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Abstract—Task parallelism is designed to simplify the task of
parallel programming. When executing a task parallel program
on modern NUMA architectures, it can fail to scale due to the
phenomenon called work inflation, where the overall processing
time that multiple cores spend on doing useful work is higher
compared to the time required to do the same amount of work on
one core, due to effects experienced only during parallel executions
such as additional cache misses, remote memory accesses, and
memory bandwidth issues.

One can mitigate work inflation by co-locating the computation
with its data, but this is nontrivial to do with task parallel
programs. First, by design, the scheduling for task parallel pro-
grams is automated, giving the user little control over where the
computation is performed. Second, the platforms tend to employ
work stealing, which provides strong theoretical guarantees, but its
randomized protocol for load balancing does not discern between
work items that are far away versus ones that are closer.

In this work, we propose NUMA-WS, a NUMA-aware task
parallel platform engineered based on the work-first principle.
By abiding by the work-first principle, we are able to obtain
a platform that is work efficient, provides the same theoretical
guarantees as a classic work stealing scheduler, and mitigates
work inflation. We have extended Cilk Plus runtime system
to implemented NUMA-WS. Empirical results indicate that the
NUMA-WS is work efficient and can provide better scalability by
mitigating work inflation.

Index Terms—work stealing, work-first principle, NUMA, lo-
cality, work inflation

I. INTRODUCTION

Modern concurrency platforms are designed to simplify the
task of writing parallel programs for shared-memory parallel
systems. These platforms typically employ task parallelism
(sometimes referred to as dynamic multithreading), in which
the programmer expresses the logical parallelism of the com-
putation using high-level language or library constructs and
lets the underlying scheduler determine how to best handle
synchronizations and load balancing. Task parallelism provides
a programming model that is processor oblivious, because the
language constructs expose the logical parallelism within the
application without specifying the number of cores on which
the application will run. Examples of such platforms include
OpenMP [1], Intel’s Threading Building Blocks (TBB) [2], [3],
various Cilk dialects [4]-[9], various Habanero dialects [10],
[11], Java Fork/Join Framework [12], and IBM’s X10 [13].
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Most concurrency platforms, including ones mentioned
above, schedule task parallel computations using work steal-
ing [14]-[17], a randomized distributed protocol for load
balancing. Work stealing, in its classic form, provides strong
theoretical guarantees. In particular, it provides asymptotically
optimal execution time [14]-[17] and allows for good cache
locality with respect to sequential execution when using pri-
vate caches [18]. In practice, work stealing has also been
demonstrated to incur little scheduling overhead and can be
implemented efficiently [5].

Shared memory on mod-
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NUMA system and its mem-
ory subsystem. This system
consists of four sockets, with
eight cores per socket, and
each socket has its own last-level cache (LLC), memory
controller, and memory banks (DRAM). Each LLC is shared
among cores on the same socket, and the main memory consists
of all the DRAMs across sockets, where each DRAM is
responsible for a subset of the physical address range. On such
a system, when a piece of data is allocated, it can either reside
on physical memory managed by the local DRAM (i.e., on
the same socket) or by the remote DRAM (i.e., on a different
socket). When accessed, the data is brought into the local LLC
and its coherence is maintained by the cache coherence protocol
among LLCs. Thus, the memory access latency can be tens of
cycles (serviced from the local LLC), over a hundred cycles
(serviced from a local DRAM or a remote LLC), or a few
hundreds of cycles (serviced from a remote DRAM).

Fig. 1. An example of a 32-core
four-socket system, where each socket
has its own last-level L3 cache and
memory banks.

A task parallel program can fail to scale on such a NUMA
system, as a result of a phenomenon called work inflation,
where the overall processing time that multiple cores spend on
doing useful work is much higher compared to the time required
to do the same amount of work on one core, due to effects
experienced only during parallel executions. Multiple factors
can contribute to work inflation, including work migration,



parallel computations sharing a LLC destructively, or accessing
data allocated on remote sockets.

One can mitigate work inflation by co-locating computations
that share the same data or co-locate the computation and its
data on the same socket, thereby reducing remote memory
accesses. These strategies are not straightforward to implement
in task parallel code scheduled using work stealing, however.
First, by design the scheduling of task parallel programs is
automated, which gives the programmer little control over
where the computation is executed. Second, the randomized
protocol in work stealing does not discern between work items
that are far away versus ones that are closer.

Ideally, we would like a task parallel platform that satisfies
the following criteria:

e provide the same strong theoretical guarantees that a classic
work stealing scheduler enjoys;

e be work efficient, namely, the platform does not unneces-
sarily incur scheduling overhead that causes the single-core
execution time to increase;

e support a similar processor-oblivious model of computation:
assuming sufficient parallelism, the same program for a given
input should scale as the number of cores used increases; and

e mitigate work inflation.

Even though many mechanisms and scheduling policies have
been proposed to mitigate work inflation in task parallel
programs [19]-[29], none of the proposed solutions satisfy
all criteria simultaneously. In particular, many of them are
not work efficient nor do they provide a provably efficient
scheduling bound (see Section VI).

In this paper, we propose NUMA-WS, a task parallel plat-
form that satisfies these criteria simultaneously. NUMA-WS
employs a variant of work stealing scheduler that extends the
classic algorithm with mechanisms to mitigate NUMA effects.
NUMA-WS achieves the same theoretical bounds on execution
time and additional cache misses for private caches as the
classic work stealing algorithm, albeit with a slightly larger
constant hidden in the big-O term.

NUMA-WS provides the same execution time bound as
classic work stealing [14]-[17], which can be quantified using
two important metrics: the work, as defined by the execution
time running the computation on one core, and the span,
the longest sequential dependences in the computation, or its
theoretical running time executing on infinitely-many cores.
Given a computation with 77 work and T,, span, NUMA-
WS executes the computation on P cores in expected time
T1/P + O(Tw).! The additional cache misses due to parallel
execution are directly correlated with the number of times
computation “migrates,” or when the order of computation
during parallel execution diverges from that of a single-core
execution. In NUMA-WS, the number of times such divergence
can occur is upper bounded by O(PT,,), same as with classic
work stealing [18].

