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Abstract—Task parallelism is designed to simplify the task of
parallel programming. When executing a task parallel program
on modern NUMA architectures, it can fail to scale due to the
phenomenon called work inflation, where the overall processing
time that multiple cores spend on doing useful work is higher
compared to the time required to do the same amount of work on
one core, due to effects experienced only during parallel executions
such as additional cache misses, remote memory accesses, and
memory bandwidth issues.

One can mitigate work inflation by co-locating the computation
with its data, but this is nontrivial to do with task parallel
programs. First, by design, the scheduling for task parallel pro-
grams is automated, giving the user little control over where the
computation is performed. Second, the platforms tend to employ
work stealing, which provides strong theoretical guarantees, but its
randomized protocol for load balancing does not discern between
work items that are far away versus ones that are closer.

In this work, we propose NUMA-WS, a NUMA-aware task
parallel platform engineered based on the work-first principle.
By abiding by the work-first principle, we are able to obtain
a platform that is work efficient, provides the same theoretical
guarantees as a classic work stealing scheduler, and mitigates
work inflation. We have extended Cilk Plus runtime system
to implemented NUMA-WS. Empirical results indicate that the
NUMA-WS is work efficient and can provide better scalability by
mitigating work inflation.

Index Terms—work stealing, work-first principle, NUMA, lo-
cality, work inflation

I. INTRODUCTION

Modern concurrency platforms are designed to simplify the

task of writing parallel programs for shared-memory parallel

systems. These platforms typically employ task parallelism

(sometimes referred to as dynamic multithreading), in which

the programmer expresses the logical parallelism of the com-

putation using high-level language or library constructs and

lets the underlying scheduler determine how to best handle

synchronizations and load balancing. Task parallelism provides

a programming model that is processor oblivious, because the

language constructs expose the logical parallelism within the

application without specifying the number of cores on which

the application will run. Examples of such platforms include

OpenMP [1], Intel’s Threading Building Blocks (TBB) [2], [3],

various Cilk dialects [4]–[9], various Habanero dialects [10],

[11], Java Fork/Join Framework [12], and IBM’s X10 [13].

This research was supported in part by National Science Foundation under
grant number CCF-1527692 and CCF-1733873.

Most concurrency platforms, including ones mentioned

above, schedule task parallel computations using work steal-

ing [14]–[17], a randomized distributed protocol for load

balancing. Work stealing, in its classic form, provides strong

theoretical guarantees. In particular, it provides asymptotically

optimal execution time [14]–[17] and allows for good cache

locality with respect to sequential execution when using pri-

vate caches [18]. In practice, work stealing has also been

demonstrated to incur little scheduling overhead and can be

implemented efficiently [5].
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Fig. 1. An example of a 32-core
four-socket system, where each socket
has its own last-level L3 cache and
memory banks.

Shared memory on mod-

ern parallel systems is often

realized with Non-Uniform

Memory Access (NUMA),

where the memory latency

can vary drastically, depend-

ing on where the mem-

ory access is serviced. Fig-

ure 1 shows an example of a

NUMA system and its mem-

ory subsystem. This system

consists of four sockets, with

eight cores per socket, and

each socket has its own last-level cache (LLC), memory

controller, and memory banks (DRAM). Each LLC is shared

among cores on the same socket, and the main memory consists

of all the DRAMs across sockets, where each DRAM is

responsible for a subset of the physical address range. On such

a system, when a piece of data is allocated, it can either reside

on physical memory managed by the local DRAM (i.e., on

the same socket) or by the remote DRAM (i.e., on a different

socket). When accessed, the data is brought into the local LLC

and its coherence is maintained by the cache coherence protocol

among LLCs. Thus, the memory access latency can be tens of

cycles (serviced from the local LLC), over a hundred cycles

(serviced from a local DRAM or a remote LLC), or a few

hundreds of cycles (serviced from a remote DRAM).

A task parallel program can fail to scale on such a NUMA

system, as a result of a phenomenon called work inflation,

where the overall processing time that multiple cores spend on

doing useful work is much higher compared to the time required

to do the same amount of work on one core, due to effects

experienced only during parallel executions. Multiple factors

can contribute to work inflation, including work migration,
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parallel computations sharing a LLC destructively, or accessing

data allocated on remote sockets.

One can mitigate work inflation by co-locating computations

that share the same data or co-locate the computation and its

data on the same socket, thereby reducing remote memory

accesses. These strategies are not straightforward to implement

in task parallel code scheduled using work stealing, however.

First, by design the scheduling of task parallel programs is

automated, which gives the programmer little control over

where the computation is executed. Second, the randomized

protocol in work stealing does not discern between work items

that are far away versus ones that are closer.

Ideally, we would like a task parallel platform that satisfies

the following criteria:

• provide the same strong theoretical guarantees that a classic

work stealing scheduler enjoys;

• be work efficient, namely, the platform does not unneces-

sarily incur scheduling overhead that causes the single-core

execution time to increase;

• support a similar processor-oblivious model of computation:

assuming sufficient parallelism, the same program for a given

input should scale as the number of cores used increases; and

• mitigate work inflation.

Even though many mechanisms and scheduling policies have

been proposed to mitigate work inflation in task parallel

programs [19]–[29], none of the proposed solutions satisfy

all criteria simultaneously. In particular, many of them are

not work efficient nor do they provide a provably efficient

scheduling bound (see Section VI).

In this paper, we propose NUMA-WS, a task parallel plat-

form that satisfies these criteria simultaneously. NUMA-WS

employs a variant of work stealing scheduler that extends the

classic algorithm with mechanisms to mitigate NUMA effects.

NUMA-WS achieves the same theoretical bounds on execution

time and additional cache misses for private caches as the

classic work stealing algorithm, albeit with a slightly larger

constant hidden in the big-O term.

NUMA-WS provides the same execution time bound as

classic work stealing [14]–[17], which can be quantified using

two important metrics: the work, as defined by the execution

time running the computation on one core, and the span,

the longest sequential dependences in the computation, or its

theoretical running time executing on infinitely-many cores.

Given a computation with T1 work and T∞ span, NUMA-

WS executes the computation on P cores in expected time

T1/P + O(T∞).1 The additional cache misses due to parallel

execution are directly correlated with the number of times

computation “migrates,” or when the order of computation

during parallel execution diverges from that of a single-core

execution. In NUMA-WS, the number of times such divergence

can occur is upper bounded by O(PT∞), same as with classic

work stealing [18].

1Even without accounting for scheduling overhead, this is the best bound
possible when the dependences of the parallel computation are not unknown
until execution time [30], [31].

To measure work efficiency, an important metric is TS , the

execution time of serial elision, obtained by removing the

parallel control constructs or replacing it with its sequential

counter part. Serial elision should perform the exact same

algorithm that the parallel program implements but without

the parallel overhead. Thus, one can quantify work efficiency

by comparing T1 against TS to measure parallel overhead.

Assuming a work-efficient platform, one can obtain parallel

code whose ratio between T1 and TS is close to one.

We have implemented a prototype system by extending Intel

Cilk Plus, which implements the classic work stealing algo-

rithm, and empirically evaluated it. The empirical results indi-

cate that NUMA-WS is work efficient, scalable across different

number of cores, and can mitigate NUMA effects. Specifically,

we show that, NUMA-WS incurs negligible parallel overhead

(i.e., T1/TS), comparable to that in Cilk Plus. Moreover, we

compare the parallel execution times across benchmarks when

running on Intel Cilk Plus versus running on NUMA-WS on a

four-socket 32-core system. NUMA-WS was able to decrease

work inflation compared to Cilk Plus without adversely impact-

ing scheduling time. Across benchmarks, NUMA-WS obtains

much better speedup than that in Cilk Plus.

