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Abstract— Authentication of users by exploiting face as a
biometric is gaining widespread traction due to recent advances
in face detection and recognition algorithms. While face recog-
nition has made rapid advances in its performance, such face-
based authentication systems remain vulnerable to biometric
presentation attacks. Biometric presentation attacks are varied
and the most common attacks include the presentation of a
video or photograph on a display device, the presentation of a
printed photograph or the presentation of a face mask resem-
bling the user to be authenticated. In this paper, we present
PPGSecure, a novel methodology that relies on camera-based
physiology measurements to detect and thwart such biometric
presentation attacks. PPGSecure uses a photoplethysmogram
(PPG), which is an estimate of vital signs from the small color
changes in the video observed due to minor pulsatile variations
in the volume of blood flowing to the face. We demonstrate
that the temporal frequency spectra of the estimated PPG
signal for real live individuals are distinctly different than those
of presentation attacks and exploit these differences to detect
presentation attacks. We demonstrate that PPGSecure achieves
significantly better performance than existing state of the art
presentation attack detection methods.

I. INTRODUCTION

Authentication systems using biometrics are already com-

monly used in a variety of applications, ranging from mobile

phones to border security, because they are easy to use and

provide a potentially higher level of security. Instead of

memorizing a lengthy password that could be intercepted by

a hacker, the user only needs to use their finger or their face

to confirm their identity. Despite being commonly used, these

biometrics-based authentication systems are still vulnerable

to spoofing attacks where an attacker can gain access to the

user’s unique biometric.

A biometric presentation attack (BPA) is a situation in

which an attacker has obtained the authentic user’s biometric

and is using it to fool the biometrics-based authentication

system to access the user’s devices and accounts. For exam-

ple, by downloading a picture or a video of the user from

their social media page, the attacker may be able to fool the

system that relies on face recognition. There have even been

cases where attackers 3D print facial masks or fingerprints

and can successfully spoof the authentication system [1].

We developed PPGSecure, a physiology-based biometric

presentation attack detection (BPAD) algorithm which deter-

mines whether a face presented to a biometrics authentication
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Fig. 1. Overview of PPGSecure. Frequency analysis of PPG signals
extracted from captured images is used to distinguish live users from
spoofing attacks with photographs or videos.

system is alive or if it is a face BPA, such as a photograph

or a video of the user. Figure 1 shows an overview of

PPGSecure liveness detection. PPGSecure detects a photo-

plethysmogram (PPG), which is a signal caused by small

color changes in the skin due to the blood flow. These PPG

signals contain physiological indicators that are observable

only in videos of alive faces, allowing machine learning

models to accurately classify a presented face as live or an

attack.

The novelty of our approach is that we rely on generic

frequency features of the entire frequency spectra filtered

in the physiological frequency range, instead of choosing

specific frequency bins or properties of the spectra, such

as the location of the maximum peak [17], [30]. We use

machine learning algorithms to find discriminative patterns

in the frequency spectra that may be difficult to notice by a

human. The advantage of using the entire frequency spectra

directly makes PPGSecure robust to a variety of attacks

because we do not have to design what signal features might

be discriminative of real live faces which may vary for

different methods of fraud.

The paper is organized as follows. Related work on face

anti-spoofing and camera-based PPG detection is described

in Section 2. In Section 3, we provide an overview of the

proposed idea to give intuition about why it works, followed

by the details of our proposed algorithm in Section 4. We

report our results in Section 5 and offer comments about

possible improvements and sources of error in Section 6.

II. PRIOR WORK

A. Face Presentation Attacks

Spoofing attacks used to fool facial recognition systems

have been identified as either 2-dimensional - printed pho-
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Fig. 2. Examples of face presentation attacks. A-F are examples of 2 live
faces and 4 face biometric presentation attacks, where A-B are live faces,
C-D are printed photo attacks and E-F are video attacks [13]. Given a still
image, it is challenging to discern whether it is an image of a live authentic
user or an attack. Using PPGSecure algorithm, we are able to classify with
high accuracy which videos correspond to live users and which correspond
to attacks.

tographs, photographs and videos on a display device, or

3-dimensional - masks. Several examples of live faces and

face presentation attacks are shown in Figure 2. Each of

these attacks poses different challenges for the antispoofing

systems. Galbally et al. presented a review of face spoofing

attacks that have been used in the past, as well as a detailed

survey of attempted anti-spoofing approaches. [1].

