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Abstract

In many classification problems, the predictions can
be enhanced by fusing information from different data
views. In particular, when the information from dif-
ferent views complement each other, it is expected that
multi-view learning will lead to improved predictive per-
formance. In this paper, we proposed a supervised
multi-view learning framework based on the information
bottleneck principle to filter out irrelevant and noisy in-
formation from multiple views and learn an accurate
joint representation. Specifically, our proposed method
maximizes the mutual information between the labels
and the learned joint representation while minimizing
the mutual information between the learned latent rep-
resentation of each view and the original data repre-
sentation. As the relationships between different views
are often complicated and nonlinear, we employed deep
neural networks to learn the latent representation and
to disentangle their complex dependencies. However,
since the computation of mutual information can be in-
tractable, we employed the variational inference method
to efficiently solve the optimization problem. We per-
formed extensive experiments on various synthetic and
real-world datasets to demonstrate the effectiveness of
the framework.

1 Introduction

The wide availability of heterogeneous data has brought
increasing attention to multi-view learning [22, 14, 21,
25], which is a learning paradigm that integrates infor-
mation from multiple views of the same data objects to
improve predictive performance. For example, huge vol-
umes of social media data are generated in various for-
mats every day. On average, there are 510,000 new com-
ments, 293,000 status updates, and 136,000 photos up-
loaded to Facebook every minute!. The images on social
media are typically accompanied by text descriptions
or categorical tags. For image classification problems,
leveraging information from the tags and text descrip-
tions can help boost classification performance as they
provide complementary evidence about the true class of
the image. As information from each view are poten-

*Michigan State University
'https:/ /zephoria.com/top-15 -valuable-facebook-statistics/

37

Qixing Luo*

Pang-Ning Tan* Jiayu Zhou*

tially noisy, multi-view learning can help improve classi-
fication performance by learning the common structure
of the different views and reduce the effect of noise.

In addition, each data view may have very distinct
properties. For example, text data are usually encoded
using a discrete bag-of-words representation, while pho-
netic data are encoded using a continuous representa-
tion. Due to their potential difference in scale, variance,
and range of values, a simple concatenation of the fea-
tures from all views may not necessarily produce the
desired performance. To effectively utilize knowledge
from multiple views, a variety of multi-view learning
methods have been proposed in recent years. Canonical
correlation analysis (CCA) [5, 11, 16] and its variations
such as kernel canonical correlation analysis (KCCA)
[4], deep canonical correlation analysis (DCCA) [3] and
deep canonically correlated auto-encoders (DCCAE)
[26] have been developed for two-view learning prob-
lems. These methods would project the original fea-
tures from the two views into a shared feature space
such that the canonical correlation between the views
in the new space is maximized. The projected features
from each view can then be used in predictive modeling
tasks. Nevertheless, a major drawback of CCA-based
methods is that it decouples feature learning from the
predictive modeling step, and thus, unable to utilize the
label information when learning the feature representa-
tion.

More recently, a new supervised learning method
[29] based on the information bottleneck principle [23]
has gained increasing attention due to its ability to
find a concise representation of the features, taking
into account the trade-off between performance and
complexity from an information theory perspective.
However, the main drawback of this method is that it
employs a linear projection to bridge the representation
of each view. As the relationship between different views
are often complicated, a simple linear projection would
constrain the type of information that can be fused from
the different views.

Deep learning has been successfully used to learn
abstract representation from the raw input data [13].
DCCA and DCCAE are two examples of successful
methods using deep neural networks to extract features
from each view and learn their joint representation.
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These methods have demonstrated better performance
compared to traditional linear CCA. However, adopting
deep neural networks to information bottleneck based
multi-view learning formulation remains a challenging
problem. For the information bottleneck approach, the
shared information between different representations
are measured in terms of their mutual information.
Computing mutual information requires estimation of
the posterior distribution, which is computationally
intractable when the model is complicated.