Critically, to achieve the theoretical bounds and practical

efficiency, the design and engineering of NUMA-WS abides

by a principle called the work-first principle proposed by [5],

which states that one should minimize the overhead borne by

the work term (T1) and move the overhead onto the span term

(T∞). Intuitively, a scheduler must incur some scheduling over-

head due to the extra bookkeeping necessary to enable correct

parallel execution or to mitigate NUMA effects. Within the

context of a work-stealing scheduler, worker threads (surrogates

of processing cores) load balance by “stealing” work when

necessary. The work-first principle states that it’s best to incur

scheduling overhead on the control path that can be amortized

against successful steals. To put it differently, whenever a

choice can be made to incur overhead on a thief stealing versus

on a worker busy working, it’s always preferred to incur the

overhead on the thief stealing.

Contributions

To summarize, this paper makes the following contributions:

• We present NUMA-WS, a NUMA-aware task parallel plat-

form that implements a work stealing algorithm with mecha-

nisms to mitigate work inflation (Section III).

• We show that our extended work stealing algorithm retains

the same theoretical guarantees on execution time and cache

bounds as the classic algorithm (Section IV).

• We implemented and empirically evaluated NUMA-WS. The

empirical results show that NUMA-WS is work efficient,

scalable across cores, and mitigates work inflation (Section V).

II. PRELIMINARIES: WORK STEALING IN CILK PLUS

Our prototype implementation of NUMA-WS extends Intel

Cilk Plus [9], which implements the classic work stealing

algorithm. The engineering of Cilk Plus also follows the work-

first principle. In this section, we review the implementation
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of Cilk Plus and examine its work efficiency to demonstrate

the benefit of the work-first principle. Next, we examine the

work inflation of multiple benchmarks running on Cilk Plus to

motivate the need for a NUMA-aware work-efficient runtime.

The language model. Cilk Plus extends C/C++ with two

parallel primitives: cilk_spawn and cilk_sync.2 When

a function F spawns another function G (invoking G with

the keyword cilk_spawn), the continuation of F , i.e.,

statements after the cilk_spawn call, may execute in parallel

with G. The keyword cilk_sync specifies that control cannot

pass beyond the cilk_sync statement until all previously

spawned children within the enclosing function have returned.

These keywords denote the logical parallelism of the com-

putation. When F spawns G, G may or may not execute in

parallel with the continuation of F , depending on the hardware

resource available during execution.

Work stealing and the work-first principle. In work

stealing, each worker (a surrogate of a processing core) main-

tains a deque (a double ended queue) of work items. Each

worker operates on its own deque locally most of the time and

communicates with one another only when it runs out of work

to do, i.e., its deque becomes empty. When that happens, a

worker turns into a thief and randomly chooses another worker,

the victim, to steal work from. A worker, while busy working,

always operates at the tail of its own deque like a stack (i.e.,

first in last out). A thief, when stealing, always steals from the

head of a victim’s deque (i.e., taking the oldest item).

The work-first principle [5] states that one should minimize

the overhead borne by the work term (T1) and move the

overhead onto the span term (T∞), which corresponds to the

steal path. A work-stealing runtime abiding by the work-first

principle tends to be work efficient, as demonstrated by the

implementation of Cilk-5. Subsequent variants of Cilk [6]–[8]

including Cilk Plus follow similar design.

The intuition behind the work-first principle can be under-

stood as follows. The parallelism of an application is defined

as T1/T∞, or how much work there is along each step of the

span. Assuming the application contains ample parallelism, i.e.,

T1/T∞ ≫ P , the execution time is dominated by the T1/P
term, and thus it’s better to incur overhead on the T∞ term.

Moreover, in practice, when the application contains ample

parallelism, steals occur infrequently.

Work stealing in Cilk Plus. Figure 2 shows the pseudocode

for the work-stealing scheduler in Cilk Plus. Note that when no

steal occurs, the one-worker execution follows that of the serial

elision. Upon a cilk_spawn, the worker pushes the contin-

uation of the spawning parent at the tail of its deque (line 1)

and continues to execute the spawned child (line 2), which

can also spawn. Once pushed, the continuation of the parent

becomes stealable. Upon returning from a cilk_spawn, the

2A third keyword cilk_for exists, which specifies that the iterations
for a given loop can be executed in parallel; it is syntactic sugar that compiles
down to binary spawning of iterations using cilk_spawn and cilk_sync.
Other concurrency platforms contain similar constructs with similar semantics,
though the syntax may differ slightly.

F spawns G:

1 PUSHDEQUEATTAIL(F ); // F ’s continuation becomes stealable
2 continue to execute G

G returns to its spawning parent F :

3 success = POPDEQUEATTAIL();
4 if success // F is not stolen and must be at the tail of the deque
5 continue to execute F
6 else // parent stolen; the deque is empty
7 next_action = CHECK_PARENT
8 return to scheduling loop

F executes cilk_sync:

9 if F.stolen = TRUE

10 // F must be a full frame and the deque is empty
11 success = CHECKSYNC(); // must do a nontrivial sync
12 if success
13 continue to execute F
14 else // F must be the only thing in the deque
15 suspend F
16 next_action = STEAL
17 return to scheduling loop
18 else continue to execute F // nothing else needs to be done

scheduling loop: // frame is a either NULL or the first root full frame

19 while computation-done = FALSE

20 if next_action = CHECK_PARENT
21 frame = CHECKPARENT();
22 next_action = STEAL // reset next_action
23 if frame = NULL

24 frame = RANDOMSTEAL();
25 else RESUME(frame)

Fig. 2. Pseudocode for the Cilk Plus work-stealing scheduler: when a
function spawns, when a spawned function returns, when a function executes
cilk_sync, and its scheduling loop. Here, we use F to represent both
a function instance and its corresponding frame. The variable next_action
specifies what the scheduling loop should do next.

worker pops the parent off the tail of its deque (if not stolen)

to resume its execution (lines 3–5).

The strategy of pushing the continuation of the parent is

called continuation-stealing. An alternative implementation is

to push the spawned child, called child-stealing.3 Cilk Plus

implements continuation-stealing because it can be more space

efficient; more importantly, it allows a worker’s execution

between successful steals to mirror exactly that of the serial

elision. Thus, one can optimize the cache behavior of parallel

code for private caches by optimizing that of the serial elision.

Runtime organization based on the work-first principle.

Two aspects of the Cilk Plus design follow from the work-

first principle: the “THE protocol,” proposed by [5] and the

organization of the runtime data structures, as described in [32].

The THE protocol is designed to minimize the overhead of

a worker operating on its deque, allowing a victim who is

doing work to not synchronize with a thief unless they are

both going after the same work item in the deque. The THE

protocol remains unchanged in NUMA-WS and thus we omit

the details here and refer interested readers to [5]. We briefly

review the organization of the runtime data structures, which

is most relevant to the design of NUMA-WS.

