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Abstract— Authentication of users by exploiting face as a
biometric is gaining widespread traction due to recent advances
in face detection and recognition algorithms. While face recog-
nition has made rapid advances in its performance, such face-
based authentication systems remain vulnerable to biometric
presentation attacks. Biometric presentation attacks are varied
and the most common attacks include the presentation of a
video or photograph on a display device, the presentation of a
printed photograph or the presentation of a face mask resem-
bling the user to be authenticated. In this paper, we present
PPGSecure, a novel methodology that relies on camera-based
physiology measurements to detect and thwart such biometric
presentation attacks. PPGSecure uses a photoplethysmogram
(PPG), which is an estimate of vital signs from the small color
changes in the video observed due to minor pulsatile variations
in the volume of blood flowing to the face. We demonstrate
that the temporal frequency spectra of the estimated PPG
signal for real live individuals are distinctly different than those
of presentation attacks and exploit these differences to detect
presentation attacks. We demonstrate that PPGSecure achieves
significantly better performance than existing state of the art
presentation attack detection methods.

I. INTRODUCTION

Authentication systems using biometrics are already com-
monly used in a variety of applications, ranging from mobile
phones to border security, because they are easy to use and
provide a potentially higher level of security. Instead of
memorizing a lengthy password that could be intercepted by
a hacker, the user only needs to use their finger or their face
to confirm their identity. Despite being commonly used, these
biometrics-based authentication systems are still vulnerable
to spoofing attacks where an attacker can gain access to the
user’s unique biometric.

A biometric presentation attack (BPA) is a situation in
which an attacker has obtained the authentic user’s biometric
and is using it to fool the biometrics-based authentication
system to access the user’s devices and accounts. For exam-
ple, by downloading a picture or a video of the user from
their social media page, the attacker may be able to fool the
system that relies on face recognition. There have even been
cases where attackers 3D print facial masks or fingerprints
and can successfully spoof the authentication system [1].

We developed PPGSecure, a physiology-based biometric
presentation attack detection (BPAD) algorithm which deter-
mines whether a face presented to a biometrics authentication
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Fig. 1.  Overview of PPGSecure. Frequency analysis of PPG signals

extracted from captured images is used to distinguish live users from
spoofing attacks with photographs or videos.

system is alive or if it is a face BPA, such as a photograph
or a video of the user. Figure 1 shows an overview of
PPGSecure liveness detection. PPGSecure detects a photo-
plethysmogram (PPG), which is a signal caused by small
color changes in the skin due to the blood flow. These PPG
signals contain physiological indicators that are observable
only in videos of alive faces, allowing machine learning
models to accurately classify a presented face as live or an
attack.

The novelty of our approach is that we rely on generic
frequency features of the entire frequency spectra filtered
in the physiological frequency range, instead of choosing
specific frequency bins or properties of the spectra, such
as the location of the maximum peak [17], [30]. We use
machine learning algorithms to find discriminative patterns
in the frequency spectra that may be difficult to notice by a
human. The advantage of using the entire frequency spectra
directly makes PPGSecure robust to a variety of attacks
because we do not have to design what signal features might
be discriminative of real live faces which may vary for
different methods of fraud.

The paper is organized as follows. Related work on face
anti-spoofing and camera-based PPG detection is described
in Section 2. In Section 3, we provide an overview of the
proposed idea to give intuition about why it works, followed
by the details of our proposed algorithm in Section 4. We
report our results in Section 5 and offer comments about
possible improvements and sources of error in Section 6.

II. PRIOR WORK

A. Face Presentation Attacks

Spoofing attacks used to fool facial recognition systems
have been identified as either 2-dimensional - printed pho-
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Fig. 2. Examples of face presentation attacks. A-F are examples of 2 live
faces and 4 face biometric presentation attacks, where A-B are live faces,
C-D are printed photo attacks and E-F are video attacks [13]. Given a still
image, it is challenging to discern whether it is an image of a live authentic
user or an attack. Using PPGSecure algorithm, we are able to classify with
high accuracy which videos correspond to live users and which correspond
to attacks.

tographs, photographs and videos on a display device, or
3-dimensional - masks. Several examples of live faces and
face presentation attacks are shown in Figure 2. Each of
these attacks poses different challenges for the antispoofing
systems. Galbally et al. presented a review of face spoofing
attacks that have been used in the past, as well as a detailed
survey of attempted anti-spoofing approaches. [1].