In this paper, we proposed a deep multi-view infor-
mation bottleneck method to fuse knowledge from mul-
tiple views to improve predictive performance. The pro-
posed framework consists of two parts. The first part is
to extract concise latent representation from each view
while the second part fuses the latent representations to
learn the joint representation of all views. The proposed
deep multi-view learning framework adopts the infor-
mation bottleneck principle to supervise the learning
by finding the best representation that balances model
complexity and accuracy. The framework also employs
a variational inference approach [12, 2] to overcome the
challenge of computing mutual information efficiently.
The variational inference approach provides an approx-
imate solution to the original optimization problem by
maximizing the variational lower bound of the target
objective function. Since the variational bound can be
easily optimized by standard gradient descent methods,
the problem becomes computationally tractable.

2 Related work

2.1 Multi-view learning CCA[9] and its variations
are widely-used multi-view learning methods. CCA
identifies the relationship between two sets of variables
by maximizing the correlation between the weighted
linear combination of one set of variables and that
of the other set of variables. It can be viewed as
projecting the original two sets of variables to a low-
dimensional subspace, such that the correlation between
the two set of variables is maximized in the new
subspace.  Therefore, it is much easier to analyze
variable dependence in the learned subspace than in
the original spaces. To deal with the nonlinear and
complex relationship between the two views, KCCA [1]
is proposed. KCCA first projects data from the two
sources to a Hilbert space, and then maximizes the
correlation between the projected data points. This
method is not easy to scale when the size of the training
data is large. Moreover, the representations learned by
kernel CCA is dependent on the kernels used. To solve
those issues, DCCA [3, 27] uses deep neural networks to
learn two deep nonlinear mappings which map the two
sources to new representations such that the canonical
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correlation of the new representations is maximized.
DCCAE [26] is an extension of DCCA. Besides having
a similar structure as DCCA, this model also contains
two autoencoders to reconstruct the learned views. It
optimizes an objective that maximizes the canonical
correlation between the projected representations and
minimizes the reconstruction error of the autoencoders
simultaneously. This method offers a trade-off between
the information captured in the input-feature mapping
within each source on one hand, and the information
in the feature-feature relationship across sources on the
other hand [26].

2.2 Information bottleneck Information bottle-
neck [23] is an approach based on information theory. It
formalizes the intuitive ideas about information to pro-
vide a quantitative measure of “meaningful” and “rel-
evant” [23]. It provides a tradeoff between accuracy
and complexity. This method has been widely used in
clustering [19, 24, 8], ranking [10] and classification [18].
Exact solution does not exist if the latent representation
is learned by deep neural networks. In [2], the authors
applied information bottleneck to single-view learning
and proposed to use the variational method to optimize
it. Instead of directly solving the optimization problem
of information bottleneck, the authors first calculated
a lower bound of the original target. Then the lower
bound was maximized to push the results closer to the
optimal solution to the original optimization problem.
The distributions of the posteriors were learned by the
neural networks. The method also utilized the repa-
rameterization trick for efficient training. Information
bottleneck is also used in multi-view learning. In [29],
the authors proposed to use information bottleneck to
learn a joint latent representation. The joint latent rep-
resentation was a combination of the linear projection
of all the views. The projection matrices were learned
by the information bottleneck approach. Although the
approach achieves decent results, it is limited to linear
projection. Therefore, we propose a nonlinear deep ver-
sion of multi-view information bottleneck to overcome
this limitation.

3 Methodology

3.1 Information Bottleneck Method Informa-
tion bottleneck is an information-based approach to find
the best tradeoff between the accuracy and complexity.
Given data X with labels Y, information bottleneck
aims to find a concise and accurate latent representa-
tion of X. Denote the latent representation as Z. In-
formation bottleneck solves the following optimization
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problem:

(3.1) mZaxI(Y, Z) stI(X,Z) <~,

where (Y, Z) is the mutual information between Y and
Z whereas I(X,Z) is the mutual information between
X and Z. The mutual information between any two
random variables X and Y is defined as:

_ o ) loa( PEY) o

where p(x,y) is the joint probability density function
of X and Y while p(z) and p(y) are the marginal
probability density functions of X and Y.

