalization performance as it in-
corporates the task relationship information explicitly
into the models, unlike single-task learning methods
that build the models for each task independently.

To illustrate the advantage of using MTL, Fig. 1
shows the results of applying single-task and multi-
task regression methods to a multi-region lake ecology
dataset, where each task corresponds to the prediction
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Figure 1: Comparison between the prediction errors of
MTL and augmented MTL with OT against indepen-
dent lasso models on a lake ecology dataset.

of a nutrient variable for all the lakes located in a given
region. The horizontal axis represents the percentage
of labeled data used for training while the vertical axis
represents the prediction error on the test sets for all
regions. The figure on the left shows the results for
independent lasso models (red solid line), trained to fit
the data in each region separately, and the results for an
MTL approach based on trace-norm regularization [15]
(dashed blue line). Observe that the prediction error
for MTL is an order of magnitude lower than that for
independent lasso models, especially when the training
set size is small. Even if 70% of the labeled data in
each region are used for training, the independent lasso
approach still performs poorly as some regions have too
few examples to fit the local models accurately. By as-
suming that the model parameters share some common
structure, MTL can be trained to have reasonably high
accuracy even when the training set size is small [2].
However, its prediction error can still grow quite sub-
stantially as the percentage of training data decreases
(see Fig. 1(right)). This is because, when the sam-
ple size of a task is too small, the parameter sharing
assumption alone is insufficient to correctly learn the
model parameters as the task relationships inferred from
the small samples are potentially misleading [12].

To overcome this limitation, we present an approach
to increase the effective sample size for each task. A
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Figure 2: The (a) covariate shift and (b) response drift
problems for data distributions from different tasks.
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Figure 3: Optimal transport method for domain adap-
tation assuming there is no response drift.

naive way to do this is by incorporating the labeled in-
stances from all other tasks. However, this is equivalent
to fitting a global model to all the tasks and is inef-
fective when there are significant discrepancies in the
distributions of the predictor and response variables for
different tasks, as shown in Figure 2. We termed the
differences in distribution of predictor variables as co-
variate shifts while those due to response variables as
response drifts.

An alternative approach is to augment the training
set of each task with carefully chosen labeled instances
from other related tasks. This strategy has been previ-
ously studied in the area of instance-based domain adap-
tation (DA) [9]. Instance-based DA methods utilize the
similarity between samples to determine the importance
of labeled instances from other domains. To date, most
of the DA methods have been developed for classifica-
tion problems, where the classes in the source and target
domains have large overlap between them. For regres-
sion analysis, which is the focus of this study, instance-
based DA is a harder problem as the distribution of the
response variable for different tasks may vary due to the
response drift problem illustrated in Figure 2(b). There-
fore, the augmented instances from other domains must
be properly calibrated or bias-corrected before they can
be effectively used in a multi-task regression setting.

In this paper, we consider a third strategy to in-
crease the effective sample size for MTL by assign-
ing pseudo-labels to the unlabeled (test) instances of
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a given task based on its similarity to the training in-
stances from other related tasks. These pseudo-labeled
instances are then combined with the original labeled
instances to train MTL models. This strategy is some-
what similar to a semi-supervised learning approach,
except the pseudo-labels are determined based on the
training instances from other tasks. The key challenge
is to learn how to map the unlabeled (test) instances of
a given task (target domain) to the labeled (training) in-
stances from other related tasks (source domains). To-
wards this end, we leverage ideas from optimal trans-
port (OT) method [7, 5] to learn an appropriate map-
ping (in the form of a transportation matrix) between
the labeled instances of the source domain to the target
domain, as shown in Fig. 3. However, conventional OT
approaches cannot handle the response drift problem
since it estimates the response value of each unlabeled
instance in the target domain as a convex combination
of the response values of the training instances in the
source domain. Thus, if the range of response values in
the target domain lies outside the range of the source
domains (see Fig. 2(b)), the augmented instances will
not be able to improve prediction in the target domain.
In fact, they may degrade the overall performance as the
pseudo-labels have a very different distribution than the
distribution of training instances in the target domain.

