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1. Introduction

Control and tuning of magnetic degrees of freedom [1] is 
one of the fundamental ingredients of the field of spintronics. 
Practical applications include the spin-transfer-torque (STT)-
based magnetic random-access memory [2–6], magnetic 
tunnel junctions [7–10], spin injection [11–13], etc. Although 
many materials have been studied as potential candidates for 
applications in spintronics, Heusler alloys attract a special 
attention for their abundance in nature, and most importantly 
because they retain their magnetic properties well above room 
temperature [14–16].

While many Heusler alloys crystallize in cubic sym-
metry, some of these materials also exhibit tetragonal struc-
ture. In fact, Faleev et al recently performed series of density 
functional calculations, which indicate that some 150 X2YZ 
Heusler compounds are tetragonal at zero temperature [17]. 
This may be appealing for practical applications, as tetrag-
onal distortion may result in emergence of magnetocrystalline 
aniso tropy, which is absent by symmetry in cubic systems.

Magnetism in Heusler alloys has been extensively studied 
for many decades. Ferromagneric [18, 19], antiferromagnetic 
[20, 21], ferrimagnetic [22, 23], and more recently non-col-
linear alignment [24, 25] of magnetic moments have been 
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nearest neighbor Mn atoms. Results are compared with those reported in recent literature, both 
experimental and theoretical.
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reported. The non-collinear structure is usually considered 
more ‘exotic’ due to its relatively rare occurrence and some-
what unstable nature, e.g. it can be destroyed by temperature. 
Yet, it presents additional possibilities for control of mag-
netism, which are either absent or more difficult to attain in 
collinear arrangements. For example, non-collinear magnets 
can be used in spin valves [26], STT-based applications [27], 
and molecular spintronics [28].

This work is focused on Mn2PtSn Heusler material, and has 
two main incentives. First, according to recent exper imental 
findings, Mn2PtSn exhibits tetragonal symmetry [29, 30]. 
Second, according to recent reports, Mn2PtSn and/or similar 
materials can also exhibit non-collinear magn etic order [24, 
29, 30]. In particular, in their recent work, Meshcheriakova 
et  al reported that Mn2RhSn exhibits an interplay between 
ferrimagnetic and non-collinear arrangement of Mn magn-
etic moments, with a large canting angle for the latter [24]. 
Here, we perform density functional calcul ations of bulk 
Mn2PtSn to analyze its structural and magnetic properties. 
In particular, we show how these properties can be tuned by 
biaxial strain. The rest of the paper is organized as follows. 
Section 2 outlines the computational methods. Structural and 

magnetic properties of Mn2PtSn are reported in section 3. In 
section 4, we analyze the results, and we conclude the paper 
in section 5.

2. Computational methods

We perform density functional calculations of bulk Mn2PtSn, 
using the projector augmented-wave method [31], imple-
mented in the Vienna ab initio simulation package [32] within 
the generalized-gradient approximation [33]. The integration 
method [34] with a 0.05 eV width of smearing is used, along 
with the plane-wave cut-off energy of 500 eV and energy conv-
ergence criteria of 10−2 meV for atomic relaxation (resulting 
in the Hellmann–Feynman forces being less than 0.005 eV 
Å−1), and 10−3 meV for the total energy and electronic struc-
ture calculations. A k-point mesh of 12  ×  12  ×  8 is used for 
the Brillouin-zone integration (for atomic relaxations we used 
a smaller mesh of 6  ×  6  ×  4). An 8-atom cell Mn4Pt2Sn2 is 
used for all calculations, with the periodic boundary condition 
imposed. Crystal structures (figures 1 and 3) are visualized 
using the MedeA® software environment [35].

Figure 1. Crystal structure of Mn2PtSn: side view (left), and top view (right). Red sphere—Mn, blue sphere—Pt, yellow sphere—Sn.