Eq. (3.1) maximizes the mutual information be-
tween Y and Z to make sure the learned Z contains
information about Y as much as possible. If there is no
constraint on Z, the solution would be Z = X. But in
most cases, X contains noise or other irrelevant infor-
mation to Y. Therefore, a constraint must be applied to
Z to ensure that the learned Z provides a concise rep-
resentation that contains less noise and irrelevant in-
formation compared with X. This constraint reduces
the model complexity and improves the model’s gener-
alization ability. Eq. (3.1) can also be relaxed to the
following formulation:

IngXI(Y7 7Z)—al(X,7),

where « is a regularization parameter to control the
tradeoff between I(Y,Z) and I(X, Z).

3.2 Deep multi-view information bottleneck.
In multi-view learning, information bottleneck can be
used to learn the joint discriminative representation as it
can remove the irrelevant information and noise of each
view. Since for real-world data, the relation between
multiple views are likely to be nonlinear and complex,
in this paper, we propose a deep multi-view information
bottleneck method to map the original representation to
a nonlinear representation that can make subjects easier
to be separated.

Given two views X1, Xo and the class labels Y, the
proposed method aims to learn a joint representation
Z to fuse the information from all views. The model
contains two parts. The first part is to learn the hidden
representations from all the views. Each view has one
hidden representation. This part is to remove the noise
and irrelevant information from X; and X5 as much as
possible to make sure the learned representations are
very concise. We use Z; and Z5 to denote the hidden
representations for X; and Xs, respectively. The second
part is to fuse the hidden representations using a neural
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network as

(3.2) Z = fo(Z1, Z2),

where f denote the network and 6 the network param-
eter. This part is to transfer knowledge from all views
and learn a joint representation Z. These two parts are
learned jointly by the information bottleneck as

(33) max I(Y, Z) — OéI(Xl,Zl) — BI(XQ,ZQ)’

Z,Z1,Z>

s.t. Z = fQ(Zl,ZQ),

where a and (8 are regularization parameters. The first
term is to maximize the mutual information between the
joint representation and the label Y to make sure the
learned joint representation are discriminative accord-
ing to the class labels. The last two terms are to mini-
mize the mutual information between the latent repre-
sentation of each view and its original data representa-
tion. These two terms reduce the model complexity to
make the model more generalizable, since they can filter
out the irrelevant and noisy information.

3.3 Optimization The major challenge of solving
Eq. (3.3) is that the mutual information terms are com-
putationally intractable. Recently, variational meth-
ods [12, 2, 7] are widely used to deal with such prob-
lems. Variation methods maximize the variational lower
bounds of the objective functions instead of directly
maximizing them. These methods use some known dis-
tributions to approximate the intractable distributions,
and provide lower bounds of the original objective func-
tions. By increasing the lower bounds, we can obtain ap-
proximate solutions to the original objective functions.
To obtain the variational lower bound of Eq. (3.3), we
first need to find the joint probability density function
of all the variables including the latent variables. Us-
ing Bayes’ rule, the joint probability density function of
X1,X9,721,75,Y,7Z can be expressed as

p('rhx?v 21,%22,Y, Z) :p(2|21, Z27x1ax27y)
p(Zl‘ZQ,l’l?fEQ,y)

(3.4) p(z2|xy, 2, y)p(T1, 22, Y).

Since Z; is learnt from X;, we thus assume given
X1, Zy is independent of Z5, X5,Y. Similarly, we
assume given X, Z5 is independent of X7, Y, and given
Z4,Z5, Z is independent of X1, Xs,Y. Therefore, we
have the following equalities:

p(z1]22, 21, 22, y) = p(z1]21),
p(z2|$17$2,y) = p(22|3?2)7
p(2|2§1,22,$1,$2,y) :p(z|z1722)'
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Using these assumptions, the joint probability density
function can be simplified as

p(x1, T2, 21, 22,9, 2) =p(2]21, 22)p(21]71)
(3~5) p(z2|5f2)p($17 x2, y).

First, let us start with I(Y,Z). Since p(y|z) is in-
tractable, we use a distribution ¢(y|z), which will be
learned from the network, to approximate p(y|z). The
KL-divergence between p(y|z) and ¢(y|z) is always non-
negative. Therefore, we have

K L[p(yl2),q(ylz)] > 0
(3.6)

=>/dydz p(y, 2) log(p(ylz)) > /dydz p(y, 2) log(q(y[2))-

The mutual information between Y and Z is

p(y,2)
1(Z,Y) /dydzp y,2)log 2)(2)
/ dydzp(y, z) log p;?;)~

Using Eq. (3.6), we have

q(y|z)
p(y)

= / dydz p(y, z) log q(y|z) — / dy p(y)logp(y).

