
Practically Efficient Scheduler for Minimizing

Average Flow Time of Parallel Jobs

Kunal Agrawal

Washington University in St. Louis

kunal@wustl.edu

I-Ting Angelina Lee

Washington University in St. Louis

angelee@wustl.edu

Jing Li

New Jersey Institute of Technology

jingli@njit.edu

Kefu Lu

Washington University in St. Louis

kefulu@wustl.edu

Benjamin Moseley

Carnegie Mellon University

moseleyb@andrew.cmu.edu

Abstract—Many algorithms have been proposed to efficiently
schedule parallel jobs on a multicore and/or multiprocessor
machine to minimize average flow time, and the complexity
of the problem is well understood. In practice, the problem
is far from being understood. A reason for the gap between
theory and practice is that all theoretical algorithms have
prohibitive overheads in actual implementation including using
many preemptions.

One of the flagship successes of scheduling theory is the work-
stealing scheduler. Work-stealing is used for optimizing the flow
time of a single parallel job executing on a single machine with
multiple cores and has a strong performance in theory and in
practice. Consequently, it is implemented in almost all parallel
runtime systems.

This paper seeks to bridge theory and practice for scheduling
parallel jobs that arrive online, by introducing an adaptation
of the work-stealing scheduler for average flow time. The new
algorithm Distributed Random Equi-Partition (DREP) has strong
practical and theoretical performance. Practically, the algorithm
has the following advantages: (1) it is non-clairvoyant; (2) all
processors make scheduling decisions in a decentralized manner
requiring minimal synchronization and communications; and
(3) it requires a small and bounded number of preemptions.
Theoretically, we prove that DREP is (4 + ǫ)-speed O(1

ǫ3
)-

competitive for average flow time.

We have empirically evaluated DREP using both simulations
and actual implementation by modifying the Cilk Plus work-
stealing runtime system. The evaluation results show that DREP
performs well compared to other scheduling strategies, including
those that are theoretically good but cannot be faithfully imple-
mented in practice.

Index Terms—parallel scheduling, online scheduling, work
stealing, average flow time

I. INTRODUCTION

In many application environments such as clouds, grids,

and shared servers, clients send jobs to be processed on a

server over time. The multicore and/or multiprocessor server

schedules the jobs with the goal of both using the server

resources efficiently and providing a good quality of service

to the client jobs. One of the most popular quality metrics is

the average flow time, where the flow time of a job is the

amount of time between the job’s arrival at the server and its

completion. Formally, if the completion (finish) time of job

Ji is fi and its release (arrival) time is ri, then the flow time

of job Ji is fi − ri. The average (total) flow time objective

focuses on minimizing
∑

i(fi − ri).
For sequential programs that can only utilize one core

at a time, minimizing average flow time has been studied

extensively [1–5]. However, most machines now consist of

multiple cores and the parallelism of machines is expected to

increase. In addition, there is a growing interest in parallelizing

applications, so that individual jobs may themselves have

internal parallelism and can execute on multiple cores at the

same time to shorten their processing time. Programming

languages, such as variants of Cilk [6–9], Intel’s TBB [10],

OpenMP [11], X10 [12], and Habanero [13, 14], are designed

to allow the programmer to write parallel programs (jobs).

Note that this work considers the parallel online scheduling

problem of a single server machine, instead of an HPC cluster.

Hence, a parallel job considered in this work can run in parallel

on the multiple cores of a single server machine.

In this paper, we focus on minimizing average flow time

in a setting where n parallel jobs (written using one of these

parallel languages) arrive over time (online) and share a single

machine with m processors.1 We are particularly interested

in designing a theoretically good and practically efficient

algorithm for this problem which can be implemented in real

systems. We first provide some context for our work and then

explain our theoretical and experimental contributions.

Scheduling a Single Parallel Job: A parallel program can

be represented as a directed acyclic graph (DAG) where each

node of a DAG is a sequence of instructions that must execute

sequentially and each edge is a dependence between nodes. A

node is ready to be executed when all its predecessors have

been executed. The scheduler decides when to execute which

node on which processor. The problem of scheduling a single

parallel job on m processors of a single machine to minimize

makespan — the flow time of a single job — has been studied

extensively.

The earliest studied scheduler is a greedy scheduler or

list scheduling, in which, on every time step, each processor

arbitrarily takes a ready node and executes it. Such a scheduler

1In this paper, we use the words processor and core interchangeably.

134

2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/19/$31.00 ©2019 IEEE
DOI 10.1109/IPDPS.2019.00024

is work conserving, i.e., a processor is idle only if there are

no ready nodes that are not currently being executed by other

processors. It is known that the greedy scheduler is 2 − 2
m

competitive for makespan. This theoretical result, however,

ignores the high scheduling overheads: the property of work

conserving is expensive to maintain precisely. In particular, the

scheduler often must keep a centralized queue of ready nodes

and processors must access this queue to find ready nodes

to work on and to put extra ready nodes that they generate.

The synchronization overhead on this queue is large since it

is accessed by all processors frequently.

Most practical systems use a work-stealing [15] scheduler

instead, which tries to mimic the greedy property but has

lower overheads. In work stealing, each processor, or a worker,

maintains its own deque (a double-ended queue) of ready

nodes. A worker, for the most part, makes scheduling decision

locally, pushing and popping ready nodes from the bottom of

its own deque. Only when it runs out of ready nodes, it turns

into a thief and steals from other randomly chosen workers.

Work-stealing has low synchronization and communication

overheads since workers only need to communicate with one

another when they are stealing and even then, the contention

is distributed due to the randomness in stealing.

The work-stealing scheduler is known to be asymptotically

optimal with respect to makespan while also being practically

efficient. It has many nice properties such as low over-

head [16], bounded number of cache misses [17], low space

usage, and low communication overhead [15]. Work-stealing

is currently one of the most popular schedulers in practice,

implemented by many parallel languages and libraries, such

as the ones mentioned earlier. Most works on work stealing

have focused on scheduling a single parallel job, however —

while it has been extended in a limited manner for multi-

programmed environments with multiple jobs for some objec-

tives [18–21], no natural adaptation exists to handle multiple

parallel jobs to minimize average flow time.

Scheduling Multiple Jobs to Minimize Average Flow Time:

Average flow time is difficult to optimize even for sequen-

tial jobs. Any online algorithm is Ω(min{log k, log n/m})-
competitive where k is the ratio of the largest to the smallest

processing time of the jobs [22]. Due to this strong lower

bound, previous work has focused on using a resource aug-

mentation analysis to differentiate between algorithms, in

which the algorithm is given faster processors over adversary

[23]. This is regarded as the best positive theoretical result that

can be shown for problems with strong lower bounds on their

competitive ratio. The first such result for sequential jobs was

shown in [1] and several other algorithms have been shown to

have similar guarantees for sequential jobs [2–5].

For parallel DAG jobs, Agrawal et. al [24] proved the first

theoretical results on average flow time for scheduling multiple

DAG jobs online showing that latest-arrival-processor-sharing

(LAPS) [25] — an algorithm that generalizes round robin — is

(1+ǫ)-speed O(1
ǫ3
)-competitive in this model. This work also

proposed a greedy algorithm called smallest-work-first (SWF)

and showed that it is (2+ǫ)-speed O(1
ǫ4
)-competitive. Similar

results have been shown in other parallel models [25–27].

