2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

Practically Efficient Scheduler for Minimizing
Average Flow Time of Parallel Jobs

Kunal Agrawal
Washington University in St. Louis
kunal @wustl.edu

Kefu Lu
Washington University in St. Louis
kefulu@wustl.edu

Abstract—Many algorithms have been proposed to efficiently
schedule parallel jobs on a multicore and/or multiprocessor
machine to minimize average flow time, and the complexity
of the problem is well understood. In practice, the problem
is far from being understood. A reason for the gap between
theory and practice is that all theoretical algorithms have
prohibitive overheads in actual implementation including using
many preemptions.

One of the flagship successes of scheduling theory is the work-
stealing scheduler. Work-stealing is used for optimizing the flow
time of a single parallel job executing on a single machine with
multiple cores and has a strong performance in theory and in
practice. Consequently, it is implemented in almost all parallel
runtime systems.

This paper seeks to bridge theory and practice for scheduling
parallel jobs that arrive online, by introducing an adaptation
of the work-stealing scheduler for average flow time. The new
algorithm Distributed Random Equi-Partition (DREP) has strong
practical and theoretical performance. Practically, the algorithm
has the following advantages: (1) it is non-clairvoyant; (2) all
processors make scheduling decisions in a decentralized manner
requiring minimal synchronization and communications; and
(3) it requires a small and bounded number of preemptions.
Theoretically, we prove that DREP is (4 + ¢)-speed O(E%)-
competitive for average flow time.

We have empirically evaluated DREP using both simulations
and actual implementation by modifying the Cilk Plus work-
stealing runtime system. The evaluation results show that DREP
performs well compared to other scheduling strategies, including
those that are theoretically good but cannot be faithfully imple-
mented in practice.

Index Terms—parallel scheduling, online scheduling, work
stealing, average flow time

[. INTRODUCTION

In many application environments such as clouds, grids,
and shared servers, clients send jobs to be processed on a
server over time. The multicore and/or multiprocessor server
schedules the jobs with the goal of both using the server
resources efficiently and providing a good quality of service
to the client jobs. One of the most popular quality metrics is
the average flow time, where the flow time of a job is the
amount of time between the job’s arrival at the server and its
completion. Formally, if the completion (finish) time of job
J; is f; and its release (arrival) time is r;, then the flow time

1530-2075/19/$31.00 ©2019 IEEE

DOI 10.1109/1PDPS.2019.00024

I-Ting Angelina Lee
Washington University in St. Louis
angelee @wustl.edu

134

Jing Li
New Jersey Institute of Technology
jingli@njit.edu

Benjamin Moseley
Carnegie Mellon University
moseleyb @andrew.cmu.edu

of job J; is f; — r;. The average (total) flow time objective
focuses on minimizing Y ,(f; — ;).

For sequential programs that can only utilize one core
at a time, minimizing average flow time has been studied
extensively [1-5]. However, most machines now consist of
multiple cores and the parallelism of machines is expected to
increase. In addition, there is a growing interest in parallelizing
applications, so that individual jobs may themselves have
internal parallelism and can execute on multiple cores at the
same time to shorten their processing time. Programming
languages, such as variants of Cilk [6-9], Intel’s TBB [10],
OpenMP [11], X10 [12], and Habanero [13, 14], are designed
to allow the programmer to write parallel programs (jobs).
Note that this work considers the parallel online scheduling
problem of a single server machine, instead of an HPC cluster.
Hence, a parallel job considered in this work can run in parallel
on the multiple cores of a single server machine.

In this paper, we focus on minimizing average flow time
in a setting where n parallel jobs (written using one of these
parallel languages) arrive over time (online) and share a single
machine with m processors.! We are particularly interested
in designing a theoretically good and practically efficient
algorithm for this problem which can be implemented in real
systems. We first provide some context for our work and then
explain our theoretical and experimental contributions.

Scheduling a Single Parallel Job: A parallel program can
be represented as a directed acyclic graph (DAG) where each
node of a DAG is a sequence of instructions that must execute
sequentially and each edge is a dependence between nodes. A
node is ready to be executed when all its predecessors have
been executed. The scheduler decides when to execute which
node on which processor. The problem of scheduling a single
parallel job on m processors of a single machine to minimize
makespan — the flow time of a single job — has been studied
extensively.

The earliest studied scheduler is a greedy scheduler or
list scheduling, in which, on every time step, each processor
arbitrarily takes a ready node and executes it. Such a scheduler

UIn this paper, we use the words processor and core interchangeably.

IEEE
computer
® psoaety

is work conserving, i.e., a processor is idle only if there are
no ready nodes that are not currently being executed by other
processors. It is known that the greedy scheduler is 2 — %
competitive for makespan. This theoretical result, however,
ignores the high scheduling overheads: the property of work
conserving is expensive to maintain precisely. In particular, the
scheduler often must keep a centralized queue of ready nodes
and processors must access this queue to find ready nodes
to work on and to put extra ready nodes that they generate.
The synchronization overhead on this queue is large since it
is accessed by all processors frequently.

Most practical systems use a work-stealing [15] scheduler
instead, which tries to mimic the greedy property but has
lower overheads. In work stealing, each processor, or a worker,
maintains its own deque (a double-ended queue) of ready
nodes. A worker, for the most part, makes scheduling decision
locally, pushing and popping ready nodes from the bottom of
its own deque. Only when it runs out of ready nodes, it turns
into a thief and steals from other randomly chosen workers.
Work-stealing has low synchronization and communication
overheads since workers only need to communicate with one
another when they are stealing and even then, the contention
is distributed due to the randomness in stealing.

The work-stealing scheduler is known to be asymptotically
optimal with respect to makespan while also being practically
efficient. It has many nice properties such as low over-
head [16], bounded number of cache misses [17], low space
usage, and low communication overhead [15]. Work-stealing
is currently one of the most popular schedulers in practice,
implemented by many parallel languages and libraries, such
as the ones mentioned earlier. Most works on work stealing
have focused on scheduling a single parallel job, however —
while it has been extended in a limited manner for multi-
programmed environments with multiple jobs for some objec-
tives [18-21], no natural adaptation exists to handle multiple
parallel jobs to minimize average flow time.

Scheduling Multiple Jobs to Minimize Average Flow Time:
Average flow time is difficult to optimize even for sequen-
tial jobs. Any online algorithm is Q(min{logk,logn/m})-
competitive where £ is the ratio of the largest to the smallest
processing time of the jobs [22]. Due to this strong lower
bound, previous work has focused on using a resource aug-
mentation analysis to differentiate between algorithms, in
which the algorithm is given faster processors over adversary
[23]. This is regarded as the best positive theoretical result that
can be shown for problems with strong lower bounds on their
competitive ratio. The first such result for sequential jobs was
shown in [1] and several other algorithms have been shown to
have similar guarantees for sequential jobs [2-5].

For parallel DAG jobs, Agrawal et. al [24] proved the first
theoretical results on average flow time for scheduling multiple
DAG jobs online showing that latest-arrival-processor-sharing
(LAPS) [25] — an algorithm that generalizes round robin — is
(1+€)-speed O(Z)-competitive in this model. This work also
proposed a greedy algorithm called smallest-work-first (SWF)

135

and showed that it is (2+€)-speed O(Z)-competitive. Similar
results have been shown in other parallel models [25-27].

