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Unsupervised learning makes manifest the underlying structure
of data without curated training and specific problem definitions.
However, the inference of relationships between data points is
frustrated by the “curse of dimensionality” in high dimensions.
Inspired by replica theory from statistical mechanics, we consider
replicas of the system to tune the dimensionality and take the
limit as the number of replicas goes to zero. The result is inten-
sive embedding, which not only is isometric (preserving local
distances) but also allows global structure to be more transpar-
ently visualized. We develop the Intensive Principal Component
Analysis (InPCA) and demonstrate clear improvements in visual-
izations of the Ising model of magnetic spins, a neural network,
and the dark energy cold dark matter (ΛCDM) model as applied to
the cosmic microwave background.

manifold learning | information theory | probabilistic models |
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V isualizing high-dimensional data is a cornerstone of machine
learning, modeling, big data, and data mining. These fields

require learning faithful and interpretable low-dimensional rep-
resentations of high-dimensional data and, almost as critically,
producing visualizations which allow interpretation and evalu-
ation of what was learned (1–4). Unsupervised learning, which
infers features from data without manually curated data or
specific problem definitions (5), is especially important for high-
dimensional, big data applications in which specific models
are unknown or impractical. For high dimensions, the rela-
tive distances between features become small and most points
are orthogonal to one another (6). A trade-off between pre-
serving local and global structure must often be made when
inferring a low-dimensional representation. Classic manifold
learning techniques include linear methods such as principal
component analysis (PCA) (7) and multidimensional scaling
(MDS) (8), which preserve global structure but at the cost of
obscuring local features. Existing nonlinear manifold learning
techniques, such as t-distributed stochastic network embedding
(t-SNE) (9) and diffusion maps (10), preserve the local struc-
ture while maintaining only some qualitative global patterns such
as large clusters. The uniform manifold approximation (UMAP)
(11) better preserves topological structures in data, a global
property.

In this article, we develop a nonlinear manifold learning
technique which achieves a compromise between preserving
local and global structure. We accomplish this by develop-
ing an isometric embedding for general probabilistic models
based on the replica trick (12). Taking the number of repli-
cas to zero, we reveal an intensive property—an information
density characterizing the distinguishability of distributions—
ameliorating the canonical orthogonality problem and “curse
of dimensionality.” We then describe a simple, deterministic
algorithm that can be used for any such model, which we call
Intensive Principal Component Analysis (InPCA). Our method
quantitatively captures global structure while preserving local
distances. We first apply InPCA to the canonical Ising model
of magnetism, which inspired the zero-replica limit. Next,
we show how InPCA can capture and summarize the learning

trajectory of a neural network. Finally, we visualize the dark
energy cold dark matter (ΛCDM) model as applied to the cos-
mic microwave background (CMB), using InPCA, t-SNE, and
diffusion maps.

Model Manifolds of Probability Distributions
Any measurement obtained from an experiment with uncertainty
can generally be understood as a probability distribution. For
example, when some data x are observed with normally dis-
tributed noise ξ of variance σ2, under experimental conditions
θj , a model is expressed as

x = f (θj ) + ξ where L(ξ)v N (0,σ2), [1]

and f (θi) is a prediction given the experimental conditions.
This relationship is equivalent to saying that the probability of
measuring data x given some conditions θ is

L(x |θ)v N (f (θ),σ2). [2]

More complicated noise profiles with asymmetry or correlations
can be accommodated with this picture. Measurements without
an underlying model can also be seen as distributions, where
a measurement xi with uncertainty σ can induce a probability
L (x | xi ,σ)of observing new data x .
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We define a probabilistic model L (x |θ), the likelihood of
observing data x given parameters θ. The model manifold is
defined as the set of all possible predictions, {L (x |θi)}, which
is a surface parameterized by the model parameters {θi}. The
parameter directions related to the longest distances along the
model manifold have been shown to predict emergent behav-
ior (how microscopic parameters lead to macroscopic behavior)
(13). We will see that InPCA orders its principal components
by the length of the model manifold along their direction, high-
lighting global structure. The boundaries of the model manifold
represent simplified models which retain predictive power (14),
and the constraint of data lying near the model manifold has
been used to optimize experimental design (15). In this arti-
cle, we study the Ising model, which defines probabilities of
spin configurations given interaction strengths; a neural network,
which predicts the probability of an image representing a single
handwritten digit given weights and biases; and ΛCDM, which
predicts the distribution of CMB radiation given fundamental
constants of nature.