Unlike the work-stealing scheduler result, these theoretical

discoveries do not lead to good practical schedulers. There

are several reasons why, the most important of which is

preemption. A preemption occurs when a processor switches

between jobs it is working on without finishing the job. Every

known online algorithm that has strong theoretical guarantees

for minimizing the average flow time of parallel jobs requires

an unacceptably large number of preemptions. For example,

the LAPS algorithm requires splitting the processing power

evenly among a set of jobs, so it preempts jobs every in-

finitesimal time step. Therefore, it has an unbounded number

of preemptions. The SWF algorithm is a greedy scheduler

and requires redistributing processors to jobs every time the

parallelism (number of ready nodes) of any job changes. In

the worst case, the number of preemptions by SWF depends

on the total number of nodes in all the DAGs combined, which

can number in the millions per program.

Practically, when a preemption occurs the state of a job

needs to be stored and then later restored; this leads to a large

overhead. In addition, once a preemption occurs for a job in

the schedule, a different processor may be the one to resume it

later — a process called migration — which has even higher

overhead. Therefore, from a practical perspective, schedulers

with a large number of preemptions have high overhead and

this leads to a large gap between theory and practice.

Requirements for a Practical Scheduler: For scheduling par-

allel jobs online to minimize average flow time, we would like

to replicate the success of work stealing and build on current

theoretical discoveries to find an algorithm that has both strong

theoretical guarantees and good practical performance. Such

an algorithm should ideally have the following properties.

• It should provide good theoretical guarantees.

• It should be non-clairvoyant, i.e., it requires no infor-

mation about the properties of a job to make scheduling

decision; that is, the scheduler is oblivious to the process-

ing time, parallelism, DAG structure, etc., when making

scheduling decisions. (SWF does not satisfy since it must

know the processing time of the job when it arrives.)

• It should be decentralized, i.e., require no or little global

information or coordination between processors to make

scheduling decisions.

• It should perform few preemptions or migrations.

Challenges for Designing a Practical Scheduler: To allow

for low scheduling overhead, we want to design a decentralized

work-stealing based scheduler. This can lead to both fewer

preemptions and smaller synchronization overhead. Thus, the

first question is whether we can optimize average flow in

multi-programmed environments by only allowing processors

to work on jobs in their own deque until their deque is empty

and only make scheduling decisions on steal attempts —

similar to normal work stealing.

For a related problem of minimizing maximum flow time,

how to design such a scheduler is known [18]. Unfortunately,

135

for average flow time, using a scheduler that never preempts

until its deque is empty will not lead to good theoretical

guarantees. Consider the following example. A large parallel

job arrives first and occupies all processors. After this, a

huge number of small jobs arrive. The optimal scheduler will

complete the small jobs before the large job, but any greedy

scheduler that does not preempt will continue to give all

processors to the big job. This causes a huge number of small

jobs to have a large flow time. One can extend this example

to show both that preemptions are necessary and that natural

adaptations of work stealing fail to yield good performance.

Therefore, the question remains: Can the gap between

theory and practice be closed for scheduling multiple parallel

jobs? Developing practical algorithmic techniques for this

problem has the potential to influence the area similar as the

work-stealing scheduler did.

Contributions: We have developed a practically efficient

scheduling algorithm with strong theoretical guarantees for

minimizing average flow time, called Distributed Random

Equi-Partition (DREP), which operates as follows. When a

new job arrives at time t, each processor decides to assign itself

to the new job with probability 1/nt, where nt is the number

of incomplete jobs at time t. Processors assigned to a particular

job work on the ready nodes of this job using a work-stealing

scheduler. When a job completes, each processor assigned to

that job randomly picks an unfinished job and assigns itself to

this unfinished job. Preemptions only occur when jobs arrive.

The DREP algorithm uses a decentralized protocol, has a small

number of preemptions, and is non-clairvoyant. We will prove

the following theorem about the DREP.

Theorem 1.1: When processors assigned to a particular job

execute ready nodes of the job using a work-stealing scheduler,

DREP is (4 + ǫ)-speed O(1
ǫ3
)-competitive for minimizing

average flow time in expectation for parallel DAG jobs on

m identical processors for all fixed 0 ≤ ǫ ≤ 1
4

DREP improves upon the prior results for average flow time

in two aspects. First, DREP uses a decentralized scheduling

protocol. Second, DREP uses very few preemptions. Previous

algorithms required a global coordination and a number of

preemptions unbounded in terms of m and n. We show that

using DREP, the number of preemptions is bounded: critically,

DREP only preempts a job when a new job arrives.

Theorem 1.2: DREP requires processors to switch between

unfinished jobs at most O(mn) times over the entire schedule.

Moreover, if jobs are sequential, the total expected number of

preemptions is O(n).
For sequential jobs, DREP matches the best-known results

for clairvoyant algorithms which require complete knowledge

of a job [1]. Our result is the first non-clairvoyant algorithm

having guarantees on the number of preemptions and on

average flow time simultaneously, even for sequential jobs.

The closest result is that for Shortest-Elapsed-Time-First for

sequential jobs, which is (1 + ǫ)-speed O(1)-competitive for

average flow time on identical processors [23, 28].

The practical improvements of the algorithm are slightly

offset by having a worse speed augmentation than what is

known for LAPS in theory, but we believe that DREP is the

first theoretical result which could realistically be implemented

and used in systems. To verify this, we have evaluated this

algorithm via both simulations and real implementation.

For simulation evaluations, we compared DREP against

schedulers that are theoretically good but cannot be imple-

mented faithfully in practice due to frequent preemptions,

including shortest-remaining-processing-time (SRPT) [3],

shortest-job-first (SJF) [29] and round-robin (RR) [26]. The

simulation is designed to approximate a lower-bound on the

average flow time, since it does not account for any scheduling

or preemption overheads. Our evaluation showed that DREP

approaches the performance of these (close to optimal) sched-

ulers as the number of processors increases.

For evaluations based on actual implementation, we ex-

tended Cilk Plus [7], a production quality work-stealing run-

time system originally designed to process a single parallel

job. We implemented DREP as well as other schedulers that

are implementable but do not provide bounds on average

flow, including an approximated version of smallest-work-first

(SWF) [24], which can be thought of a natural extension to SJF

for parallel jobs and is clairvoyant. The empirical evaluation

based on the actual implementation demonstrates that DREP

has comparable performance with SWF.

Other Related Work: Most prior work on scheduling parallel

jobs has considered a different model known as the arbitrary

speed-up curves model [30]. In this model, each job i is

processed in phases sequentially. During the jth phase for

job i the job is associated with a speed-up function Γi,j(m
′)

specifying the rate at which the job is processed when given

m′ processors. Typically it is assumed that Γi,j is a non-

decreasing concave function, although some exceptions ex-

ist [31]. Great strides have been made in understanding this

model and (1 + ǫ)-speed O(1)-competitive algorithms are

known for average flow time [25], the ℓk-norms of flow time

[32, 33], and flow time plus energy [34] and results are known

for maximum flow time [35]. The work of [36] considers a

hybrid of the DAG and the speed-up curves models. While the

speed-up curve model has been extensively studied, the model

is an idealized theoretical model. As argued in [18, 24], the

results between the arbitrary speed-up curves model and the

DAG model cannot be directly translated, and no one model

subsumes the other directly. This work focuses on the DAG

model because it most closely corresponds to jobs generated

by parallel programs written using modern parallel languages.

II. PRELIMINARIES

We consider the problem of scheduling n total jobs that

arrive online and must be scheduled on m identical processors.

Each job is in the form of a directed acyclic graph (DAG). For

a given job Ji, there are two important parameters: its work,

Wi, which is the sum of the processing times of all the nodes

in the DAG, and its critical-path length, Ci, which is the

length of the longest path through its DAG, where the length

is the sum of the processing times of the nodes along that

path. Below are two observations involving these parameters.

136

Observation 1: Any job Ji takes at least max{Wi

m
, Ci} time

to complete in any schedule with unit speed.

Observation 2: If a job Ji has all of its r ready nodes being

executed by a schedule with speed s, where r ≤ m, then the

remaining critical-path length of i decreases at a rate of s.