1(v,2) > / dydz ply, 2)log

Since — [ dy p(y)logp(y) is the entropy of the labels,
and this term have no effect on the optimization, we can
directly drop it. Therefore, the variation lower bound
of I(Y,Z) is

I(Y,2) > /dydz p(y, 2) log q(y|z)
= /dyd2d$1d$2dz1d22 p(x1, 2, 21, 22,9, 2) log q(y|z).

By using the joint probability density function in
Eq. (3.5), the variational lower bound of the mutual
information between Z and Y can be written as

I(Y,Z) 2/d$1d$2dy p(r1,22,Y)

(3.7) /dzdzleQp(z|zl,zz)p(zl|x1)p(z2|x2) log q(y|z).

Next, we need to find the upper bound of (X1, Z1).
Since p(z1) is intractable, we use 71(21) to approximate
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p(z1). Similarly, we use the property of the KL-
divergence between p(z1) and 71(z1).

KL[p(z1),71(21)] > 0
= / dzp(z1)logp(z1) = / dzp(z1) logr(z1).

Therefore, the mutual information between Z; and X,
is

21|
I(Zy, X1) :/dzldxlp(xl,zl)logM
p(z1)

p(z11)

1(21)
:/diﬂldiﬂzdydzl p(x1,x2, 21,y) log

/d21d331 p(x1,21) log

p(z1|z1)
1 (21) '

Using the assumption that given x;, z; is independent
of all other variables, we have

[(Z1, X)) < / dz1dwadyp(@1, 72, )

p(z1lz1)

(3.8) /dz1 P 21|x1)log )

Similarly, for I(Z3, X3), we have
1(22,X2) < [ dnrdoadyp(ar, a2,

(3.9) /dzg p(za|2z2) log (Zzlzz;)

With Eq. (3.7), Eq. (3.8) and Eq. (3.9), the final
variational lower bound is:

I(Y,Z) — al(X1, Z1) — BI(X2, Z2)

Z/d$1d$2dil/ p(x17x27y)
(/ dzdz1dzap(z|21, 22)p(21]21)p(22|22) log q(y|2)

p(=]z1)
—Oé/le p(zl\zl)log 1(2:1)

_5/d22 p(z2|x2) log (?Z;))

The integral over x1,z2 and y can be approximated by
Monte Carlo sampling [17]. Therefore,

I(Ya Z) - aI(Xth) - BI(X% ZQ)

N
1
> 3 20U dedndzanClen ool

p(z1lz1)

rl(zl)

log q(y|z) — a/dzlp(zl|x1)log

—5/6122}? (22]72) log (Z?in)}’
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where NN is the sample size of the total sampled data.
Next, we assume p(z1|z1),p(22|z2) and p(z|z1,22) are
Gaussian. The means and variances of the Gaussian
distributions are all learned from deep neural networks,
ie.,

p(z1]z1) = N (i (215 61), B1 (215 ¢1)),
p(22]12) = N (p2(z2; d2), Lo (225 d2)),
p(z|z1, 22) = N(u(z1, 22:0), B(21, 22,3 0)),

where p1, g2, p and 34,39, Y are the networks to learn
the means and variances for p(zi|x1),p(22]z2) and
p(z|21, 22). ¢1, P2 and 6 are network parameters for the
networks to learn p(z1|z1), p(22]z2) and p(z|z1, 22), re-
spectively. Since z1, 29 and z are all random variables,
backpropagation through those random variables may
cause problems. Therefore, we use the reparameteriza-
tion trick here, i.e.,

z1 = p(z1; d1) + L(z1; ¢ )en,

z2 = p(x1; ¢1) + L(21; d1)é2,

z = /J/(Zla 225 9) + 2(217 223 0>€7
where €, €1,e2 ~ N(0,I). By using this reparameteri-
zation trick, randomness is transfered to €, €1, €2, which

do not affect the backpropagation. Therefore, the final
loss is

N

X p(z1]@y)

max 7 3 {EEqEe, logq(y]2) - aBe, log =735
p(z2|r2)

3.10 TRaloe T b
(3.10) P, log r2(22) )

Three Monte Carlo sampling procedures are
used are used here to approximate the integrals.
p(z1]21), p(22]22) are all learned from neural networks.
Note that the first term in Eq. (3.10) is the cross-
entropy between y and z. Thus, we can use a deep
neural network with a softmax layer as output to
calculate the class probabilities and the cross-entropy
loss.