I'Even without accounting for scheduling overhead, this is the best bound
possible when the dependences of the parallel computation are not unknown
until execution time [30], [31].
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To measure work efficiency, an important metric is 7Ts, the
execution time of serial elision, obtained by removing the
parallel control constructs or replacing it with its sequential
counter part. Serial elision should perform the exact same
algorithm that the parallel program implements but without
the parallel overhead. Thus, one can quantify work efficiency
by comparing 77 against Ts to measure parallel overhead.
Assuming a work-efficient platform, one can obtain parallel
code whose ratio between 717 and Tg is close to one.

We have implemented a prototype system by extending Intel
Cilk Plus, which implements the classic work stealing algo-
rithm, and empirically evaluated it. The empirical results indi-
cate that NUMA-WS is work efficient, scalable across different
number of cores, and can mitigate NUMA effects. Specifically,
we show that, NUMA-WS incurs negligible parallel overhead
(i.e., T1/Ts), comparable to that in Cilk Plus. Moreover, we
compare the parallel execution times across benchmarks when
running on Intel Cilk Plus versus running on NUMA-WS on a
four-socket 32-core system. NUMA-WS was able to decrease
work inflation compared to Cilk Plus without adversely impact-
ing scheduling time. Across benchmarks, NUMA-WS obtains
much better speedup than that in Cilk Plus.

Critically, to achieve the theoretical bounds and practical
efficiency, the design and engineering of NUMA-WS abides
by a principle called the work-first principle proposed by [5],
which states that one should minimize the overhead borne by
the work term (77) and move the overhead onto the span term
(T). Intuitively, a scheduler must incur some scheduling over-
head due to the extra bookkeeping necessary to enable correct
parallel execution or to mitigate NUMA effects. Within the
context of a work-stealing scheduler, worker threads (surrogates
of processing cores) load balance by “stealing” work when
necessary. The work-first principle states that it’s best to incur
scheduling overhead on the control path that can be amortized
against successful steals. To put it differently, whenever a
choice can be made to incur overhead on a thief stealing versus
on a worker busy working, it’s always preferred to incur the
overhead on the thief stealing.

Contributions

To summarize, this paper makes the following contributions:

e We present NUMA-WS, a NUMA-aware task parallel plat-
form that implements a work stealing algorithm with mecha-
nisms to mitigate work inflation (Section III).

e We show that our extended work stealing algorithm retains
the same theoretical guarantees on execution time and cache
bounds as the classic algorithm (Section IV).

e We implemented and empirically evaluated NUMA-WS. The
empirical results show that NUMA-WS is work efficient,
scalable across cores, and mitigates work inflation (Section V).

II. PRELIMINARIES: WORK STEALING IN CILK PLUS

Our prototype implementation of NUMA-WS extends Intel
Cilk Plus [9], which implements the classic work stealing
algorithm. The engineering of Cilk Plus also follows the work-
first principle. In this section, we review the implementation



of Cilk Plus and examine its work efficiency to demonstrate
the benefit of the work-first principle. Next, we examine the
work inflation of multiple benchmarks running on Cilk Plus to
motivate the need for a NUMA-aware work-efficient runtime.

The language model. Cilk Plus extends C/C++ with two
parallel primitives: cilk_spawn and cilk_sync.? When
a function F' spawns another function G (invoking G with
the keyword cilk_spawn), the continuation of F, ie.,
statements after the cilk_spawn call, may execute in parallel
with G. The keyword cilk_sync specifies that control cannot
pass beyond the cilk_sync statement until all previously
spawned children within the enclosing function have returned.

These keywords denote the logical parallelism of the com-
putation. When F' spawns G, G may or may not execute in
parallel with the continuation of F', depending on the hardware
resource available during execution.

Work stealing and the work-first principle. In work
stealing, each worker (a surrogate of a processing core) main-
tains a deque (a double ended queue) of work items. Each
worker operates on its own deque locally most of the time and
communicates with one another only when it runs out of work
to do, i.e., its deque becomes empty. When that happens, a
worker turns into a thief and randomly chooses another worker,
the victim, to steal work from. A worker, while busy working,
always operates at the tail of its own deque like a stack (i.e.,
first in last out). A thief, when stealing, always steals from the
head of a victim’s deque (i.e., taking the oldest item).

The work-first principle [5] states that one should minimize
the overhead borne by the work term (77) and move the
overhead onto the span term (7,), which corresponds to the
steal path. A work-stealing runtime abiding by the work-first
principle tends to be work efficient, as demonstrated by the
implementation of Cilk-5. Subsequent variants of Cilk [6]-[8]
including Cilk Plus follow similar design.

The intuition behind the work-first principle can be under-
stood as follows. The parallelism of an application is defined
as T1/Two, or how much work there is along each step of the
span. Assuming the application contains ample parallelism, i.e.,
T, /T > P, the execution time is dominated by the T3 /P
term, and thus it’s better to incur overhead on the T, term.
Moreover, in practice, when the application contains ample
parallelism, steals occur infrequently.

Work stealing in Cilk Plus. Figure 2 shows the pseudocode
for the work-stealing scheduler in Cilk Plus. Note that when no
steal occurs, the one-worker execution follows that of the serial
elision. Upon a cilk_spawn, the worker pushes the contin-
uation of the spawning parent at the tail of its deque (line 1)
and continues to execute the spawned child (line 2), which
can also spawn. Once pushed, the continuation of the parent
becomes stealable. Upon returning from a cilk_spawn, the

2A third keyword cilk_for exists, which specifies that the iterations
for a given loop can be executed in parallel; it is syntactic sugar that compiles
down to binary spawning of iterations using cilk_spawn and cilk_sync.
Other concurrency platforms contain similar constructs with similar semantics,
though the syntax may differ slightly.
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F spawns G:

1 PUSHDEQUEATTAIL(F); // F’s continuation becomes stealable
2 continue to execute G

G returns to its spawning parent F':

3 success = POPDEQUEATTAIL();

4 if success // F is not stolen and must be at the tail of the deque
5 continue to execute F

6 else // parent stolen; the deque is empty

7 next_action = CHECK_PARENT

8 return to scheduling loop

F executes cilk_sync:

9 if F.stolen = TRUE

10 // F must be a full frame and the deque is empty

11 success = CHECKSYNC(); // must do a nontrivial sync
12 if success

13 continue to execute F'

14 else // F must be the only thing in the deque

15 suspend F

16 next_action = STEAL

17 return to scheduling loop

18 else continue to execute F' // nothing else needs to be done

scheduling loop: // frame is a either NULL or the first root full frame
19 while computation-done = FALSE

20 if next_action = CHECK_PARENT
21 frame = CHECKPARENT();
22 next_action = STEAL // reset next_action
23 if frame = NULL
24 frame = RANDOMSTEAL();
25 else RESUME(frame)
Fig. 2. Pseudocode for the Cilk Plus work-stealing scheduler: when a

function spawns, when a spawned function returns, when a function executes
cilk_sync, and its scheduling loop. Here, we use F' to represent both
a function instance and its corresponding frame. The variable next_action
specifies what the scheduling loop should do next.

worker pops the parent off the tail of its deque (if not stolen)
to resume its execution (lines 3-5).