When analyzing a scheduler A (DREP in our case), let

WA
i (t) be the remaining work of job Ji in A’s schedule at time

t. Let CA
i (t) be the remaining critical-path length for job Ji in

A’s schedule at time t: the longest remaining path. Let A(t) be

the set of active jobs in A’s schedule which have arrived but

unfinished at time t. In all these notations, we replace the index

A with O when referring to the same quantity in the optimal

schedule. We overload notation and let OPT refer to both the

final objective of the optimal schedule and the schedule itself.

Potential Function Analysis: We will utilize the potential

function framework, also known as amortized local competi-

tiveness. For this technique, one defines a potential function

Φ(t), which depends on the state of the considered scheduler

A and the optimal solution at time t. Let Ga(t) (respectively,

Go(t)) denote the current cost of A at time t. If the objective

is total flow time, then this is the total waiting time of all

the arrived jobs up to time t. The change in A’s objective at

time t is denoted by
dGa(t)
dt

; for the sum of completion times,

this is equal to the number of active jobs in A’s schedule at

time t, i.e.
dGa(t)
dt

= |A(t)|. To bound the competitiveness of

a scheduler A, one shows the following conditions.

Boundary condition: Φ is zero before any job is released,

and Φ is non-negative after all jobs are finished.

Completion condition: Summing over all job completions

by the optimal solution and the algorithm, Φ does

not increase by more than β · OPT for some β ≥ 0.

Arrival condition: Summing over all job arrivals, Φ does

not increase by more than α · OPT for some α ≥ 0.

Running condition: At any time t when no job arrives or

completes,
dGa(t)
dt

+ dΦ(t)
dt

≤ c · dGo(t)
dt

Integrating these conditions over time, one gets that Ga −
Φ(0)+Φ(∞) ≤ (α+β+c)·OPT, showing that A is (α+β+c)-
competitive.

The design of the potential functions follows that in [37].

The potential function is parameterized by time. At each

instant of time, the potential is designed to approximate the

future cost of the scheduler assuming no more jobs arrive.

The idea is for the scheduler to decrease the potential by

doing work to pay for the active jobs currently contributing to

the schedule’s cost. Since the potential is roughly the future

cost of the scheduler, the active jobs can be charged against

this decrease. One crucial detail is that each job’s size in the

potential is changed to the job’s lag – how far the algorithm

is behind the optimal solution on processing the job. This lag

is not straightforward for parallel jobs since jobs have both

critical-path length and total work. We choose the lag to be

the total remaining work of the job in the algorithm’s schedule

minus the total remaining work of the job in the optimal

schedule. The lag is used in the potential instead of the total

remaining work because intuitively, on a job one should only

pay for being behind the optimal solution.

III. DREP FOR SEQUENTIAL JOBS: A NEW

NON-CLAIRVOYANT ALGORITHM

We first introduce our algorithm Distributed Random Equi-

Partition (DREP) for the case where jobs are sequential. The

idea of DREP is that it picks a random set of m jobs to work

on and re-assigns processors to jobs only when a job arrives

or completes. Specifically, when a new job arrives, if there are

one or more free processors then one such processor takes the

new job. If all processors are busy, each processor switches to

the new job with probability 1
|A(t)| (breaking ties arbitrarily

to give the job at most one processor), where |A(t)| is the

number of active jobs at the moment. Jobs that are not taken

by any processor are stored in a queue. A job Jj may be

in this queue for two reasons: (1) Jj was not assigned to a

processor on arrival (no processor happened to switch to it);

or (2) Jj was executing on some processor and that processor

preempted Jj to switch to another job that arrived later. When

a job completes, the processor assigned to the job chooses a

job to work on uniformly at random from the queue of jobs.

DREP’s theoretical guarantee on average flow time for

sequential jobs is subsumed by the analysis for parallel jobs

(Section IV). An important feature of DREP is the small num-

ber of preemptions, which only occur when jobs arrive, and the

total number of preemptions is O(n) in expectation, implying

the second part of Theorem 1.2. This is because either there is

a free processor which takes the new job (no preemption) or

there are at least m active jobs, in which case the probability

that a processor preempts is 1
|A(t| ≤ 1

m
. Therefore, on a job

arrival, the expected number of preemptions is 1. We note

that this is the first non-clairvoyant algorithm in the sequential

setting, even on a single processor, to use O(n) preemptions

and be competitive for average flow time.

In the next section, we show how to adapt this algorithm

when jobs are parallel. In particular, it shows how to combine

the algorithm with work stealing.

IV. DREP WITH WORK-STEALING: A PRACTICAL

PARALLEL SCHEDULING ALGORITHM

This section presents a practical scheduler, based on com-

bining work-stealing and DREP from the prior section, for

scheduling parallel jobs to minimize average flow time. We

show that the performance bound of this scheduler is O(1)-
competitive using O(1)-speed augmentation.

A. Combining DREP with Work-Stealing

We first describe work-stealing and then explain the modi-

fications needed to combine it with DREP.

Work Stealing: Work-stealing is a decentralized randomized

scheduling strategy to execute a single parallel job. It does not

use a centralized data structure to keep track of ready nodes.

Instead, each processor p maintains a double-ended queue,

or deque, of ready nodes. When a processor p executes a

node u, u may enable one, two, or zero ready nodes. Note

that like prior works, we assume that a node has out-degree

137

at most two. This is because the out-degree of nodes in a

parallel program is constant in practice, since the system can

only spawn a constant number of nodes in constant time. In

addition, any constant out-degree can be converted to two out-

degree with no asymptotic change in work and span, so it is

typical to assume out-degree of two in the theoretical analysis.

If one ready node is enabled, p simply executes it. If two ready

nodes are enabled, p pushes one to the bottom of its deque

and executes the other. If zero ready nodes are enabled, then

p pops the node at the bottom of its deque and executes it.

If p’s deque is empty, p becomes a thief , randomly picks a

victim processor and steals the top of the victim’s deque. If

the victim’s deque is empty and the steal is unsuccessful, the

thief continues to steal at random until it finds work. At all

times, every processor is either working or stealing; like most

prior work, we assume that each steal attempt requires constant

work.

DREP with Work Stealing: At time t, each processor is

assigned to some job, and we maintain a queue of all jobs

in the system. The processors assigned to the same job use

work stealing to execute the job. When a new job arrives,

each processor may preempt itself with probability 1
|A(t)| , upon

which it is de-assigned from its current job and assigned to the

new job. When a job completes, each processor assigned to

the job independently picks a job J uniformly at random from

the job queue and is assigned to J . Since preemptions only

occur when jobs arrive, there are at most O(mn) preemptions

— fewer in most cases, since generally not all processors will

preempt themselves on job arrival.

The main modifications to the standard work stealing are (1)

handling the deques to support multiple jobs instead of a single

job and (2) implementing the preemption when a new job

arrives. In standard work-stealing, each processor has exactly

one deque permanently associated with it; the total number of

deques is equal to the number of processors. This property no

longer holds in this new scheduler as there are multiple jobs

with preemptions. Therefore, instead of associating deques

with processors, we associate deques with jobs. At time step

t, let pi(t) be the number of processors working on a job Ji
that has started executing but yet not finished. Ji maintains

a set of di(t) deques, where di(t) ≥ pi(t). Each processor p
working on Ji will be assigned one of these deques to work on.

Once assigned a deque, a processor works as usual, pushing

and popping nodes from its assigned deque. When p’s deque

is empty, it picks a random number between 1 and di(t) and

only steals from the di(t) deques that are associated with Ji.