B. Motion and Appearance Based Anti-spoofing

Prior anti-spoofing techniques can be categorized as

motion-based or appearance-based [1]. Motion-based tech-

niques considered the difference between foreground face

motion and the background, or motion caused by involun-

tary eye movements, such as blinking [2]–[4], gaze [7] or

pupillary reflex [5], [6]. In addition, differences in motion

of the face in the foreground and the background have been

used with optical flow [8]–[10] or motion sensors on mobile

devices [11]. While effective against printed image and some

video replay attacks, these motion-based techniques could

not prevent attacks with high resolution 3D printed masks

where eyes have been cut out [12] allowing the attacker to

blink and change their gaze.

Meanwhile, some appearance-based methods used differ-

ences in texture and spectral reflectance between live faces

and face presentation attacks [13]–[15], as well as differences

in multispectral properties of skin and mask materials [16].

While these methods are able to distinguish between some

mask attacks and a real face, they do not generalize well

to new datasets and fail in cases where attackers print

masks on very realistic materials [17]. Both appearance-

based and motion-based methods are only able to detect a

few facial recognition spoofing attacks and they fail in more

challenging cases.

C. Physiology for Anti-spoofing

The idea of using physiology to prevent spoofing attacks

was initially employed in fingerprint authentication [18],

where a pulse oximeter was placed at the fingerprint sensor

location [19] to verify that it is a real finger. There have

been very few attempts to use PPG signals as a face liveness

detection modality. Suh et al. used YCbCr color space and

time domain PPG waveforms to distinguish between live

faces and BPA [20]. Their method was only able to detect

photograph attacks accurately and they used a small dataset

that is not publicly available. The current state of the art

method for physiology-based antispoofing is the algorithm

developed by Liu et al. [17]. They computed a PPG signal

using CHROM [21] method from many small facial regions

and computed a similarity between each of the regions.

They defined this similarity as the maximum value of the

Fourier transform of the cross correlation between each two

signals. The authors took into account a spatial distribution

of good and poor facial regions similar to Kumar et al. [22]

by putting lower weights on signals from poor regions and

higher weights on good signals. Different from [22], these

weights were learned through a data-driven approach from

videos of a training set live subjects. Then, they trained a

Support Vector Machine classifier on the weighted similarity

features to classify a video of a face as a real live face or an

attack.

D. Video based measurement of physiology

As the heart pumps blood through the body, the amount

of blood passing through a given region of the blood ves-

sels changes in sync with the cardiac cycle. Hemoglobin

and oxyhemoglobin present in the blood absorb light most

intensely in 520 - 580 nm which is within the range of

the green channel spectrum in RGB cameras [23], [24].

Therefore, as blood flows, the amount of hemoglobin at a

given point will change over time leading to changes in the

amount of light being absorbed and causing a very small

color change. Although this small color change cannot be

seen with a naked eye, with careful signal processing it can

be retrieved from a video recording and provide accurate

vital signs measurements. Recently, there has been a rapid

growth in technology for ambient light camera-based vital

signs detection, such as pulse rate, pulse rate variation and

breathing rate [25]. Sun and Thakor wrote a survey summa-

rizing the current state of the art methods in PPG detection

from cameras [26]. McDuff et al. found that using cyan,

green, and orange (CGO) bands instead of RGB color space

improves vital signs estimation [27]. To improve the signal

to noise ratio in challenging scenarios, Kumar et al. used an

adaptive weighted average called the goodness metric which

only includes strong regions in the PPG estimate and rejects

regions corrupted by noise or with very weak signals [22].

Tulyakov et al. used matrix completion to improve the PPG

estimates in presence of motion by automatically selecting

good facial regions [28].
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E. Liveness detection Using Vital Signs

Since PPG signals detected from live skin regions share

properties that differentiate them from other signals, several

approaches used this property to detect liveness, or locating

live skin region detection in the videos. To improve the

PPG estimate, Bobbia et al. [29] used a raw PPG esti-

mate to better locate the face region boundary by detecting

the skin pulsatility in each of small regions in the face.

Wang et al. [30] detected live skin regions by looking for

features characteristic of PPG signals, assuming the live

signals should share specific properties, such as location

of the maximum frequency peak, small phase delay, small

frequency spectrum entropy and large inner product. They

created a matrix using these four features for each video and

used an unsupervised approach of matrix factorization to find

regions in the video corresponding to live regions.