B. Motion and Appearance Based Anti-spoofing

Prior anti-spoofing techniques can be categorized as
motion-based or appearance-based [1]. Motion-based tech-
niques considered the difference between foreground face
motion and the background, or motion caused by involun-
tary eye movements, such as blinking [2]-[4], gaze [7] or
pupillary reflex [5], [6]. In addition, differences in motion
of the face in the foreground and the background have been
used with optical flow [8]-[10] or motion sensors on mobile
devices [11]. While effective against printed image and some
video replay attacks, these motion-based techniques could
not prevent attacks with high resolution 3D printed masks
where eyes have been cut out [12] allowing the attacker to
blink and change their gaze.

Meanwhile, some appearance-based methods used differ-
ences in texture and spectral reflectance between live faces
and face presentation attacks [13]-[15], as well as differences
in multispectral properties of skin and mask materials [16].
While these methods are able to distinguish between some
mask attacks and a real face, they do not generalize well
to new datasets and fail in cases where attackers print
masks on very realistic materials [17]. Both appearance-
based and motion-based methods are only able to detect a
few facial recognition spoofing attacks and they fail in more
challenging cases.
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C. Physiology for Anti-spoofing

The idea of using physiology to prevent spoofing attacks
was initially employed in fingerprint authentication [18],
where a pulse oximeter was placed at the fingerprint sensor
location [19] to verify that it is a real finger. There have
been very few attempts to use PPG signals as a face liveness
detection modality. Suh et al. used YCbCr color space and
time domain PPG waveforms to distinguish between live
faces and BPA [20]. Their method was only able to detect
photograph attacks accurately and they used a small dataset
that is not publicly available. The current state of the art
method for physiology-based antispoofing is the algorithm
developed by Liu et al. [17]. They computed a PPG signal
using CHROM [21] method from many small facial regions
and computed a similarity between each of the regions.
They defined this similarity as the maximum value of the
Fourier transform of the cross correlation between each two
signals. The authors took into account a spatial distribution
of good and poor facial regions similar to Kumar et al. [22]
by putting lower weights on signals from poor regions and
higher weights on good signals. Different from [22], these
weights were learned through a data-driven approach from
videos of a training set live subjects. Then, they trained a
Support Vector Machine classifier on the weighted similarity
features to classify a video of a face as a real live face or an
attack.

D. Video based measurement of physiology

As the heart pumps blood through the body, the amount
of blood passing through a given region of the blood ves-
sels changes in sync with the cardiac cycle. Hemoglobin
and oxyhemoglobin present in the blood absorb light most
intensely in 520 - 580 nm which is within the range of
the green channel spectrum in RGB cameras [23], [24].
Therefore, as blood flows, the amount of hemoglobin at a
given point will change over time leading to changes in the
amount of light being absorbed and causing a very small
color change. Although this small color change cannot be
seen with a naked eye, with careful signal processing it can
be retrieved from a video recording and provide accurate
vital signs measurements. Recently, there has been a rapid
growth in technology for ambient light camera-based vital
signs detection, such as pulse rate, pulse rate variation and
breathing rate [25]. Sun and Thakor wrote a survey summa-
rizing the current state of the art methods in PPG detection
from cameras [26]. McDuff et al. found that using cyan,
green, and orange (CGO) bands instead of RGB color space
improves vital signs estimation [27]. To improve the signal
to noise ratio in challenging scenarios, Kumar et al. used an
adaptive weighted average called the goodness metric which
only includes strong regions in the PPG estimate and rejects
regions corrupted by noise or with very weak signals [22].
Tulyakov et al. used matrix completion to improve the PPG
estimates in presence of motion by automatically selecting
good facial regions [28].



E. Liveness detection Using Vital Signs

Since PPG signals detected from live skin regions share
properties that differentiate them from other signals, several
approaches used this property to detect liveness, or locating
live skin region detection in the videos. To improve the
PPG estimate, Bobbia et al. [29] used a raw PPG esti-
mate to better locate the face region boundary by detecting
the skin pulsatility in each of small regions in the face.
Wang et al. [30] detected live skin regions by looking for
features characteristic of PPG signals, assuming the live
signals should share specific properties, such as location
of the maximum frequency peak, small phase delay, small
frequency spectrum entropy and large inner product. They
created a matrix using these four features for each video and
used an unsupervised approach of matrix factorization to find
regions in the video corresponding to live regions.

Existing attempts in the literature of physiology-based
anti-spoofing or liveness detection are limited to datasets
with a small variety of attacks [17], [20] or do not address the
more challenging issues of varying light conditions and hand
motion if the camera or the form of attack is handheld [12],
[17], [20]. In our proposed PPGSecure algorithm, we detect
PPG signals using intensity changes observed in the green
channel and use their frequency spectra directly to train a
machine learning classifier, making our method more robust
to diverse scenarios.