Figure 2. (a) Energy, and (b) out-of-plane lattice constant versus in-plane lattice constant of bulk Mn2PtSn under biaxial strain. Dashed 
lines indicate lattice constants corresponding to energy minimums. The right axis in (b) shows calculated c/a ratio for the cubic supercell 
(see figure 1(b)).
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3. Results

3.1. Crystal structure

We start our calculations with the initial atomic arrangement 
shown in figure 1. The structure is based on our recent x-ray 
diffraction (XRD) measurements [30], according to which 
Mn2PtSn crystallizes in inverse tetragonal structure with 
space group I-4m2 and lattice parameters a  =  b  =  4.51 Å and 
c  =  6.08 Å. The 8-atom unit cell is shown in figure 1(a). The 
initial lattice parameters are set to a = b = 4.51 Å; c = 6.38 Å. 
Here, the in-plane lattice constants (a, b) are set to our exper-
imental values, while the out-of-plane lattice constant (c) 
is set to the value corresponding to the cubic supercell (see 

figure  1(b)), i.e. 4.51 Å =
Ä

6.38 Å
ä
/
√

2. Next, we perform 

series of calcul ations for a range of in-plane lattice param-

eters, for each of which we find the out-of-plane lattice param-
eter corresponding to the lowest energy. Results are shown in 
figure 2. One can see that the initial lattice parameters (cubic 
symmetry) correspond to the highest energy in the consid-
ered range, while both compressive and tensile biaxial strain 
applied to our original cell produce energy minimums, corre-
sponding to distinct tetragonal symmetry.

The calculated lattice parameters corresponding to the 
two energy minimums are a  =  4.16 Å, c  =  7.46 Å (compres-
sive strain of the cubic supercell), and a  =  4.81, c  =  5.63 Å 
(tensile strain of the cubic supercell). The corresponding c/a 
values calculated for the cubic supercell (see figure 2(b)) are 
1.27 and 0.83, with the former corresponding to the lowest 
energy state. These results demonstrate that the bulk Mn2PtSn 
is tetragonal, which is in agreement with recent experimental 
reports [22, 30]. At the same time, the calculated lattice 
param eters are different from those obtained recently with 
XRD measurement [30], which may be due to other reasons, 
such as different geometry (experimental measurements were 
performed on thin film samples), atomic disorder, substrate 

induced strain, temperature effects, etc. Next, we analyze the 
behavior of the magnetic structure of Mn2PtSn in the consid-
ered range of the biaxial strain.

3.2. Magnetic structure

There have been conflicting reports in recent literature 
regarding the magnetic structure of Mn2PtSn. In particular, 
our recent measurement of magnetization value for Mn2PtSn 
thin film is 5.3 μB/f.u. [30], significantly larger than our early 
measurements of 3.9 μB/f.u. for bulk Mn2PtSn [36]. At the 
same time, both these values are significantly smaller than 
the value of 6.7 μB/f.u. predicted by earlier density functional 
calculations for inverse tetragonal Mn2PtSn [37] assuming a 
collinear arrangement of manganese moments. The collinear 
arrangement, however, may not necessarily correspond to the 

Figure 3. Non-collinear (a) and antiferromagnetic (b) arrangement of magnetic moments in bulk Mn2PtSn. Solid black arrows indicate 
directions of the Mn magnetic moments.

Figure 4. Calculated total energies of bulk Mn2PtSn, for AFM 
(black squares) and NC (red spheres) magnetic structures. Total 
energies corresponding to both energy minimums are shown on the 
figure.
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lowest energy state. In particular, it has been recently reported 
that similar alloys exhibit non-collinear arrangement of magn-
etic moments [24, 29].