Hypersphere Embedding
We promised an embedding which both is isometric and
preserves global structures. We satisfy the first promise by
considering the hypersphere embedding

{zx(θi)}=
{

2
√
L (x |θi)

}
, [3]

where the normalization constraint of L (x |θ) forces zx to lie on
the positive orthant of a sphere. A natural measure of distance
on the hypersphere is the Euclidean distance, in this case also
known as the Hellinger divergence (16)

d2(θ1,θ2) = ‖z(θ1)− z(θ2)‖2

= 8
(

1−
√
L (x |θ1)·

√
L (x |θ2)

)
2, [4]

where · represents the inner product over x . Now we can see that
the hypersphere embedding is isometric: The Euclidean metric
of this embedding is equal to the Fisher information metric I of
the model manifold (17),

d2(zi , zi + dzi) =
∑
i

dzidzi =
∑
kl

Ikldθkdθl . [5]

The Fisher information metric (FIM) is the natural metric of the
model manifold (18), so the hypersphere embedding preserves
the local structure of the manifold defined by L (x |θ).

As the dimension of the data increases, almost all features
become orthogonal to each other, and most measures of dis-
tance lose their ability to discriminate between the smallest and
largest distances (19). For the hypersphere embedding, we see
that as the dimension of x increases, the inner product in the
Hellinger distance of Eq. 4 becomes smaller as the probabil-
ity is distributed over more dimensions. In the limit of large
dimension, all nonidentical pairs of points become orthogo-
nal and equidistant around the hypersphere (a constant dis-
tance

√
8 apart), frustrating effective dimensional reductions and

visualization.
To illustrate this problem with the hypersphere embedding,

consider the Ising model, which predicts the likelihood of observ-
ing a particular configuration of binary random variables (spins)
on a lattice. The probability of a spin configuration is deter-
mined by the Boltzmann distribution and is a function of a
local pairwise coupling and a global applied field. The dimen-
sion is determined by the number of spin configurations, 2N ,

where N is the number of spins. Holding temperature fixed at
one, we vary h and J : external magnetic field (h ∈ (−1.3, 1.3))
and nearest-neighbor coupling (J ∈ (−0.4, 0.6)), using a Monte
Carlo method weighted by Jeffrey’s prior to sample 12,000 dis-
tinct points. From the resulting set of parameters, we compute
Xij = {zi(θj)} using the Boltzmann distribution and visualize the
model manifold in the N -sphere embedding of Eq. 3 by project-
ing the predictions onto the first three principal components of
X . Fig. 1A shows this projection of the model manifold of a 2× 2
Ising model which is embedded in 24 dimensions. Fig. 1B shows
a larger, 4× 4 Ising model, of dimension 216. As the dimension
is increased from 24 to 216, we see the points starting to wrap
around the hypersphere, becoming increasingly equidistant and
less distinguishable.

A natural way to increase the dimensionality of a probabilis-
tic model is by drawing multiple samples from the distribution.
If D is the dimension of x , then N identical draws from the
distribution will have dimension DN . The more samples drawn,
the easier it is to distinguish between distributions, mimick-
ing the curse of dimensionality for large systems. We see this
demonstrated for our Ising model in Fig. 1C, where we drew
four replica samples from the same model. Note that com-
pared with the original 2 × 2 model, the model manifold of
the four-replica 2 × 2 model “wraps” more around the hyper-
sphere, just like the larger, 4× 4 Ising model. High-dimensional
systems have “too much information,” in the same way that
large numbers of samples have too much information. In the
next section, we consider the contraposition of the insight that
a large number of replicas lead to the curse of dimension-
ality and discover an embedding which not only is isometric
but also ameliorates the high-dimensional wrapping around the
n-sphere.