3In the literature, continuation-stealing is sometimes referred to as work-
first and child-stealing referred to as help-first. The choice of which strategy
to implement is orthogonal to the work-first principle. Hence, we call them
“continuation” versus “child-stealing” here to avoid confusion.
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The runtime data structures in Cilk Plus are organized around

the work-first principle, so as to incur as little overhead on the

work path as possible, at the expense of incurring overhead

on the steal path. With continuation-stealing, in the absence of

any steals, the behavior of a worker mirrors exactly that of the

serial elision, and the execution should incur little scheduling

overhead. On the other hand, when a successful steal occurs,

actual parallelism is realized, because a successful steal enables

the continuation of a spawned parent to execute concurrently

(on the thief) with its spawned child (on the victim). In this

case, the runtime must perform additional bookkeeping in order

to keep track of actual parallel execution.

In Cilk Plus, a Cilk function that contains parallel keywords

is treated as an unit of scheduling: every Cilk function has

an associated shadow frame that gets pushed onto the deque

upon spawning. It is designed to be light weight, storing the

minimum amount of information necessary in order to enable

parallel execution (i.e., which continuation to resume next).

Whenever a frame is stolen successfully, however, the runtime

promotes the stolen frame from a shadow frame into a full

frame which contains the necessary bookkeeping information

to keep track of actual parallel execution.

That means, only a full frame can have spawned children exe-

cuting concurrently. Thus, a frame’s stolen field (e.g., F.stolen)

is only ever set for a full frame that has been stolen but has not

executed a cilk_sync. Execution of a cilk_sync checks

for the flag, and only if the flag is set, then a nontrivial

sync needs to be invoked that checks for outstanding spawned

children executing on other workers (line 11). On the other

hand, for a shadow frame, its flag is never set and executing a

cilk_sync is a no-op, as its corresponding function cannot

have outstanding spawned children and thus nothing needs to

be done (line 18).

If a nontrivial sync is necessary, and there are outstanding

spawned children executing on other workers, then the current

worker suspends this frame and returns to the runtime to find

more work to do (i.e., steal) (lines 15–17). The suspended frame

then becomes the responsibility of the worker who executes the

last spawned child returning. Thus, a child returning from a

spawn, upon detecting that its parent has been stolen, returns

back to the scheduling loop (lines 6–8) and checks if its parent

is ready to resume (lines 20–22), i.e., it is the last spawned

child returning.

Since work stealing always steals from the head of the

deque, when a worker is about to return control back to the

scheduling loop (lines 8 and 17), its deque must be empty. Thus,

the scheduling loop handles only full frames. Upon returning

to the loop, a worker executes the loop repeatedly until the

computation is done or some work is found, either via resuming

a suspended parent (line 21) or via successful steals (line 24).

Work efficiency and work inflation of Cilk Plus. The time

a worker spends can be categorized into three categories —

work time, time spent doing useful work (i.e., processing the

computation), idle time, time spent trying to steal but failing to

find work to do, and scheduling time, time spent performing

P
=

1

P
=

3
2

P
=

1

P
=

3
2

P
=

1

P
=

3
2

P
=

1

P
=

3
2

P
=

1

P
=

3
2

P
=

1

P
=

3
2

P
=

1

P
=

3
2

0

1

2

3

4

5

cilksort heat strassen hull1 hull2 cg matmul

T
o
ta

l
p
ro

ce
ss

in
g

ti
m

e
n
o
rm

al
iz

ed
to
T
S Work,

Scheduling
Idle

Fig. 3. The normalized total processing times of benchmarks running on Cilk
Plus, normalized to TS , the execution time of the corresponding serial elision.
The P=1 bars show the normalized total processing times running on one
core; the P=32 bars show the normalized total processing times running on
32 cores. For P=32, each data point is also broken down into three categories:
work time, scheduling time, and idle time. We have two data sets with different
characteristics for Hull and thus two sets of data points are shown for Hull.

scheduling related tasks to manage actual parallelism, such as

frame promotions upon successful steals and nontrivial syncs.

By looking at how much work time that all workers collectively

spend grows as the number of cores increases, one can gauge

how much work inflation impacts the scalability of the program.

On the other hand, idle time is a good indication of how much

parallelism a computation has — a computation that does not

have sufficient parallelism is generally marked by high idle

time. Finally, scheduling time indicates the runtime overhead.

See [33] for the formalization of this intuition.

Figure 3 shows the normalized total processing times of

six benchmarks running on Cilk Plus, normalized to TS , the

execution time of the corresponding serial elision.4 Note that

P=1 is simply T1, the time running on one worker, which

includes the spawn overhead, but not scheduling or idle time,

since no actual parallelism is realized executing on one worker.

Cilk Plus has high work efficiency, as the ratio between T1

and TS is close to one. Here, we did coarsen the base case —

when a divide-and-conquer parallel algorithm reaches certain

base case size, the code stops spawning and calls the sequential

version instead. Coarsening helps with spawn overhead and is

a common practice for task-parallel code; it makes a trade-off

between spawn overhead and parallelism — the smaller the

base case size the higher the parallelism and spawn overhead.

Typically one can coarsen the base case size to mitigate spawn

overhead but keeps it small enough so that the computation has

sufficient parallelism. We chose the base case sizes for these

benchmarks by picking the ones that provide the best T32 raw

execution times.

For P=32, most benchmarks have very little scheduling time

and idle time, indicating that the scheduler is efficient and there

is sufficient parallelism to saturate 32 cores. Finally, we look at

work inflation. Benchmarks tested have work inflation ranging

4The data is collected using the same setup including input and base case
sizes described in Section V.
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from 1.45× to 5.24×, with the exception of matmul.5 The

implementation of matmul is already cache oblivious [34]

and thus had little work inflation to begin with. We use this

benchmark as a baseline to show that, even for a benchmark

does not really benefit from NUMA-aware scheduling, the addi-

tional scheduling mechanism in NUMA-WS does not adversely

impact performance. Moreover, the data layout transformation

helps when applied to malmul.

III. NUMA-AWARE TASK-PARALLEL PLATFORM

NUMA-WS extends Cilk Plus to incorporate mechanisms to

mitigate NUMA effects. An effective way to mitigate NUMA

effects is to co-locate computations that share data, and/or co-

locate data and the computation that uses the data. To that end,

NUMA-WS includes user-level APIs to provide locality hints,

extends the work stealing scheduler to be NUMA-aware, and

schedules computations according to the locality hints when

possible. In addition, NUMA-WS also includes a simple data

layout transformation that is applied to a subset of benchmarks.

This section describes these extensions in detail.

A. Modifications to the Programming Model

To facilitate NUMA awareness, the runtime at startup en-

sures that the worker-thread-to-core affinity is fixed. Since the

programming model is processor-oblivious, an application can

run on any number of cores and sockets within the constraints

of the hardware resource. We assume that the user decides how

many cores and how many sockets an application runs on when

invoking the application but does not change this configuration

dynamically at runtime.

Given the user-specified number of cores and sockets, the

runtime spreads out the worker threads evenly across the

sockets and groups the threads on a given socket into a single

group. Each group forms a virtual place that forms the basic

unit for specifying locality.

The locality API allows the user to query the number of

virtual places in the application code and specify which virtual

place a spawned subcomputation should ideally run on. If the

user specifies the locality for a spawned subcomputation G,

by default any computation subsequently spawned by G is

also marked to have the same locality. Such a default works

well for recursive divide-and-conquer algorithms, which task

parallelism is well-suited for. For the benchmarks tested, this

default means that only the top-level root Cilk function needs

to specify locality hints. The API also includes ways to unset

or update the locality hints for a Cilk function.