Unlike the work-stealing scheduler result, these theoretical
discoveries do not lead to good practical schedulers. There
are several reasons why, the most important of which is
preemption. A preemption occurs when a processor switches
between jobs it is working on without finishing the job. Every
known online algorithm that has strong theoretical guarantees
for minimizing the average flow time of parallel jobs requires
an unacceptably large number of preemptions. For example,
the LAPS algorithm requires splitting the processing power
evenly among a set of jobs, so it preempts jobs every in-
finitesimal time step. Therefore, it has an unbounded number
of preemptions. The SWF algorithm is a greedy scheduler
and requires redistributing processors to jobs every time the
parallelism (number of ready nodes) of any job changes. In
the worst case, the number of preemptions by SWF depends
on the total number of nodes in all the DAGs combined, which
can number in the millions per program.

Practically, when a preemption occurs the state of a job
needs to be stored and then later restored; this leads to a large
overhead. In addition, once a preemption occurs for a job in
the schedule, a different processor may be the one to resume it
later — a process called migration — which has even higher
overhead. Therefore, from a practical perspective, schedulers
with a large number of preemptions have high overhead and
this leads to a large gap between theory and practice.

Requirements for a Practical Scheduler: For scheduling par-
allel jobs online to minimize average flow time, we would like
to replicate the success of work stealing and build on current
theoretical discoveries to find an algorithm that has both strong
theoretical guarantees and good practical performance. Such
an algorithm should ideally have the following properties.

e It should provide good theoretical guarantees.

e It should be non-clairvoyant, i.e., it requires no infor-
mation about the properties of a job to make scheduling
decision; that is, the scheduler is oblivious to the process-
ing time, parallelism, DAG structure, etc., when making
scheduling decisions. (SWF does not satisfy since it must
know the processing time of the job when it arrives.)

e It should be decentralized, i.e., require no or little global
information or coordination between processors to make
scheduling decisions.

o It should perform few preemptions or migrations.

Challenges for Designing a Practical Scheduler: To allow
for low scheduling overhead, we want to design a decentralized
work-stealing based scheduler. This can lead to both fewer
preemptions and smaller synchronization overhead. Thus, the
first question is whether we can optimize average flow in
multi-programmed environments by only allowing processors
to work on jobs in their own deque until their deque is empty
and only make scheduling decisions on steal attempts —
similar to normal work stealing.

For a related problem of minimizing maximum flow time,
how to design such a scheduler is known [18]. Unfortunately,

for average flow time, using a scheduler that never preempts
until its deque is empty will not lead to good theoretical
guarantees. Consider the following example. A large parallel
job arrives first and occupies all processors. After this, a
huge number of small jobs arrive. The optimal scheduler will
complete the small jobs before the large job, but any greedy
scheduler that does not preempt will continue to give all
processors to the big job. This causes a huge number of small
jobs to have a large flow time. One can extend this example
to show both that preemptions are necessary and that natural
adaptations of work stealing fail to yield good performance.

Therefore, the question remains: Can the gap between
theory and practice be closed for scheduling multiple parallel
jobs? Developing practical algorithmic techniques for this
problem has the potential to influence the area similar as the
work-stealing scheduler did.

Contributions: We have developed a practically efficient
scheduling algorithm with strong theoretical guarantees for
minimizing average flow time, called Distributed Random
Equi-Partition (DREP), which operates as follows. When a
new job arrives at time ¢, each processor decides to assign itself
to the new job with probability 1/n;, where n; is the number
of incomplete jobs at time ¢. Processors assigned to a particular
job work on the ready nodes of this job using a work-stealing
scheduler. When a job completes, each processor assigned to
that job randomly picks an unfinished job and assigns itself to
this unfinished job. Preemptions only occur when jobs arrive.
The DREP algorithm uses a decentralized protocol, has a small
number of preemptions, and is non-clairvoyant. We will prove
the following theorem about the DREP.

Theorem 1.1: When processors assigned to a particular job
execute ready nodes of the job using a work-stealing scheduler,
DREP is (4 + €)-speed O(Z)-competitive for minimizing
average flow time in expectation for parallel DAG jobs on
m identical processors for all fixed 0 < € < %

DREP improves upon the prior results for average flow time
in two aspects. First, DREP uses a decentralized scheduling
protocol. Second, DREP uses very few preemptions. Previous
algorithms required a global coordination and a number of
preemptions unbounded in terms of m and n. We show that
using DREP, the number of preemptions is bounded: critically,
DREP only preempts a job when a new job arrives.

Theorem 1.2: DREP requires processors to switch between
unfinished jobs at most O(mmn) times over the entire schedule.
Moreover, if jobs are sequential, the total expected number of
preemptions is O(n).

For sequential jobs, DREP matches the best-known results
for clairvoyant algorithms which require complete knowledge
of a job [1]. Our result is the first non-clairvoyant algorithm
having guarantees on the number of preemptions and on
average flow time simultaneously, even for sequential jobs.
The closest result is that for Shortest-Elapsed-Time-First for
sequential jobs, which is (1 + €)-speed O(1)-competitive for
average flow time on identical processors [23, 28].

The practical improvements of the algorithm are slightly
offset by having a worse speed augmentation than what is

136

known for LAPS in theory, but we believe that DREP is the
first theoretical result which could realistically be implemented
and used in systems. To verify this, we have evaluated this
algorithm via both simulations and real implementation.

For simulation evaluations, we compared DREP against
schedulers that are theoretically good but cannot be imple-
mented faithfully in practice due to frequent preemptions,
including shortest-remaining-processing-time (SRPT) [3],
shortest-job-first (SJF) [29] and round-robin (RR) [26]. The
simulation is designed to approximate a lower-bound on the
average flow time, since it does not account for any scheduling
or preemption overheads. Our evaluation showed that DREP
approaches the performance of these (close to optimal) sched-
ulers as the number of processors increases.

For evaluations based on actual implementation, we ex-
tended Cilk Plus [7], a production quality work-stealing run-
time system originally designed to process a single parallel
job. We implemented DREP as well as other schedulers that
are implementable but do not provide bounds on average
flow, including an approximated version of smallest-work-first
(SWF) [24], which can be thought of a natural extension to SJF
for parallel jobs and is clairvoyant. The empirical evaluation
based on the actual implementation demonstrates that DREP
has comparable performance with SWF.

Other Related Work: Most prior work on scheduling parallel
jobs has considered a different model known as the arbitrary
speed-up curves model [30]. In this model, each job i is
processed in phases sequentially. During the jth phase for
job i the job is associated with a speed-up function I'; ;(m')
specifying the rate at which the job is processed when given
m/ processors. Typically it is assumed that I'; ; is a non-
decreasing concave function, although some exceptions ex-
ist [31]. Great strides have been made in understanding this
model and (1 + €)-speed O(1)-competitive algorithms are
known for average flow time [25], the £;-norms of flow time
[32, 33], and flow time plus energy [34] and results are known
for maximum flow time [35]. The work of [36] considers a
hybrid of the DAG and the speed-up curves models. While the
speed-up curve model has been extensively studied, the model
is an idealized theoretical model. As argued in [18, 24], the
results between the arbitrary speed-up curves model and the
DAG model cannot be directly translated, and no one model
subsumes the other directly. This work focuses on the DAG
model because it most closely corresponds to jobs generated
by parallel programs written using modern parallel languages.

II. PRELIMINARIES

We consider the problem of scheduling n total jobs that
arrive online and must be scheduled on m identical processors.
Each job is in the form of a directed acyclic graph (DAG). For
a given job J;, there are two important parameters: its work,
W;, which is the sum of the processing times of all the nodes
in the DAG, and its critical-path length, C;, which is the
length of the longest path through its DAG, where the length
is the sum of the processing times of the nodes along that
path. Below are two observations involving these parameters.

Observation 1: Any job J; takes at least max{ "%, C;} time
to complete in any schedule with unit speed.

Observation 2: 1f a job J; has all of its r ready nodes being
executed by a schedule with speed s, where r < m, then the
remaining critical-path length of ¢ decreases at a rate of s.