III. METHODOLOGY
A. Background: Camera-Based PPG Estimation

Flowing blood through the circulatory system causes a
color change that can be observed in alive faces with a
camera. When a biometric presentation attack, such as a
photograph or video display, is presented to the authentica-
tion system, the captured video does not contain these subtle
pulsatile color changes induced by blood flow (See Figure
3). Some light passes through the skin and some is reflected
at the surface. A portion of the light that passes through the
skin is absorbed at the surface in the dermis skin layer, by
melanin present in the epidermis layer and some remaining
light reaches blood vessels. The amount of light absorbed
by blood vessels changes with changing hemoglobin and
oxyhemoglobin concentrations during the cardiac cycle. This
results in a very weak time varying signal detected by the
camera. On the other hand, when a material covers the skin,
the majority of the light is absorbed or reflected by that
material and only a small portion of the light reaches the
skin beneath, which is not sufficient to be detected by a
camera.

Furthermore, signals from several facial regions share sim-
ilarities in the frequency spectra and have a peak related to
a heart beat frequency around 1 Hz band. Signals measured
from the background and from face attack materials, such
as photographs or videos have random frequency spectra
without these common similarities. This allows us to detect a
difference between a live face and a face BPA. We illustrate
the drastic difference in the observed Fourier transforms of
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Fig. 3. PPG signals derived from color changes due to blood flow can be
observed from a video recording of a live face because some of the light
is able to pass through the skin and reach blood vessels. These types of
color changes are not present in face attacks because there are no blood
vessels present. Therefore, the observed intensity changes do not have the
characteristic PPG signals properties.
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Fig. 4. PPG signals from different facial regions on a live face share
characteristic similarities that are abscent in signals from a face attack or
the background regions.

the obtained PPG signals from alive faces and attacks in
Figure 2?.

B. PPGSecure

Our approach is motivated by the fact that signals from
different parts of a live face share similarities in their
frequency spectra, while signals obtained from a presentation
attack or the background will be very different from the live
signals. We extracted PPG signals, computed the spectral
features and used them to train a classifier

1) PPG Signal Extraction: To extract the PPG signals
from the video of a facial skin region, similar to Kumar et.
al. [22], we converted the RGB video to the green channel
and we tracked the face using Kanade Lucas Thomasi (KLT)
tracker [31]. Different from Kumar et al. , we did not
compute a signal to noise ratio for each small facial region
because we are not trying to improve the accuracy of vital
signs estimation. Instead, we are interested in differentiating
between PPG signals from a live face and noise and unrelated
illumination changes. After detecting facial landmarks with
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Fig. 5. Steps involved in PPGSecure. First, we detect facial landmarks
and find the regions of interest (ROIs) in the face and the background. We
extract PPG signals from each ROI (Part 1). We compute spectral feature
vectors (Part 2) and train a machine learning classifier on training subjects’
videos, which then classifies a new person’s video as live or attack based
on its spectral features (Part 3).

Kazemi’s landmark detector [32], we selected three regions
on the face known to be physiologically good for detecting
PPG signals, that is the forehead, left and right cheeks.
In addition to the facial regions, we selected two 50 x 50
pixels regions in the background, one to the left of the
face and one to the right. The advantage of including the
background regions is that any temporal variations induced
due to illumination intensity fluctuations will be the same
for the face in the foreground and the background regions.
But the physiological pulsatile signals will induce intensity
changes only in a live face in the foreground. Thus adding
background regions to the spectral feature vectors provides
robustness against illumination fluctuations mimicking pulse
signal that could fool PPGSecure. We averaged the temporal
intensity changes to obtain a single PPG signal describing
each region of interest. The process of extracting PPG signals
is shown in Part 1 of Figure 4.

2) Spectral Features Computation: Once we have ex-
tracted the raw PPG signals from the face and the back-
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ground, we subtract the mean and bandpass filter the PPG
signals in [0.5 Hz, 5 Hz] range, which corresponds to
physiological range of PPG signals. The magnitude of the
Fourier spectrum of each filtered PPG signal becomes a
spectral feature. We concatenated these spectral features from
three facial regions and two background regions to obtain
a spectral feature vector for classification. See Part 2 of
Figure 4. Spectral features are discriminative for classifying
a video of a face as live or as a face BPA because they have
similarities in live faces but not in the face attacks.