3.4 Generalize to multiple views The proposed
deep multi-view information bottleneck framework can
be easily generalized to settings with more than 2 views
by adding corresponding information constraint terms.
Given v views {X7, Xo, ..., X, }, the formulation of the
proposed method is

(3.11) max
2,210,232, B

v
I(Y,Z) =Y oil(Xi, Zy),

i
where Z; is the latent representation of X;. «; is the
regularization parameter to regularize the mutual infor-
mation between X; and Z;. Following the procedures in

Section 3.3, the final loss for Eq. (3.11) is

(3.12)

N

1 AL
max > {EE,Ee,.. Ee, logg(y|z) - aile, log pﬁz(f))
where €,¢€1,€,...6, ~ N(0,I). 7;(2;) are assumed as
ri(z;) ~ N(0,I). Each p(z;]z;) are Gaussian with pu
and Y leaned from a deep neural network.

4 Experiment

In this section, we present the experimental results on
synthetic and real-world datasets. The baseline al-
gorithms used for comparison include linear CCA [5],
DCCA [3], DCCAE [26], and the fully-connected deep
neural network (DNN), which uses two fully-connected
neural networks to directly extract latent representa-
tions Z1, Zs and then uses a deep neural network to fuse
Z1 and Z5 to make prediction. One intuitive baseline
for multi-view learning is to concatenate the features
from all the views and treat the concatenated features
as one view. In our experiments, we use single-view in-
formation bottleneck [2] as the model for this baseline
and denote this baseline as singleview12. We also pro-
vide the results of single-view learning using information
bottleneck [2] for each view, and use singleview!, single-
view2 to denote the baselines using the first view and
the second view. We denote the proposed method as
deep IB.

4.1 Synthetic datasets . The data are synthe-
sized in the following way. First, we sample 2n points
from two Gaussian distributions, i.e., N(0.5e,I) and
N(-0.5e,1I) to form Z. Samples from each distribu-
tion form one class. Each class has n data points.
Then, we directly use Z to generate X1 and X2 by set-
ting X; = f(D) + noise, where D = [Z, extra-features]
with ¢ € {1,2} and f is a nonlinear function. Extra-
features here are used to distort the classification and
are sampled from another two Gaussian distributions,
ie., N(e,I) and N (—e,I). We sample m data from the
first Gaussian distribution and 2n — m samples from
the second Gaussian distribution. We concatenate the
extra-features to the useful features to distort the clas-
sification. Extra-features are illustrated in Figure 1. In
Figure 1, the row represents the samples and the col-
umn represents the features. Extra-features have differ-
ent class property compared with the useful features. In
all the synthetic data experiments, we set m = 2n/3 for
the first view and m = 2n/6 for the second view. Extra-
features widely exist in multi-view learning scenario.
For example, when we collect all the genetic data from
people with a gene-related disease and healthy people,
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the genetic data contain not only information to classify
the disease, but also gender information. The features
that describe the gender information are extra-features.
The effect of those features needs to be eliminated in
the classification process. The noise is sampled from
N(0,txI), where t denotes the noise level and is changed
in the experiments to test the algorithms’ ability to
eliminate the effect from noise. f is tanh(tanh(D))+0.1
for the first view and sigmoid(D) — 0.5 for the second
view.

Features

m

so|dweg

n 2n-m

Class2 Class 1

Y Y
Useful features Extra-features

Figure 1: Tllustration of extra-features in the synthetic
data experiments. Extra-features have different class
property with the useful features.