The strategy of pushing the continuation of the parent is
called continuation-stealing. An alternative implementation is
to push the spawned child, called child-stealing.®> Cilk Plus
implements continuation-stealing because it can be more space
efficient; more importantly, it allows a worker’s execution
between successful steals to mirror exactly that of the serial
elision. Thus, one can optimize the cache behavior of parallel
code for private caches by optimizing that of the serial elision.

Runtime organization based on the work-first principle.
Two aspects of the Cilk Plus design follow from the work-
first principle: the “THE protocol,” proposed by [5] and the
organization of the runtime data structures, as described in [32].
The THE protocol is designed to minimize the overhead of
a worker operating on its deque, allowing a victim who is
doing work to not synchronize with a thief unless they are
both going after the same work item in the deque. The THE
protocol remains unchanged in NUMA-WS and thus we omit
the details here and refer interested readers to [5]. We briefly
review the organization of the runtime data structures, which
is most relevant to the design of NUMA-WS.

3In the literature, continuation-stealing is sometimes referred to as work-
first and child-stealing referred to as help-first. The choice of which strategy
to implement is orthogonal to the work-first principle. Hence, we call them
“continuation” versus “child-stealing” here to avoid confusion.



The runtime data structures in Cilk Plus are organized around
the work-first principle, so as to incur as little overhead on the
work path as possible, at the expense of incurring overhead
on the steal path. With continuation-stealing, in the absence of
any steals, the behavior of a worker mirrors exactly that of the
serial elision, and the execution should incur little scheduling
overhead. On the other hand, when a successful steal occurs,
actual parallelism is realized, because a successful steal enables
the continuation of a spawned parent to execute concurrently
(on the thief) with its spawned child (on the victim). In this
case, the runtime must perform additional bookkeeping in order
to keep track of actual parallel execution.

In Cilk Plus, a Cilk function that contains parallel keywords
is treated as an unit of scheduling: every Cilk function has
an associated shadow frame that gets pushed onto the deque
upon spawning. It is designed to be light weight, storing the
minimum amount of information necessary in order to enable
parallel execution (i.e., which continuation to resume next).
Whenever a frame is stolen successfully, however, the runtime
promotes the stolen frame from a shadow frame into a full
Jframe which contains the necessary bookkeeping information
to keep track of actual parallel execution.

That means, only a full frame can have spawned children exe-
cuting concurrently. Thus, a frame’s stolen field (e.g., F. stolen)
is only ever set for a full frame that has been stolen but has not
executed a cilk_sync. Execution of a cilk_sync checks
for the flag, and only if the flag is set, then a nontrivial
sync needs to be invoked that checks for outstanding spawned
children executing on other workers (line 11). On the other
hand, for a shadow frame, its flag is never set and executing a
cilk_sync is a no-op, as its corresponding function cannot
have outstanding spawned children and thus nothing needs to
be done (line 18).

If a nontrivial sync is necessary, and there are outstanding
spawned children executing on other workers, then the current
worker suspends this frame and returns to the runtime to find
more work to do (i.e., steal) (lines 15-17). The suspended frame
then becomes the responsibility of the worker who executes the
last spawned child returning. Thus, a child returning from a
spawn, upon detecting that its parent has been stolen, returns
back to the scheduling loop (lines 6-8) and checks if its parent
is ready to resume (lines 20-22), i.e., it is the last spawned
child returning.

Since work stealing always steals from the head of the
deque, when a worker is about to return control back to the
scheduling loop (lines 8 and 17), its deque must be empty. Thus,
the scheduling loop handles only full frames. Upon returning
to the loop, a worker executes the loop repeatedly until the
computation is done or some work is found, either via resuming
a suspended parent (line 21) or via successful steals (line 24).

Work efficiency and work inflation of Cilk Plus. The time
a worker spends can be categorized into three categories —
work time, time spent doing useful work (i.e., processing the
computation), idle time, time spent trying to steal but failing to
find work to do, and scheduling time, time spent performing
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Fig. 3. The normalized total processing times of benchmarks running on Cilk
Plus, normalized to T's, the execution time of the corresponding serial elision.
The P=1 bars show the normalized total processing times running on one
core; the P=32 bars show the normalized total processing times running on
32 cores. For P=32, each data point is also broken down into three categories:
work time, scheduling time, and idle time. We have two data sets with different
characteristics for Hull and thus two sets of data points are shown for Hull.

scheduling related tasks to manage actual parallelism, such as
frame promotions upon successful steals and nontrivial syncs.
By looking at how much work time that all workers collectively
spend grows as the number of cores increases, one can gauge
how much work inflation impacts the scalability of the program.
On the other hand, idle time is a good indication of how much
parallelism a computation has — a computation that does not
have sufficient parallelism is generally marked by high idle
time. Finally, scheduling time indicates the runtime overhead.
See [33] for the formalization of this intuition.

Figure 3 shows the normalized total processing times of
six benchmarks running on Cilk Plus, normalized to T, the
execution time of the corresponding serial elision.* Note that
P=1 is simply 7}, the time running on one worker, which
includes the spawn overhead, but not scheduling or idle time,
since no actual parallelism is realized executing on one worker.

Cilk Plus has high work efficiency, as the ratio between T}
and T is close to one. Here, we did coarsen the base case —
when a divide-and-conquer parallel algorithm reaches certain
base case size, the code stops spawning and calls the sequential
version instead. Coarsening helps with spawn overhead and is
a common practice for task-parallel code; it makes a trade-off
between spawn overhead and parallelism — the smaller the
base case size the higher the parallelism and spawn overhead.
Typically one can coarsen the base case size to mitigate spawn
overhead but keeps it small enough so that the computation has
sufficient parallelism. We chose the base case sizes for these
benchmarks by picking the ones that provide the best T3, raw
execution times.