Existing attempts in the literature of physiology-based

anti-spoofing or liveness detection are limited to datasets

with a small variety of attacks [17], [20] or do not address the

more challenging issues of varying light conditions and hand

motion if the camera or the form of attack is handheld [12],

[17], [20]. In our proposed PPGSecure algorithm, we detect

PPG signals using intensity changes observed in the green

channel and use their frequency spectra directly to train a

machine learning classifier, making our method more robust

to diverse scenarios.

III. METHODOLOGY

A. Background: Camera-Based PPG Estimation

Flowing blood through the circulatory system causes a

color change that can be observed in alive faces with a

camera. When a biometric presentation attack, such as a

photograph or video display, is presented to the authentica-

tion system, the captured video does not contain these subtle

pulsatile color changes induced by blood flow (See Figure

3). Some light passes through the skin and some is reflected

at the surface. A portion of the light that passes through the

skin is absorbed at the surface in the dermis skin layer, by

melanin present in the epidermis layer and some remaining

light reaches blood vessels. The amount of light absorbed

by blood vessels changes with changing hemoglobin and

oxyhemoglobin concentrations during the cardiac cycle. This

results in a very weak time varying signal detected by the

camera. On the other hand, when a material covers the skin,

the majority of the light is absorbed or reflected by that

material and only a small portion of the light reaches the

skin beneath, which is not sufficient to be detected by a

camera.

Furthermore, signals from several facial regions share sim-

ilarities in the frequency spectra and have a peak related to

a heart beat frequency around 1 Hz band. Signals measured

from the background and from face attack materials, such

as photographs or videos have random frequency spectra

without these common similarities. This allows us to detect a

difference between a live face and a face BPA. We illustrate

the drastic difference in the observed Fourier transforms of

(a) Live Face (b) Fake Face Attack

Material
Epidermis

Subcutaneous

Dermis

Blood Vessels

Fig. 3. PPG signals derived from color changes due to blood flow can be
observed from a video recording of a live face because some of the light
is able to pass through the skin and reach blood vessels. These types of
color changes are not present in face attacks because there are no blood
vessels present. Therefore, the observed intensity changes do not have the
characteristic PPG signals properties.
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Fig. 4. PPG signals from different facial regions on a live face share
characteristic similarities that are abscent in signals from a face attack or
the background regions.

the obtained PPG signals from alive faces and attacks in

Figure ??.

B. PPGSecure

Our approach is motivated by the fact that signals from

different parts of a live face share similarities in their

frequency spectra, while signals obtained from a presentation

attack or the background will be very different from the live

signals. We extracted PPG signals, computed the spectral

features and used them to train a classifier

1) PPG Signal Extraction: To extract the PPG signals

from the video of a facial skin region, similar to Kumar et.

al. [22], we converted the RGB video to the green channel

and we tracked the face using Kanade Lucas Thomasi (KLT)

tracker [31]. Different from Kumar et al. , we did not

compute a signal to noise ratio for each small facial region

because we are not trying to improve the accuracy of vital

signs estimation. Instead, we are interested in differentiating

between PPG signals from a live face and noise and unrelated

illumination changes. After detecting facial landmarks with
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Fig. 5. Steps involved in PPGSecure. First, we detect facial landmarks
and find the regions of interest (ROIs) in the face and the background. We
extract PPG signals from each ROI (Part 1). We compute spectral feature
vectors (Part 2) and train a machine learning classifier on training subjects’
videos, which then classifies a new person’s video as live or attack based
on its spectral features (Part 3).

Kazemi’s landmark detector [32], we selected three regions

on the face known to be physiologically good for detecting

PPG signals, that is the forehead, left and right cheeks.

In addition to the facial regions, we selected two 50 x 50

pixels regions in the background, one to the left of the

face and one to the right. The advantage of including the

background regions is that any temporal variations induced

due to illumination intensity fluctuations will be the same

for the face in the foreground and the background regions.

But the physiological pulsatile signals will induce intensity

changes only in a live face in the foreground. Thus adding

background regions to the spectral feature vectors provides

robustness against illumination fluctuations mimicking pulse

signal that could fool PPGSecure. We averaged the temporal

intensity changes to obtain a single PPG signal describing

each region of interest. The process of extracting PPG signals

is shown in Part 1 of Figure 4.