Figure 4 shows how one might use locality hints in a parallel

mergesort, where MERGESORTTOP is the top-level root Cilk

function: it recursively sorts the four quarters of the input

array in place, and uses the temporary array to merge the

sorted quarters back into the input array. The locality hints

are specified using the @p# notation, where a p# is a variable

storing the ID of a virtual place that the task (the corresponding

function call and its subcomputation) should execute.

5The precise numbers for all benchmarks are shown in Section V.

MERGESORTTOP(int *in, int *tmp, int n)

1 if n < BASE_CASE
2 QUICKSORT(in, n); // in-place sequential sort
3 else

4 // initialized p0, p1, p2, and p3 based on number of places
5 // in and tmp are partitioned appropriately.
6 cilk_spawn MERGESORT(in, tmp, n/4) // implicitly @p0
7 cilk_spawn MERGESORT(in + n/4, tmp + n/4, n/4); @p1
8 cilk_spawn MERGESORT(in + n/2, tmp + n/2, n/4); @p2
9 MERGESORT(in + 3n/4, tmp + 3n/4, n - 3n/4); @p3

10 cilk_sync;
11 int *tmp1 = tmp, *tmp2 = tmp + n/2;
12 cilk_spawn PARMERGE(in, in + n/4, n/4, n/4, tmp1); @p0
13 PARMERGE(in + n/2, in + 3n/4, n/4, n - 3n/4, tmp2); @p2
14 cilk_sync;
15 PARMERGE(tmp1, tmp2, n/2, n - n/2, in); @ANY

Fig. 4. Pseudocode for the top-level function for parallel mergesort with
locality hints (as denoted by @p# or @ANY). The MERGESORT is defined
similarly as the MERGESORTTOP but without the locality hint: it takes in an
unsorted input array, a temporary array, and their sizes, and sorts the input array
in place. The PARMERGE performs parallel merge; it takes in two sorted input
arrays, their sizes, and an output array, and merges the two sorted inputs into
the output. Variables p0–p3 store IDs for virtual places based on the number of
sockets used, but they do not have to be distinct (e.g., if less than four sockets
are used). The ANY indicates no place constraints and unsets the locality hint.

Assuming the computation runs on four sockets, the code

would initialize each of the virtual places to the appropriate

socket, and specify that the ith quarter should be sorted at the

ith virtual place. For merge, since we have to merge two arrays

sorted at two different places together, we simply specify its

locality to be one of the virtual places that the inputs come

from. Even though we have only specified work for two virtual

places for the merge phase, the place specifications are only

hints, and the NUMA-WS runtime will load balance work

across all sockets dynamically as necessary.

With continuation-stealing, the first spawned child is always

executed by the same worker who executes the corresponding

cilk_spawn, and thus we do not specify a locality hint

for the first spawn. By default, the runtime always pins the

worker who started the root computation at the first core on the

first socket and thus implicitly the first spawned child always

executes at the first virtual place (at p0 in the code). If the

user had specified a locality hint for the first spawned child that

differs from where the parent is executing, the spawned child

will obtain the user-specified locality, but will not get moved

to the specified socket immediately. Rather, the computation

may get moved later as steals occur according to the lazy work

pushing mechanism described in Section III-B.

In order to benefit from the locality hints, one should allocate

the data on the same socket that the computation belongs to. In

this example, one should allocate the physical pages mapped

in the ith quarters of the in and tmp arrays from the socket

corresponding to the ith virtual place. We have developed

library functions that allow the application code to do this easily

at memory allocation time, but they are simply accomplished

by calling the underlying mmap and mbind system calls that

Linux OS provides.

The API described is an idealized API, which requires

compiler support. In our current implementation, we manually
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hand compiled the application code by explicitly invoking

runtime functions to indicate the place specifications. The

transformation from the idealized API to the runtime calls is

quite mechanical and can easily be done by a compiler.

B. Modifications to the Scheduler

The locality specified is only a hint, and the runtime tries to

honor it with best effort and do so in a work-efficient fashion,

incurring overhead only on the span term. Note that enforcing

locality strictly can impede runtime’s ability to load balance,

e.g., the computation contains sufficient parallelism overall but

most parallelism comes from computation designated for a

single socket. Thus, the NUMA-WS runtime may execute the

computation on a different socket against the locality hint if

doing so turns out to be necessary for load balancing.

To obtain benefit using NUMA-WS, we expect the applica-

tion code to perform data partitioning with the appropriate lo-

cality hints specified. However, because the runtime is designed

to foremost treat load balancing as the first priority and account

for locality hints with best effort, not specifying locality hints

would not hurt performance much and result in comparable

performance with one obtainable with the Cilk Plus runtime.

At a high level, NUMA-WS extends the existing work-

stealing scheduler with two NUMA-aware mechanisms:

• Locality-biased steals: In the classic work stealing algo-

rithm, when a thief steals, it chooses a victim uniformly

at random, meaning that each worker gets picked in with

1/P probability (and if the worker happens to pick itself,

it tries again). The locality-biased steals simply change the

probability distribution of how a worker steals, biasing it to

preferentially steal work from victims running on the (same)

local socket over victims on the remote sockets.

• Lazy work pushing: The work pushing refers to the oper-

ation that, a worker, upon receiving a work item, instead of

executing the work, pushes it to a different worker to honor

the locality hint. Work pushing has been proposed in prior

work (see Section VI). However, the key distinction between

our work and prior work is that, NUMA-WS performs lazy

work pushing, in a way that abides by the work-first principle

and incurs overhead only on the span term.

Figure 5 shows NUMA-WS’s modifications to work stealing

to incorporate these mechanisms, which we explain in detail

next. Compared to the Cilk Plus scheduler, NUMA-WS may

perform additional operations when executing a nontrivial sync

(lines 5–11), inside the scheduling loop (lines 21–26), and it

uses a modified stealing protocol (line 28). The operations

performed on a spawn and a spawn returning are the same

as shown in Figure 2, so we do not repeat them here.

If the runtime performs work pushing indiscriminately, the

overhead incurred by work pushing would be on the work

term instead of on the span term. Such overhead includes

doing extra operations that do not advance towards finishing the

computation and synchronizing with the receiving worker (i.e.,

worker to push work to), which would result a work inefficient

runtime.

F executes sync:

1 if F.stolen = TRUE

2 // F must be a full frame and the deque is empty
3 success = CHECKSYNC(); // must do a nontrivial sync
4 if success
5 if F.place 6= worker.place
6 if PUSHBACK(F ) = TRUE

7 // another worker will resume F
8 next_action = STEAL
9 return to scheduling loop

10 else continue to execute F
11 else continue to execute F
12 else

13 suspend F
14 next_action = STEAL
15 return to scheduling loop
16 else continue to execute F // nothing else needs to be done

scheduling loop: // frame is a either NULL or the first root full frame

17 while computation-done = FALSE

18 if next_action = CHECK_PARENT
19 frame = CHECKPARENT();
20 next_action = STEAL // reset next_action
21 if frame 6= NULL and frame.place 6= worker.place
22 if PUSHBACK(frame) = TRUE

23 // Another worker will resume frame
24 frame = NULL

25 if frame = NULL

26 frame = POPMAILBOX();
27 if frame = NULL

28 frame = BIASEDSTEALWITHPUSH();
29 else RESUME(frame)

Fig. 5. Modifications to the work-stealing scheduler in NUMA-WS. Here,
PUSHBACK() is the mechanism where the runtime pushes a full frame to the
virtual place that it has been designated for. F.place stores the locality hint
for F and worker.place stores the virtual place that the worker belongs to.