For P=32, most benchmarks have very little scheduling time
and idle time, indicating that the scheduler is efficient and there
is sufficient parallelism to saturate 32 cores. Finally, we look at
work inflation. Benchmarks tested have work inflation ranging

4The data is collected using the same setup including input and base case
sizes described in Section V.



from 1.45% to 5.24x, with the exception of matmul.’ The
implementation of matmul is already cache oblivious [34]
and thus had little work inflation to begin with. We use this
benchmark as a baseline to show that, even for a benchmark
does not really benefit from NUMA-aware scheduling, the addi-
tional scheduling mechanism in NUMA-WS does not adversely
impact performance. Moreover, the data layout transformation
helps when applied to malmul.

III. NUMA-AWARE TASK-PARALLEL PLATFORM

NUMA-WS extends Cilk Plus to incorporate mechanisms to
mitigate NUMA effects. An effective way to mitigate NUMA
effects is to co-locate computations that share data, and/or co-
locate data and the computation that uses the data. To that end,
NUMA-WS includes user-level APIs to provide locality hints,
extends the work stealing scheduler to be NUMA-aware, and
schedules computations according to the locality hints when
possible. In addition, NUMA-WS also includes a simple data
layout transformation that is applied to a subset of benchmarks.
This section describes these extensions in detail.

A. Modifications to the Programming Model

To facilitate NUMA awareness, the runtime at startup en-
sures that the worker-thread-to-core affinity is fixed. Since the
programming model is processor-oblivious, an application can
run on any number of cores and sockets within the constraints
of the hardware resource. We assume that the user decides how
many cores and how many sockets an application runs on when
invoking the application but does not change this configuration
dynamically at runtime.

Given the user-specified number of cores and sockets, the
runtime spreads out the worker threads evenly across the
sockets and groups the threads on a given socket into a single
group. Each group forms a virtual place that forms the basic
unit for specifying locality.

The locality API allows the user to query the number of
virtual places in the application code and specify which virtual
place a spawned subcomputation should ideally run on. If the
user specifies the locality for a spawned subcomputation G,
by default any computation subsequently spawned by G is
also marked to have the same locality. Such a default works
well for recursive divide-and-conquer algorithms, which task
parallelism is well-suited for. For the benchmarks tested, this
default means that only the top-level root Cilk function needs
to specify locality hints. The API also includes ways to unset
or update the locality hints for a Cilk function.

Figure 4 shows how one might use locality hints in a parallel
mergesort, where MERGESORTTOP is the top-level root Cilk
function: it recursively sorts the four quarters of the input
array in place, and uses the temporary array to merge the
sorted quarters back into the input array. The locality hints
are specified using the @p# notation, where a p# is a variable
storing the ID of a virtual place that the task (the corresponding
function call and its subcomputation) should execute.

5The precise numbers for all benchmarks are shown in Section V.
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MERGESORTTOP(int *in, int *tmp, int n)
1 if n < BASE_CASE

2 QUICKSORT(in, n); // in-place sequential sort
3 else
4 // initialized p0, pl, p2, and p3 based on number of places
5 // in and tmp are partitioned appropriately.
6 cilk_spawn MERGESORT(in, tmp, n/4) // implicitly @p0
7 cilk_spawn MERGESORT(in + n/4, tmp + n/4, n/4); @pl
8 cilk_spawn MERGESORT(in + n/2, tmp + n/2, n/4); @p2
9 MERGESORT(in + 3n/4, tmp + 3n/4, n - 3n/4); @p3
10 cilk_sync;
11 int *tmpl = tmp, *tmp2 = tmp + n/2;
12 cilk_spawn PARMERGE(in, in + n/4, n/4, n/4, tmpl); @p0
13 PARMERGE(in + n/2, in + 3n/4, n/4, n - 3n/4, tmp2); @p2
14 cilk_sync;
15 PARMERGE(tmpl, tmp2, n/2, n - n/2, in); @ANY
Fig. 4. Pseudocode for the top-level function for parallel mergesort with

locality hints (as denoted by @p# or @ANY). The MERGESORT is defined
similarly as the MERGESORTTOP but without the locality hint: it takes in an
unsorted input array, a temporary array, and their sizes, and sorts the input array
in place. The PARMERGE performs parallel merge; it takes in two sorted input
arrays, their sizes, and an output array, and merges the two sorted inputs into
the output. Variables pO—p3 store IDs for virtual places based on the number of
sockets used, but they do not have to be distinct (e.g., if less than four sockets
are used). The ANY indicates no place constraints and unsets the locality hint.

Assuming the computation runs on four sockets, the code
would initialize each of the virtual places to the appropriate
socket, and specify that the i*" quarter should be sorted at the
it" virtual place. For merge, since we have to merge two arrays
sorted at two different places together, we simply specify its
locality to be one of the virtual places that the inputs come
from. Even though we have only specified work for two virtual
places for the merge phase, the place specifications are only
hints, and the NUMA-WS runtime will load balance work
across all sockets dynamically as necessary.

With continuation-stealing, the first spawned child is always
executed by the same worker who executes the corresponding
cilk_spawn, and thus we do not specify a locality hint
for the first spawn. By default, the runtime always pins the
worker who started the root computation at the first core on the
first socket and thus implicitly the first spawned child always
executes at the first virtual place (at pO in the code). If the
user had specified a locality hint for the first spawned child that
differs from where the parent is executing, the spawned child
will obtain the user-specified locality, but will not get moved
to the specified socket immediately. Rather, the computation
may get moved later as steals occur according to the lazy work
pushing mechanism described in Section III-B.

In order to benefit from the locality hints, one should allocate
the data on the same socket that the computation belongs to. In
this example, one should allocate the physical pages mapped
in the #*" quarters of the in and tmp arrays from the socket
corresponding to the i*" virtual place. We have developed
library functions that allow the application code to do this easily
at memory allocation time, but they are simply accomplished
by calling the underlying mmap and mbind system calls that
Linux OS provides.