Now we describe how to handle job arrivals. Say a processor

p was working on job Ji and therefore working on an assigned

deque d. Suppose a new job Jj arrives and processor p is

unassigned from Ji and assigned to Jj . The deque d remains

associated with Ji; p will mark the deque d “muggable.” A

new deque d′ associated with Jj will be assigned to p to work

on. Therefore, at any time, each job Ji has a set of dai (t) =
pi(t) active deques, deques currently assigned to processors

working Ji, and dmi (t) muggable deques, deques not currently

assigned to any processor working on Ji. The total number of

deques di(t) = dmi (t) + pi(t).
When a processor p assigned to Ji steals, it randomly steals

from the deques associated with Ji. If the victim deque d is

active (a processor is working on it), the steal proceeds as

usual: p takes the top node of d. If the victim deque d is

muggable, p performs mugging, taking over the entire deque.

When a job completes, each of the processors assigned to

this job chooses an available job to work on uniformly at

random from the queue of jobs.

A few things to note. (1) Muggable deques are only created

when jobs arrive. (2) Muggable deques are never empty, since

the processor can simply deallocate its empty assigned deque

instead of marking it as muggable. (3) Muggings are always

successful, since the thief can take over the deque. (4) Once a

thief mugs a deque, it can always do at least one unit of work

since muggable deques are never empty.

B. Analysis of DREP with Work-Stealing

This section analyzes the performance of DREP with work-

stealing for minimizing average flow time. The goal is to show

Theorem 1.1. Throughout this section, we assume that the

algorithm is given 4 + 4ǫ resource augmentation for ǫ ≤ 1
4 .

We will define a potential function and argue that the arrival,

completion and running conditions are satisfied. However, we

break from the standard potential function analysis of parallel

jobs (from [24]) because the work-stealing algorithm is not

strictly work-conserving. Typically, the potential functions

used previously use Observation 2 to ensure a job’s critical

path decreases whenever the job has fewer ready nodes than

the number of cores it receives. However, this observation

does not apply to work stealing. Therefore, our potential

function will have another potential function embedded within

it, adapted from prior work on work stealing.

Probability of Working on a Job: We first give a lemma on

the probability that a processor is working on a specific job.

Lemma 4.1: For any job Jj ∈ A(t) and a processor i, the

probability that i is working on Jj at t is 1
|A(t)| .

Proof: We prove the lemma inductively on the arrival and

completion of jobs. Fix any time t and let n′ = |A(t)| be the

number of alive jobs in the algorithm just before time t.
First consider the arrivals of jobs. Initially, when there are

no jobs, the lemma statement is vacuously true. At time step

t, say there are n′ jobs alive, and a new job Jn′+1 arrives. The

probability of any processor i switching to this job Jn′+1 is
1

n′+1 , since there are now n′ + 1 jobs alive. Now consider

any job Jj that was alive before the new job arrived. By

the inductive hypothesis processor i is working on Jj with

probability 1
n′

just before job Jn′+1’s arrival. A processor

that was working on Jj has a probability of (1 − 1
n′+1)

of not switching to the newly arrived job. Therefore, the

probability that the processor continues working on Jj is then
1
n′
(1− 1

n′+1) =
1

n′+1 .

As for completion, say that a job Jj′ is completed at time

t. Suppose a processor i becomes free after a job finishes.

In the algorithm, the processor chooses a new job to work

138

on at random. This precisely gives a probability of 1
n′−1 to

process any specific job — the desired probability. The lemma

holds for any alive job and any processor i that became free.

Alternatively, consider a processor i not working on the job

completed. Let i → j be the event that processor i is working

on job Jj just before time t and i � j be the event it is not.

This processor is working on any alive Jj with probability

Pr[i → j | i � j′] = Pr[i → j and i � j′]/Pr[i � j′].
Inductively, we have Pr[i � j′] = 1 − 1

n′
and Pr[i →

j and i � j′] = Pr[i → j] = 1
n′

. Therefore, Pr[i → j | i �
j′] = 1

n′−1 .

Potential Function: We now define the potential function for

the algorithm. Recall that potential functions are designed to

approximate the algorithm’s future cost at any time t assuming

no more jobs arrive. This approximation is relative to the

optimal remaining cost. To define the potential, we introduce

some notations. Let Zi(t) := max{WA(t) − WO(t), 0} for

each job Ji. The variable Zi(t) is the total amount of work

job Ji has fallen behind in algorithm A at time t as compared

to the optimal solution (the lag of i). Further, let CA
i (t) be

the remaining critical path length for job Ji in the algorithm’s

schedule. Define ranki(t) =
∑

j∈A(t),rj≤ri
1 of job Ji to be

the number of jobs in A(t) that arrived before job Ji.
The overall potential function has an embedded potential

function adapted from prior work on work stealing. To avoid

confusion, we call the overall potential as the flow potential.

The first term 1
m
ranki(t)Zi(t), which we call the work term,

captures the remaining cost from the total remaining work

of the jobs. The second term dmi (t), which we call the mug

term, is used to handle the number of muggings. The last term

(described next), which we call the critical-path term, captures

the remaining cost due to the critical path of the current jobs.

For defining the critical-path term, we embed a different

potential function, which we call the steal potential, similar

to the potential function used by prior analysis on work

stealing [38]. Given a job Ji with critical-path length Ci

executed using work stealing, we define the depth d(u) of

node u as the length of the longest path that ends with this

node in the DAG. The weight of a node is w(u) = Ci−d(u).
The steal potential of a node is defined as follows: a ready

node that is on the deque has potential ψ(u) = 32w(u) and

an assigned node, a node that is executing, has potential

ψ(u) = 32w(u)−1. The total steal potential of a job Ji at time

t, represented by ψi(t), is the sum of the steal potentials of

all its ready and assigned nodes at time t.
The overall flow potential of a job Ji is the following

Φi(t) =
10

ǫ

(

ranki(t)

m
(Zi(t) + dmi (t)) +

320

ǫ2
log3 ψi(t)

)

The total potential of the schedule is Φ(t) =
∑

i∈A(t) Φi(t).

Intuition behind the Analysis: We want to show a few

results: (1) the potential does not increase when jobs complete;

(2) the potential increase is bounded due to job arrivals; and (3)

the running condition holds in expectation. Showing the arrival

and completion conditions are not difficult. The challenge is

in proving the running condition.

There are two cases for the running condition depending

on the algorithm’s status. One is when most processors are

executing nodes of some job. The other is when there are many

processors with no work to execute. The major challenges

are in the second case. Typically, under a work-conserving

scheduler, we can argue that if many processors have no work

to do, then there must be few ready nodes in the system;

this would allow us to use Observation 2 to argue that the

critical-path length of all jobs are decreasing and thus, we are

making progress towards completing the jobs. However, in a

work-stealing scheduler, it is challenging to quantify that the

algorithm is making progress even if many processors are idle.

As in [38], the steal potential function allows us to argue the

following: if a job has di(t) deques, then di(t) steal attempts

reduce the critical-path length by a constant in expectation.

This brings us to another complication. In a normal work-

stealing scheduler, di(t) = pi(t) = m where pi(t) is the

number of processors given to job i at time t and di(t) is

the number of deques at time t. At a high-level, this means

the total number of steal attempts in expectation is bounded

by mCi. But in our case, pi(t) changes over time. Worse still,

di(t) can be much larger than pi(t) when Ji has a lot of mug-

gable deques. In particular, while steal attempts are “effective”

at reducing the critical-path length when di(t) ≈ pi(t), they

are ineffective when too many steals are muggings caused by

the presence of a large number of muggable deques. We must

account for these steal attempts using the additional dmi term.