Instead in NUMA-WS, work pushing only occurs when a

worker is handling a full frame. Recall from Section II that,

the data structures in the Cilk Plus runtime are organized in ac-

cordance to the work-first principle: a frame is either a shadow

frame that has never been stolen before, or a full frame that

has been stolen successfully in the past and can contain actual

parallelism underneath (i.e., may have outstanding spawned

children executing on different workers). Specifically, a worker

only performs work-pushing in the following scenarios:

• A worker executes a non-trivial cilk_sync successfully,

and the synched full frame is earmarked for a different socket

via its locality hint (lines 5–11).

• A worker returns from a spawned child, whose parent

had executed a nontrivial cilk_sync unsuccessfully and

therefore is suspended. The returning child is the last spawned

child returning, and thus the parent is ready to be resumed at

the continuation of cilk_sync, but the parent is earmarked

for a different socket (lines 21–24).

• A thief steals successfully, and the stolen full

frame is earmarked for a different socket (part of

BIASEDSTEALWITHPUSH in line 28).

Besides judiciously selecting certain control paths to perform

work pushing, another crucial aspect of lazy work pushing is

how it selects the receiving worker and how to push work with-

out interrupting the receiving worker. This logic is implemented

in PUSHBACK, which we explain below.
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When a worker needs to push a full frame to a designated

socket, it randomly chooses a receiving worker on the desig-

nated socket to push the frame to. The chosen receiving worker

may be busy working and likely have a non-empty deque. Thus,

each worker besides managing a deque, also has a mailbox, that

allows a different worker to deposit work designated for the

receiving worker without interrupting. Crucially, the mailbox

contains only one entry; that is, each worker can have only

one single outstanding ready full frame that it is not actively

working on. A pushing worker may fail to push work because

the randomly chosen receiving worker is busy, and has a full

mailbox. If the push fails, the pushing worker increments a

counter on the frame and tries again with a different randomly

chosen receiving worker. Once the counter on the frame exceeds

the pushing threshold (a configurable runtime parameter), the

pushing worker simply takes the full frame and resumes it

itself. We shall see in the analysis (Section IV) 1) how we

can amortize the cost of pushing against the span term, 2) why

it’s crucial to have only a single entry for the mailbox, and 3)

why there must be a constant pushing threshold.

Besides potentially calling PUSHBACK, the steal protocol

implemented by BIASEDSTEALWITHPUSH (Figure 5: line 28)

differs from the original RANDOMSTEAL (Figure 2: line 24) in

the following ways.

First, the protocol implements locality biased steals. Given

the set of virtual places, the runtime configures the steal prob-

ability distribution according to the distances between virtual

places, where the distances are determined by the output from

numactl. For instance, on a 32-core 4-socket machine shown

in Figure 1, each socket i forms a virtual place i. When a worker

on socket 0 runs out of work, it will preferentially select victims

from the local socket (socket 0) with the highest probability,

followed by victims from sockets that are one-hop away (i.e.,

sockets 1 and 2) with medium probability, followed by victims

from the socket that is two-hop away (i.e., socket 3) with the

lowest probability.

Second, since now a victim may potentially have a resumable

frame in the mailbox also (besides what’s in the deque), a thief

stealing needs to check for both, but in a way that still retains

the theoretical bounds. Specifically, when a thief steals into a

victim, it will flip a coin. If the coin comes up heads, it does

the usual steal protocol by taking the frame at the head of the

deque (promoting it into a full frame). If the coin comes up

tails, however, it checks the mailbox, followed by three possible

outcomes: 1) mailbox empty, and thus the thief falls back to

stealing from the deque; 2) mailbox is full, and the frame is

earmarked for socket that the thief is on, so the thief takes it;

3) mailbox is full, and the frame is earmarked for a different

socket; the thief then calls PUSHBACK and performs the lazy

work pushing as described before until the frame reaches the

pushing threshold (in which case the thief can simply take it).

We shall see in the analysis (Section IV) 1) why the coin flip

is necessary and 2) why this biased steal protocol still provides

provable guarantees.

Finally, given that each worker now has a mailbox potentially
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(b) blocked Z-Morton

Fig. 6. (a) Ordinary Z-Morton layout on the cell-by-cell basis where every
element lies on a recursive Z curve. (b) The blocked Z-Morton layout used
in our data layout transformation, where the blocks are laid out recursively on
the Z curve, and data within each block is laid out in row-major order.

containing work, another small modification to the scheduling

loop is needed. When a worker runs out of work and returns

to the scheduling loop (in the next_action = STEAL case), it

checks if something is in its mailbox first (Figure 5, line 26).

If so, it simply resumes it next. Note that if a worker is back

to the scheduling loop with its next_action set to STEAL, its

deque must be empty.

C. Simple Data Layout Transformation

An effective way to mitigate work inflation due to NUMA

is to co-locate data and computation that uses the data. Even

though modern OSs tend to provide facility to bind pages

to specific sockets, one must specify data allocation in page

granularity. For applications that operate on 2D arrays such

as various matrix operations, the usual row-major order data

layout is not conducive to data and computation co-location,

since most parallel algorithms use divide-and-concur techniques

which recursively subdivide the data into smaller pieces that

can span multiple rows but only part of the rows. Thus, by the

time we reach the base case of a divide-and-conquer algorithm,

the base case would be accessing data that is scattered across

multiple physical pages, making it challenging to co-locate data

and the computation.

One way to fix it is to use Z-Morton layout (also called

cache-oblivious bit-interleaved layout), which interleaves the

bits when calculating the index so that the data is laid out in

a recursive Z curve [34] (Figure 6a). Computing indices for

Z-Morton layout on the cell-by-cell basis is costly, however.

To achieve co-location, our platform provides APIs to allow

the user to perform data layout transformation. The data layout

transformation simply lays out blocks in Z-Morton layout and

lays out the data within each block in row-major order, as

shown in Figure 6b. Doing so has the following benefits: 1)

the data accessed by the base case of a divide-and-conquer

algorithm that utilizes 2D arrays will be contiguous in memory;

and 2) since the bit interleaving needs to be computed only for

the block indices, we save on overhead for index computation.

While the use of Z-Morton layout is not new, in Section V,

we show that the blocked Z-Morton layout works well with

existing NUMA systems.
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IV. NUMA-WS’S THEORETICAL GUARANTEES

NUMA-WS provides the same execution time and cache

miss bounds as classic work stealing. Specifically, NUMA-

WS executes a computation with T1 work and T∞ span in

expected time T1/P + O(T∞) on P cores, and the number

of successful steals can be bounded by O(PT∞), although the

constant in front of the T∞ term would be larger than that

for classic work stealing. The bound on the number of steals

allows one to constrain the additional cache misses with respect

to sequential execution for private caches [18]. The structure of

the theoretical analysis largely follows that described by Arora

et. al [16] but with some delta. We provide the high level

intuitions and describe the delta here.

We first explain the intuition behind the original work

stealing analysis using the potential function formulation by

Arora et. al [16], henceforth referred to as the ABP analysis.