The API described is an idealized API, which requires
compiler support. In our current implementation, we manually



hand compiled the application code by explicitly invoking
runtime functions to indicate the place specifications. The
transformation from the idealized API to the runtime calls is
quite mechanical and can easily be done by a compiler.

B. Modifications to the Scheduler

The locality specified is only a hint, and the runtime tries to
honor it with best effort and do so in a work-efficient fashion,
incurring overhead only on the span term. Note that enforcing
locality strictly can impede runtime’s ability to load balance,
e.g., the computation contains sufficient parallelism overall but
most parallelism comes from computation designated for a
single socket. Thus, the NUMA-WS runtime may execute the
computation on a different socket against the locality hint if
doing so turns out to be necessary for load balancing.

To obtain benefit using NUMA-WS, we expect the applica-
tion code to perform data partitioning with the appropriate lo-
cality hints specified. However, because the runtime is designed
to foremost treat load balancing as the first priority and account
for locality hints with best effort, not specifying locality hints
would not hurt performance much and result in comparable
performance with one obtainable with the Cilk Plus runtime.

At a high level, NUMA-WS extends the existing work-
stealing scheduler with two NUMA-aware mechanisms:

e Locality-biased steals: In the classic work stealing algo-
rithm, when a thief steals, it chooses a victim uniformly
at random, meaning that each worker gets picked in with
1/P probability (and if the worker happens to pick itself,
it tries again). The locality-biased steals simply change the
probability distribution of how a worker steals, biasing it to
preferentially steal work from victims running on the (same)
local socket over victims on the remote sockets.

e Lazy work pushing: The work pushing refers to the oper-
ation that, a worker, upon receiving a work item, instead of
executing the work, pushes it to a different worker to honor
the locality hint. Work pushing has been proposed in prior
work (see Section VI). However, the key distinction between
our work and prior work is that, NUMA-WS performs lazy
work pushing, in a way that abides by the work-first principle
and incurs overhead only on the span term.

Figure 5 shows NUMA-WS’s modifications to work stealing
to incorporate these mechanisms, which we explain in detail
next. Compared to the Cilk Plus scheduler, NUMA-WS may
perform additional operations when executing a nontrivial sync
(lines 5-11), inside the scheduling loop (lines 21-26), and it
uses a modified stealing protocol (line 28). The operations
performed on a spawn and a spawn returning are the same
as shown in Figure 2, so we do not repeat them here.

If the runtime performs work pushing indiscriminately, the
overhead incurred by work pushing would be on the work
term instead of on the span term. Such overhead includes
doing extra operations that do not advance towards finishing the
computation and synchronizing with the receiving worker (i.e.,
worker to push work to), which would result a work inefficient
runtime.
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F' executes sync:

1 if F.stolen = TRUE

2 // F must be a full frame and the deque is empty
3 success = CHECKSYNC(); // must do a nontrivial sync
4 if success

5 if F. place # worker. place

6 if PUSHBACK(F') = TRUE

7 // another worker will resume F'

8 next_action = STEAL

9 return to scheduling loop
10 else continue to execute F'
11 else continue to execute F'
12 else
13 suspend F
14 next_action = STEAL
15 return to scheduling loop

16 else continue to execute F' // nothing else needs to be done

scheduling loop: // frame is a either NULL or the first root full frame
17 while computation-done = FALSE

18 if next_action = CHECK_PARENT

19 frame = CHECKPARENT();

20 next_action = STEAL // reset next_action
21 if frame # NULL and frame. place # worker. place
22 if PUSHBACK(frame) = TRUE

23 // Another worker will resume frame
24 frame = NULL

25 if frame = NULL

26 frame = POPMAILBOX();

27 if frame = NULL

28 frame = BIASEDSTEALWITHPUSH();

29 else RESUME(frame)

Fig. 5. Modifications to the work-stealing scheduler in NUMA-WS. Here,
PUSHBACK() is the mechanism where the runtime pushes a full frame to the
virtual place that it has been designated for. F. place stores the locality hint
for F' and worker. place stores the virtual place that the worker belongs to.

Instead in NUMA-WS, work pushing only occurs when a
worker is handling a full frame. Recall from Section II that,
the data structures in the Cilk Plus runtime are organized in ac-
cordance to the work-first principle: a frame is either a shadow
frame that has never been stolen before, or a full frame that
has been stolen successfully in the past and can contain actual
parallelism underneath (i.e., may have outstanding spawned
children executing on different workers). Specifically, a worker
only performs work-pushing in the following scenarios:

e A worker executes a non-trivial cilk_sync successfully,
and the synched full frame is earmarked for a different socket
via its locality hint (lines 5-11).

e A worker returns from a spawned child, whose parent
had executed a nontrivial cilk_sync unsuccessfully and
therefore is suspended. The returning child is the last spawned
child returning, and thus the parent is ready to be resumed at
the continuation of cilk_sync, but the parent is earmarked
for a different socket (lines 21-24).

e A thief steals successfully, and
frame is earmarked for a different
BIASEDSTEALWITHPUSH in line 28).

full
of

the stolen
socket (part

Besides judiciously selecting certain control paths to perform
work pushing, another crucial aspect of lazy work pushing is
how it selects the receiving worker and how to push work with-
out interrupting the receiving worker. This logic is implemented
in PUSHBACK, which we explain below.



When a worker needs to push a full frame to a designated
socket, it randomly chooses a receiving worker on the desig-
nated socket to push the frame to. The chosen receiving worker
may be busy working and likely have a non-empty deque. Thus,
each worker besides managing a deque, also has a mailbox, that
allows a different worker to deposit work designated for the
receiving worker without interrupting. Crucially, the mailbox
contains only one entry; that is, each worker can have only
one single outstanding ready full frame that it is not actively
working on. A pushing worker may fail to push work because
the randomly chosen receiving worker is busy, and has a full
mailbox. If the push fails, the pushing worker increments a
counter on the frame and tries again with a different randomly
chosen receiving worker. Once the counter on the frame exceeds
the pushing threshold (a configurable runtime parameter), the
pushing worker simply takes the full frame and resumes it
itself. We shall see in the analysis (Section IV) 1) how we
can amortize the cost of pushing against the span term, 2) why
it’s crucial to have only a single entry for the mailbox, and 3)
why there must be a constant pushing threshold.