To overcome this challenge, we present an optimal
transport augmented multi-task learning (OT_-MTL)
framework to address both the covariance shift and re-
sponse drift problems. Unlike conventional OT meth-
ods, our framework assumes that the pseudo-labels gen-
erated from the response values of training instances in
other related tasks are biased, and thus, must be cali-
brated before they can be augmented with the training
data. The calibration step is achieved by performing
a series of OT steps to match the distribution of the
pseudo-labeled instances against the distribution of the
training instances in the target domain. After calibra-
tion, the pseudo-labeled instances can then be combined
with the training instances to jointly build MTL models
for all the tasks. As shown in Figure 1(right), OT_-MTL
can boost the performance of regular MTL especially
when there are very few training instances available for
each task. We have performed experiments using syn-
thetic data to show the effectiveness of the approach
in dealing with translational and rotational drifts in the
response variable, both of which cannot be addressed by
conventional OT approaches [5]. Experimental results
using real-world data from various domains further val-
idated the efficacy of the framework.
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2 Related Work

Multi-Task Learning (MTL) is designed to solve
multiple related learning tasks by enforcing parameter
sharing across the different tasks [26]. For example,
the joint feature selection approach assumes that the
different tasks share the same set of discriminative fea-
tures [13] by employing a group sparsity penalty [23].
Another approach assumes that the model parameters
share a common, low-rank subspace, which can be found
by adding a trace norm regularization penalty into the
MTL formulation [4]. Other approaches include clus-
tered MTL [25], and structured sparsity [10] methods.
All of these approaches perform knowledge transfer in
the parameter space only, without using training data
from other related tasks, unlike the framework proposed
in this paper.

Optimal Transport (OT) theory provides a system-
atic approach for comparing two probability distribu-
tions by seeking the least costly way to reshape one
distribution into another while incorporating their ge-
ometric information. The distance given by optimized
OT is called earth mover distance, which is also known
as Wasserstein distance. Since the original OT problem
is NP-hard [20], it is subsequently relaxed to the Monge-
Kantorovich problem [11]. The Sinkhorn algorithm [8] is
a popular method to accelerate the OT computation by
introducing an entropy smoothing term. The algorithm
has been shown to be equivalent to performing itera-
tive Bregman projections with polytopes constraints [3].
More recently, Bregman ADMM [21] has also been pro-
posed to efficiently solve the OT problem without en-
tropy regularization [22]. Domain adaptation (DA) is a
rich application area for OT, in which the adaptation
process between the source and target domains can be
viewed as an OT process [7, 6].

3 Background

This section formalizes the learning problem and re-
views the MTL and OT approaches.

3.1 Problem Statement Let D = {X,,y;}/_; be a
dataset for r related learning tasks, where X; € R ¥4,
y; € R%*1 and n; is the sample size associated with the
it" learning task, and d is the number of features. Our
goal is to construct r predictive models, fi, fa, -, fr,
for the r tasks, where each model f; maps the input
features associated with instances of the i*" task to
their corresponding response values, y; = f;(X;) + €.
We focus on linear models in this study, though the
proposed approach can be readily adopted to nonlinear
models as well.
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3.2 Multi-task learning (MTL) The MTL prob-
lem can be generally cast into the following convex op-
timization problem:

s

i=1

3.1
( ) flyfr;l

where I" is the constraint specifying the feasible region
(task relatedness structure) of the parameter space, L[]
is the loss function, and w; is the model parameter
associated with task ¢. When I' and the loss function are
both convex, an iterative gradient descent algorithm can
be used to solve Eq. 3.1. The gradient update formula
can be written as follows [14]:

(3.2) wi = Pr(wyi — ag(w})),

where « is the learning rate, g is the gradient function,
and Pr(w) is a projection operator for mapping w onto
the constraint space I'.

3.3 Optimal Transport (OT) The OT approach
can be used to learn a transport map T from the source
domain € to the target domain ;. Let (X*®,y*®) denote
the source domain data and (X!, y?) denote the target
domain data. The goal of OT is to learn T via the least
effort principle to transform the probability distribution
of instances in Q to the distribution in €, [7]. Let us
and p¢ be the empirical marginal distributions for the
source and target domains, respectively:

Ng Nt
i=1 =1

where &, is the Dirac delta function at s € R%,
whereas p{ and p! are probability measures such that
Yo ps =51 pt =1. OT can be cast as the following
optimization problem:

T = argmin /d(x‘g,xt)dT(Xs7xt),
TeTT(1s,h1)

where T is a transport map from p, to pg, d(x®,x?)
is the distance between x® and x!, and [](us,pe) is
the probabilistic coupling between the source and target
marginal distributions. For the discrete case, the above
formulation can be simplified as follows [7]:

T* = argmin < T, C >,
T

(3.3) st TL=p,, T 1=y,

where T € R™ ™t is the transport matrix which
we need to solve, and C € R™*™t ig the transport
cost matrix, which is usually chosen to be the Eu-
clidean distance between features in the source and tar-
get domains. The Wasserstein distance between the
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marginal distribution P(X%) and P(X*) is defined as
W(X$ Xt) =< T*,C >. After solving for T*, un-
der the assumption of uniform distribution of source
and target instances as well as applying Wasserstein
barycenter mapping (c.f. Egs. (14, 15) in [7]), we have:

(3.4) X =n,TX!, X'=n,T X"

Note that each row in X* corresponds to a transported
instance from the source to the target domains. Using
X* and their corresponding y?®, a prediction model
can be trained on these instances. As shown in [7],
by aligning the marginal probabilities, the transport
map can address the covariate shift problem in domain
adaptation. Unfortunately, for regression problems, it
cannot handle the response shift problem, as illustrated
in Figs. 2(b) and 3.

3.4 Sinkhorn Algorithm Solving the transporta-
tion map T in Eq. (3.3) is a linear programming prob-
lem, whose solution requires O((ns + n¢)nsng log(ng +
n¢)) [1]. Furthermore, it has no unique solution due to
the nature of the polytope constraints. The Sinkhorn
algorithm with entropy regularization helps to relax the
original OT problem [8] into a strongly convex prob-
lem. Entropy regularization is defined as H(T) = — <
T,log T >, and the relaxed OT is given by:

T = argmin < T,C > —yH(T),
T
(3.5) st.T1=p,, T'1 = p.

The relaxed OT problem can be solved using the
iterative Bregman projection [3, 19] method, where
the dual projection can be efficiently implemented us-
ing the Sinkhorn-Knopp matrix scaling algorithm [16].
Sinkhorn algorithm solves the relaxed OT through the
dual form of Bregman iterations:

PROPOSITION 1. (SINKHORN ALGORITHM [8]) Let & =
C
exp(——), with the initialization of v(9) = 1, the

following iterations will converge to the solution of Eq.
3.5:

(n) _ Hs (n) _ Mt
v Evn)? v £Tu)

T = diag(u™)¢diag(vi™)

4 Proposed OT_MTL Framework

The framework proposed in this paper is designed to
address the limitation of MTL when the sample sizes
for some tasks are too small. For small sample sizes,
the model parameters and task relationships inferred
from the data have high uncertainties, and thus, are
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unreliable. Towards this end, we present an approach to
increase the effective sample size for each task to ensure
the gradient calculation using Eq. (3.2) is more stable
and accurate. Specifically, we use the OT approach to
generate pseudo-labeled instances for each task, which
can be combined with existing labeled instances to train
a more robust model. Note that each pseudo-labeled
instance corresponds to an unlabeled (test) instance of
a given task, whose value is estimated using the response
values of the training instances from other related
tasks. Our framework differs from conventional OT for
domain adaptation (DA), which have mostly focused
on classification problems [7, 5] and are not designed to
handle the response drift problem encountered in many
real-world applications.

Our proposed framework called OT_MTL performs
the following two steps:

e It uses an iterative OT process to create pseudo-
labeled instances for each task.

e It applies MTL to the augmented training set and
jointly trains the predictive models for each task
through their shared parameter regularization.

4.1 Pseudo Label Generation with Iterative
OT Consider a multi-task regression problem with r
tasks. For the i" task, let D' = {XIm yim}
be its training data and D' = {X!! ylst} be its
test data. Our objective is to augment the training
data for each task with pseudo-labels assigned to the
unlabeled (test) instances, similar to a semi-supervised
learning approach. Specifically, each pseudo-labeled
instance corresponds to a pair (x;j;,¥:;), where x;; is
the unlabeled instance in test data (i.e., a row in X!5?)
and y;; is the estimated response value using OT. Note
that the pseudo-labels ¥;; may not be entirely consistent
with the true response values yi; of the test data since
they are estimated using training data from the current
task as well as other related tasks.