A

B C
Fig. 1. (A–C) Hypersphere embedding, illustrating an embedding of the
2D Ising model. Points were generated through a Monte Carlo sampling
and visualized by projecting the probability distributions onto the first
three principal components (28). The points are colored by magnetic field
strength. As the system size increases from 2× 2 to 4× 4, the orthogo-
nality problem is demonstrated by an increase in “wrapping” around the
hypersphere. This effect can also be produced by instead considering four
replicas of the original system, motivating the replica trick which takes the
embedding dimension or number of replicas to zero.
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Replica Theory and the Intensive Embedding
We saw in Fig. 1 that increasing the dimension of the data led
to a saturation of the distance function Eq. 4. This problem is
referred to as the loss of relative contrast or the concentration
of distances (19), and to overcome it requires a non-Euclidean
distance function, discussed below. In the previous section we
saw the same saturation of distance could be achieved by adding
replicas, increasing the embedding dimension. Fig. 2A shows this
process taken to an extreme: the model manifold of the 2× 2
Ising model with the number of replicas taken to infinity. All of
the points cluster together, obscuring the fact that the under-
lying manifold is 2D. To cure the abundance of information
which makes all points on the hypersphere equidistant, we seek
an intensive distance, such as the distance per number of repli-
cas observed. Next, because the limit of many replicas artificially
leads to the same symptoms of the curse of dimensionality, we
consider the limit of zero replicas, a procedure which is often
used in the study of spin glasses and disordered systems (20).
Fig. 2B shows the result of this analysis, the intensive embed-
ding, where the distance concentration has been cured, and the
inherent 2D structure of the Ising model has been recovered.

To find the intensive embedding, we must first find the dis-
tance between replicated models. The likelihood for N replicas
of a system is given by their product

L ({x1, . . . , xN} |θ))(N ) =L (x1 |θ)· · · L (xN |θ), [6]

where the set {x1, . . . , xN} represents the observed data in the
replicated systems. Writing the inner product or cosine angle
between two distributions as

〈θ1;θ2〉=
√
L (x |θ1)·

√
L (x |θ2), [7]

and using Eq. 4, the distance per replica d2
N between two points

on the model manifold is

d2
N (θ1,θ2) =

d2(θ1,θ2)

N
=−8

〈θ1;θ2〉N − 1

N
. [8]

We are now poised to define the intensive distance by taking the
number of replicas to zero:

A B

Fig. 2. Replicated Ising model illustrating the derivation of our inten-
sive embedding. All points are colored by magnetic field strength. (A)
Large dimensions are characterized by large system sizes; here we mimic a

128× 128 Ising model which is of dimension 21282
. The orthogonality prob-

lem becomes manifest as all points are effectively orthogonal, producing a
useless visualization with all points clustered in the cusp. (B) Using replica
theory, we tune the dimensionality of the system and consider the limit
as the number of replicas goes to zero. In this way, we derive our inten-
sive embedding. Note that the z axis reflects a negative-squared distance, a
property which allows violations of the triangle inequality and is discussed
in the text.

d2
I (θ1,θ2) = lim

N→0
d2
N (θ1,θ2) =−8 log 〈θ1;θ2〉 . [9]

The last equality is achieved using the standard trick in replica
theory, (xN − 1)/N → log x as N →∞, which is a basis trick
used to solve challenging problems in statistical physics (20). The
trick is most evident using the identity xN = exp(logNx )≈ 1 +
N log x . One can check that the intensive distance is isometric,

d2
I (θ,θ + δθ) = δθαδθβgαβ = δθαδθβIαβ , [10]

where again I is the Fisher information metric in Eq. 5, so that
we can be confident the intensive embedding distance preserves
local structures.

Importantly, the intensive distance does not satisfy the trian-
gle inequality (and is thus non-Euclidean): The distance between
points on the hypersphere can go to infinity, rather than lie
constrained to the finite radius of the hypersphere embedding.
Because of this, the intensive embedding can overcome the loss
of relative contrast (19) discussed at the beginning of this section.
Distances in the intensive embedding maintain distinguishabil-
ity in high dimensions, as illustrated in Fig. 2B, wherein the
2D nature of the Ising model has been recovered. We hypoth-
esize that this process, which cures the curse of dimensionality
for models with too many samples, will also cure it for mod-
els with intrinsically high dimensionality. The intensive distance
obtained here is proportional to the Bhattacharyya distance
(21). Considering the zero-replica limit of the Hellinger diver-
gence, we discovered a way to derive the Bhattacharyya distance.
The importance of this is discussed further in the following
section.

Connection to Least Squares. Consider the concrete and canonical
paradigm of models fi(θ) with data points xi and additive white
Gaussian noise, usually called a nonlinear least-squares model.
The likelihood L (x |θ)is defined by

− logL (x |θ)=
∑
i

(fi(θ)− xi)
2

2σ2
i

+ logZ(θ), [11]

where Z sets the normalization. A straightforward evaluation
of the intensive distance given by Eq. 9 finds for the case of
nonlinear least squares that

d2
I (θ1,θ2) =

∑
i

(fi(θ1)− fi(θ2))
2

σ2
i

, [12]

so that the intensive distance is simply the variance-scaled
Euclidean distance between model predictions.