To handle these complications, the analysis uses resource

augmentation 4 + 4ǫ. This means that each time step of OPT

will be 4 + 4ǫ time steps for A. We index time according to

OPT’s time steps. During these 4 time steps, no new jobs can

arrive; jobs can only complete. In particular, say job Ji has

pi(t) processors before time step t. Then during this time step

t, at least (4+4ǫ)pi(t) processor steps were spent on this job

(if the job did not complete during this time step).2 We will

argue that during this step, if a job has 2pi(t) steals (but not

too many muggings), then the steal potential of the job reduces

by a constant factor; therefore, the flow potential of the job

reduces sufficiently since the flow potential’s critical-path term

is the log of the steal potential. If instead at least (2+2ǫ)pi(t)
of these time steps were spent on executing nodes of the job

or mugging, then we will argue that the potential reduces due

to the work and mug terms.

Analysis: In order to prove Theorem 1.1, we first show the

completion and arrival conditions in Lemma 4.2, similar to

prior work on potential functions [37]. Then we show the

running condition in Proposition 4.3, which is proven using

Lemmas 4.4 to 4.9.

Lemma 4.2: The completion of jobs by either A or OPT do

not increase the potential. The arrival of all jobs increases the

potential function by O(1
ǫ2
)OPT in expectation.

2A job cannot lose processors during a time step since no new jobs can
arrive in the middle of a time step. A job may gain processors since work-
stealing scheduler A may complete jobs during the time step, but that will
only increase the number of processor steps available to the active jobs.

139

Proof: When A completes a job, removing the work and

critical-path terms from the potential has no effect on either

this job or other jobs. The rank of other jobs could decrease,

but this can only decrease the potential. Completion in OPT

also has no effect for the same reason. In addition, when a

job completes, other jobs only gain processors; therefore, the

number of muggable deques dmi cannot increase for any job.

When Ji arrives, Zi = dmi = 0. Its steal potential is

ψi(t) = 32Ci ; therefore, the critical-path term in Φi(t) is
320
ǫ2

log3 ψi(t) = O(1/ǫ2)Ci. Over all jobs, the total change in

critical-path term of Φ is bounded by O(1/ǫ2)
∑

i Ci. Since

Ci is a lower bound on a job’s execution time, this quantity

is bounded by OPT’s objective function.

When a job Ji arrives, the work term and the critical-path

term of other jobs don’t change because the rank of other jobs

remains the same. We now consider the change in the mug

term dmj of other jobs. When a job arrives, each other job loses
m

|A(t)|−
m

|A(t)|+1 processors in expectation and therefore creates

that many more muggable deques in expectation. Therefore,

the expected increase in potential from the mug term is

E

[

dΦ(t)

dt

]

≤
10

ǫ

∑

i∈A(t)

(

ranki(t)

m

(

m

|A(t)|
−

m

|A(t)|+ 1

))

≤
10

ǫ

1

|A(t)|(|A(t)|+ 1)

∑

i∈A(t)

(ranki(t))

≤
10

ǫ

|A(t)|2

|A(t)|(|A(t)|+ 1)
≤

10

ǫ

Therefore, each job arrival changes the mug term by a con-

stant. Since each job takes at least constant time to complete

in OPT, we get the bound.

Proposition 4.3: In expectation, the running condition holds

at any time t. That is, at any time t it is the case that
dGa(t)
dt

+
dΦ(t)
dt

≤ O(1
ǫ2
) · dGo(t)

dt
.

The running condition involves the instantaneous change at

any moment in time. We index time by OPT’s time steps, and

bound this for each fixed time step t. At time t, consider the

set of active jobs in DREP A(t). Though A(t) is a random

variable dependent on the processing of DREP, we will show

that the running condition holds for any A(t). If we do so,

by the definition of expected value, we have shown that in

expectation the running condition holds. First, we bound how

much the optimal can increase the potential.

Lemma 4.4: The optimal schedule’s processing of jobs at t
increases the potential function by at most 10

ǫ
|A(t)|.

Proof: The optimal schedule’s processing only changes

the first term Zi(t) for any job that it processed the critical

path term depends on the algorithm as well as dmi (t). The first

term for any job is a product of the rank and work remaining

of the job. Therefore, the increase in potential is maximized if

OPT uses all m processors to work on the job with maximum

rank in A(t). Therefore, the increase in potential is at most

m 10
ǫ

1
m
|A(t)| = 10

ǫ
|A(t)|.

The increase in the potential due to the optimal solution

needs to be offset by either charging it to the optimal cost or

by showing a decrease in the potential from the algorithm’s

processing of jobs. First we consider the case where we can

charge to the optimal solutions cost.

Claim 4.5: At time t, if |O(t)| ≥ ǫ
10 |A(t)|, then the running

condition is satisfied.

Proof: Note that the potential never increases due to A’s

processing of jobs since A can only decrease the remaining

work and critical-path lengths of jobs. If |O(t)| ≥ ǫ
10 |A(t)|,

we will ignore the algorithm’s impact on the potential and

combine with Lemma 4.4 to examine the running condition.

dGa(t)

dt
+
dΦ(t)

dt
≤ |A(t)|+

10

ǫ
|A(t)| ≤ (1 +

10

ǫ
)
10

ǫ
|O(t)|

≤ O(
1

ǫ2
)|O(t)| = O(

1

ǫ2
)
dGo(t)

dt

Recall that we are using a speed augmentation of 4 + 4ǫ.
Therefore, each time step has (4 + 4ǫ) processor steps which

are spent either working or stealing, where some steal attempts

become muggings if they find a muggable deque. We first

argue about work and mugging steps. Fix a job Ji. If any

time step starts with a lot of muggable deques for job Ji, then

at least half the processor steps in that time step are spent on

either working or mugging. The reason is straightforward —

if a time step has a lot of muggable deques, then many of the

steal attempts will become muggings. Therefore for job Ji,
either a lot of work is done or there were a lot of muggings.

Lemma 4.6: If a job has di(t) ≥ 2pi(t) deques at the

beginning of the time step, then it has (2 + 2ǫ)pi(t) work

plus mugging steps in expectation.

Proof: 1/2 of the deques are muggable at the beginning

of the time step. Say the job has s steal attempts and w work

steps. The expected number of mugging steps is s/2. Say that

the total number of processor steps in the time step were x ≥
(4+4ǫ)pi. Therefore, the total expected number of work plus

mugging steps is s/2+w = s/2+x−s = x−s/2 ≥ x−x/2 =
x/2 ≥ (2 + 2ǫ)pi.

We can now argue that if time step t has many work plus

mugging steps for a job that is not in OPT’s queue, then this

time step reduces this job’s flow potential.

Lemma 4.7: If a job Ji ∈ A(t) and Ji �∈ O(t), and this job

does at least (2 + 2ǫ)pi(t) work or mugging steps during this

time step, then the change in flow potential due to A in this

step is E

[

dΦA
i (t)
dt

]

≤ − 20+20ǫ
ǫ|A(t)| ranki(t).

Proof: We know that E [pi] = m/ |A(t)|. Therefore,

the expected number of work plus mugging steps is (2 +
2ǫ)m/ |A(t)|. Each mugging reduces the number of muggable

deques dmi by 1 in expectation. In addition, since this job

is not in OPT’s queue, each work step reduces this job’s

Zi(t) term by 1. Therefore, we can plug in this change in

potential into the potential function to get E

[

dΦA
i (t)
dt

]

≤

− 10
ǫ

ranki(t)
m

E

[

dZi(t)+dm
i (t)

dt

]

≤ − 20+20ǫ
ǫ|A(t)| ranki(t).

We now must argue about time steps that have a lot of

steal attempts but not too many muggings. Here, we can use

the original work stealing analysis showing that steal attempts

140

reduce steal potential and thus the critical-path term in the flow

potential. We will use a known lemma from the paper [38].