As previously noted, a major problem in applying
OT to regression problems is its inability to handle the
response drift problem since the pseudo-labels are gen-
erated based on a convex combination of the response
values in the source domain. To overcome this chal-
lenge, we perform an iterative series of OT steps to in-
crementally update the pseudo-labels of the unlabeled
instances of each task (target domain). Figure 4 de-
picts the results of applying iterative OT steps on the
sigmoid data (with both covariate shift and response
drift) shown in Fig. 2(b). Initially, we apply the conven-
tional OT method to estimate the pseudo-labels of the
unlabeled (test) instances of the target domain based
on the response values of training instances from other
related tasks (source domains). The estimated pseudo-
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Figure 4: An illustration of the iterative OT steps.
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Figure 5: The source update iterations to deal with the
response drift in optimal transport.

labels are shown by the sigmoidal curve for iteration 1
in the diagram. Although the results for the first it-
eration showed that OT can resolve the covariate shift
problem, the distribution of the response values of the
pseudo-labeled instances are very different than the dis-
tribution of the training instances in the target domain
(shown by the green points). Our subsequent OT steps
are performed to debias the original pseudo-labels and
bring the distribution closer to the response value dis-
tribution of the training instances.

In conventional OT, the rows of the transport ma-
trix T refer to labeled instances from the source domain
whereas the columns refer to unlabeled instances from
the target domain. For OT_MTL, instances that form
the rows and columns of the transport matrix vary from
one iteration to another. To avoid confusion, we refer to
the row elements of T as row instances and the column
elements as column instances.

Initialization: Let ¢ be the current task for which
pseudo-labels are needed for its unlabeled instances. In
the first iteration, the row instances D° correspond to
labeled training instances from all tasks (including the
target domain) whereas the column instances D? corre-
spond to unlabeled instances from the target domain.

e Row instances: D! D) ---JDL = (X2, y%)
e Column instances: DY = (X!*).

where each Dé. = (Xé, yt) denotes the labeled (training)
instances from the j** task and DY = X!* denotes the
unlabeled instances from the i** task whose pseudo-
labels are to be estimated. The marginal distributions
of the row and column instances are as follows:

N, lef
(46) Hs = pr(swfv M = Zpg(sxﬁ"v
i=1 i=1

where Ny = >~ né, whereas p$ and p! are probability
measures such that Y . pf Srpk = 1. We
then compute the cost matrix C between the row and
column instances based on the Euclidean distance of
their predictor variables, i.e., Cy; = || X — X}||. Given
the cost matrix and the marginal distributions, we then
apply the Sinkhorn algorithm to learn the transport
map T (see Eq. 3.5). The pseudo labels of the column
instances in T are then given by

(4.7) yi

_ /
pseudo — Tz,

where ng, is the number of unlabeled instances and
z = [y yh;...;yl] is the response values of the column
instances. The superscript (1) in y*) denote the
pseudo-labels after the first iteration. T is also used
to generate pseudo-covariates as follows:
(4.8) X = T XS XY

pseudo
Both X;Zizio and y;(s?udo will be used in subsequent
OT steps. The procedure for the first OT step is
summarized in the top half of Figure 5.

k-th Iteration. In subsequent iterations, the pseudo-
labeled instances generated from previous iterations
and the training instances of the target domain will
form the row instances, while the column instances are
unchanged:

e Row instances: DY Ul = (X% yt)

pseudo
e Column instances: DY = (X!*).

where ﬁg;;ij)o = (X;;éﬁgol ), yfj;gﬁgj )) corresponds to
the pseudo-labeled instances generated in the previous
iteration. This procedure is repeated until the stopping
criteria (to be discussed below) is met. This iterative
procedure is shown in the bottom half diagram of Fig.
5. The rationale for our iterative approach is as follows.
From Eq. 4.7, observe that the pseudo-labels y;seudo

depends on z. Since not all labeled instances from
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other tasks are related to the target task, it is necessary
to increase the weight of the labeled instances from
the target task and decrease the weight of unrelated
labeled instances from other tasks. Our iterative OT
strategy would gradually increase the weights of labeled
instances in the target domain, thus allowing it to
handle the drift response problem. Formally, the pseudo
label iteration for task ¢ can be stated as follows:
COH = (X0 0 X X1

n +n

1) = Z PO

k3 pseudo’ i

THD = argmin - < T,C*Y) > 4 H(T)
TE[T(nE™ )
ctu(k+1) _ ntuT(k-H) [ytu(k) ]

i,pseudo i,pseudo’ ¥i
ctu(k+1) k+1) xctu(k) l
(49) Xz'?pseudo - ntUT( + [Xtupbeudoa Xt ]

Stopping Criteria. A stopping criteria is needed to pre-
vent the pseudo-labeled instances from overfitting the

training instances of the target domain. We consider the
~tu(k)
i,pseudo

following stopping criteria: Let y. be the pseudo-

labels generated after k iterations for i** task (domain)
and yﬁ be the response values of the labeled instances
in the target domain for i*" task. Given a threshold T,
the iterative OT-steps for i*" task will terminate if

N k
mean(y}"%) ) — mean(y!)| < 7

Overall, our iterative OT algorithm is summarized
in Algorithm 4.1. We named the algorithm OT_MTL
as it is an augmentation of OT into MTL framework.