Intensive Principal Component Analysis
Classical PCA takes a set of data examples and infers fea-
tures which are linearly uncorrelated. (7). The features to be
analyzed with PCA are compared via their Euclidean distance.
Can we generalize this comparison to use our intensive embed-
ding distance? Given a matrix of data examples X ∈Rm×p

(with features along the rows), PCA first requires the mean-
shifted matrix Mij =Xij − X̄i =PX , where Pij = δij − 1/p is
the mean-shift projection matrix and p is the number of sam-
pled points. The covariance and its eigenvalue decomposition
are then

cov(X ,X ) =
1

p
MTM =XTPPX =VΣV T , [13]

where the orthogonal columns of the matrix V are the natural
basis onto which the rows of M are projected,
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MV = (UDV T )V =UD =U
√

Σ, [14]

where the columns of U
√

Σ are called the principal components
of the data X .

The principal components can also be obtained from the cross-
covariance matrix, MMT , since

MMT =PXXTP = (UDV T )(UDV T )T =UΣUT . [15]

The eigenbasis U of the cross-covariance is the natural basis for
the components of the data, and the eigenbasis V of the covari-
ance is the natural basis of the data points. For us this flexibility is
invaluable, as the cross-covariance is more natural for expressing
the distances between distributions of different parameters.

Writing our data matrix as Xij = zi(θj ) using Eq. 3 for
replicated systems, the cross-covariance is

(MMT )
(N )
ij = (PXXTP)ij

= (z(θi)− z̄) · (z(θj)− z̄)

= 4 〈θi ;θj 〉N +
4

p2

p∑
k ,k′=1

〈θk ;θk′〉N

− 4

p

p∑
k=1

(
〈θi ;θk 〉N + 〈θj ;θk 〉N

)
, [16]

where z̄ is the average over all sampled parameters, and we used
the definition of z in Eq. 6. As with the intensive embedding, we
can take the limit as the number of replicas goes to zero to find

Wij = lim
N→0

1

N
(MMT )

(N )
ij . [17]

Explicitly, the intensive cross-covariance matrix is

Wij = 4 log 〈θi;θj〉+
4

p2

p∑
k ,k′=1

log 〈θk′ ;θk〉

− 4

p

p∑
k=1

(log 〈θi;θk〉+ log 〈θj;θk〉) [18]

= (PLP)ij , [19]

where Li,j = 4 log 〈θi;θj〉 and P is the same projection matrix as
defined above. In taking the limit of zero replicas, the structure
of the cross-covariance has transformed

PXXTP −−−→
N→0

PLP , [20]

and thus the symmetric Wishart structure is lost. It is therefore
possible to obtain negative eigenvalues in this decomposition,
which give rise to imaginary components in the projections. Note
the similarity between the form of this cross-covariance and the
double-centered distance matrix used in PCA and multidimen-
sional scalding (MDS). This arises because both InPCA and
PCA/MDS rely on mean shifing the input data before finding
an eigenbasis. Thus, we view InPCA as a natural generalization
of PCA to probability distributions and MDS to non-Euclidean
embeddings.

In summary, InPCA is achieved by the following procedure:
(i) Compute the cross-covariance matrix from a set of probabil-
ity samples: Compute Wij as derived in Eq. 18. (ii) Compute the
eigenvalue decomposition W =UΣUT . (iii) Compute the coor-
dinate projections, T =U

√
Σ. (iv) Plot the projections using the

columns of T .

Neural Network MNIST Digit Classifier. To demonstrate the utility
of InPCA, we use it to visualize the training of a two-layer con-
volution neural network (CNN), constructed using TensorFlow
(22), trained on the MNIST dataset of hand-written digits
(23). A set of 55,000 images was used to train the network,
which was then used to predict the likelihood that an addi-
tional set of 10,000 images is classified each as a specific
digit between 0 and 9. We use softmax (24) to calculate
the probabilities from the category estimates supplied by the
network. The CNN defines the likelihood L (x | θ) that some
input image θ contains the image of a particular handwrit-
ten digit x . The InPCA projections of the CNN output in
Fig. 3 visualize the clustering learned by the CNN as a func-
tion of the number of learning epochs. The initialized network’s
model manifold shows no knowledge of the digits (colored
dots), but as training commences, the network separates
digits into separate regions of its manifold (Movie S1).
InPCA can be used as a fast, interpretable, and deterministic
method for qualitatively evaluating what a neural network has
learned.