Here, we assume a dedicated execution environment.6

In the ABP analysis, a computation (a program for a given

input) is modeled as a directed acyclic graph (dag), where

each node represents a strand, a sequence of instructions that

contain no parallel control that must be executed by a single

worker, and each edge represents a dependence — if there is

an edge between node u and v, then v cannot execute until

u finishes. Based on this model, a cilk_spawn generates

a node with two out-degree, one to the spawned child and

one to the continuation; a cilk_sync generates a node with

multiple in-degree, one from each spawned child joined by the

cilk_sync. Assuming each node takes a unit time step to

compute (if a strand takes more than one time step to compute,

it is split into a chain of nodes), the work is then defined as

the total number of nodes in the dag, and span is the number

of nodes along a longest path in the dag.

At each time step, a worker is either doing useful work, i.e.,

executing a node (call it a work step), or stealing including

failed steal attempts (call it a steal step). The total number of

work steps across all workers is bounded by T1, because if

the workers have collectively spent T1 time steps doing useful

work, the computation would be done. Thus, the key is to

bound the number of steal steps. As long as we can bound the

number of steal steps to O(PT∞), the bound follows, since

the execution time on P workers is the number of total steps

divided by P .

Informally, the intuition of the analysis is as follows. The

non-empty deques contain nodes ready to be executed; in

particular, there is some node that is “critical” — a node on

the span and if executed the span will decrease by one. Due

to how work stealing operates, such a critical node must be

at the head of some deque. Thus, after O(P ) steal attempts

(since each deque has 1/P probability to be stolen from), the

critical node is likely to be executed. Thus, after O(PT∞) steal

attempts, we exhaust the span, thereby bounding the steal steps.

To show this formally, the ABP analysis uses a potential

function formulation to bound the total number of steal steps.

6The ABP analysis provides bounds for both dedicated and multipro-
grammed environments.

The nodes pushed onto a worker’s deque are all ready to be

executed and has certain amount of potential, defined as a

function of both the span of the computation and the “depth”

of the node in the dag — roughly speaking, one can think

of the potential function as, “how far away the node is from

the end of the computation.” Due to the way work-stealing

operates, it maintains a property called the top-heavy deques7

(Lemma 6 in [16]): the node at the head of a non-empty

deque constitutes a constant fraction of the overall potential of

the deque. Moreover, after O(P ) steal attempts, with constant

probability, the overall potential of the computation decreases

by a constant fraction (Lemmas 7 and 8 in [16]). The intuition is

that, after that many steals, the critical node at the head of some

deque are likely to get stolen and executed, thereby decreasing

the potential by a constant fraction. Since the computation

started out with certain amount of potential, defined in terms

of the span of the computation, there cannot be more than

O(PT∞) steal attempts before the potential reaches 0 (i.e., the

computation ends).

There are two key elements in this argument. First, if a deque

is non-empty, the head of a deque contains a constant fraction

of the potential in the deque. Second, after O(P ) steal attempts,

the critical node at the head of some deque gets executed.

The property of top-heavy deques still holds in NUMA-

WS, because a worker still pushes to the tail and a thief

steals form the head. In NUMA-WS, however, 1) the steal

probability has changed (no longer uniformly at random); 2)

a thief randomly chooses between the victim’s mailbox and its

deque; 3) even if a thief steals successfully, it can push the

stolen frame back to the designated socket (into a mailbox)

instead of executing it immediately. We first argue why these

changes do not jeopardize the analysis. Then we show how we

bound the additional cost of work pushing.

It turns out that, as long as the critical node gets stolen and

executed with probability 1/(cP ) for some non-zero constant

c, we can show that O(P ) steal attempts cause the overall

potential to decrease by a constant fraction, which in turn

bounds the number of steals to O(PT∞). In NUMA-WS, the

critical node could either be at the head of some deque or in

some worker’s mailbox (via lazy work pushing).

Specifically, the following lemma is a straightforward gen-

eralization of Lemmas 7 and 8 in [16]:

Lemma 1. Let Φ(t) denote the overall potential of the compu-

tation at time step t. Assuming the probability of each deque

being the target of a steal attempt is at least 1/X , then after X
steal attempts, the potential is at most Φ(t)/4 is at least 1/4.

Here, let 1/X be 1/(2cP ) for some constant c > 0 that

corresponds to the probability of stealing into a worker on the

most remote socket. The factor of 2 is due to the fact that a

thief only steals into a victim’s deque with 1/2 probability once

a given victim is chosen (the coin flip that decides whether to

steal into the deque or the mailbox).

7In the ABP analysis [16], they refer to the head of the deque as its “top”
and the tail as its “bottom,” and hence the name of the lemma.
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The rest of the proof in the ABP analysis follows, and

one can show that the number of steal steps are bounded by

O(PT∞) (shown in Theorem 9 in [16]). Naturally, the smaller

the probability of stealing into the critical node, the larger the

constant hidden in the O(PT∞) term, and thus NUMA-WS

has a larger constant hidden in front of the T∞ term.

It is important that a thief flips a coin to decide whether it

should steal into a victim’s mailbox versus its deque instead of

always looking into the mailbox first. The coin flip guarantees

that the critical node is stolen with probability at least 1/(2cP ).
If the thief always looks into the mailbox, the critical strand

could be at the head of some deque and never gets stolen.

Having a mailbox of size one also guarantees that, since there

can be only one entry in the mailbox at any given point. A

constant-sized mailbox can work, but would complicate the

argument and require imposing an ordering on how the mailbox

is accessed — a mailbox with multiple entries would need to

maintain the top-heavy deques property as well.

Now we consider the extra overhead incurred by work

pushing. Since pushing work does not directly contribute to

advancing the computation, we need to bound the time steps

workers spent pushing work. We will bound the cost of pushing

by amortizing it against successful steals and show that only a

constant number of pushes can occur per successful steal.

A worker performs work pushing only on full frames that

belong to a different socket under these scenarios: a successful

non-trivial sync, last spawned child returning to a suspended

parent, and a successful steal. For each of such events, one can

attribute the event to some successful steal occurred that led

to the event. Moreover, there can be at most two such events

counted towards a given successful steal, since a frame only

performs a nontrivial sync if it has been stolen since its last

successful sync. Since only at most two events can be counted

towards a successful steal, and only at most constant number

of pushes can occur per event due to the pushing threshold

(defined in Section III), we can amortize the cost of pushing

against successful steals and upper bound that by O(PT∞) as

well. This amortization argument utilizes the fact that we have

a constant pushing threshold and a single-entry mailbox.

Finally, in classic work stealing, the number of additional

cache misses on private caches due to parallel execution is

simply bounded by the number of successful steals [18] —

O(PT∞C) for a private cache of size C. The intuition is that,

each successful steal forces the worker to refill its private cache.

In NUMA-WS, the same bound follows since both the steals

and work pushing are bounded by O(PT∞).

V. EMPIRICAL EVALUATION

This section empirically evaluates NUMA-WS. NUMA-WS

has similar work efficiency and low scheduling overhead as

in Cilk Plus, but it mitigates work inflation and thus provides

better scalability. Moreover, NUMA-WS maintains the same

processor-oblivious model, and all benchmarks tested scale as

the number of cores used increases.

Experimental setup. We ran all our experiments on a 32-

core machine with 2.20-GHz cores on four sockets (Intel Xeon

E5-4620) with the same configuration shown in Figure 1. Each

core has a 32-KByte L1 data cache, 32-KByte L1 instruction

cache, and a 256-KByte L2 cache. Each socket shares a 16-

MByte L3-cache, and the overall size of DRAM is 512 GByte.