4.2 MTL with Pseudo Label After generating the
pseudo labels, we can apply MTL on both the labeled
and pseudo-labeled instances to train the prediction
models for each task as follows:

(4.10)

argmmZnﬂ (X X1, w
fu.fafr 54
The MTL approach used depends on the choice of
regularization penalty Q [26]. By incorporating the
pseudo-labeled instances, this increases the effective
sample size for each task, and thus, is expected to
improve the generalization performance of the models.
Eq. (4.10) can be solved by iteratively applying the
projected gradient descent algorithm [26].

5 Experimental Evaluation

5.1 Data We use both synthetic and real-world data
to evaluate the performance of our algorithm. A
summary of the real-world data is given in Table 1.
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) [yi’ y;‘%beudo]||2 + Q(f)

Algorithm 1 OT_MTL

Input: D = {Xl,yl,Xt”}l 1, maxiter, v, T
Output: The different functions f1, f2...fr
begin

Concatenate all {y Y
Concatenate all {Xl
for each task 14
C = d(h, Xt¥)
T = Sinkhorn(us, pt, C)
Xgupseudo - ntuT h

Stu tu /
yz,pseudo - T'z

for j = 1 to maxiter

; for every task as z.

; for every task as h.

if |mean(y!) — mean(yfzscudoﬂ >=7
Update C, us, T, 3yt

else
break

end

with 4.9

tu
T pseudo’ X'L,pseudo

end
end
Solve Eq. (4.10) to learn the functions f1, fa...fr.

end

5.1.1 Synthetic Data The purpose of using syn-
thetic data is to illustrate the response drift problem
in multi-task regression and how our iterative OT ap-
proach can address this problem. For brevity, we set
the number of tasks equals to two and generate two syn-
thetic data with different types of response drifts. The
first dataset captures a response drift due to translation
while the second dataset captures a response drift due
to rotation. We also set the number of features in these
datasets to be one to enable better visualization of the
results. For each dataset, we generate 100 instances for
the source and target domains. The response values for
all instances in the source domain are assumed to be
known. For the target domain, only ten instances are
assumed to be labeled (i.e., have known response val-
ues) while the rest are assumed to be unlabeled when
applying the OT_MTL algorithm.

5.1.2 Lake Ecology Data [17] Each data instance
corresponds to a lake. There are 13 predictors and 4 re-
sponse variables associated with each lake—total phos-
phorus (tp), total nitrogen (tn), chlorophyll-a(chla), and
Secchi depth (secchi). Each predictor variable is stan-
dardized to have zero mean and unit standard deviation
while the response variable is log transformed to avoid
skewness in the data distribution. The lakes are grouped
into regions and each region is treated as a separate task.

5.1.3 School Data This dataset contains the test
scores of 15,362 students from 139 schools provided by
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Table 1: Summary statistics for our experiment dataset

Response | # tasks | # instances | # instances/tasks
TP 86 4352 1-369

TN 83 1946 1-236

Chla 87 5592 1-575

Secchi 88 5796 1-583

School 139 15362 22-251

the Inner London Education Authority(ILEA). Each
school is treated as a separate learning task and our
goal is to predict the exam scores using 28 features. All
features are standardized to have zero mean and unit
standard deviation.

6 Experimental Setup

We have used the following baseline algorithms for
comparison purposes:
e Global L1: A global lasso regression model
trained using labeled data from all the tasks [18].
e Independent_L1: An independent lasso model is
separately trained for each task [18].
e Least_L21: An MTL approach based on L21 norm
with group sparsity assumption [13].
e Least_Lasso: MTL based on L1 regularization.
e Least_Trace: An MTL approach based on nuclear
norm regularization for low rank assumption [26].
e OT: Conventional OT method [8] which uses the
pseudo labels of the unlabeled instances as its
predicted response values.
e JDOT: This corresponds to applying the joint
distribution optimal transport (JDOT) algorithm
[5] to obtain the pseudo labels, followed by a MTL
approach with nuclear norm regularization.