4.1.1 Setting 1 . In the first setting, we change
the noise level ¢ and compare our model with other
baselines. t is the relative noise level which is calculated
as t = a x max(abs(X;)) for each view, where abs means
the absolute value. We set a to be {0.2 : 0.2 : 1.2}.
The sample size per class is set to be 500. The useful
feature dimension is 20, and the extra-feature dimension
is 5. « and § are tuned in [le — 5,5e — 5,1le — 4, 5e —
4,1e — 3,5e — 3,1e — 2]. For the subnetworks that
extract features from X; and X5 for all the deep models
including DCCA, DCCAE, we tune the number of layers
in [3,4,5] and the node number for each layer is tuned
in [256,512,1024]. The activation function is ReLU.
For the subnetworks that fuse the extracted features
from all views, we tune the number of layers in [1,2, 3]
and the node number is tuned in [128,256,512]. The
activation function is ReLU. For all the experiments,
we use 80% data as training and the rest as testing
and repeat the experiments for 5 times. We report the
average errors for all methods in Table 1. From Table 1,
we see when noise increases, the performance becomes
worse for all the methods. Single-view methods are
all worse than supervised multi-view methods. Simple
concatenation of two views is not as good as deep IB.
Compared with CCA-based method, we see supervision
information improves the performance a lot. DNN is
a challenging baseline as shown in the results. DNN
has a similar network structure with deep IB. The
difference between DNN and deep IB is that DNN tries
to extract latent features by directly maximizing the
cross-entropy between the outputs of the network and

labels, while deep IB not only maximizes the cross-
entropy between the outputs of the network and labels,
but also constrains the model complexity by reducing
the information between Z; and X, and between Zs
and X5. Therefore, the generalization performance of
deep IB is better than DNN.

4.1.2 Setting 2 . In the second setting, we vary
the sample size per class to see how the performance
changes. The noise level a is set to be 1.0. The
useful features dimension is 20, and the extra-feature
dimension is set to be 5. The models are tuned in the
same way as the first setting. We report the errors
for all methods in Table 2. From the table, we see
increasing the sample size improves the performance
for all methods. We observe some similar patterns
with that of Setting 1. For example, deep IB results
are better than all other single-view methods results.
CCA-based methods are not as good as supervised
methods. One specific observation is that when the
sample size is large enough, i.e., greater than 1100,
DNN’s performance is better than deep IB. That is
because deep IB has the assumption to reduce the model
complexity. When the sample size is large enough, deep
IB underfits the data, while DNN has no assumption.
Therefore, when the sample size is large enough, direct
using DNN delivers the highest accuracy.

4.1.3 Setting 3 . In the third setting, we change
the extra-feature dimension to see how the extra-feature
dimension affects the results. In this setting, the sample
size per class is set to be 500. The noise level a is
1.0. The useful feature dimension is fixed as 20. The
errors are shown in Table 3. From Table 3, we see deep
IB outperforms all the other methods with any extra-
feature dimension. When the extra-feature dimension
increases, the data contain more irrelevant information,
which makes the classification to be distorted. We see
when the extra-feature dimension increases, the error of
DNN, CCA-based methods increase a lot. However, for
IB based methods including the single-view baselines,
the errors are stable when the extra-feature dimension is
larger or equal to 25. From the results, we conclude that
IB-based methods are more robust to extra-features.

4.2 A case study: reservoir detection . In this
case study, we compare all the models on a reservoir de-
tection dataset. Reservoirs for this dataset are sampled
with ArcMap 10.3.1 by joining dam features from the
US Army Corps National Inventory of Dams with lake
polygons over 4 hectares from the LAGOS database [20].
For comparison, we also select a proportional number of
natural lakes from the major river watershed that each
reservoir is located in. The sample size for this dataset

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited



Downloaded 09/26/19 to 24.127.49.11. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