Lemma 4.8: The depth-potential ψi(t) never increases. In

addition, if a job has d deques and there are d steal attempts be-

tween time t1 and t2, then Pr{ψi(t1)−ψi(t2) ≥ ψi(t1)/4} >
1
4 . Hence, E[logψi(t2)] ≤ E[logψi(t1)]−

1
16 .

We can now argue that a time step with “enough steal

attempts” and not too many muggable deques reduces the

critical-path term of the flow potential Φi(t).
Lemma 4.9: If job Ji has pi(t) processors and di(t) ≤

2pi(t) deques, then if the job has 2pi(t) steal attempts or

completes, the change in flow potential of this job due to A

is E

[

dΦA
i (t)
dt

]

≤ −200/ǫ2.

Proof: From Lemma 4.8, we know that E

[

dψi(t)
dt

]

≤

−1/16 if it has enough steal attempts; the same is trivially

true if the job completes. Plugging it into the potential, we

get E
[

dΦA
i (t)
dt

]

≤ − 10
ǫ

320
ǫ

1
16 ≤ −200/ǫ2

We can now complete the proof of the running condition.

Proof of [Lemma 4.3] Case 1: At least ǫ/10 |A(t)| jobs

have more than 2pi(t) steal attempts and di ≤ 2pi(t). In

this case, due to Lemma 4.9, each of these jobs reduces the

flow potential by 200/ǫ2; therefore, the total flow potential

reduction due to A is at least 20/ǫ |A(t)|.
Case 2: At least (1 − ǫ/10) |A(t)| have fewer than 2pi(t)

steal attempts or lots of deques di > 2pi(t). In the first case,

this job has more than (2 + 2ǫ)pi work steps in a straight-

forward way since there are a total of (4+ 4ǫ)pi steps in that

time step. In the second case, from Lemma 4.6, the time step

has more than (2+2ǫ)pi work plus mugging steps. Therefore,

in either case, the total number of work and mugging steps is

at least (2 + 2ǫ)pi.
In addition, from Lemma 4.8, we know that the algorithm

can never increase the potential during execution. Hence,

Claim 4.5 is still true. Therefore, we only need worry about

the case where OPT has few jobs — fewer than ǫ |A(t)| /10.

In this case, among the (1− ǫ/10) |A(t)| jobs that have many

work and mugging steps, at least (1−ǫ/5) |A(t)| of these jobs

are in A(t), but not in O(t). We apply Lemma 4.7 on these

jobs to obtain E

[

dΦA(t)
dt

]

≤
∑

i∈A(t)\O(t) −
20+20ǫ
ǫ|A(t)| ranki(t).

Assuming the worst case that these are the lowest rank jobs

we get the following change to the potential.

E

[

dΦA(t)

dt

]

≤ −
20 + 20ǫ

ǫ|A(t)|

(1− ǫ
5
)|A(t)|

∑

i=1

i

≤ −
20 + 20ǫ

ǫ|A(t)|

(1− ǫ
5)

2|A(t)|2

2

≤ −
1

ǫ
|A(t)|(10 + 3ǫ) [ǫ ≤ 1

2]

Therefore, in both cases, the flow potential reduces by at

least 1
ǫ
|A(t)|(10+3ǫ) due to A. Since OPT increases the flow

potential by at most 10
ǫ
|A(t)| from Lemma 4.4 and we have

dGa(t)
dt

= |A(t)|, the running condition is satisfied. ✷

It has been shown that the arrival, completion and running

conditions hold. Thus, we can conclude that the work-stealing

scheduler is constant competitive with (4+4ǫ) speed augmen-

tation completing the proof of the main theorem.

V. EXPERIMENTAL EVALUATION

This section presents the evaluation of DREP through

both simulation and empirical experiments based on actual

implementations. Simulations allow us to compare DREP

with a wide variety of scheduling policies, including ones

that are clairvoyant and/or infeasible to implement due to

the need to preempt at infinitesimal time steps. The actual

implementation allows us to evaluate DREP against a set of

practical scheduling policies that are implementable but do not

provide any theoretical bounds, including an approximation of

Smallest Work First (SWF) [24], i.e., the SJF counterpart for

parallel jobs, which is clairvoyant and work conserving. We

obtain the actual implementations by modifying Cilk Plus [7],

a production quality parallel runtime system, to approximate

SWF and DREP and compare their performance in practice.

A. Evaluation Based on Simulations

Compared Algorithms: Via simulations, we compare DREP

against a wide variety of schedulers: shortest-remaining-

processing-time (SRPT) [3], shortest-job-first (SJF) [29]

(which generalizes to smallest-work-first (SWF) [24] for par-

allel jobs), and round robin (RR) [26]. We compare against

SRPT and SJF, because they are scalable, i.e., (1 + ǫ)-speed

O(1
ǫ
)-competitive for average flow for sequential jobs on

multiprocessors. We also compare to RR, which is (2 + ǫ)-
speed O(1

ǫ2
)-competitive, because intuitively DREP simulates

RR by uniformly and randomly partitioning cores across all

active jobs.

It is important to note that all the existing algorithms,

including the ones that we compared in the simulation,

suffer from frequent preemptions, high overheads, and non-

clairvoyance. LAPS [25], in particular, is very difficult to

implement since it needs to know the parameter epsilon

(speedup against the optimal) and preempts at infinitesimal

time steps — it must process epsilon fraction of arriving jobs

equally at any time. Because of this, LAPS is even difficult to

implement in the simulation. Therefore, we do not compare

against LAPS in the simulation experiments.

Moreover, the simulation results can be thought of as the

lower bounds of what these scheduling algorithms can achieve,

because they do not account for any scheduling or preemption

overhead, which can significantly increase the average flow

time in practice.

Setup: We use two different work distributions from real-

world applications to generate the workloads: the Bing work-

load and the Finance workload [20]. We randomly generate a

job by randomly sample its work from the experimented work

distribution. For each work distribution, we vary the queries-

per-second (QPS) to generate three levels of system loads:

low (∼ 50%), medium (∼ 60%), and high (∼ 70%) load

(machine utilization), respectively. For a particular QPS, we

randomly generate the inter-arrival time between jobs using

a Poisson process with a mean equal to 1/QPS. For each

141

(a) Finance workload, low load (b) Finance workload, high load (c) Bing workload, low load (d) Bing workload, high load

Fig. 1: Sequential jobs with multiprocessors setting with low and high machine utilizations

(a) Finance workload, low load (b) Finance workload, high load (c) Bing workload, low load (d) Bing workload, high load

Fig. 2: Fully parallel jobs setting with low and high machine utilizations

experiment setting, we generate 100, 000 jobs and report their

average flow time under different schedulers.

We also evaluate the impact on the average flow by in-

creasing the number of processors. To ensure that the average

machine utilization remains the same across experiments, we

scale the amount of work of each job according to the number

of processors.

We simulate two job settings: (1) the sequential jobs with

multiprocessors setting, where each job is sequential and can

use only one processor at any time, and (2) the fully parallel

jobs setting, where each job obtains near-linear speedup with

respect to the number of processors given. These two settings

capture the two extreme cases of scheduling parallel jobs. Note

that in our simulation experiments, we assume that all jobs

are equally parallel since running accurate simulations with

different and changing parallelisms is difficult. In our real

experiments, we do not make this assumption.

Comparison: Figure 1 shows the results of simulating the

sequential jobs on multiple processors setting, and Figure 2

shows the results for the fully parallel job setting. We only

show the results with the low and high machine utilizations,

since the trend is similar with medium utilization.