When analyzing a scheduler A (DREP in our case), let
W (t) be the remaining work of job J; in A’s schedule at time
t. Let C#4(t) be the remaining critical-path length for job J; in
A’s schedule at time ¢: the longest remaining path. Let A(t) be
the set of active jobs in A’s schedule which have arrived but
unfinished at time ¢. In all these notations, we replace the index
A with O when referring to the same quantity in the optimal
schedule. We overload notation and let OPT refer to both the
final objective of the optimal schedule and the schedule itself.

Potential Function Analysis: We will utilize the potential
function framework, also known as amortized local competi-
tiveness. For this technique, one defines a potential function
®(¢), which depends on the state of the considered scheduler
A and the optimal solution at time t. Let G, (t) (respectively,
G,(t)) denote the current cost of A at time ¢. If the objective
is total flow time, then this is the total waiting time of all
the arrived jobs up to time ¢. The change in A’s objective at
time ¢ is denoted by deat(t); for the sum of completion times,
this is equal to the number of active jobs in A’s schedule at
time ¢, i.e. 9% — |A(t)|. To bound the competitiveness of

dat
a scheduler A, one shows the following conditions.

Boundary condition: & is zero before any job is released,

and @ is non-negative after all jobs are finished.

Completion condition: Summing over all job completions

by the optimal solution and the algorithm, ® does
not increase by more than 5 - OPT for some 8 > 0.
Arrival condition: Summing over all job arrivals, ® does
not increase by more than « - OPT for some a > 0.

Running condition: At any time ¢ when no job arrives or

completes, dcf;t(t) + diét) <ec- dc;"t(t)

Integrating these conditions over time, one gets that G, —
®(0)+P(0) < (a+L+c)-OPT, showing that A is (a+5+c¢)-
competitive.

The design of the potential functions follows that in [37].
The potential function is parameterized by time. At each
instant of time, the potential is designed to approximate the
future cost of the scheduler assuming no more jobs arrive.
The idea is for the scheduler to decrease the potential by
doing work to pay for the active jobs currently contributing to
the schedule’s cost. Since the potential is roughly the future
cost of the scheduler, the active jobs can be charged against
this decrease. One crucial detail is that each job’s size in the
potential is changed to the job’s lag — how far the algorithm
is behind the optimal solution on processing the job. This lag
is not straightforward for parallel jobs since jobs have both
critical-path length and total work. We choose the lag to be
the total remaining work of the job in the algorithm’s schedule
minus the total remaining work of the job in the optimal
schedule. The lag is used in the potential instead of the total
remaining work because intuitively, on a job one should only

137

pay for being behind the optimal solution.

III. DREP FOR SEQUENTIAL JOBS: A NEW
NON-CLAIRVOYANT ALGORITHM

We first introduce our algorithm Distributed Random Equi-
Partition (DREP) for the case where jobs are sequential. The
idea of DREP is that it picks a random set of m jobs to work
on and re-assigns processors to jobs only when a job arrives
or completes. Specifically, when a new job arrives, if there are
one or more free processors then one such processor takes the
new job. If all processors are busy, each processor switches to
the new job with probability m (breaking ties arbitrarily
to give the job at most one processor), where |A(t)| is the
number of active jobs at the moment. Jobs that are not taken
by any processor are stored in a queue. A job J; may be
in this queue for two reasons: (1) .J; was not assigned to a
processor on arrival (no processor happened to switch to it);
or (2) J; was executing on some processor and that processor
preempted J; to switch to another job that arrived later. When
a job completes, the processor assigned to the job chooses a
job to work on uniformly at random from the queue of jobs.

DREP’s theoretical guarantee on average flow time for
sequential jobs is subsumed by the analysis for parallel jobs
(Section IV). An important feature of DREP is the small num-
ber of preemptions, which only occur when jobs arrive, and the
total number of preemptions is O(n) in expectation, implying
the second part of Theorem 1.2. This is because either there is
a free processor which takes the new job (no preemption) or
there are at least m active jobs, in which case the probability
that a processor preempts is \Tl%ﬂ < % Therefore, on a job
arrival, the expected number of preemptions is 1. We note
that this is the first non-clairvoyant algorithm in the sequential
setting, even on a single processor, to use O(n) preemptions
and be competitive for average flow time.

In the next section, we show how to adapt this algorithm
when jobs are parallel. In particular, it shows how to combine
the algorithm with work stealing.

IV. DREP WITH WORK-STEALING: A PRACTICAL
PARALLEL SCHEDULING ALGORITHM

This section presents a practical scheduler, based on com-
bining work-stealing and DREP from the prior section, for
scheduling parallel jobs to minimize average flow time. We
show that the performance bound of this scheduler is O(1)-
competitive using O(1)-speed augmentation.

A. Combining DREP with Work-Stealing

We first describe work-stealing and then explain the modi-
fications needed to combine it with DREP.

Work Stealing: Work-stealing is a decentralized randomized
scheduling strategy to execute a single parallel job. It does not
use a centralized data structure to keep track of ready nodes.
Instead, each processor p maintains a double-ended queue,
or deque, of ready nodes. When a processor p executes a
node u, v may enable one, two, or zero ready nodes. Note
that like prior works, we assume that a node has out-degree

at most two. This is because the out-degree of nodes in a
parallel program is constant in practice, since the system can
only spawn a constant number of nodes in constant time. In
addition, any constant out-degree can be converted to two out-
degree with no asymptotic change in work and span, so it is
typical to assume out-degree of two in the theoretical analysis.
If one ready node is enabled, p simply executes it. If two ready
nodes are enabled, p pushes one to the bottom of its deque
and executes the other. If zero ready nodes are enabled, then
p pops the node at the bottom of its deque and executes it.
If p’s deque is empty, p becomes a thief, randomly picks a
victim processor and sfeals the top of the victim’s deque. If
the victim’s deque is empty and the steal is unsuccessful, the
thief continues to steal at random until it finds work. At all
times, every processor is either working or stealing; like most
prior work, we assume that each steal attempt requires constant
work.

DREP with Work Stealing: At time ¢, each processor is
assigned to some job, and we maintain a queue of all jobs
in the system. The processors assigned to the same job use
work stealing to execute the job. When a new job arrives,
each processor may preempt itself with probability ﬁ, upon
which it is de-assigned from its current job and assigned to the
new job. When a job completes, each processor assigned to
the job independently picks a job J uniformly at random from
the job queue and is assigned to J. Since preemptions only
occur when jobs arrive, there are at most O(mn) preemptions
— fewer in most cases, since generally not all processors will
preempt themselves on job arrival.

The main modifications to the standard work stealing are (1)
handling the deques to support multiple jobs instead of a single
job and (2) implementing the preemption when a new job
arrives. In standard work-stealing, each processor has exactly
one deque permanently associated with it; the total number of
deques is equal to the number of processors. This property no
longer holds in this new scheduler as there are multiple jobs
with preemptions. Therefore, instead of associating deques
with processors, we associate deques with jobs. At time step
t, let p;(t) be the number of processors working on a job J;
that has started executing but yet not finished. .J; maintains
a set of d;(t) deques, where d;(t) > p;(t). Each processor p
working on .J; will be assigned one of these deques to work on.
Once assigned a deque, a processor works as usual, pushing
and popping nodes from its assigned deque. When p’s deque
is empty, it picks a random number between 1 and d;(t) and
only steals from the d;(t) deques that are associated with J;.

Now we describe how to handle job arrivals. Say a processor
p was working on job .J; and therefore working on an assigned
deque d. Suppose a new job J; arrives and processor p is
unassigned from J; and assigned to J;. The deque d remains
associated with J;; p will mark the deque d “muggable.” A
new deque d’ associated with J; will be assigned to p to work
on. Therefore, at any time, each job J; has a set of d%(t)
pi(t) active deques, deques currently assigned to processors
working J;, and d}" (¢t) muggable deques, deques not currently

138

assigned to any processor working on J;. The total number of
deques d;(t) = dI™(t) + pi(t).