Properties of the Intensive Embedding and InPCA
The space characterized by our intensive embedding has two
weird properties: First, it is formally 1D, yet there are multi-
ple orthogonal directions upon which it can be projected; and
second, it is Minkowski-like, in that it has negative squared
distances, violating the triangle inequality. We posit that, funda-
mentally, this second property is what allows InPCA to cure the
orthogonality problem.

We begin with a discussion of the the 1D nature of the embed-
ding space. The embedding dimension is given by DN , where D is
the original dimension of data x and N is the number of replicas.
In the case of noninteger replicas the space becomes “frac-
tional” in dimension and in the limit of zero replicas ultimately
goes to one. However, it is still possible to obtain projections
themselves along the dominant components of this space, by
leveraging the cross-covariance instead of the covariance, sum-
marized in step ii of our algorithm. Visualizations produced by
InPCA are cross-sections of a space of the dimension equal to the

Fig. 3. Stages of training a CNN. Each point in the 3D projections represents
one of 10,000 test images supplied to the CNN (29). At the first epoch, the
neural network is untrained and so is unable to reliably classify images, with
about a 90% error rate—an effect reflected in the cloud of points. As train-
ing progresses and error rate decreases, the cloud begins to cluster as shown
by InPCA at the 20th epoch. Finally, when completely trained, the clustered
regions are manifest at the 2000th epoch with 10 clusters representing the
10 digits.

Quinn et al. PNAS | July 9, 2019 | vol. 116 | no. 28 | 13765
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A B

Fig. 4. InPCA visualization of biased coins (30). (A) The first two InPCA com-
ponents correspond to the coin bias and variance, yet the first one is real and
the second one is imaginary (the aspect ratio between axes is one). The con-
tour lines represent constant distances from a fair coin and are hyperbolas:
Points can be a finite distance from a fair coin yet an infinite distance from
each other. (B) The ordered eigenvalues correspond to the manifold lengths,
illustrating the hierarchical nature of the components extracted from InPCA.

number of sampled points of the model manifold p, instead of
the dimension D or DN .

In the limit of zero replicas in Eq. 18, the positive-definite,
Wishart structure of the cross-covariance matrix is lost. It is
therefore possible to have negative squared distances. The
non-Euclidean nature of the embedding (flat, but Minkowski-
like) does not suffer from the concentration of distances which
plagues Euclidean measures in high dimensions, thus allowing
the model manifold to be “unwound” from the N -sphere and for
InPCA to produce useful, low-dimensional representations.

Finally, the eigenvalues of InPCA correspond to the cross-
sectional widths of the model manifold. We see this quite explic-
itly with the following example of a biased coin (specifically,
in Fig. 4B) where the eigenvalues extracted from InPCA map
directly to the manifold widths measured along the direction of
the corresponding InPCA eigenvector. Therefore, we see that
InPCA produces a hierarchy of directions, ordered by the global
widths of the model manifold. Note that, as with classical PCA,
this correspondence depends on how faithfully the model mani-
fold was originally sampled; that is, InPCA can tell you about the
structure of the manifold only from observed points.

Biased Coins. To illustrate the properties of InPCA, we use
it to visualize a simple probabilistic model, that of a simple
biased coin. A biased coin has one parameter, the odds ratio
of heads to tails, and so forms a 1D manifold. Fig. 4A shows
the first two InPCA components for the manifold of biased
coins, for 2,000 sampled points with probabilities uniformly
spread between 0 and 1 (excluding the endpoints, since they are
orthogonal and thus are infinitely far apart). The two extracted
InPCA components correspond to the bias and variance of the
coin, respectively. The hierarchy of components extracted from
InPCA therefore corresponds to known features of the model
(i.e., they are meaningful).

The importance of the negative-squared distances is illustrated
in Fig. 4. The contour lines representing constant distances from
a fair coin and are hyperbolas: Points can be a finite distance
from a fair coin yet an infinite distance from each other. As
two oppositely biased coins become increasingly biased, their
distance from each other can go to infinity (because an out-
come of a coin which always lands on heads will never be the
same as an outcome of a coin which always land on tails) yet
all points remain a finite distance from a fair coin. Note that all
points are in the left and right portions of Fig. 4A, represent-
ing net positive distances (the intensive pairwise distances are all
positive).