Besides potentially calling PUSHBACK, the steal protocol
implemented by BIASEDSTEALWITHPUSH (Figure 5: line 28)
differs from the original RANDOMSTEAL (Figure 2: line 24) in
the following ways.

First, the protocol implements locality biased steals. Given
the set of virtual places, the runtime configures the steal prob-
ability distribution according to the distances between virtual
places, where the distances are determined by the output from
numact 1. For instance, on a 32-core 4-socket machine shown
in Figure 1, each socket ¢ forms a virtual place i. When a worker
on socket 0 runs out of work, it will preferentially select victims
from the local socket (socket 0) with the highest probability,
followed by victims from sockets that are one-hop away (i.e.,
sockets 1 and 2) with medium probability, followed by victims
from the socket that is two-hop away (i.e., socket 3) with the
lowest probability.

Second, since now a victim may potentially have a resumable
frame in the mailbox also (besides what’s in the deque), a thief
stealing needs to check for both, but in a way that still retains
the theoretical bounds. Specifically, when a thief steals into a
victim, it will flip a coin. If the coin comes up heads, it does
the usual steal protocol by taking the frame at the head of the
deque (promoting it into a full frame). If the coin comes up
tails, however, it checks the mailbox, followed by three possible
outcomes: 1) mailbox empty, and thus the thief falls back to
stealing from the deque; 2) mailbox is full, and the frame is
earmarked for socket that the thief is on, so the thief takes it;
3) mailbox is full, and the frame is earmarked for a different
socket; the thief then calls PUSHBACK and performs the lazy
work pushing as described before until the frame reaches the
pushing threshold (in which case the thief can simply take it).

We shall see in the analysis (Section IV) 1) why the coin flip
is necessary and 2) why this biased steal protocol still provides
provable guarantees.

Finally, given that each worker now has a mailbox potentially

65

O 1 = =1 = s
=5 G s
== 1

ot S VRO YR [P = A S S
=9 1 o

5= T g = qo—’—,nxll = e

(a) Z-Morton
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Fig. 6. (a) Ordinary Z-Morton layout on the cell-by-cell basis where every
element lies on a recursive Z curve. (b) The blocked Z-Morton layout used
in our data layout transformation, where the blocks are laid out recursively on
the Z curve, and data within each block is laid out in row-major order.

containing work, another small modification to the scheduling
loop is needed. When a worker runs out of work and returns
to the scheduling loop (in the next_action = STEAL case), it
checks if something is in its mailbox first (Figure 5, line 26).
If so, it simply resumes it next. Note that if a worker is back
to the scheduling loop with its next_action set to STEAL, its
deque must be empty.

C. Simple Data Layout Transformation

An effective way to mitigate work inflation due to NUMA
is to co-locate data and computation that uses the data. Even
though modern OSs tend to provide facility to bind pages
to specific sockets, one must specify data allocation in page
granularity. For applications that operate on 2D arrays such
as various matrix operations, the usual row-major order data
layout is not conducive to data and computation co-location,
since most parallel algorithms use divide-and-concur techniques
which recursively subdivide the data into smaller pieces that
can span multiple rows but only part of the rows. Thus, by the
time we reach the base case of a divide-and-conquer algorithm,
the base case would be accessing data that is scattered across
multiple physical pages, making it challenging to co-locate data
and the computation.

One way to fix it is to use Z-Morton layout (also called
cache-oblivious bit-interleaved layout), which interleaves the
bits when calculating the index so that the data is laid out in
a recursive Z curve [34] (Figure 6a). Computing indices for
Z-Morton layout on the cell-by-cell basis is costly, however.

To achieve co-location, our platform provides APIs to allow
the user to perform data layout transformation. The data layout
transformation simply lays out blocks in Z-Morton layout and
lays out the data within each block in row-major order, as
shown in Figure 6b. Doing so has the following benefits: 1)
the data accessed by the base case of a divide-and-conquer
algorithm that utilizes 2D arrays will be contiguous in memory;
and 2) since the bit interleaving needs to be computed only for
the block indices, we save on overhead for index computation.
While the use of Z-Morton layout is not new, in Section V,
we show that the blocked Z-Morton layout works well with
existing NUMA systems.



IV. NUMA-WS’S THEORETICAL GUARANTEES

NUMA-WS provides the same execution time and cache
miss bounds as classic work stealing. Specifically, NUMA-
WS executes a computation with 77 work and 7., span in
expected time 77 /P + O(Tw) on P cores, and the number
of successful steals can be bounded by O(PTy,), although the
constant in front of the 7., term would be larger than that
for classic work stealing. The bound on the number of steals
allows one to constrain the additional cache misses with respect
to sequential execution for private caches [18]. The structure of
the theoretical analysis largely follows that described by Arora
et. al [16] but with some delta. We provide the high level
intuitions and describe the delta here.

We first explain the intuition behind the original work
stealing analysis using the potential function formulation by
Arora et. al [16], henceforth referred to as the ABP analysis.
Here, we assume a dedicated execution environment.®

In the ABP analysis, a computation (a program for a given
input) is modeled as a directed acyclic graph (dag), where
each node represents a strand, a sequence of instructions that
contain no parallel control that must be executed by a single
worker, and each edge represents a dependence — if there is
an edge between node w and v, then v cannot execute until
u finishes. Based on this model, a cilk_spawn generates
a node with two out-degree, one to the spawned child and
one to the continuation; a cilk_sync generates a node with
multiple in-degree, one from each spawned child joined by the
cilk_sync. Assuming each node takes a unit time step to
compute (if a strand takes more than one time step to compute,
it is split into a chain of nodes), the work is then defined as
the total number of nodes in the dag, and span is the number
of nodes along a longest path in the dag.

At each time step, a worker is either doing useful work, i.e.,
executing a node (call it a work step), or stealing including
failed steal attempts (call it a steal step). The total number of
work steps across all workers is bounded by 77, because if
the workers have collectively spent 7} time steps doing useful
work, the computation would be done. Thus, the key is to
bound the number of steal steps. As long as we can bound the
number of steal steps to O(PTy,), the bound follows, since
the execution time on P workers is the number of total steps
divided by P.