3) Classification As Live Or Attack: To classify a new
video of a person’s face as alive or as a biometric pre-
sentation attack we used machine learning. We trained a
support vector machine (SVM) [33] and a random decision
forest (RDF) classifiers [34] on spectral features of training
subjects’ videos. We used a leave-one-subject-out validation
(LOsOV) method to avoid training and testing on spectral
features from videos of the same person. In LOsOV ap-
proach, the training is done on all videos in the dataset
except for videos of one person. These left out videos of
the same person are used as a testing set to evaluate the
initial performance of the model. This procedure is repeated,
each time leaving out a different person’s videos and training
on the remaining dataset. The final performance result is
obtained by averaging the initial resutls on each individual
left-out person. We trained on all kinds of attacks together
(photo, video, hand-held or fixed) but we tested each attack
scenario separately to understand which situations poses a
greater challenge for the detection model.

IV. RESULTS
A. Evaluation on Replay-Attack Dataset

To evaluate the performance of PPGSecure we used a
publicly available dataset, Replay-Attack [13] with video
and photograph biometric presentation attacks. The dataset
contains 360 x 240 pixels video recordings, recorded at 25
fps with a total of 1300 videos of 50 different people. The
dataset has videos of authentic live users, and video and
photo presentation attacks, in controlled and adverse lighting
conditions. The photo and video attacks were recorded
with the form of the attack fixed and handheld in front
of the camera causing small motion. We report our results
separately on handheld and fixed attacks and separately on
photo and video attacks.

To report our results, we used error metrics defined in
terms of True Positives, True Negatives, False Positives and
False Negatives, where a True Positive (TP) is an attack
correctly classified as an attack, a True Negative (TN) is
a live face correctly classified as live, a False Positive
(FP) is a live face misclassified as an attack and a False
Negative (FN) is an attack misclassified as live. The error
evaluation metrics we used are defined as Specificity =

N Sensitivity = Precision =

TN+FP’ TP+FN’

FalsePositiveRate (FPR) = FPF+PTP
TP+TN

TPYTN{FPTFN" Having a higher number of attacks mis-
classified as live has more severe consequences than mis-
classifying a live face as an attack because it means that a

TP
TP+FP’
and Accuracy =



TABLE 1
PPGSECURE PERFORMANCE ON BIOMETRIC PRESENTATION ATTACKS DETECTION USING FIXED PHOTOGRAPHS

Method Specificity  Sensitivity  Precision FPR  Accuracy

Liu [17] 99.57 % 95.28 % 99.59 % 041 % 97.32 %

PPGSecure 93.68 % 82.03 % 94.65 % 535 % 86.96 %

PPGSecure +background 96.68 % 85.97 % 97.11 %  2.89 % 90.63 %

PPGSecure +filtered 99.59 % 98.79 % 99.59 %  0.41 % 99.18 %

PPGSecure +filtered +background 100 % 100 % 100 % 0 % 100 %
TABLE II

PPPGSECURE PERFORMANCE ON BIOMETRIC PRESENTATION ATTACKS DETECTION USING HANDHELD PHOTOGRAPHS

Method Specificity  Sensitivity  Precision FPR  Accuracy

Liu [17] 97.40 % 81.92 % 9791 %  2.09 % 88.15 %

PPGSecure 91.27 % 83.44 % 9218 % 7.82 % 86.94 %

PPGSecure +background 100 % 100 % 100 % 0 % 100 %

PPGSecure +filtered 100 % 98.80 % 100 % 0% 99.39 %

PPGSecure +filtered +background 100 % 100 % 100 % 0 % 100 %
TABLE III

PPGSECURE PERFORMANCE ON BIOMETRIC PRESENTATION ATTACKS DETECTION USING FIXED VIDEOS

Method Specificity  Sensitivity  Precision FPR  Accuracy

Liu [17] 96.52 % 95.14 % 96.58 % 342 % 95.82 %

PPGSecure 86.31 % 81.27 % 8733 % 12.67 % 83.61 %

PPGSecure +background 98.41 % 85.70 % 98.65 % 1.35 % 91.09 %

PPGSecure +filtered 100 % 98.80 % 100 % 0 % 99.39 %

PPGSecure +filtered +background 100 % 100 % 100 % 0 % 100 %
TABLE IV

PPGSECURE PERFORMANCE ON BIOMETRIC PRESENTATION ATTACKS DETECTION USING HANDHELD VIDEOS

Method Specificity  Sensitivity  Precision FPR  Accuracy
Liu [17] 90.64 % 80.54 % 91.97 % 8.03 % 84.87 %
PPGSecure 100 % 84.97 % 100 % 0 % 91.16 %
PPGSecure +background 100 % 100 % 100 % 0 % 100 %
PPGSecure +filtered 100 % 98.80 % 100 % 0 % 99.39 %
PPGSecure +filtered +background 100 % 100 % 100 % 0 % 100 %

photograph or a video has been wrongly classified as the
live authentic user and an attacker has gained access to the
system. If an authentic user is incorrectly classified as an
attack, it is less problematic because the user can try to access
the device again.