When a processor p assigned to J; steals, it randomly steals
from the deques associated with J;. If the victim deque d is
active (a processor is working on it), the steal proceeds as
usual: p takes the top node of d. If the victim deque d is
muggable, p performs mugging, taking over the entire deque.

When a job completes, each of the processors assigned to
this job chooses an available job to work on uniformly at
random from the queue of jobs.

A few things to note. (1) Muggable deques are only created
when jobs arrive. (2) Muggable deques are never empty, since
the processor can simply deallocate its empty assigned deque
instead of marking it as muggable. (3) Muggings are always
successful, since the thief can take over the deque. (4) Once a
thief mugs a deque, it can always do at least one unit of work
since muggable deques are never empty.

B. Analysis of DREP with Work-Stealing

This section analyzes the performance of DREP with work-
stealing for minimizing average flow time. The goal is to show
Theorem 1.1. Throughout this section, we assume that the
algorithm is given 4 + 4e resource augmentation for € < i.

We will define a potential function and argue that the arrival,
completion and running conditions are satisfied. However, we
break from the standard potential function analysis of parallel
jobs (from [24]) because the work-stealing algorithm is not
strictly work-conserving. Typically, the potential functions
used previously use Observation 2 to ensure a job’s critical
path decreases whenever the job has fewer ready nodes than
the number of cores it receives. However, this observation
does not apply to work stealing. Therefore, our potential
function will have another potential function embedded within
it, adapted from prior work on work stealing.

Probability of Working on a Job: We first give a lemma on
the probability that a processor is working on a specific job.

Lemma 4.1: For any job J; € A(t) and a processor i, the
probability that ¢ is working on J; at ¢ is ‘A%.

Proof: We prove the lemma inductively on the arrival and
completion of jobs. Fix any time ¢ and let n’ = |A(t)| be the
number of alive jobs in the algorithm just before time ¢.

First consider the arrivals of jobs. Initially, when there are
no jobs, the lemma statement is vacuously true. At time step
t, say there are n’ jobs alive, and a new job J,,, 1 arrives. The
probability of any processor ¢ switching to this job J,/y1 is
n%ﬂ, since there are now n’ + 1 jobs alive. Now consider
any job J; that was alive before the new job arrived. By
the inductive hypothesis processor i is working on J; with
probability ﬁ just before job J,.11’s arrival. A processor
that was working on J; has a probability of (1 — ﬁ)
of not switching to the newly arrived job. Therefore, the

probability that the processor continues working on J; is then
1 1

_ 1

w) = . . .
As for completion, say that a job Jj/ is completed at time
t. Suppose a processor ¢ becomes free after a job finishes.
In the algorithm, the processor chooses a new job to work

n’

on at random. This precisely gives a probability of ﬁ to
process any specific job — the desired probability. The lemma
holds for any alive job and any processor ¢ that became free.
Alternatively, consider a processor ¢ not working on the job
completed. Let ¢ — j be the event that processor ¢ is working
on job J; just before time ¢ and 7 — j be the event it is not.
This processor is working on any alive J; with probability
Pr[i = j|i-» j'] =Pr[i = j and i - j']/Pr[i - j'].

Inductively, we have Pr[i - j'| = 1 — X and Pr[i —
jand i » j'| = Pr[li — j] = L. Therefore, Pr[i — j |i -+
i= .
Potential Function: We now define the potential function for
the algorithm. Recall that potential functions are designed to
approximate the algorithm’s future cost at any time ¢ assuming
no more jobs arrive. This approximation is relative to the
optimal remaining cost. To define the potential, we introduce
some notations. Let Z;(t) := max{W4(t) — WO(t),0} for
each job J;. The variable Z;(t) is the total amount of work
job J; has fallen behind in algorithm A at time ¢ as compared
to the optimal solution (the lag of 7). Further, let C}(t) be
the remaining critical path length for job J; in the algorithm’s
schedule. Define rank;(t) = > ¢ a(s),r, <y, 1 Of job J; to be
the number of jobs in A(t) that arrived before job J;.

The overall potential function has an embedded potential
function adapted from prior work on work stealing. To avoid
confusion, we call the overall potential as the flow potential.
The first term - rank;(t)Z;(t), which we call the work term,
captures the remaining cost from the total remaining work
of the jobs. The second term d}"(t), which we call the mug
term, is used to handle the number of muggings. The last term
(described next), which we call the critical-path term, captures
the remaining cost due to the critical path of the current jobs.

For defining the critical-path term, we embed a different
potential function, which we call the steal potential, similar
to the potential function used by prior analysis on work
stealing [38]. Given a job J; with critical-path length C;
executed using work stealing, we define the depth d(u) of
node u as the length of the longest path that ends with this
node in the DAG. The weight of a node is w(u) = C; —d(u).
The steal potential of a node is defined as follows: a ready

node that is on the deque has potential ¢(u) = 3**(*) and
an assigned node, a node that is executing, has potential
t, represented by ;(t), is the sum of the steal potentials of
all its ready and assigned nodes at time .
10 [rank;(t . 320
i) = 22 (222 20+ ar0) + 25 togs o))
€ m €

Intuition behind the Analysis: We want to show a few
results: (1) the potential does not increase when jobs complete;
the running condition holds in expectation. Showing the arrival
and completion conditions are not difficult. The challenge is

Y(u) = 32*(*) =1 The total steal potential of a job .J; at time
The overall flow potential of a job J; is the following

The total potential of the schedule is ®(t) = >>;c 44y Pi(t).

(2) the potential increase is bounded due to job arrivals; and (3)

in proving the running condition.

139

There are two cases for the running condition depending
on the algorithm’s status. One is when most processors are
executing nodes of some job. The other is when there are many
processors with no work to execute. The major challenges
are in the second case. Typically, under a work-conserving
scheduler, we can argue that if many processors have no work
to do, then there must be few ready nodes in the system;
this would allow us to use Observation 2 to argue that the
critical-path length of all jobs are decreasing and thus, we are
making progress towards completing the jobs. However, in a
work-stealing scheduler, it is challenging to quantify that the
algorithm is making progress even if many processors are idle.
As in [38], the steal potential function allows us to argue the
following: if a job has d;(t) deques, then d;(t) steal attempts
reduce the critical-path length by a constant in expectation.

This brings us to another complication. In a normal work-
stealing scheduler, d;(t) = p;(t) = m where p;(t) is the
number of processors given to job ¢ at time ¢ and d;(t) is
the number of deques at time ¢. At a high-level, this means
the total number of steal attempts in expectation is bounded
by mC;. But in our case, p;(t) changes over time. Worse still,
d;(t) can be much larger than p;(¢) when J; has a lot of mug-
gable deques. In particular, while steal attempts are “effective”
at reducing the critical-path length when d;(t) = p;(t), they
are ineffective when too many steals are muggings caused by
the presence of a large number of muggable deques. We must
account for these steal attempts using the additional d}” term.

To handle these complications, the analysis uses resource
augmentation 4 + 4e. This means that each time step of OPT
will be 4 + 4e time steps for A. We index time according to
OPT’s time steps. During these 4 time steps, no new jobs can
arrive; jobs can only complete. In particular, say job J; has
pi(t) processors before time step ¢. Then during this time step
t, at least (4 + 4€)p;(t) processor steps were spent on this job
(if the job did not complete during this time step).? We will
argue that during this step, if a job has 2p;(t) steals (but not
too many muggings), then the steal potential of the job reduces
by a constant factor; therefore, the flow potential of the job
reduces sufficiently since the flow potential’s critical-path term
is the log of the steal potential. If instead at least (2+2¢)p; (t)
of these time steps were spent on executing nodes of the job
or mugging, then we will argue that the potential reduces due
to the work and mug terms.