Informally, the intuition of the analysis is as follows. The
non-empty deques contain nodes ready to be executed; in
particular, there is some node that is “critical” — a node on
the span and if executed the span will decrease by one. Due
to how work stealing operates, such a critical node must be
at the head of some deque. Thus, after O(P) steal attempts
(since each deque has 1/P probability to be stolen from), the
critical node is likely to be executed. Thus, after O(PT,,) steal
attempts, we exhaust the span, thereby bounding the steal steps.

To show this formally, the ABP analysis uses a potential
function formulation to bound the total number of steal steps.

%The ABP analysis provides bounds for both dedicated and multipro-
grammed environments.

66

The nodes pushed onto a worker’s deque are all ready to be
executed and has certain amount of potential, defined as a
function of both the span of the computation and the “depth”
of the node in the dag — roughly speaking, one can think
of the potential function as, “how far away the node is from
the end of the computation.” Due to the way work-stealing
operates, it maintains a property called the fop-heavy deques’
(Lemma 6 in [16]): the node at the head of a non-empty
deque constitutes a constant fraction of the overall potential of
the deque. Moreover, after O(P) steal attempts, with constant
probability, the overall potential of the computation decreases
by a constant fraction (Lemmas 7 and 8 in [16]). The intuition is
that, after that many steals, the critical node at the head of some
deque are likely to get stolen and executed, thereby decreasing
the potential by a constant fraction. Since the computation
started out with certain amount of potential, defined in terms
of the span of the computation, there cannot be more than
O(PT) steal attempts before the potential reaches 0 (i.e., the
computation ends).

There are two key elements in this argument. First, if a deque
is non-empty, the head of a deque contains a constant fraction
of the potential in the deque. Second, after O(P) steal attempts,
the critical node at the head of some deque gets executed.

The property of top-heavy deques still holds in NUMA-
WS, because a worker still pushes to the tail and a thief
steals form the head. In NUMA-WS, however, 1) the steal
probability has changed (no longer uniformly at random); 2)
a thief randomly chooses between the victim’s mailbox and its
deque; 3) even if a thief steals successfully, it can push the
stolen frame back to the designated socket (into a mailbox)
instead of executing it immediately. We first argue why these
changes do not jeopardize the analysis. Then we show how we
bound the additional cost of work pushing.

It turns out that, as long as the critical node gets stolen and
executed with probability 1/(cP) for some non-zero constant
¢, we can show that O(P) steal attempts cause the overall
potential to decrease by a constant fraction, which in turn
bounds the number of steals to O(PTy,). In NUMA-WS, the
critical node could either be at the head of some deque or in
some worker’s mailbox (via lazy work pushing).

Specifically, the following lemma is a straightforward gen-
eralization of Lemmas 7 and 8 in [16]:

Lemma 1. Let O(t) denote the overall potential of the compu-
tation at time step t. Assuming the probability of each deque
being the target of a steal attempt is at least 1/ X, then after X
steal attempts, the potential is at most ®(t)/4 is at least 1/4.

Here, let 1/X be 1/(2¢P) for some constant ¢ > 0 that
corresponds to the probability of stealing into a worker on the
most remote socket. The factor of 2 is due to the fact that a
thief only steals into a victim’s deque with 1/2 probability once
a given victim is chosen (the coin flip that decides whether to
steal into the deque or the mailbox).

7In the ABP analysis [16], they refer to the head of the deque as its “top”
and the tail as its “bottom,” and hence the name of the lemma.



The rest of the proof in the ABP analysis follows, and
one can show that the number of steal steps are bounded by
O(PTs) (shown in Theorem 9 in [16]). Naturally, the smaller
the probability of stealing into the critical node, the larger the
constant hidden in the O(PT,,) term, and thus NUMA-WS
has a larger constant hidden in front of the 7, term.

It is important that a thief flips a coin to decide whether it
should steal into a victim’s mailbox versus its deque instead of
always looking into the mailbox first. The coin flip guarantees
that the critical node is stolen with probability at least 1/(2¢P).
If the thief always looks into the mailbox, the critical strand
could be at the head of some deque and never gets stolen.
Having a mailbox of size one also guarantees that, since there
can be only one entry in the mailbox at any given point. A
constant-sized mailbox can work, but would complicate the
argument and require imposing an ordering on how the mailbox
is accessed — a mailbox with multiple entries would need to
maintain the top-heavy deques property as well.

Now we consider the extra overhead incurred by work
pushing. Since pushing work does not directly contribute to
advancing the computation, we need to bound the time steps
workers spent pushing work. We will bound the cost of pushing
by amortizing it against successful steals and show that only a
constant number of pushes can occur per successful steal.

A worker performs work pushing only on full frames that
belong to a different socket under these scenarios: a successful
non-trivial sync, last spawned child returning to a suspended
parent, and a successful steal. For each of such events, one can
attribute the event to some successful steal occurred that led
to the event. Moreover, there can be at most two such events
counted towards a given successful steal, since a frame only
performs a nontrivial sync if it has been stolen since its last
successful sync. Since only at most two events can be counted
towards a successful steal, and only at most constant number
of pushes can occur per event due to the pushing threshold
(defined in Section III), we can amortize the cost of pushing
against successful steals and upper bound that by O(PTy,) as
well. This amortization argument utilizes the fact that we have
a constant pushing threshold and a single-entry mailbox.

Finally, in classic work stealing, the number of additional
cache misses on private caches due to parallel execution is
simply bounded by the number of successful steals [18] —
O(PT,,C) for a private cache of size C. The intuition is that,
each successful steal forces the worker to refill its private cache.
In NUMA-WS, the same bound follows since both the steals
and work pushing are bounded by O(PTy).

V. EMPIRICAL EVALUATION

This section empirically evaluates NUMA-WS. NUMA-WS
has similar work efficiency and low scheduling overhead as
in Cilk Plus, but it mitigates work inflation and thus provides
better scalability. Moreover, NUMA-WS maintains the same
processor-oblivious model, and all benchmarks tested scale as
the number of cores used increases.

Experimental setup. We ran all our experiments on a 32-
core machine with 2.20-GHz cores on four sockets (Intel Xeon
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E5-4620) with the same configuration shown in Figure 1. Each
core has a 32-KByte L1 data cache, 32-KByte L1 instruction
cache, and a 256-KByte L2 cache. Each socket shares a 16-
MByte L3-cache, and the overall size of DRAM is 512 GByte.
All benchmarks are compiled with Tapir [35], a LLVM/Clang
based Cilk Plus compiler, with —O3 running on Linux kernel
version 3.10 with NUMA support enabled. Each data point is
the average of 10 runs with standard deviation less than 5%.
When running the vanilla Cilk Plus, we tried both the first-
touch and interleave NUMA policies for each benchmark and
used the configuration that led to the best results.