B. Comparison to Existing Methods

We compared the performance of PPGSecure to the cur-
rent state of the art physiology-based method which uses
PPG signals and machine learning [17]. Liu et al.’s method
is based on learning a spatial confidence map using PPG
signals from several facial regions from many live people.
Because they trained their algorithm on a mask dataset
which is not yet publicly available, combined with a publicly
available mask 3DMAD dataset [12], we are not able to
directly compare our results to their performance because
we only have access to a subset of their dataset. Therefore,
we implemented their algorithm as described in their paper
and evaluated it on the Replay-Attack public dataset [13].

PPGSecure outperforms Liu et al. on Replay-Attack
dataset, especially when hand motion is present (Tables
I and IV). Liu et al’s performance drops in presence of
hand motion. This could be because they look for correlated
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changes in the facial regions and handshake motion makes
the whole photograph or video move uniformly, resulting
in high cross-correlation patterns. Because hand motion fre-
quency is different from that of live PPG signals, PPGSecure
is able to learn the differences in frequency spectra patterns
between handheld attacks and authentic live user’s PPG
signals.

PPGSecure performs better when the PPG signals are
bandpass filtered before taking the Fourier transform
(PPGSecure+filtered). This could be because bandpass filter-
ing removes unrelated noise from frequency bands outside
the physiological range. Furthermore, adding background
regions improves the performance of PPGSecure (PPGSe-
cure+background). It is especially apparent when the signals
are not bandpass filtered and contain more noise in the
frequencies outside of the physiological range. This supports
our hypothesis that adding the background regions reduces
the error.



V. DISCUSSION
A. Detection Accuracy Depends On Types Of Attacks

Physiology methods, such as PPGSecure and the method
developed by Liu et al. detect a characteristic PPG signal
pattern which is only present in live skin regions and
absent in biometric presentation attacks, regardless of what
face attack material was used. Some of these attacks are
easier to detect with physiology methods than others. For
instance, detecting a photograph attack might be easier if it
is fixed on a tripod and there is no motion in the image,
making the intensity changes minimal and very different
from characteristic color changes present in live faces. If
presented with a video recording of a PPG signal, PPGSecure
should still be able to classify this as an attack. A similar
challenge is present in Replay-Attack dataset when the attack
is in the form of a video of a real person displayed to the
authentication system on a screen and PPGSecure is able to
detect these attacks with high accuracy. Future work includes
the development of a liveness metric which will compute
how good a given video is for detecting physiology-based
liveness.

B. Difficulties Due To Quality Of Region Of Interest

Any situation where light is obstructed from reaching the
blood vessels will decrease the performance of physiology-
based attack detection methods. For example, when a person
is wearing heavy make-up or has a darker skin tone, the
accuracy of this method will be compromised. PPGSecure,
as well as Liu et al. ’s method, rely on using specific
facial regions in live faces, where the PPG signals are
physiologically strong. This approach may be problematic
when people have facial hair, for instance, a beard covering
the cheeks or bangs covering the forehead. When comparing
the hair covered regions to other good regions, we will end
up with the same facial confidence map as we would for a
person wearing a mask and having a part of the mask cut
out to allow PPG signals to be detected but keeping enough
face covered for the facial recognition system to be fooled.
Such datasets including attacks where only a part of the mask
or photograph has been cut out are not available to test our
assumptions but we plan to collect our own data in the future
to explore this.

C. Applications Beyond Biometrics

Besides the anti-spoofing application of this work, there
are other fields where being able to differentiate between live
skin PPG signals from the background or noise is beneficial.
Detecting liveness in videos may allow finding survivors
during a rescue action by flying drones and recording the
scene. Additionally, PPGSecure could facilitate detecting
humans in videos, which is a challenging problem due to a
wide range of poses and skin tones [35], [36]. Furthermore,
realistic modeling of human skin is a difficult problem
because of the complexity of biological tissues and their
interaction with light [37], [38]. By considering the obtained
temporal illumination changes due to the blood flow in the
skin, skin models could be improved by changing the light
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absorption model of the skin to make their appearance more
believable.
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