Analysis: In order to prove Theorem 1.1, we first show the
completion and arrival conditions in Lemma 4.2, similar to
prior work on potential functions [37]. Then we show the
running condition in Proposition 4.3, which is proven using
Lemmas 4.4 to 4.9.

Lemma 4.2: The completion of jobs by either A or OPT do
not increase the potential. The arrival of all jobs increases the
potential function by O(Z%)OPT in expectation.

2A job cannot lose processors during a time step since no new jobs can
arrive in the middle of a time step. A job may gain processors since work-
stealing scheduler A may complete jobs during the time step, but that will
only increase the number of processor steps available to the active jobs.

Proof: When A completes a job, removing the work and
critical-path terms from the potential has no effect on either
this job or other jobs. The rank of other jobs could decrease,
but this can only decrease the potential. Completion in OPT
also has no effect for the same reason. In addition, when a
job completes, other jobs only gain processors; therefore, the
number of muggable deques d;" cannot increase for any job.

When J; arrives, Z; = d* 0. Its steal potential is
¥;(t) = 3%C%; therefore, the critical-path term in ®;(t) is
32 Jogs ¥i(t) = O(1/€?)C;. Over all jobs, the total change in
critical-path term of @ is bounded by O(1/€?) ", C;. Since
C; is a lower bound on a job’s execution time, this quantity
is bounded by OPT’s objective function.

When a job J; arrives, the work term and the critical-path
term of other jobs don’t change because the rank of other jobs
remains the same. We now consider the change in the mug
term dj* of other jobs. When a job arrives, each other job loses
‘A—Tt)‘ TAFT t)l 7 brocessors in expectation and therefore creates
that many more muggable deques in expectation. Therefore,
the expected increase in potential from the mug term is

dd(t) 10 rank;(t) m_ m
2[5 < %(o (e~ o)
10 1
S CADOAD[+ 1 ie;(t)(ranki(t))
10 |A(t)|? 10

e [ADIJA@DI+1) ~ e

Therefore, each job arrival changes the mug term by a con-
stant. Since each job takes at least constant time to complete
in OPT, we get the bound. []

Proposition 4.3: In expectation, the running condition holds
at any time ¢. That is, at any time ¢ it is the case that dG“ (t) +
T <O(E) GO,

The running condition involves the instantaneous change at
any moment in time. We index time by OPT’s time steps, and
bound this for each fixed time step ¢. At time ¢, consider the
set of active jobs in DREP A(t). Though A(t) is a random
variable dependent on the processing of DREP, we will show
that the running condition holds for any A(¢). If we do so,
by the definition of expected value, we have shown that in
expectation the running condition holds. First, we bound how
much the optimal can increase the potential.

Lemma 4.4: The optimal schedule’s processing of jobs at ¢
increases the potential function by at most 12| A(t)|.

Proof: The optimal schedule’s processing only changes
the first term Z;(¢) for any job that it processed the critical
path term depends on the algorithm as well as d}"(¢). The first
term for any job is a product of the rank and work remaining
of the job. Therefore, the increase in potential is maximized if
OPT uses all m processors to work on the job with maximum
rank in A(t). Therefore, the increase in potential is at most

m0 LIA(n)] = 0| A(1)]. =

The increase in the potential due to the optimal solution
needs to be offset by either charging it to the optimal cost or

140

by showing a decrease in the potential from the algorithm’s
processing of jobs. First we consider the case where we can
charge to the optimal solutions cost.

Claim 4.5: At time t, if [O(t)| > 5]A(t)],
condition is satisfied.

Proof: Note that the potential never increases due to A’s
processing of jobs since A can only decrease the remaining
work and critical-path lengths of jobs. If |O(t)] > 5] A(t)],
we will ignore the algorithm’s impact on the potential and
combine with Lemma 4.4 to examine the running condition.

%ﬁ%diﬁkmmw?wn <1+ %00
< o(pjow]| = 0(5) %W

|
Recall that we are using a speed augmentation of 4 + 4e.
Therefore, each time step has (4 + 4¢) processor steps which
are spent either working or stealing, where some steal attempts
become muggings if they find a muggable deque. We first
argue about work and mugging steps. Fix a job J;. If any
time step starts with a lot of muggable deques for job .J;, then
at least half the processor steps in that time step are spent on
either working or mugging. The reason is straightforward —
if a time step has a lot of muggable deques, then many of the
steal attempts will become muggings. Therefore for job J;,
either a lot of work is done or there were a lot of muggings.
Lemma 4.6: If a job has d;(t) > 2p;(t) deques at the
beginning of the time step, then it has (2 + 2¢)p;(t) work
plus mugging steps in expectation.

Proof: 1/2 of the deques are muggable at the beginning
of the time step. Say the job has s steal attempts and w work
steps. The expected number of mugging steps is s/2. Say that
the total number of processor steps in the time step were x >
(4 + 4€)p;. Therefore, the total expected number of work plus
mugging steps is s/2+w = s/24+x—s =x—s/2 > z—x/2 =
z/2 > (24 2¢€)p;.]

We can now argue that if time step ¢ has many work plus
mugging steps for a job that is not in OPT’s queue, then this
time step reduces this job’s flow potential.

Lemma 4.7: If a job J; € A(t) and J; € O(t), and this job
does at least (2 + 2¢)p;(t) work or mugging steps during this
time step, then the change in flow potential due to A in this

a®f (1) 20+20
step is E [< —Taw ranki(t).

Proof: We know that E[p;] = m/|A(t)]. Therefore,
the expected number of work plus mugging steps is (2 +
2¢)m/ | A(t)|. Each mugging reduces the number of muggable
deques d]* by 1 in expectation. In addition, since this job
is not in OPT’s queue, each work step reduces this job’s
Z;(t) term by 1. Therefore, we can plug in this change in
<

10 rank;(t) 20+20
— >R —Sag ranki(t). |

We now must argue about time steps that have a lot of
steal attempts but not too many muggings. Here, we can use
the original work stealing analysis showing that steal attempts

L . . da®? (t)
potential into the potential function to get E [T}

[dzi(t)+d;”(t)} <
dat

reduce steal potential and thus the critical-path term in the flow
potential. We will use a known lemma from the paper [38].

Lemma 4.8: The depth-potential 1);(¢) never increases. In
addition, if a job has d deques and there are d steal attempts be-
tween time ¢; and to, then Pr{u;(t1) — 1/)1(152) > i(t)/4} >
1 . Hence, Ellog ¢;(t2)] < Eflogv;(t1)] — .

We can now argue that a time step with “enough steal
attempts” and not too many muggable deques reduces the
critical-path term of the flow potential ®;(t).

Lemma 4.9: If job J; has p;(t) processors and d;(t) <
2p;(t) deques, then if the job has 2p;(t) steal attempts or
completes the change in flow potential of this job due to A

is E [d‘b (“} < —200/¢2.
<

Proof: From Lemma 4.8, we know that E [Lﬁ;t(t)

—1/16 if it has enough steal attempts; the same is trivially
true if the job completes. Plugging it into the potential, we
get E [4200] < 10301 < 900/ m

We can now complete the proof of the running condition.

e 16
Proof of [Lemma 4.3] Case 1: At least ¢/10|A(t)| jobs
have more than 2p;(¢) steal attempts and d; < 2p;(t). In
this case, due to Lemma 4.9, each of these jobs reduces the
flow potential by 200/e2; therefore, the total flow potential
reduction due to A is at least 20/e |A(t)].