2) Spectral Features Computation: Once we have ex-

tracted the raw PPG signals from the face and the back-

ground, we subtract the mean and bandpass filter the PPG

signals in [0.5 Hz, 5 Hz] range, which corresponds to

physiological range of PPG signals. The magnitude of the

Fourier spectrum of each filtered PPG signal becomes a

spectral feature. We concatenated these spectral features from

three facial regions and two background regions to obtain

a spectral feature vector for classification. See Part 2 of

Figure 4. Spectral features are discriminative for classifying

a video of a face as live or as a face BPA because they have

similarities in live faces but not in the face attacks.

3) Classification As Live Or Attack: To classify a new

video of a person’s face as alive or as a biometric pre-

sentation attack we used machine learning. We trained a

support vector machine (SVM) [33] and a random decision

forest (RDF) classifiers [34] on spectral features of training

subjects’ videos. We used a leave-one-subject-out validation

(LOsOV) method to avoid training and testing on spectral

features from videos of the same person. In LOsOV ap-

proach, the training is done on all videos in the dataset

except for videos of one person. These left out videos of

the same person are used as a testing set to evaluate the

initial performance of the model. This procedure is repeated,

each time leaving out a different person’s videos and training

on the remaining dataset. The final performance result is

obtained by averaging the initial resutls on each individual

left-out person. We trained on all kinds of attacks together

(photo, video, hand-held or fixed) but we tested each attack

scenario separately to understand which situations poses a

greater challenge for the detection model.

IV. RESULTS

A. Evaluation on Replay-Attack Dataset

To evaluate the performance of PPGSecure we used a

publicly available dataset, Replay-Attack [13] with video

and photograph biometric presentation attacks. The dataset

contains 360 x 240 pixels video recordings, recorded at 25

fps with a total of 1300 videos of 50 different people. The

dataset has videos of authentic live users, and video and

photo presentation attacks, in controlled and adverse lighting

conditions. The photo and video attacks were recorded

with the form of the attack fixed and handheld in front

of the camera causing small motion. We report our results

separately on handheld and fixed attacks and separately on

photo and video attacks.

To report our results, we used error metrics defined in

terms of True Positives, True Negatives, False Positives and

False Negatives, where a True Positive (TP) is an attack

correctly classified as an attack, a True Negative (TN) is

a live face correctly classified as live, a False Positive

(FP) is a live face misclassified as an attack and a False

Negative (FN) is an attack misclassified as live. The error

evaluation metrics we used are defined as Specificity =
TN

TN+FP
, Sensitivity = TP

TP+FN
, Precision = TP

TP+FP
,

FalsePositiveRate (FPR) = FP

FP+TP
and Accuracy =

TP+TN

TP+TN+FP+FN
. Having a higher number of attacks mis-

classified as live has more severe consequences than mis-

classifying a live face as an attack because it means that a
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TABLE I

PPGSECURE PERFORMANCE ON BIOMETRIC PRESENTATION ATTACKS DETECTION USING FIXED PHOTOGRAPHS

Method Specificity Sensitivity Precision FPR Accuracy

Liu [17] 99.57 % 95.28 % 99.59 % 0.41 % 97.32 %
PPGSecure 93.68 % 82.03 % 94.65 % 5.35 % 86.96 %
PPGSecure +background 96.68 % 85.97 % 97.11 % 2.89 % 90.63 %
PPGSecure +filtered 99.59 % 98.79 % 99.59 % 0.41 % 99.18 %
PPGSecure +filtered +background 100 % 100 % 100 % 0 % 100 %

TABLE II

PPPGSECURE PERFORMANCE ON BIOMETRIC PRESENTATION ATTACKS DETECTION USING HANDHELD PHOTOGRAPHS

Method Specificity Sensitivity Precision FPR Accuracy

Liu [17] 97.40 % 81.92 % 97.91 % 2.09 % 88.15 %
PPGSecure 91.27 % 83.44 % 92.18 % 7.82 % 86.94 %
PPGSecure +background 100 % 100 % 100 % 0 % 100 %
PPGSecure +filtered 100 % 98.80 % 100 % 0 % 99.39 %
PPGSecure +filtered +background 100 % 100 % 100 % 0 % 100 %

TABLE III

PPGSECURE PERFORMANCE ON BIOMETRIC PRESENTATION ATTACKS DETECTION USING FIXED VIDEOS

Method Specificity Sensitivity Precision FPR Accuracy

Liu [17] 96.52 % 95.14 % 96.58 % 3.42 % 95.82 %
PPGSecure 86.31 % 81.27 % 87.33 % 12.67 % 83.61 %
PPGSecure +background 98.41 % 85.70 % 98.65 % 1.35 % 91.09 %
PPGSecure +filtered 100 % 98.80 % 100 % 0 % 99.39 %
PPGSecure +filtered +background 100 % 100 % 100 % 0 % 100 %