Comparing with t-SNE and Diffusion Maps. We compare our man-
ifold learning technique to two standard methods, t-SNE and
the diffusion maps, by applying each one to the six-parameter
ΛCDM cosmological model predictions of the CMB. The
ΛCDM predicts L (x | θ), where x represents fluctuations in the
CMB, and θ are the different cosmological parameters (i.e., it
predicts the angular power spectrum of temperature and polar-
ization anisotropies in sky maps of the CMB). Observations of
the CMB from telescopes on satellites, balloons, and the ground
provide thousands of independent measurements from large
angular scales to a few arcminutes, which are used to fit model
parameters. Here we consider only CMB observations from the
2015 Planck data release (25). The ΛCDM model we consider
has six parameters, the Hubble constant (H0) which we sampled
in a range of 20–100 km·s−1·Mpc−1, the physical baryon density
(Ωbh

2) and the physical cold dark matter density (Ωch
2) both

sampled from 0.0009 to 0.8, the primordial fluctuation amplitude
(As) sampled from 10−11 to 10−8, the scalar spectral index (η)
sampled from 0 to 0.98, and the optical depth at reionization (τ )
sampled from 0.001 to 0.9.

To determine the likelihood functions, we use the Code for
Anisotropies in the Microwave Background software package to
generate power spectra (26). We perform a Monte Carlo sam-
pling of 50,000 points around the best-fit parameters provided by
the 2015 Planck data release (25), with sample weights based on
the intensive distance to the best fit.

In Fig. 5 we show the first two components of the manifold
embedding for InPCA, t-SNE, and diffusion maps. To apply
t-SNE and the diffusion map to probabilistic data we must pro-
vide a distance. We therefore use our intensive distance, from
Eq. 9, for consistency and ease of comparison. In all three cases,
the first component from each method is directly related to the
primordial fluctuation amplitude As , which reflects the ampli-
tude of density fluctuations in the early universe and is the dom-
inant feature in real data (25). The second InPCA component

A

B C

Fig. 5. Model manifold of the six-parameter ΛCDM cosmological model
predictions of temperature and polarization power spectra in the CMB using
InPCA, t-SNE, and the diffusion map. Axes reflect the true aspect ratio from
extracted components in all cases. Here the model manifold is colored by
the primordial fluctuation amplitude, the most prominent feature in CMB
data. (A) InPCA extracts, as the first and second component, this amplitude
term as well as the Hubble constant. These parameters control the two most
dominant features in the Planck data and so reflect a physically meaningful
hierarchy of importance. In contrast, (B) t-SNE extracts only the amplitude
term and (C) the diffusion map extracts the amplitude term and a different
parameter, the scalar spectral index η, which reflects the scale variance of
the density fluctuations in the early universe. In all plots, the orange point
represents our universe, as represented by Planck 2015 data.
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predicts the Hubble constant, whereas the diffusion map predicts
the scalar spectral index (a reflection of the size variance of
primordial density fluctuations). In all cases, the projected com-
ponents were plotted against the corresponding parameters to
determine correlations, such as how one can see that As corre-
sponds with the first component in all three cases. Detailed plots
and correlation coefficients for all three methods are provided in
SI Appendix.

Such stark differences between manifold learning methods
are surprising, as all techniques aim to extract important fea-
tures in the data distribution, i.e., important geometric features
in the manifolds. Given the ranges of sampled parameters,
one would expect the variation in the Hubble constant to
relate in some way to one of the dominant components, as
it does for InPCA. Figures illustrating the effect of different
parameters are provided in SI Appendix, following results from
ref. 27.

There are two important differences between InPCA and
other methods. First, InPCA has no tunable parameters and
yields a geometric object defined entirely by the model distribu-
tion. For example, t-SNE embeddings rely on parameters such as
the perplexity, a learning rate, and a random seed (yielding non-
deterministic results), and the diffusion maps rely on a diffusion
parameter and choice of diffusion operator, all of which must be

manually optimized to obtain good results. Second, t-SNE and
diffusion maps embed manifolds in Euclidean spaces in a way
which aims to preserve local features. However, InPCA seeks to
preserve both global and local features, by embedding manifolds
in a non-Euclidean space.

Summary
In this article, we introduce an unsupervised manifold learning
technique, InPCA, which captures low-dimensional features of
general, probabilistic models with wide-ranging applicability. We
consider replicas of a probabilistic system to tune its dimension-
ality and consider the limit of zero replicas, deriving an intensive
embedding that ameliorates the canonical orthogonality prob-
lem. Our intensive embedding provides a natural, meaningful
way to characterize a symmetric distance between probabilistic
data and produces a simple, deterministic algorithm to visualize
the resulting manifold.
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