Case 2: At least (1 — €/10) | A(t)| have fewer than 2p;(t)
steal attempts or lots of deques d; > 2p;(t). In the first case,
this job has more than (2 + 2¢)p; work steps in a straight-
forward way since there are a total of (4 + 4¢)p; steps in that
time step. In the second case, from Lemma 4.6, the time step
has more than (2+ 2¢)p; work plus mugging steps. Therefore,
in either case, the total number of work and mugging steps is
at least (2 + 2¢)p;.

In addition, from Lemma 4.8, we know that the algorithm
can never increase the potential during execution. Hence,
Claim 4.5 is still true. Therefore, we only need worry about
the case where OPT has few jobs — fewer than €|A(t)| /10.
In this case, among the (1 —¢€/10) | A(t)| jobs that have many
work and mugging steps, at least (1—¢/5) |A(t)]| of these jobs

are in A(t), but not in O(¢). We apply Lemma 4.7 on these
. . il €

jobs to obtain E dT(t)} < Yieawnom z?A(Q,g()]| rank;(t).
Assuming the worst case that these are the lowest rank jobs
we get the following change to the potential.

1-£)|A

ddA(t) 20 4 20e 'L

E < - 1
dt e|A(t)]| -

1
20+20e (1 - £)*JA()
e[A(t)] 2

< —2JA®I(10+3¢) fe<]
Therefore, in both cases, the flow potential reduces by at
least 1| A(t)) due to A. Since OPT increases the flow
potentlal by at most 12| A(t)| from Lemma 4.4 and we have
dG (t) = |A(¢)|, the runmng condition is satisfied. O
It has been shown that the arrival, completion and running
conditions hold. Thus, we can conclude that the work-stealing

141

scheduler is constant competitive with (4+4¢) speed augmen-
tation completing the proof of the main theorem.

V. EXPERIMENTAL EVALUATION

This section presents the evaluation of DREP through
both simulation and empirical experiments based on actual
implementations. Simulations allow us to compare DREP
with a wide variety of scheduling policies, including ones
that are clairvoyant and/or infeasible to implement due to
the need to preempt at infinitesimal time steps. The actual
implementation allows us to evaluate DREP against a set of
practical scheduling policies that are implementable but do not
provide any theoretical bounds, including an approximation of
Smallest Work First (SWF) [24], i.e., the SJF counterpart for
parallel jobs, which is clairvoyant and work conserving. We
obtain the actual implementations by modifying Cilk Plus [7],
a production quality parallel runtime system, to approximate
SWF and DREP and compare their performance in practice.

A. Evaluation Based on Simulations

Compared Algorithms: Via simulations, we compare DREP
against a wide variety of schedulers: shortest-remaining-
processing-time (SRPT) [3], shortest-job-first (SJF) [29]
(which generalizes to smallest-work-first (SWF) [24] for par-
allel jobs), and round robin (RR) [26]. We compare against
SRPT and SJF, because they are scalable, i.e., (1 + €)-speed
O(%)—competitive for average flow for sequential jobs on
multiprocessors. We also compare to RR, which is (2 + ¢)-
speed O(Z)-competitive, because intuitively DREP simulates
RR by umformly and randomly partitioning cores across all
active jobs.

It is important to note that all the existing algorithms,
including the ones that we compared in the simulation,
suffer from frequent preemptions, high overheads, and non-
clairvoyance. LAPS [25], in particular, is very difficult to
implement since it needs to know the parameter epsilon
(speedup against the optimal) and preempts at infinitesimal
time steps — it must process epsilon fraction of arriving jobs
equally at any time. Because of this, LAPS is even difficult to
implement in the simulation. Therefore, we do not compare
against LAPS in the simulation experiments.

Moreover, the simulation results can be thought of as the
lower bounds of what these scheduling algorithms can achieve,
because they do not account for any scheduling or preemption
overhead, which can significantly increase the average flow
time in practice.

Setup: We use two different work distributions from real-
world applications to generate the workloads: the Bing work-
load and the Finance workload [20]. We randomly generate a
job by randomly sample its work from the experimented work
distribution. For each work distribution, we vary the queries-
per-second (QPS) to generate three levels of system loads:
low (~ 50%), medium (~ 60%), and high (~ 70%) load
(machine utilization), respectively. For a particular QPS, we
randomly generate the inter-arrival time between jobs using
a Poisson process with a mean equal to 1/QPS. For each

16
£
=
2 8
o
('S
w4
}i.f’ ©OSRPT
o B8SJF
>
z? ARR
. *DREP

1 5 9 13 17 21 25 29
Number of Processors

(a) Finance workload, low load

16
£
=
28
o
'S
o4
?‘!f’ ©SRPT
g 2 BSJF
< #RR
1 ¥DREP

1 5 9 13 17 21 25 29
Number of Processors

(b) Finance workload, high load

J2.8

£

=

s 6.4

=2

(S8

@ 3.2

:,!9 ©SRPT

o BSJF

>

< LB ARR
¥ DREP

o

1 5 9 13 17 21 25 29
Number of Processors

(c) Bing workload, low load

me,
N
o

o
FS

t\\ R,

©SRPT
BSJF
#RR
¥ DREP

Average Flow Ti
= w
) N

o
()

1 5 9 1317 21 25 29
Number of Processors

(d) Bing workload, high load

Fig. 1: Sequential jobs with multiprocessors setting with low and high machine utilizations

| ©SRPT &SIF ARR XDREP |

| ©SRPT SSIF ARR XDREP |

| ©SRPT BSIF ARR XDREP |

| ©SRPT ©SIF ARR XDREP

2 X HHHRRX
18

16

Average Flow Time

H

14

12

1 5 9 13 17 21 25 29
Number of Processors

(a) Finance workload, low load (b) Finance workload, high load

£ 35

=R e - g

E 3

('S

& 2.5

o

[

Iz 2
068888888
00009009

15

1 5 9 13 17 21 25 29
Number of Processors

vl.8

Flow Tim
=
B o

Average
&=
N

=

|
|

o
o

1 5 9 13 17 21 25 29
Number of Processors

(c) Bing workload, low load

Average Flow Time
N w L) [%,]

[y

1 5 9 13 17 21 25 29
Number of Processors

(d) Bing workload, high load

Fig. 2: Fully parallel jobs setting with low and high machine utilizations

experiment setting, we generate 100, 000 jobs and report their
average flow time under different schedulers.

We also evaluate the impact on the average flow by in-
creasing the number of processors. To ensure that the average
machine utilization remains the same across experiments, we
scale the amount of work of each job according to the number
of processors.

We simulate two job settings: (1) the sequential jobs with

multiprocessors setting, where each job is sequential and can
use only one processor at any time, and (2) the fully parallel
Jobs setting, where each job obtains near-linear speedup with
respect to the number of processors given. These two settings
capture the two extreme cases of scheduling parallel jobs. Note
that in our simulation experiments, we assume that all jobs
are equally parallel since running accurate simulations with
different and changing parallelisms is difficult. In our real
experiments, we do not make this assumption.
Comparison: Figure 1 shows the results of simulating the
sequential jobs on multiple processors setting, and Figure 2
shows the results for the fully parallel job setting. We only
show the results with the low and high machine utilizations,
since the trend is similar with medium utilization.