For sequential jobs on multiprocessors in Figure 1, SRPT

and SJF have been proved to be scalable for average flow;

but they are both clairvoyant, i.e., requiring the a priori

knowledge of the amount of work for each job. In contrast,

DREP and RR are non-clairvoyant and DREP’s performance

is very close to RR’s performance in both workloads. When

the number of processors is small, the gap between DREP/RR

and SRPT/SJF is the widest while DREP gets close to optimal

as the number of cores increases. This is because, intuitively,

SRPT and SJF always work on the “right job”, while DREP

and RR give equal processing time to all jobs. In particular,

with a small number of processors, DREP is more likely to

encounter situations where smaller jobs that arrive later are

stuck waiting for long jobs that occupy all the processors.

Other schedulers either have the advantage of clairvoyant and

thus know which jobs are smaller and should be processed

first (e.g., SJF and SRPT), or they have the advantage of very

frequent preemptions (e.g., RR), allowing them to preempt the

long jobs in such scenario. DREP has comparable performance

without such advantages and is thus more practical.

For the fully parallel job setting in Figure 2, we compare

against SRPT and SWF. Since jobs are fully parallel, SRPT

and SWF schedulers reduce to SRPT and SJF for sequential

jobs on a single sequential machine (since the job with the least

remaining work or the job with the smallest work will occupy

the whole machine), so SRPT is optimal and SJF is scalable.

Thus, in these experiments, these schedulers are operating in

an “easier setting.” In addition, SRPT and SJF can now devote

all their processors to “the right job”, while DREP may still get

unlucky and not process small jobs that get stuck in the queue.

Even so, the difference in performance is at most a factor of

3.25 compared to SRPT (which is optimal) and less than 3
compared to SJF (which is scalable). In this setting, DREP’s

performance is still close to RR and approaches RR as the

number of cores increase. Note that on a small number of cores

the gap between DREP and RR is larger on the Bing workload

142

(a) Finance workload on 16 core (b) Bing workload on 16 cores (c) Finance workload on 8 cores (d) Bing workload on 8 cores

Fig. 3: Parallel Cilk Plus jobs on multicore with varying system load and different work distributions

than the Finance workload. This is because Bing workload

has some very large jobs. For other algorithms, this does not

matter, as they can still finish short jobs fast by either being

clairvoyant (SRPT, SJF) or doing many preemptions (RR).

However, DREP will occasionally schedule a large job. With

1 core, this can have a large negative effect on the outcome.

As the number of cores increase, this effect diminishes –

therefore, DREP is worst on Bing with 1 core but converges

to RR on many cores.

B. Evaluation Based on Real Implementation

To evaluate the empirical performance and practicality of

DREP, we implemented a work-stealing based DREP in Cilk

Plus [7], a widely-used parallel runtime system. For compar-

ison, we implemented a few variants of work-stealing based

scheduling strategies: steal-first [20], admit-first [20], and an

approximation of smallest-work-first [24] explained below.

Setup: Similar to the simulations, we evaluate the schedulers

using the Finance and Bing workloads. The data is collected

on a 16-core machine with Linux 4.1.7 with RT PREEMPT

patch. Each data point presented is the average flow of an

execution with 10, 000 jobs.

DREP Implementation: We implemented DREP in Cilk Plus

by adding a global job queue. At the platform startup, a

master thread inserts jobs into the job queue according to

the workload specification. During the execution, a worker (a

surrogate of a core) is assigned to an active job and only steals

work from this job. By DREP, an active job is associated with

n/|A(t)| workers in expectation. This is achieved by letting

the master thread determine upon a job arrival that whether

a core should preempt with a probability of 1/|A(t)|. If it

determines that a core should preempt to work on the newly

arrived job, it notifies the worker by setting a flag. Once the

worker notices that the flag is set, it switches to work on the

job specified by the master. In our current implementation, a

worker checks whether this flag is set on steal attempts. In

an improved implementation, a worker can check the flag at

function calls, allowing the new job to be worked on faster

while paying some small overheads of frequent checking. We

left this implementation as our future work. Each active job

keeps track of its associated deques. When a worker runs out

of work, it randomly steals into the set of deques associated

with the assigned job.

Other Scheduling Policies: We implemented several variants

of work-stealing based schedulers and an approximation of

SWF to compare with DREP. Both steal-first and admit-

first extends the standard work-stealing algorithm by also

incorporating a FIFO job queue. In steal-first, a worker, upon

running out of work, tries to steal work from other workers,

favoring jobs that have started processing. Only when it cannot

find any work to do among jobs that have started, it then

admits a new job from the queue. Admit-first does the opposite

— whenever a worker runs out of work, it always admits

a new job from the queue, if there is one. Both admit-first

and steal-first have been shown to work well for max flow

time [18], especially steal-first which approximates FIFO. We

also implemented an approximation of SWF, where every

worker when running out of work, checks every active job

in the system and works on the job with the smallest amount

of work.

Comparison: Theoretically and from the simulations, SWF

has performance advantages both by being clairvoyant and by

requiring frequent preemptions. However, Figure 3 shows that

DREP has comparable performance in practice with the work-

stealing based SWF for all the different settings. In practice,

preemption overhead is not negligible, so a scheduler cannot

preempt very frequently. In particular, the approximation of

SWF cannot immediately preempt the execution of a large job

to work on the newly available work from a smaller job. In

contrast, DREP tries to maintain an approximately equal num-

ber of workers (cores) to each active job, so that a large parallel

job can hardly monopolize the entire system. The implemented

steal-first in Figure 3 only bears 2n number of failed stealing

attempts before admitting a new job. Its performance becomes

worse when it allows more failed stealing attempts, which

is thus not shown in the figure. Not surprisingly, DREP and

admit-first have similar performance for average flow time.

This is because admit-first keeps at least one worker per job

when the number of active jobs is smaller than the number of

cores. In addition, admit-first lets workers to randomly steal

from each other, resulting in roughly equal resources between

jobs, which is the same with DREP.

VI. CONCLUSION

In this paper, we introduced a practically efficient scheduler

for optimizing the average flow time of parallel jobs. The

143

scheduler randomly distributes processors between the jobs,

and each job uses work stealing to execute in parallel on its

assigned processors. While this algorithm has a slightly worse

theoretical guarantee than the best-known algorithm for the

problem, it is the first provably efficient algorithm that has

low enough overhead to use in practice for parallel jobs. The

evaluations demonstrate its strong performance.

For future work, it is of interest to design schedulers for

parallel jobs on processors of different speeds and prove for

the best offline approximation ratio or online competitive ratio.

This problem is much harder and is still not well-understood

even offline. As far as the authors are aware, no prior work

has addressed this problem theoretically in the online model.

ACKNOWLEDGMENT

This work is supported in part by a NJIT Seed Grants and NSF

grants CCF-1845146, CCF-1830711, CCF-1824303, CCF-

1733873, CCF-1527692, CCF-1150036 and CCF-1340571.

REFERENCES

[1] C. Chekuri, A. Goel, S. Khanna, and A. Kumar, “Multi-processor
scheduling to minimize flow time with epsilon resource augmentation,”
in STOC, 2004, pp. 363–372.

[2] E. Torng and J. McCullough, “Srpt optimally utilizes faster machines to
minimize flow time,” ACM Transactions on Algorithms, vol. 5, no. 1,
2008.

[3] K. Fox and B. Moseley, “Online scheduling on identical machines using
srpt,” in SODA, 2011, pp. 120–128.