All benchmarks are compiled with Tapir [35], a LLVM/Clang

based Cilk Plus compiler, with -O3 running on Linux kernel

version 3.10 with NUMA support enabled. Each data point is

the average of 10 runs with standard deviation less than 5%.

When running the vanilla Cilk Plus, we tried both the first-

touch and interleave NUMA policies for each benchmark and

used the configuration that led to the best results.

Benchmarks. Benchmark cg implements conjugate gradi-

ent that solves system of linear equations in the form of

Ax = b with a sparse input matrix A. Benchmark cilksort

performs parallel mergesort with parallel merge. Benchmark

heat implements the Jacobi-style heat diffusion on a 2D plane

over a series of time steps. Benchmark hull implements

quickhull to compute convex hull. The algorithm works by

repeatedly dividing up the space, drawing maximum triangles,

and eliminating points inside the triangles. When there are

no more points outside of the triangles, we have found the

convex hull. Since hull’s work and span can differ greatly

depending on the input data points, we ran it on two different

data sets: one with randomly generated points that lie within a

sphere (hull1), and another with randomly generated points

that lie on a sphere (hull2). There is a lot more computation

in hull2, since the algorithm has a harder time eliminating

points. Benchmark matmul implements a eight-way divide-

and-conquer matrix multiplication with no temporary matrices.

Benchmark strassen implements a matrix multiplication

algorithm that performs seven recursive matrix multiplications

and a bunch of additions. Most benchmarks are originally

released with MIT Cilk-5 [5], except for cg, which comes from

the NAS parallel benchmarks [36] and hull, which comes

from the problem-based benchmark suite [37]. Two benchmarks

benefit from the data layout transformation (Section III-C):

matmul and strassen, and we also ran the versions with the

data layout transformation (matmul-z and strassen-z) on

both platforms. For a given application, we used the same input

and base case sizes for both platforms.

A. Work Efficiency and Scalability

We first provide the overview of our results. Figure 7 shows

the TS , T1, and T32 executing on Cilk Plus and on NUMA-

WS. As expected, the T1 for all benchmarks are similar for the

two platforms, since the code are similar with the exception

of linking with different scheduler. We compute the spawn

overhead by dividing T1 with the corresponding TS (shown

in parentheses under T1). Like in Cilk Plus, with appropriate

coarsening, NUMA-WS retains high work efficiency. NUMA-

WS does not incur any additional overhead on the work term

to achieve NUMA awareness. For T32, NUMA-WS was able

to achieve better scalability compared to Cilk Plus for most

benchmarks (shown in parentheses under T32).

Both matmul and strassen benefit from the data layout

transformation (i.e., comparing with the -z version). The
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input size / serial Cilk Plus NUMA-WS

benchmark base case size TS T1 T32 T1 T32

cg 75k × 75/n/a 360.00 385.41 (1.07×) 29.39 (13.11×) 384.48 (1.07×) 14.89 (25.82×)

cilksort 1.3e8/1k 20.38 20.47 (1.00×) 0.96 (21.28×) 20.95 (1.03×) 0.79 (26.58×)

heat 16k × 16k × 100/16k × 10 83.48 83.05 (0.99×) 13.78 (6.03×) 83.05 (0.99×) 5.95 (13.97×)

hull1 100000k/10k 4.08 4.12 (1.01×) 0.53 (7.71×) 4.11 (1.01×) 0.45 (9.04×)

hull2 100000k/10k 44.22 44.95 (1.02×) 3.29 (13.67×) 44.69 (1.01×) 2.09 (21.34×)

matmul 4k × 4k/32× 32 190.86 191.03 (1.00×) 6.45 (29.60×) 190.39 (1.00×) 6.40 (29.76×)

matmul-z 4k × 4k/32× 32 73.63 73.64 (1.00×) 2.34 (31.44×) 73.65 (1.00×) 2.35 (31.29×)

strassen 8k × 8k/16× 16 112.82 111.78 (0.99×) 5.08 (22.00×) 111.99 (0.99×) 5.01 (22.37×)

strassen-z 8k × 8k/16× 16 80.43 82.03 (1.02×) 3.46 (23.69×) 81.78 (1.02×) 3.47 (23.59×)

Fig. 7. The execution times in seconds for the benchmarks: its serial elision, running on Cilk Plus, and on NUMA-WS. The data layout transformation is
applied to two benchmarks: matmul and strassen, denoted as matmul-z and strassen-z. The numbers in parentheses under the T1 columns indicate
spawn overhead, (i.e., T1/TS ). The numbers in parentheses under the T32 columns show scalability (i.e., T1/T32).

blocked Z layout helps when used in matrix multiplications,

because the index calculation incurs little additional overhead,

and it traverses the matrices in a way that enables the prefetcher.

Beyond data layout transformation, NUMA-WS does not

provide more benefit, which is expected, because matmul

readily obtains good scalability to begin with, and we didn’t use

locality hints in strassen. It’s challenging to specify sensible

locality hints in strassen due to how the algorithm works.

Sub-matrices of the inputs are used in different parts of the

computation, and thus the data necessarily has to be accessed

by multiple sockets. One easy way to specify locality hint

for strassen is to perform a eight-way divide-and-conquer

matrix multiplication at the top-level, and only perform the

seven-way divide starting from the second level of recursion.

Doing so would allow one to specify locality hint at the top

level. We attempted that strategy, but it turns out that, the

T32 performance of the top-eight-way version is comparable

to the version reported with no locality hint. This is because

the top-eight-way version indeed have less work inflation, but

at the expense of 15% increases in overall T1, because we

are not getting the O(nlg 7) work at the top level. Thus, all

things considered, we chose this version over the top-eight-

way, since it is more work efficient, and provides comparable

T32 execution time.

B. Scheduling Overhead and Work Inflation

We examine the detailed breakdown of T32 next. Figure 8

shows the work time running on one core, and the work,

scheduling, and idle times running on 32 cores for both

platforms. We note that, like in Cilk Plus, NUMA-WS has little

scheduling overhead. Since the scheduling overhead is already

low in Cilk Plus to begin with, the improved scalability of

NUMA-WS largely comes from mitigated work inflation.

By comparing W32 (work time on 32 cores) with its respec-

tive T1, one can gauge the work inflation for both platforms.

Note that one cannot entirely avoid work inflation, since any

shared data (i.e., multiple workers taking turns to write to the

same memory location) or any work migration (i.e., successful

steals) will inevitably incur work inflation. However, compared

to Cilk Plus, NUMA-WS indeed mitigates work inflation.

In general, cg, cilksort, heat, and hull (both inputs)

obtain visible decrease in work inflation when running on

NUMA-WS; matmul has little to begin with, and strassen

did not use locality hints as explained in earlier. Benchmark

hull1 has a higher work inflation than hull2, because for

the particular input used for hull1, points were eliminated

quickly. Thus, the majority of the computation time is spent

doing parallel prefix sum, where the forward and backward

propagations touch different parts of the data array and simply

does not have much locality.

C. Maintaining Processor-Oblivious Model

Next, we show that, NUMA-WS retains the processor-

oblivious programming model and the same benchmarks work

well across different number of cores. Figure 9 shows the

scalability (T1/TP ) plot across benchmarks. The workers are

packed tightly using the smallest number of sockets. For a given

benchmark, its data points are collected using the same user

applications without modification. The only thing that changed

is the input argument to the runtime specifying the number

of cores and sockets to use. Even though we ran the program

on different number of sockets, there is no need to change

the program. The program queries the runtime how many

physical sockets are used during the initialization phase and

initializes variables storing the IDs of virtual places accordingly

depending on how many sockets are used.