For sequential jobs on multiprocessors in Figure 1, SRPT
and SJF have been proved to be scalable for average flow;
but they are both clairvoyant, i.e., requiring the a priori
knowledge of the amount of work for each job. In contrast,
DREP and RR are non-clairvoyant and DREP’s performance
is very close to RR’s performance in both workloads. When
the number of processors is small, the gap between DREP/RR

and SRPT/SJF is the widest while DREP gets close to optimal
as the number of cores increases. This is because, intuitively,
SRPT and SJF always work on the “right job”, while DREP
and RR give equal processing time to all jobs. In particular,
with a small number of processors, DREP is more likely to
encounter situations where smaller jobs that arrive later are
stuck waiting for long jobs that occupy all the processors.
Other schedulers either have the advantage of clairvoyant and
thus know which jobs are smaller and should be processed
first (e.g., SJF and SRPT), or they have the advantage of very
frequent preemptions (e.g., RR), allowing them to preempt the
long jobs in such scenario. DREP has comparable performance
without such advantages and is thus more practical.

For the fully parallel job setting in Figure 2, we compare
against SRPT and SWF. Since jobs are fully parallel, SRPT
and SWF schedulers reduce to SRPT and SJF for sequential
jobs on a single sequential machine (since the job with the least
remaining work or the job with the smallest work will occupy
the whole machine), so SRPT is optimal and SJF is scalable.
Thus, in these experiments, these schedulers are operating in
an “easier setting.” In addition, SRPT and SJF can now devote
all their processors to “the right job”, while DREP may still get
unlucky and not process small jobs that get stuck in the queue.
Even so, the difference in performance is at most a factor of
3.25 compared to SRPT (which is optimal) and less than 3
compared to SJF (which is scalable). In this setting, DREP’s
performance is still close to RR and approaches RR as the
number of cores increase. Note that on a small number of cores
the gap between DREP and RR is larger on the Bing workload

142

0.9
©0.8
@

Finance workload
(16 cores)

Bing workload
(16 cores)

uSWF =DREP = Admit-First = Steal-First

Medium
System Load

Medium Low

System Load

Low High High

(a) Finance workload on 16 core (b) Bing workload on 16 cores

(c) Finance workload on 8 cores

Finance workload 0.7

(8 cores)

Bing workload
(8 cores)

®SWF WDREP © Admit-First = Steal-First ®SWF = DREP = Admit-First - Steal-First

Medium
System Load

Medium Low

System Load

Low High High

(d) Bing workload on 8 cores

Fig. 3: Parallel Cilk Plus jobs on multicore with varying system load and different work distributions

than the Finance workload. This is because Bing workload
has some very large jobs. For other algorithms, this does not
matter, as they can still finish short jobs fast by either being
clairvoyant (SRPT, SJF) or doing many preemptions (RR).
However, DREP will occasionally schedule a large job. With
1 core, this can have a large negative effect on the outcome.
As the number of cores increase, this effect diminishes —
therefore, DREP is worst on Bing with 1 core but converges
to RR on many cores.

B. Evaluation Based on Real Implementation

To evaluate the empirical performance and practicality of
DREP, we implemented a work-stealing based DREP in Cilk
Plus [7], a widely-used parallel runtime system. For compar-
ison, we implemented a few variants of work-stealing based
scheduling strategies: steal-first [20], admit-first [20], and an
approximation of smallest-work-first [24] explained below.

Setup: Similar to the simulations, we evaluate the schedulers
using the Finance and Bing workloads. The data is collected
on a 16-core machine with Linux 4.1.7 with RT_PREEMPT
patch. Each data point presented is the average flow of an
execution with 10, 000 jobs.

DREP Implementation: We implemented DREP in Cilk Plus
by adding a global job queue. At the platform startup, a
master thread inserts jobs into the job queue according to
the workload specification. During the execution, a worker (a
surrogate of a core) is assigned to an active job and only steals
work from this job. By DREP, an active job is associated with
n/|A(t)| workers in expectation. This is achieved by letting
the master thread determine upon a job arrival that whether
a core should preempt with a probability of 1/|A(¢)|. If it
determines that a core should preempt to work on the newly
arrived job, it notifies the worker by setting a flag. Once the
worker notices that the flag is set, it switches to work on the
job specified by the master. In our current implementation, a
worker checks whether this flag is set on steal attempts. In
an improved implementation, a worker can check the flag at
function calls, allowing the new job to be worked on faster
while paying some small overheads of frequent checking. We
left this implementation as our future work. Each active job
keeps track of its associated deques. When a worker runs out
of work, it randomly steals into the set of deques associated
with the assigned job.

143

Other Scheduling Policies: We implemented several variants
of work-stealing based schedulers and an approximation of
SWF to compare with DREP. Both steal-first and admit-
first extends the standard work-stealing algorithm by also
incorporating a FIFO job queue. In steal-first, a worker, upon
running out of work, tries to steal work from other workers,
favoring jobs that have started processing. Only when it cannot
find any work to do among jobs that have started, it then
admits a new job from the queue. Admit-first does the opposite
— whenever a worker runs out of work, it always admits
a new job from the queue, if there is one. Both admit-first
and steal-first have been shown to work well for max flow
time [18], especially steal-first which approximates FIFO. We
also implemented an approximation of SWF, where every
worker when running out of work, checks every active job
in the system and works on the job with the smallest amount
of work.

Comparison: Theoretically and from the simulations, SWF
has performance advantages both by being clairvoyant and by
requiring frequent preemptions. However, Figure 3 shows that
DREP has comparable performance in practice with the work-
stealing based SWF for all the different settings. In practice,
preemption overhead is not negligible, so a scheduler cannot
preempt very frequently. In particular, the approximation of
SWF cannot immediately preempt the execution of a large job
to work on the newly available work from a smaller job. In
contrast, DREP tries to maintain an approximately equal num-
ber of workers (cores) to each active job, so that a large parallel
job can hardly monopolize the entire system. The implemented
steal-first in Figure 3 only bears 2n number of failed stealing
attempts before admitting a new job. Its performance becomes
worse when it allows more failed stealing attempts, which
is thus not shown in the figure. Not surprisingly, DREP and
admit-first have similar performance for average flow time.
This is because admit-first keeps at least one worker per job
when the number of active jobs is smaller than the number of
cores. In addition, admit-first lets workers to randomly steal
from each other, resulting in roughly equal resources between
jobs, which is the same with DREP.

VI. CONCLUSION

In this paper, we introduced a practically efficient scheduler
for optimizing the average flow time of parallel jobs. The

scheduler randomly distributes processors between the jobs,
and each job uses work stealing to execute in parallel on its
assigned processors. While this algorithm has a slightly worse
theoretical guarantee than the best-known algorithm for the
problem, it is the first provably efficient algorithm that has
low enough overhead to use in practice for parallel jobs. The
evaluations demonstrate its strong performance.

For future work, it is of interest to design schedulers for
parallel jobs on processors of different speeds and prove for
the best offline approximation ratio or online competitive ratio.
This problem is much harder and is still not well-understood
even offline. As far as the authors are aware, no prior work
has addressed this problem theoretically in the online model.

ACKNOWLEDGMENT

This work is supported in part by a NJIT Seed Grants and NSF
grants CCF-1845146, CCF-1830711, CCF-1824303, CCF-
1733873, CCF-1527692, CCF-1150036 and CCF-1340571.

REFERENCES

[1] C. Chekuri, A. Goel, S. Khanna, and A. Kumar, “Multi-processor
scheduling to minimize flow time with epsilon resource augmentation,”
in STOC, 2004, pp. 363-372.

[2] E. Torng and J. McCullough, “Srpt optimally utilizes faster machines to
minimize flow time,” ACM Transactions on Algorithms, vol. 5, no. 1,
2008.

[3] K. Fox and B. Moseley, “Online scheduling on identical machines using
srpt,” in SODA, 2011, pp. 120-128.

[4] L. Becchetti, S. Leonardi, A. Marchetti-Spaccamela, and K. Pruhs, “On-

line weighted flow time and deadline scheduling,” Journal of Discrete

Algorithms, vol. 4, no. 3, pp. 339-352, 2006.