TABLE IV

PPGSECURE PERFORMANCE ON BIOMETRIC PRESENTATION ATTACKS DETECTION USING HANDHELD VIDEOS

Method Specificity Sensitivity Precision FPR Accuracy

Liu [17] 90.64 % 80.54 % 91.97 % 8.03 % 84.87 %
PPGSecure 100 % 84.97 % 100 % 0 % 91.16 %
PPGSecure +background 100 % 100 % 100 % 0 % 100 %
PPGSecure +filtered 100 % 98.80 % 100 % 0 % 99.39 %
PPGSecure +filtered +background 100 % 100 % 100 % 0 % 100 %

photograph or a video has been wrongly classified as the

live authentic user and an attacker has gained access to the

system. If an authentic user is incorrectly classified as an

attack, it is less problematic because the user can try to access

the device again.

B. Comparison to Existing Methods

We compared the performance of PPGSecure to the cur-

rent state of the art physiology-based method which uses

PPG signals and machine learning [17]. Liu et al.’s method

is based on learning a spatial confidence map using PPG

signals from several facial regions from many live people.

Because they trained their algorithm on a mask dataset

which is not yet publicly available, combined with a publicly

available mask 3DMAD dataset [12], we are not able to

directly compare our results to their performance because

we only have access to a subset of their dataset. Therefore,

we implemented their algorithm as described in their paper

and evaluated it on the Replay-Attack public dataset [13].

PPGSecure outperforms Liu et al. on Replay-Attack

dataset, especially when hand motion is present (Tables

II and IV). Liu et al.’s performance drops in presence of

hand motion. This could be because they look for correlated

changes in the facial regions and handshake motion makes

the whole photograph or video move uniformly, resulting

in high cross-correlation patterns. Because hand motion fre-

quency is different from that of live PPG signals, PPGSecure

is able to learn the differences in frequency spectra patterns

between handheld attacks and authentic live user’s PPG

signals.

PPGSecure performs better when the PPG signals are

bandpass filtered before taking the Fourier transform

(PPGSecure+filtered). This could be because bandpass filter-

ing removes unrelated noise from frequency bands outside

the physiological range. Furthermore, adding background

regions improves the performance of PPGSecure (PPGSe-

cure+background). It is especially apparent when the signals

are not bandpass filtered and contain more noise in the

frequencies outside of the physiological range. This supports

our hypothesis that adding the background regions reduces

the error.
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V. DISCUSSION

A. Detection Accuracy Depends On Types Of Attacks

Physiology methods, such as PPGSecure and the method

developed by Liu et al. detect a characteristic PPG signal

pattern which is only present in live skin regions and

absent in biometric presentation attacks, regardless of what

face attack material was used. Some of these attacks are

easier to detect with physiology methods than others. For

instance, detecting a photograph attack might be easier if it

is fixed on a tripod and there is no motion in the image,

making the intensity changes minimal and very different

from characteristic color changes present in live faces. If

presented with a video recording of a PPG signal, PPGSecure

should still be able to classify this as an attack. A similar

challenge is present in Replay-Attack dataset when the attack

is in the form of a video of a real person displayed to the

authentication system on a screen and PPGSecure is able to

detect these attacks with high accuracy. Future work includes

the development of a liveness metric which will compute

how good a given video is for detecting physiology-based

liveness.

B. Difficulties Due To Quality Of Region Of Interest

Any situation where light is obstructed from reaching the

blood vessels will decrease the performance of physiology-

based attack detection methods. For example, when a person

is wearing heavy make-up or has a darker skin tone, the

accuracy of this method will be compromised. PPGSecure,

as well as Liu et al. ’s method, rely on using specific

facial regions in live faces, where the PPG signals are

physiologically strong. This approach may be problematic

when people have facial hair, for instance, a beard covering

the cheeks or bangs covering the forehead. When comparing

the hair covered regions to other good regions, we will end

up with the same facial confidence map as we would for a

person wearing a mask and having a part of the mask cut

out to allow PPG signals to be detected but keeping enough

face covered for the facial recognition system to be fooled.