To find the ground state magnetic structure of bulk 
Mn2PtSn, and its modification under biaxial strain, we pro-
ceed as follows. For each of the optimized c/a ratios (see 
figure 2), we perform three separate calculations for the fol-
lowing arrangements of magnetic moments: antiferromagn-
etic (AFM)/ferrimagnetic (FiM), ferromagnetic (FM), and 
non-collinear (NC). Figure  3 schematically illustrates AFM 
and NC arrangements in Mn2PtSn. For the latter, we choose 
an initial arrangement of Mn magnetic moments similar to the 
one reported in [24] for a tetragonal Heusler alloy Mn2RhSn. 
For non-collinear calculations, the magnitudes and directions 
of local magnetic moments are determined self-consistently 
for each of the considered c/a ratios.

Our calculations indicate that ferromagnetic arrangement 
corresponds to the highest energy state. In particular, it is 
more than 0.5 eV/8-atom cell higher than AFM/NC arrange-
ments for the entire range of the considered c/a ratios. This 
essentially rules out the possibility of ferromagnetic order in 
zero temperature tetragonal bulk Mn2PtSn in the ideal crystal 
structure (i.e. no atomic disorder, lattice distortions, surface 
effects, etc). At the same time, AFM and NC arrangements 
are energetically nearly equivalent, as illustrated in figure 4. 
For both energy minimums, the non-collinear structure cor-
responds to a slightly lower total energy, but the energy differ-
ence between NC and AFM arrangements is only of the order 
of ≈ 1 meV (see numerical values in figure  4). This prob-
ably indicates that at practical temperatures the non-collinear 
arrangement in ideal bulk Mn2PtSn is unstable and undergoes 
a spin-reorientation transition into antiparallel collinear phase 
[24], unless it is enhanced by some external stimulus, such as 
magnetic field and or low dimensional geometry.

Figures 5(a) and (b) correspondingly show calculated 
total magnetic moments of 8-atom unit cell for antiparallel 
and non-collinear alignment of Mn moments, and calcu-
lated canting angles between c-axis and Mn local magnetic 
moments, θ1 and θ2  (see figure 3(a)) of Mn2PtSn under biaxial 
strain. Magnetic moments and canting angles are plotted as a 

function of in-plane lattice constant, for optimized c/a ratios. 
One can see that for the smaller c/a ratios (larger in-plane lat-
tice constant), Mn2PtSn is ferrimagnetic, with nearly negligible 
magnetization. In particular, the non-collinear initial arrange-
ment of the Mn moments relaxes to the antiparallel alignment 
upon self-consistent calculation, as indicated by zero θ1 and θ2  
angles on the right side of figure 5(b). At a = 4.81 Å (corre-
sponding to one of the two energy minimums), the calculated 
total magnetic moment per 8-atom unit cell is ≈ 0.09μB. At 
the same time, for the energy minimum corresponding to the 
larger c/a ratios (smaller in-plane lattice constant), Mn2PtSn 
can be both AFM/FiM and NC. In other words, the initial NC 
alignment is preserved upon self-consistent optimization of 
the magnetic moment directions. Further, since NC and AFM 
arrangements have nearly identical energies (figure 4), in prin-
ciple both of these structures are feasible for the larger c/a 
ratios. Here, at a = 4.16 Å (corresponding to the energy min-
imum), the calculated total magnetic moment per 8-atom unit 
cell is ≈ 1.62μB assuming NC arrangement, and ≈ 0.04μB 
assuming antiparallel collinear alignment.

4. Analysis

Typically, the non-collinearity in magnets originates from 
interplay of parallel and antiparallel exchange interactions. 
In some cases, e.g. in triangular magnetic systems, this may 
result in interesting phenomena, such as piezomagnetic [1] 
and even somewhat exotic flexomagnetic effect, i.e. strain 
gradient induced magnetization [38]. To analyze the origin of 
the non-collinear alignment in Mn2PtSn, we employ a model 
suggested by Meshcheriakova et  al for a same family mat-
erial, Mn2RhSn [24]. In particular, we consider interplane 
exchange coupling between nearest (J) and next-nearest ( j) 
planes in c-direction (see figure 3). The latter has to be taken 
into account to explain non-collinearity, since the nearest-
plane coupling alone results in collinear (antiparallel in our 
case) alignment of magnetic moments. At the same time, the 
next-nearest-plane superexchange coupling along with the 
nearest-plane exchange results in competing parallel/antipar-
allel alignments that can lead to the canting of the magn etic 