C. Bussema and E. Torng, “Greedy multiprocessor server scheduling,”

Operations research letters, vol. 34, no. 4, pp. 451-458, 2006.

[6] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation
of the cilk-5 multithreaded language,” in Proceedings of the ACM
SIGPLAN 1998 Conference on Programming Language Design and
Implementation. Montreal, Quebec, Canada: ACM, 1998, pp. 212-223.

[7] Intel, “Intel Cilk™ Plus,” https://www.cilkplus.org/.

[8] C.E. Leiserson, “The Cilk++ concurrency platform,” Journal of Super-
computing, vol. 51, no. 3, pp. 244-257, March 2010.

[9] J. S. Danaher, I.-T. A. Lee, and C. E. Leiserson, “Programming with
exceptions in JCilk,” Science of Computer Programming, vol. 63, no. 2,
pp. 147-171, Dec. 2008.

[10] J. Reinders, Intel threading building blocks: outfitting C++ for multi-
core processor parallelism. O’Reilly Media, 2010.

[11] OpenMP, “OpenMP Application Program Interface v3.1,” July 2011,
http://www.openmp.org/mp-documents/OpenMP3.1.pdf.

[12] O. Tardieu, H. Wang, and H. Lin, “A work-stealing scheduler for x10’s
task parallelism with suspension,” in PPoPP, 2012.

[13] R. Barik, Z. Budimli¢, V. Cave, S. Chatterjee, Y. Guo, D. Peixotto,
R. Raman, J. Shirako, S. Tagirlar, Y. Yan, Y. Zhao, and V. Sarkar,
“The Habanero multicore software research project,” in Proceedings of
the 24th ACM SIGPLAN Conference Companion on Object Oriented
Programming Systems Languages and Applications. ACM, 2009, pp.
735-736.

[14] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar, “Habanero-Java: the
new adventures of old X10,” in Proceedings of the 9th International
Conference on Principles and Practice of Programming in Java, 2011,
pp. 51-61.

[15] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded compu-
tations by work stealing,” JACM, vol. 46, no. 5, pp. 720-748, 1999.

[16] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “Cilk: An efficient multithreaded runtime system,”
in ACM SIGPLAN symposium on Principles and practice of parallel
programming (PPoPP), July 1995, pp. 207-216.

[17] U. A. Acar, G. E. Blelloch, and R. D. Blumofe, “The data locality of
work stealing,” in Proceedings of the twelfth annual ACM symposium
on Parallel algorithms and architectures. ACM, 2000, pp. 1-12.

=

144

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

K. Agrawal, J. Li, K. Lu, and B. Moseley, “Scheduling parallelizable
jobs online to minimize the maximum flow time,” in Proceedings of the
28th ACM Symposium on Parallelism in Algorithms and Architectures.
Pacific Grove, California, USA: ACM, 2016, pp. 195-205.

K. Agrawal, Y. He, and C. E. Leiserson, “Adaptive work stealing
with parallelism feedback,” in Proceedings of the Annual ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP), March 2007, pp. 112-120.

J. Li, K. Agrawal, S. Elnikety, Y. He, I-T. A. Lee, C. Lu, and
K. S. McKinley, “Work stealing for interactive services to meet
target latency,” in Proceedings of the ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, ser. PPoPP ’16.
New York, NY, USA: ACM, 2016, pp. 14:1-14:13. [Online]. Available:
http://doi.acm.org/10.1145/2851141.2851151

J. Li, S. Dinh, K. Kieselbach, K. Agrawal, C. D. Gill, and C. Lu,
“Randomized work stealing for large scale soft real-time systems,” in
2016 IEEE Real-Time Systems Symposium (RTSS), 2016, pp. 203-214.
S. Leonardi and D. Raz, “Approximating total flow time on parallel
machines,” Journal of Computer and Systems Sciences, vol. 73, no. 6,
pp. 875-891, 2007.

B. Kalyanasundaram and K. Pruhs, “Speed is as powerful as clair-
voyance,” Journal of the ACM, vol. 47, no. 4, pp. 617-643, 2000.
Preliminary version in FOCS 1995.

K. Agrawal, J. Li, K. Lu, and B. Moseley, “Scheduling parallel DAG jobs
online to minimize average flow time,” in Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2016, Arlington, VA, USA, January 10-12, 2016, 2016, pp. 176-189.
J. Edmonds and K. Pruhs, “Scalably scheduling processes with arbitrary
speedup curves,” ACM Transactions on Algorithms, vol. 8, no. 3, p. 28,
2012.

J. Edmonds, “Scheduling in the dark,” Theor. Comput. Sci., vol. 235,
no. 1, pp. 109-141, 2000. Preliminary version in STOC 1999.

K. Fox, S. Im, and B. Moseley, “Energy efficient scheduling of par-
allelizable jobs,” Theoretical Computer Science, vol. 726, pp. 30-40,
2018.

N. Barcelo, S. Im, B. Moseley, and K. Pruhs, “Shortest-elapsed-time-
first on a multiprocessor,” in Design and Analysis of Algorithms - First
Mediterranean Conference on Algorithms, MedAlg 2012, Kibbutz Ein
Gedi, Israel, December 3-5, 2012. Proceedings, 2012, pp. 82-92.

C. Bussema and E. Torng, “Greedy multiprocessor server scheduling,”
Operations Research Letters, vol. 34, no. 4, pp. 451-458, 2006.
[Online]. Available: https://doi.org/10.1016/j.0rl.2005.07.005

J. Edmonds, D. D. Chinn, T. Brecht, and X. Deng, “Non-clairvoyant
multiprocessor scheduling of jobs with changing execution characteris-
tics,” J. Scheduling, vol. 6, no. 3, pp. 231-250, 2003.

R. Ebrahimi, S. McCauley, and B. Moseley, “Scheduling parallel jobs
online with convex and concave parallelizability,” in Approximation and
Online Algorithms - 13th International Workshop, WAOA 2015, Patras,
Greece, September 17-18, 2015., 2015, pp. 183-195.

J. Edmonds, S. Im, and B. Moseley, “Online scalable scheduling for the
l.-norms of flow time without conservation of work,” in ACM-SIAM
Symposium on Discrete Algorithms, 2011.

A. Gupta, S. Im, R. Krishnaswamy, B. Moseley, and K. Pruhs, “Schedul-
ing jobs with varying parallelizability to reduce variance,” in Symposium
on Parallel Algorithms and Architectures, 2010, pp. 11-20.

H. Chan, J. Edmonds, and K. Pruhs, “Speed scaling of processes with
arbitrary speedup curves on a multiprocessor,” Theory of Computing
Systems, vol. 49, no. 4, pp. 817-833, 2011.

K. Pruhs, J. Robert, and N. Schabanel, “Minimizing maximum flowtime
of jobs with arbitrary parallelizability,” in Approximation and Online
Algorithms - 8th International Workshop, WAOA 2010, Liverpool, UK,
September 9-10, 2010. Revised Papers, 2010, pp. 237-248.

J. Robert and N. Schabanel, “Non-clairvoyant scheduling with prece-
dence constraints,” in Proceedings of the nineteenth annual ACM-SIAM
symposium on Discrete algorithms, ser. SODA 08, 2008, pp. 491-500.
S. Im, B. Moseley, and K. Pruhs, “A tutorial on amortized local
competitiveness in online scheduling,” ACM SIGACT News, vol. 42,
no. 2, pp. 83-97, 2011.

N. S. Arora, R. D. Blumofe, and C. G. Plaxton, “Thread scheduling for
multiprogrammed multiprocessors,” in 10th Annual ACM Symposium on

Parallel Algorithms and Architectures, 1998, pp. 119-129.