[4] L. Becchetti, S. Leonardi, A. Marchetti-Spaccamela, and K. Pruhs, “On-
line weighted flow time and deadline scheduling,” Journal of Discrete

Algorithms, vol. 4, no. 3, pp. 339–352, 2006.
[5] C. Bussema and E. Torng, “Greedy multiprocessor server scheduling,”

Operations research letters, vol. 34, no. 4, pp. 451–458, 2006.
[6] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation

of the cilk-5 multithreaded language,” in Proceedings of the ACM

SIGPLAN 1998 Conference on Programming Language Design and

Implementation. Montreal, Quebec, Canada: ACM, 1998, pp. 212–223.
[7] Intel, “Intel CilkTM Plus,” https://www.cilkplus.org/.
[8] C. E. Leiserson, “The Cilk++ concurrency platform,” Journal of Super-

computing, vol. 51, no. 3, pp. 244–257, March 2010.
[9] J. S. Danaher, I.-T. A. Lee, and C. E. Leiserson, “Programming with

exceptions in JCilk,” Science of Computer Programming, vol. 63, no. 2,
pp. 147–171, Dec. 2008.

[10] J. Reinders, Intel threading building blocks: outfitting C++ for multi-

core processor parallelism. O’Reilly Media, 2010.
[11] OpenMP, “OpenMP Application Program Interface v3.1,” July 2011,

http://www.openmp.org/mp-documents/OpenMP3.1.pdf.
[12] O. Tardieu, H. Wang, and H. Lin, “A work-stealing scheduler for x10’s

task parallelism with suspension,” in PPoPP, 2012.
[13] R. Barik, Z. Budimlić, V. Cavè, S. Chatterjee, Y. Guo, D. Peixotto,

R. Raman, J. Shirako, S. Taşırlar, Y. Yan, Y. Zhao, and V. Sarkar,
“The Habanero multicore software research project,” in Proceedings of

the 24th ACM SIGPLAN Conference Companion on Object Oriented

Programming Systems Languages and Applications. ACM, 2009, pp.
735–736.

[14] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar, “Habanero-Java: the
new adventures of old X10,” in Proceedings of the 9th International

Conference on Principles and Practice of Programming in Java, 2011,
pp. 51–61.

[15] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded compu-
tations by work stealing,” JACM, vol. 46, no. 5, pp. 720–748, 1999.

[16] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “Cilk: An efficient multithreaded runtime system,”
in ACM SIGPLAN symposium on Principles and practice of parallel

programming (PPoPP), July 1995, pp. 207–216.
[17] U. A. Acar, G. E. Blelloch, and R. D. Blumofe, “The data locality of

work stealing,” in Proceedings of the twelfth annual ACM symposium

on Parallel algorithms and architectures. ACM, 2000, pp. 1–12.

[18] K. Agrawal, J. Li, K. Lu, and B. Moseley, “Scheduling parallelizable
jobs online to minimize the maximum flow time,” in Proceedings of the

28th ACM Symposium on Parallelism in Algorithms and Architectures.
Pacific Grove, California, USA: ACM, 2016, pp. 195–205.

[19] K. Agrawal, Y. He, and C. E. Leiserson, “Adaptive work stealing
with parallelism feedback,” in Proceedings of the Annual ACM SIG-

PLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP), March 2007, pp. 112–120.

[20] J. Li, K. Agrawal, S. Elnikety, Y. He, I.-T. A. Lee, C. Lu, and
K. S. McKinley, “Work stealing for interactive services to meet
target latency,” in Proceedings of the ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, ser. PPoPP ’16.
New York, NY, USA: ACM, 2016, pp. 14:1–14:13. [Online]. Available:
http://doi.acm.org/10.1145/2851141.2851151

[21] J. Li, S. Dinh, K. Kieselbach, K. Agrawal, C. D. Gill, and C. Lu,
“Randomized work stealing for large scale soft real-time systems,” in
2016 IEEE Real-Time Systems Symposium (RTSS), 2016, pp. 203–214.

[22] S. Leonardi and D. Raz, “Approximating total flow time on parallel
machines,” Journal of Computer and Systems Sciences, vol. 73, no. 6,
pp. 875–891, 2007.

[23] B. Kalyanasundaram and K. Pruhs, “Speed is as powerful as clair-
voyance,” Journal of the ACM, vol. 47, no. 4, pp. 617–643, 2000.
Preliminary version in FOCS 1995.

[24] K. Agrawal, J. Li, K. Lu, and B. Moseley, “Scheduling parallel DAG jobs
online to minimize average flow time,” in Proceedings of the Twenty-

Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA

2016, Arlington, VA, USA, January 10-12, 2016, 2016, pp. 176–189.

[25] J. Edmonds and K. Pruhs, “Scalably scheduling processes with arbitrary
speedup curves,” ACM Transactions on Algorithms, vol. 8, no. 3, p. 28,
2012.

[26] J. Edmonds, “Scheduling in the dark,” Theor. Comput. Sci., vol. 235,
no. 1, pp. 109–141, 2000. Preliminary version in STOC 1999.

[27] K. Fox, S. Im, and B. Moseley, “Energy efficient scheduling of par-
allelizable jobs,” Theoretical Computer Science, vol. 726, pp. 30–40,
2018.

[28] N. Barcelo, S. Im, B. Moseley, and K. Pruhs, “Shortest-elapsed-time-
first on a multiprocessor,” in Design and Analysis of Algorithms - First

Mediterranean Conference on Algorithms, MedAlg 2012, Kibbutz Ein

Gedi, Israel, December 3-5, 2012. Proceedings, 2012, pp. 82–92.

[29] C. Bussema and E. Torng, “Greedy multiprocessor server scheduling,”
Operations Research Letters, vol. 34, no. 4, pp. 451–458, 2006.
[Online]. Available: https://doi.org/10.1016/j.orl.2005.07.005

[30] J. Edmonds, D. D. Chinn, T. Brecht, and X. Deng, “Non-clairvoyant
multiprocessor scheduling of jobs with changing execution characteris-
tics,” J. Scheduling, vol. 6, no. 3, pp. 231–250, 2003.

[31] R. Ebrahimi, S. McCauley, and B. Moseley, “Scheduling parallel jobs
online with convex and concave parallelizability,” in Approximation and

Online Algorithms - 13th International Workshop, WAOA 2015, Patras,

Greece, September 17-18, 2015., 2015, pp. 183–195.

[32] J. Edmonds, S. Im, and B. Moseley, “Online scalable scheduling for the
ℓk-norms of flow time without conservation of work,” in ACM-SIAM

Symposium on Discrete Algorithms, 2011.

[33] A. Gupta, S. Im, R. Krishnaswamy, B. Moseley, and K. Pruhs, “Schedul-
ing jobs with varying parallelizability to reduce variance,” in Symposium

on Parallel Algorithms and Architectures, 2010, pp. 11–20.

[34] H. Chan, J. Edmonds, and K. Pruhs, “Speed scaling of processes with
arbitrary speedup curves on a multiprocessor,” Theory of Computing

Systems, vol. 49, no. 4, pp. 817–833, 2011.

[35] K. Pruhs, J. Robert, and N. Schabanel, “Minimizing maximum flowtime
of jobs with arbitrary parallelizability,” in Approximation and Online

Algorithms - 8th International Workshop, WAOA 2010, Liverpool, UK,

September 9-10, 2010. Revised Papers, 2010, pp. 237–248.

[36] J. Robert and N. Schabanel, “Non-clairvoyant scheduling with prece-
dence constraints,” in Proceedings of the nineteenth annual ACM-SIAM

symposium on Discrete algorithms, ser. SODA ’08, 2008, pp. 491–500.

[37] S. Im, B. Moseley, and K. Pruhs, “A tutorial on amortized local
competitiveness in online scheduling,” ACM SIGACT News, vol. 42,
no. 2, pp. 83–97, 2011.

[38] N. S. Arora, R. D. Blumofe, and C. G. Plaxton, “Thread scheduling for
multiprogrammed multiprocessors,” in 10th Annual ACM Symposium on

Parallel Algorithms and Architectures, 1998, pp. 119–129.

144