Such datasets including attacks where only a part of the mask

or photograph has been cut out are not available to test our

assumptions but we plan to collect our own data in the future

to explore this.

C. Applications Beyond Biometrics

Besides the anti-spoofing application of this work, there

are other fields where being able to differentiate between live

skin PPG signals from the background or noise is beneficial.

Detecting liveness in videos may allow finding survivors

during a rescue action by flying drones and recording the

scene. Additionally, PPGSecure could facilitate detecting

humans in videos, which is a challenging problem due to a

wide range of poses and skin tones [35], [36]. Furthermore,

realistic modeling of human skin is a difficult problem

because of the complexity of biological tissues and their

interaction with light [37], [38]. By considering the obtained

temporal illumination changes due to the blood flow in the

skin, skin models could be improved by changing the light

absorption model of the skin to make their appearance more

believable.

ACKNOWLEDGMENTS

This work was supported in part by NSF grant CNS-

1429047 and NHARP grant THECB-NHARP 13308.

REFERENCES

[1] J. Galbally, S. Marcel, and J. Fierrez, “Biometric antispoofing meth-
ods: A survey in face recognition,” IEEE Access, vol. 2, pp. 1530–
1552, 2014.

[2] H.-K. Jee, S.-U. Jung, and J.-H. Yoo, “Liveness detection for embed-
ded face recognition system,” International Journal of Biological and

Medical Sciences, vol. 1, no. 4, pp. 235–238, 2006.

[3] G. Pan, L. Sun, Z. Wu, and S. Lao, “Eyeblink-based anti-spoofing
in face recognition from a generic webcamera,” in 2007 IEEE 11th

International Conference on Computer Vision. IEEE, 2007, pp. 1–8.

[4] J. W. Li, “Eye blink detection based on multiple gabor response
waves,” Proceedings of the 7th International Conference on Machine

Learning and Cybernetics, ICMLC, vol. 5, no. July, pp. 2852–2856,
2008.

[5] X. Huang, C. Ti, Q. Z. Hou, A. Tokuta, and R. Yang, “An experimental
study of pupil constriction for liveness detection,” Proceedings of IEEE

Workshop on Applications of Computer Vision, pp. 252–258, 2013.

[6] A. Pacut and A. Czajka, “Aliveness detection for iris biometrics,” in
Proceedings 40th Annual 2006 International Carnahan Conference on

Security Technology. IEEE, 2006, pp. 122–129.

[7] A. Ali, F. Deravi, and S. Hoque, “Liveness detection using gaze
collinearity,” Proceedings - 3rd International Conference on Emerging

Security Technologies, EST 2012, pp. 62–65, 2012.

[8] K. Kollreider, H. Fronthaler, and J. Bigun, “Evaluating liveness by face
images and the structure tensor,” Proceedings - Fourth IEEE Workshop

on Automatic Identification Advanced Technologies, AUTO ID 2005,
vol. 2005, pp. 75–80, 2005.

[9] ——, “Non-intrusive liveness detection by face images,” Image and

Vision Computing, vol. 27, no. 3, pp. 233–244, 2009.

[10] W. Bao, H. Li, N. Li, W. Jiang, and a. O. F. Field, “A Liveness
Detection Method for Face Recognition Based on Optical Flow Field,”
Computer, pp. 0–3, 2009.

[11] P. Chen, S., Pande, A., and Mohapatra, “Sensor-Assisted Facial
Recognition : An Enhanced Bio- metric Authentication System for
Smartphones,” In Proceedings of the 12th annual international con-

ference on Mobile systems, applications, and services MobiSys ’14,
pp. 109–122, 2014.

[12] N. Erdogmus and S. Marcel, “Spoofing in 2D face recognition with
3D masks and anti-spoofing with Kinect,” IEEE 6th International

Conference on Biometrics: Theory, Applications and Systems, BTAS

2013, 2013.

[13] I. Chingovska, A. Anjos, and S. Marcel, “On the effectiveness of local
binary patterns in face anti-spoofing,” in Biometrics Special Interest

Group (BIOSIG), 2012 BIOSIG-Proceedings of the International Con-

ference of the. IEEE, 2012, pp. 1–7.

[14] T. Pereira F., J. Komulainen, A. Anjos, J. Martino M., A. Hadid,
M. Pietikainen, and S. Marcel, “Face liveness detection using dynamic
texture,” EURASIP Journal on Image and Video Processing, p. 2, 2014.
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