For fair comparison, our proposed OT_MTL framework
also uses the nuclear norm regularization to train its
models. We also consider a variation of our approach,
called OT_MTL_init, which terminates after 1 itera-
tion. This approach does not perform iterative update
to resolve the response drift problem and is quite similar
to the MDOT algorithm [7] except the pseudo-labels are
created for unlabeled instances in the target domain in-
stead of the transported instances from source domain.

We use root mean square error as our evaluation
metric. The metric is computed by concatenating the
predicted values of the test instances from all the tasks.
We perform nested cross-validation for hyper-parameter
tuning and model evaluation. For all the baseline as well
as our algorithm, the hyperparameters are chosen from
the same set. The stopping threshold 7 for OT_MTL is
chosen to be 0.005 for lake ecology data and 3 for the
school data. For JDOT, the trade-off parameter « is
chosen to be maz(Cy)
authors in [5].

, which was suggested by the
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Figure 6: Application of OT_MTL to synthetic data
with translated response shift. Instances in the source
domain are represented as blue dots while those in
the target domain are represented as green dots (if
unlabeled) or blue diamonds (if labeled). The red dots
are pseudo labeled instances generated by OT_MTL.

7 Results on Synthetic Data

In this section, we demonstrate how the OT_MTL algo-
rithm deals with different types of response drifts. First,
we consider the case in which the response values of the
target domain are vertically shifted compared to the re-
sponse values of the source domain. Figure 6 shows the
pseudo-labeled instances generated by OT_MTL from 1
to 30 iterations. Instances from the source domain are
shown in blue while those from the target domain are
shown in green. Even though the true response value
for all target instances are shown in the diagram, only
10% of them are used for training. After 1 iteration, the
pseudo-labeled instances do not reflect the true distribu-
tion of the target domain due to the response drift prob-
lem. With increasing number of iterations, the pseudo-
labeled instances (shown as red points) converge closer
to their true distribution.

Next, we consider the effect of “rotated” response
drift, where the relationship between the predictor and
response variables in the target domain is a rotated
version of the relationship in the source domain, as
shown in Fig. 7. With increasing number of iterations,
the results show that our algorithm continuously learn
the shape of the rotated space. After 40 iterations,
the pseudo-labeled instances (shown as red points) are
close to the true labeled instances of the rotated target
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(a) OT result after 1 iteration (b) OT result after 6 iterations
(original OT)

(c) OT result after 18 iterations (d) OT result after 40 iterations

Figure 7: Application of OT_MTL to synthetic data
with rotated response shift.

domain (shown as green points).

8 Results on Real-World Data

We now consider the performance comparison of the
various algorithms on the lake ecology and school data.
For lake ecology, there are 4 response variables consid-
ered: TP, TN, Chla, and Secchi. The results are sum-
marized in Table 2. The results show that our pro-
posed framework, OT_MTL, consistently outperforms
all other methods on all datasets. It also outper-
forms OT_MTL._init, which suggests the presence of re-
sponse drifts that may degrade the overall performance
of JDOT and OT_MTL._init.

We further investigate the performance improve-
ment of OT_MTL against OT_MTL_init for varying
training set sizes (from 10% to 50%). We define per-
formance improvement in terms of the following metric:

rmse(baseline) — rmse(OT_MTL)
rmse(baseline)

(8.11) TImprov. =

The results shown in Fig.8 suggest that OT_-MTL
achieves performance improvement close to 10% or more
on the lake ecology datasets, with larger improvements
observed when the training set size is small. For
school data, since the sample size is already large,
our approach only improves little compares to the lake
ecology datasets.
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Figure 8: Comparison between OT_MTL and
OT_MTL.init. The x-axis represents the training ratio
while the y-axis represents the prediction improvement
metric defined in Eq. (8.11).

9 Conclusion

In this paper, we present a novel method called
OT_MTL that combines optimal transport with multi-
task learning to address small sample size and response
drift problems in regression. OT_MTL employs both
parameter sharing and sample sharing strategies to en-
hance its generalization performance. Unlike existing
OT methods for domain adaptation, our method em-
ploys an iterative source update approach to overcome
the response drift problem. Experimental results on
both synthetic and real-world datasets validate the ef-
fectiveness of our method.
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