Figure 5. (a) Calculated total magnetic moment, and (b) magnetic moment angles, θ1 and θ2  (see figure 3(a)) versus in-plane lattice 
constant of bulk Mn2PtSn. Dashed lines indicate energy minimums.
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moments [24]. It is shown in [24], that for Mn2RhSn one 
can use the j

J > 1
2 condition (i.e. strong next-nearest-plane 

superexchange) as a criterion of non-collinearity, while the 
canting angles derived from the spin Hamiltonian are given by 

(θ)1,2 = ± arccos
Ä

J
2j

ä
. Since Mn2RhSn and Mn2PtSn belong 

to the same family of materials, here we use the same condi-
tions to analyze our results. In particular, we employ the fol-
lowing formulas

j
J
=

|EFM − ENNN,AFM|
|EFM − ENN,AFM|

(θ)1,2 = arccos

Å
J
2j

ã
= arccos

Å |EFM − ENN,AFM|
2 × |EFM − ENNN,AFM|

ã
.

Here, EFM, ENN,AFM and ENNN,AFM are calculated total ener-
gies for ferromagnetic, nearest-plane antiferromagnetic, and 
next-nearest-plane antiferromagnetic alignments, i.e. NN cor-
responds to the up/down/up/down, while NNN corresponds to 
the up/up/down/down arrangements of magnetic moments in 

c-direction. Figures 6(a) and (b) show calculated j
J and (θ)1,2 

(blue stars) as a function of in-plane lattice constant, for the 
entire range of the considered biaxial strain. In figure  6(b), 
for convenience of comparison, the calculated (θ)1,2 values 
are superimposed on the canting angles calculated from self-
consistent relaxation of the magnetic moment directions (i.e. 
figure 5(b)).

As shown in figure 6(a), for smaller in-plane lattice param-

eters, Mn2PtSn satisfies the non-collinearity condition j
J > 1

2, 
while for larger in-plane lattice constant, this condition breaks 
down. The transition point is at a ≈ 4.72 Å, which is larger but 
only by ≈ 0.15 Å than the value of a ≈ 4.55 Å calculated from 
self-consistent relaxation of atomic moments (see figure 5(b)). 

The canting angles calculated from (θ)1,2 = arccos
Ä

J
2j

ä
 (figure 

6(b)) show the same a ≈ 4.72 Å non-collinear to antiparallel 

collinear transition point, and are in qualitative agreements 
with the dynamics of the magnetic moments deduced from 

their self-consistent relaxation (compare red/black and blue 
plots in figure 6(b)). These results confirm that the non-collin-
earity in Mn2PtSn originates from the competition of nearest- 
and next-nearest-plane exchange couplings, in agreement with 
the mechanism described in [24]. The small discrepancy of 
a ≈ 0.15 Å of the non-collinear to collinear transition point is 
possibly due to the exclusion of the in-plane exchange cou-
pling between Mn atoms from the considered model.

5. Conclusions

Combined effects of tetragonality and non-collinear magn-
etic order in Mn2PtSn Heusler material are studied from first 
principles. It is demonstrated that this material has two ener-
getically close energy minima corresponding to tetragonal lat-
tice. In one of these phases, Mn2PtSn exhibits ferrimagnetic 
order with nearly fully compensated total magnetic moment, 
while in the other phase (corresponding to the lowest energy), 
a non-collinear magnetic arrangement emerges, with very 
large canting angles of Mn local magnetic moments. The 
non-collinear alignment is explained through the competi-
tion between exchange (favoring antiparallel alignment) and 
superexchange (favoring non-collinear alignment) couplings 
between nearest- and next-nearest-plane Mn atoms.
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