As can be seen in Figure 9 the scalability curves are smooth,

indicating that the application indeed gains speedup steadily

as we increase the number of cores. An exception is hull1,

which as explained earlier, spends majority of the computation

time on prefix sum, which does not have much locality. Its

scalability clearly degrades once we move from a single socket

to multiple sockets.

VI. RELATED WORK

Researchers have observed the problems of scaling task

parallel programs due to work inflation, and proposed various

mechanisms and scheduling policies to mitigate the effect [19]–

[29]. None of the proposed platforms achieve all the desired

goals, however. In particular, none of them focuses on achieving

work efficiency nor provides provably efficient time bound.

One common approach is to utilize some kind of work-

stealing hierarchy, where the scheduler employs a centralized

shared queue among workers within a socket so as to load

balance across sockets. Work described by [20], [22]–[24], [27],

[28], [38] take such an approach. In order to aid load balancing

across sockets, work described by [20], [23], [38] also propose

heuristics to perform the initial partitioning of the work so that
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Cilk Plus NUMA-WS

benchmark T1 W32 S32 I32 T1 W32 S32 I32
cg 385.41 898.60 (2.33×) 10.44 21.48 384.48 443.63 (1.21×) 6.75 17.36

cilksort 20.47 31.56 (1.54×) 0.33 0.14 20.95 25.39 (1.21×) 0.15 0.06
heat 83.05 435.11 (5.24×) 1.09 2.96 83.05 186.83 (2.25×) 0.43 1.89
hull1 4.12 16.71 (4.05×) 0.08 0.09 4.11 14.50 (3.53×) 0.05 0.14
hull2 44.95 102.45 (2.28×) 0.17 0.23 44.69 69.62 (1.56×) 0.16 0.28
matmul 191.03 207.78 (1.09×) 0.25 0.15 190.39 202.79 (1.07×) 0.40 0.52

matmul-z 73.64 74.99 (1.02×) 0.25 0.11 73.65 74.79 (1.02×) 0.28 0.29
strassen 111.78 168.17 (1.50×) 0.39 0.52 111.99 168.28 (1.50×) 1.22 0.39

strassen-z 82.03 119.44 (1.46×) 0.88 0.75 81.78 118.34 (1.45×) 2.29 0.43

Fig. 8. T1 shows the one-core running time on each platform. W32, S32, and I32 show the work time, scheduling time, and idle time, respectively, when
running on 32 cores. The numbers in parentheses next to W32 indicates the work inflation (i.e., W32/T1) compared with the T1 from the same platform.
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Fig. 9. The scalabil-
ity of benchmarks running
on NUMA-WS. The x-axis
shows P , the number of
cores used, and the y-axis
shows T1/TP , the scala-
bility. Threads are packed
onto sockets tightly and the
smallest number of sockets
is used, i.e., for 24 cores, 3
sockets are used.

work distributed to different sockets can be somewhat balanced

to begin with. It’s not clear the scheduler proposed by these

prior work provide the same theoretical guarantees as the classic

work stealing. Moreover, if the initial partitioning was not done

in a load-balanced way, the performance may degrade, since

load balancing among sockets require more centralized control.

In contrast, our work still utilizes randomized work stealing and

provides sound guarantees.

Besides having a hierarchy for work stealing, prior work [27],

[28] also explored the notion of work pushing, but the key

distinction between these work and ours is that, NUMA-

WS performs work pushing in a work-efficient way. Without

judicious selection of when to performing work pushing, the

scheduler can incur high pushing overhead on the work term,

causing the parallel overhead (T1/TS) to increase.

Related to work-pushing, the notion of mailbox is first pro-

posed by [18]. In their paper, Acar et. al provided the analysis

for how to bound cache misses for private caches for the classic

work stealing algorithm. The paper also proposed a heuristic for

obtaining better locality for iterative data parallel code, where

the program iteratively executes a sequence of data-parallel

loops that access the same set of data over and over. The

assumption is that, the program can obtain better locality if the

runtime can keep the same set of data-parallel iterations on the

same worker. Upon a spawn, if the work item being pushed

onto the deque has a different affinity (as determined by the

data-parallel loop indices) from the executing worker, the work

item is pushed onto both the executing worker’s deque and

the designated worker’s mailbox, a FIFO queue with multiple

entries. The use of mailbox is proposed as a heuristic, and their

analysis does not extend to include the heuristic.

The use of mailbox is subsequently incorporated into Intel

Threading Building Blocks (TBB) [2], [3]. Majo and Gross

extended TBB to be NUMA-aware in a portable fashion.

Our proposed programming API took inspiration from them.

However, their work has similar downside that, it’s not work

efficient and does not provide provable guarantee.

Work by [19] also utilizes the notion of places, and the

programmer can specify that a spawned task being executed

at a specific place. The scheduler restricts such tasks to be

executed exactly at the designated place, however, which can

impede scheduler’s ability to load balance and thus leads to

inefficient execution time bound.

Work by [39] targets specifically workload that performs

the same parallel computation over and over and thus their

mechanism is designed specifically for the set of programs that

exhibit such behaviors. In their work, the workers records the

steal pattern during the first iteration, and replay the same steal

pattern in subsequent iterations, thereby gaining locality.

Work by [26], [40] studies a space-bounded scheduler, which

provides provable guarantees for bounding cache misses for

shared caches, but may sacrifice load balance as a result.

Work by [41] proposes a locality-ware task graph scheduling

framework, which provides a provably good execution time

bound. However, the framework is designed for task graph

computations which has a different programming model.

Finally, work by [42] proposed a locality-aware scheduler

called localized work stealing. Give a computation with well-

defined affinities for work items, each worker keeps a list of

other workers who might be working on items belonging to it.

That is, whenever a thief steals a work item, it will check the

affinity of the work item and add its name onto the owner’s list

(who might be a different worker from the victim). Whenever

a worker runs out of work, it checks the list first and randomly

select a worker from the list to steal work back. This steal-

back mechanism, like the lazy work pushing in our work, can

be amortized against steals. However, since a worker is required

to check the list when it runs out of work to do their bound is

slightly worse. The work is primarily theoretical and has not

been implemented.

VII. CONCLUSION AND FUTURE DIRECTION

In this paper, we have shown that NUMA-WS, like the

classic work stealing, provides strong theoretical guarantees.

Moreover, its implementation is work efficient and can provide

better scalability by mitigating work inflation. We conclude

by discussing some of its limitations and potential future
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directions. NUMA-WS is designed to give the programmer a

finer control over where a task is executed. In order to mitigate

work inflation, however, the programmer still needs to provide

locality hints and allocates / partitions data in such a way

that allows the task and its data to be co-located. First, the

programmer needs to use the runtime to query the number of

sockets and perform the appropriate data partitioning, and thus

cannot be entirely socket oblivious. Second, it may be chal-

lenging to partition data and provide sensible locality hints for

algorithms that perform random memory accesses (i.e., a task

may access data scattered across sockets). Examples of such

algorithms include various graph algorithms, or strassen

we tested. While NUMA-WS won’t degrade the performance

of such algorithms, it won’t bring benefit, either. Interesting

future directions include devising a programming interface that

allows the programmer to be socket oblivious and investigating

how one may mitigate NUMA effects in algorithms where it’s

challenging to co-locate a task and its data.
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