Noise level (a) 0.2 0.4 0.6 0.8 1.0 1.2
singleview1 0.070 +£0.016 | 0.111 +£0.020 | 0.135+0.025 | 0.166 +0.025 | 0.192 £ 0.030 | 0.206 % 0.040
singleview?2 0.132 +0.025 | 0.205 4+ 0.040 | 0.253 +0.025 | 0.283 +0.031 | 0.313 £0.032 | 0.338 +0.035
singleview12 0.064 +0.012 | 0.083 £0.012 | 0.125+0.011 | 0.154 +0.031 | 0.164 £ 0.023 | 0.181 +0.037
linear CCA 0.064 £+ 0.027 | 0.109 £+ 0.023 | 0.143 +0.035 | 0.165 £ 0.038 | 0.194 + 0.041 | 0.209 + 0.043
DCCA 0.065 £ 0.024 | 0.096 £0.023 | 0.132+£0.029 | 0.154 £0.033 | 0.173 £0.034 | 0.198 + 0.043
DCCAE 0.075 £ 0.017 | 0.098 +0.008 | 0.139 +0.044 | 0.165 £ 0.026 | 0.182 + 0.028 | 0.203 + 0.041
DNN 0.061 +0.004 | 0.094 +0.012 | 0.128 +0.025 | 0.156 +0.024 | 0.164 + 0.037 | 0.191 4+ 0.031
deep IB 0.059 £ 0.016 | 0.073 £0.011 | 0.122+0.019 | 0.139 +£0.017 | 0.158 +£0.017 | 0.171 £ 0.026
Table 1: Average errors of all methods under different noise levels.
Sample per class 300 500 700 900 1100 1300
singleviewl 0.178 £ 0.035 | 0.192 £0.030 | 0.175+0.022 | 0.179 £0.015 | 0.192 +0.014 | 0.183 £ 0.005
singleview2 0.333 £0.043 | 0.313 £0.032 | 0.319+0.032 | 0.326 £0.021 | 0.317 +0.010 | 0.316 £0.024
singleview12 0.230 £ 0.080 | 0.173 £0.023 | 0.164 +0.023 | 0.174 £0.021 | 0.180 £ 0.008 | 0.185 +0.011
linear CCA 0.163 £+ 0.030 | 0.194 £0.041 | 0.166 +0.038 | 0.159 +£0.011 | 0.173 £0.011 | 0.170 4 0.023
DCCA 0.165 +0.013 | 0.173 £0.033 | 0.158 +£0.026 | 0.151 £0.018 | 0.165 +0.013 | 0.155 £ 0.013
DCCAE 0.169 + 0.008 | 0.182 £0.028 | 0.154 +0.033 | 0.154 +0.003 | 0.178 £0.017 | 0.160 4 0.008
DNN 0.173 +0.024 | 0.164 £0.032 | 0.161 +0.032 | 0.146 +0.016 | 0.143 £ 0.004 | 0.139 4+ 0.008
deep 1B 0.162 + 0.015 | 0.158 £0.017 | 0.143 +0.021 | 0.139 £0.009 | 0.143 £ 0.007 | 0.143 4+ 0.006
Table 2: Average errors of all methods under different sample sizes.
Extra-feature dim 5 15 25 35 45 55
singleview1l 0.192 +0.030 | 0.194 £0.036 | 0.199 £0.020 | 0.198 +0.042 | 0.194 £0.019 | 0.193 +0.016
singleview2 0.313+0.032 | 0.333 £0.024 | 0.342 +0.019 | 0.327 £0.020 | 0.334 +0.026 | 0.332 £0.021
singleview12 0.164 +£0.023 | 0.181 £0.027 | 0.194 £0.024 | 0.189 +0.041 | 0.191 £0.026 | 0.189 +0.017
linear CCA 0.194 £ 0.041 | 0.192 £0.038 | 0.225 £+ 0.030 | 0.205 4 0.047 | 0.255 £ 0.027 | 0.286 4+ 0.012
DCCA 0.173+0.033 | 0.179 £0.040 | 0.187 £ 0.016 | 0.181 £0.018 | 0.183 £ 0.026 | 0.201 £ 0.040
DCCAE 0.182 +0.028 | 0.1854+0.037 | 0.195+0.020 | 0.193 +0.023 | 0.215£0.026 | 0.221 +0.032
DNN 0.164 £+ 0.037 | 0.197 £0.020 | 0.201 £0.022 | 0.216 +0.025 | 0.219 £0.015 | 0.225 4+ 0.032
deep 1B 0.158 £ 0.017 | 0.174 +£0.053 | 0.175+0.013 | 0.174 +0.035 | 0.173 £0.019 | 0.176 4+ 0.023

Table 3: Average errors of all methods
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Figure 2: Average error for reservoir detection task.

is 1327 with 660 natural lakes and 667 reservoirs. There
are two views available in this dataset. The first one is
the boundary of the lakes. Boundary features of each
lake and reservoir are exported using ArcMap. Each
boundary file is a 224 x 224 image. To deal with the
boundary data, we first use VGG16 to extract features.

under different extra-feature dimensions.

We use the last fully-connected layer’s output as the fea-
tures. The dimension is 4096. Since the sample size is
not large, we use PCA to reduce the feature dimension
by keeping the top 1% singular values. The reduced fea-
ture dimension is 75. The second view is the features
extracted from Google Earth. The features include the
area of the lakes, shape length, classes of the general
types of parent material of soil on the surface, classes
of landforms, NED-derived mTPI ranging from nega-
tive (valleys) values to positive (ridges) values, NED-
derived CHILI index ranging from 0 (very cool) to 225
(very warm). In total, there are 21 features. We split
the data into training and testing as the synthetic data
experiments and report the average error in Figure 2.
From the figure, we see deep IB outperforms all other
methods. In Figure 3, we also qualitatively show the
final joint representations learned by all methods with
t-Distributed Stochastic Neighbor Embedding [15]. The

Copyright © 2019 by SIAM
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Figure 3: t-Distributed Stochastic Neighbor Embedding for the final joint representations. Blue dots are natural

lakes and red dots are reservoirs.

final joint representation is the output of the layer that
is connected with the final linear classifier. For exam-
ple, for deep IB, DNN and the single-view methods, the
final joint representations are the outputs of the layer
before the last layer. For the CCA-based methods, the
final learned representations are the projected represen-
tations from the first view. In Figure 3, blue dots are
natural lakes and red dots are reservoirs. We see that
the separation qualities are consistent with the perfor-
mance in Figure 4.2.

4.2.1 Other benchmark datasets In this sec-
tion, we report the performance on three benchmark
datasets. The datasets we used are

e Wisconsin X-Ray Mircro-Beam (XRMB) [26, 28]:
the first view is 273D acoustic inputs, the second
view is 112D articulatory inputs 2.

e MNIST [26]: two views are generated from MNIST
datasets. The first view is a random rotation of
the original images. The second view is generated
by adding noise to the original images. Both views
have 784 features 3.

o Wiki [6]: the dataset contains 2866 images-text
pairs. Each image is represented by 128D inputs
and text is represented by 10D inputs. There are
10 classes in total.

The average errors are shown in Table 4. From
the table, we see for all the benchmark datasets, the

ZWe did not use the whole dataset since some baselines are

quite slow. We randomly sampled 50000 data points for training
and sampled 6000 points for testing from the first 10 classes.

3We did not use the whole dataset since some baselines are
very time-consuming. We sampled 5000 data for training and
1000 for testing.
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Dataset XRMB MNIST Wiki

singleviewl 0.185 £ 0.003 | 0.075 £ 0.006 | 0.449 4 0.024
singleview?2 0.2714+£0.003 | 0.160+0.012 | 0.337 £0.018
singleview12 | 0.179 £ 0.006 | 0.057 £ 0.009 | 0.336 £ 0.006
linear CCA | 0.358 £0.004 | 0.235+0.006 | 0.741 +0.017
DCCA 0.231+£0.006 | 0.187+0.012 | 0.478 £0.049
DCCAE 0.226 £ 0.005 | 0.170 +0.020 | 0.499 £+ 0.037
DNN 0.168 +0.006 | 0.060 £ 0.056 | 0.311 £0.017
deep 1B 0.161 £ 0.005 | 0.056 £ 0.002 | 0.298 £ 0.005

Table 4: Average errors for three benchmark datasets.

proposed method performs the best among all the
methods, which verifies the effectiveness of the proposed
method.

5 Conclusion

In this paper, we presented a novel multi-view learning
model based on information bottleneck. The model
encouraged the latent representation keeping target
information as much as possible while containing the
information of original features as little as possible to
reduce the model complexity. To learn the complicated
relationship between views and within views, we used a
deep neural network to learn the latent representation.
Since the mutual information terms were intractable, we
maximized the lower bound of the formulation instead of
directly maximizing it. We demonstrated experiments
on various synthetic and real-world datasets to show the
effectiveness of the proposed method.
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