Benchmarks. Benchmark cg implements conjugate gradi-
ent that solves system of linear equations in the form of
Axz = b with a sparse input matrix A. Benchmark cilksort
performs parallel mergesort with parallel merge. Benchmark
heat implements the Jacobi-style heat diffusion on a 2D plane
over a series of time steps. Benchmark hull implements
quickhull to compute convex hull. The algorithm works by
repeatedly dividing up the space, drawing maximum triangles,
and eliminating points inside the triangles. When there are
no more points outside of the triangles, we have found the
convex hull. Since hull’s work and span can differ greatly
depending on the input data points, we ran it on two different
data sets: one with randomly generated points that lie within a
sphere (hulll), and another with randomly generated points
that lie on a sphere (hull2). There is a lot more computation
in hull2, since the algorithm has a harder time eliminating
points. Benchmark matmul implements a eight-way divide-
and-conquer matrix multiplication with no temporary matrices.
Benchmark strassen implements a matrix multiplication
algorithm that performs seven recursive matrix multiplications
and a bunch of additions. Most benchmarks are originally
released with MIT Cilk-5 [5], except for cg, which comes from
the NAS parallel benchmarks [36] and hull, which comes
from the problem-based benchmark suite [37]. Two benchmarks
benefit from the data layout transformation (Section III-C):
matmul and st rassen, and we also ran the versions with the
data layout transformation (matmul-z and strassen—z) on
both platforms. For a given application, we used the same input
and base case sizes for both platforms.

A. Work Efficiency and Scalability

We first provide the overview of our results. Figure 7 shows
the T's, T1, and T3, executing on Cilk Plus and on NUMA-
WS. As expected, the 7} for all benchmarks are similar for the
two platforms, since the code are similar with the exception
of linking with different scheduler. We compute the spawn
overhead by dividing 7 with the corresponding Ts (shown
in parentheses under 77). Like in Cilk Plus, with appropriate
coarsening, NUMA-WS retains high work efficiency. NUMA-
WS does not incur any additional overhead on the work term
to achieve NUMA awareness. For T35, NUMA-WS was able
to achieve better scalability compared to Cilk Plus for most
benchmarks (shown in parentheses under 755).

Both matmul and strassen benefit from the data layout
transformation (i.e., comparing with the —z version). The



input size / serial Cilk Plus NUMA-WS

benchmark base case size Ts Ty Tso Ty Tso
cg 75k X 75/n/a 360.00 | 385.41 (1.07x)  29.39 (13.11x) | 384.48 (1.07x)  14.89 (25.82x)
cilksort 1.3e8/1k 2038 | 2047 (1.00x)  0.96 21.28x) | 20.95 (1.03x)  0.79 (26.58x)
heat 16k x 16k x 100/16k x 10 83.48 83.05 (0.99x) 13.78 (6.03x%) 83.05 (0.99x) 5.95 (13.97x)
hulll 100000k /10k 4.08 4.12 (1.01x) 0.53 (7.71x) 4.11 (1.01x) 0.45 (9.04x)
hull2 100000k /10k 44.22 44.95 (1.02x) 3.29 (13.67x) 44.69 (1.01x) 2.09 (21.34x)
matmul 4k x 4k/32 x 32 190.86 | 191.03 (1.00x) 6.45 (29.60x) | 190.39 (1.00x) 6.40 (29.76x)
matmul-z 4k x 4k/32 x 32 73.63 | 73.64 (1.00x) 234 3l44x) | 73.65 (1.00x)  2.35 (31.29%)
strassen 8k x 8k/16 x 16 112.82 111.78 (0.99%) 5.08 (22.00x) 111.99 (0.99%) 5.01 (22.37x%)
strassen-z 8k x 8k/16 x 16 80.43 82.03 (1.02x) 3.46 (23.69x) 81.78 (1.02x) 3.47 (23.59x%)

Fig. 7. The execution times in seconds for the benchmarks: its serial elision, running on Cilk Plus, and on NUMA-WS. The data layout transformation is
applied to two benchmarks: matmul and strassen, denoted as matmul-z and strassen-z. The numbers in parentheses under the 77 columns indicate
spawn overhead, (i.e., 71/T’s). The numbers in parentheses under the 732 columns show scalability (i.e., T /T532).

blocked Z layout helps when used in matrix multiplications,
because the index calculation incurs little additional overhead,
and it traverses the matrices in a way that enables the prefetcher.

Beyond data layout transformation, NUMA-WS does not
provide more benefit, which is expected, because matmul
readily obtains good scalability to begin with, and we didn’t use
locality hints in st rassen. It’s challenging to specify sensible
locality hints in strassen due to how the algorithm works.
Sub-matrices of the inputs are used in different parts of the
computation, and thus the data necessarily has to be accessed
by multiple sockets. One easy way to specify locality hint
for strassen is to perform a eight-way divide-and-conquer
matrix multiplication at the top-level, and only perform the
seven-way divide starting from the second level of recursion.
Doing so would allow one to specify locality hint at the top
level. We attempted that strategy, but it turns out that, the
T3o performance of the top-eight-way version is comparable
to the version reported with no locality hint. This is because
the top-eight-way version indeed have less work inflation, but
at the expense of 15% increases in overall 77, because we
are not getting the O(n'87) work at the top level. Thus, all
things considered, we chose this version over the top-eight-
way, since it is more work efficient, and provides comparable
T35 execution time.

B. Scheduling Overhead and Work Inflation

We examine the detailed breakdown of 732 next. Figure 8
shows the work time running on one core, and the work,
scheduling, and idle times running on 32 cores for both
platforms. We note that, like in Cilk Plus, NUMA-WS has little
scheduling overhead. Since the scheduling overhead is already
low in Cilk Plus to begin with, the improved scalability of
NUMA-WS largely comes from mitigated work inflation.

By comparing W3y (work time on 32 cores) with its respec-
tive 77, one can gauge the work inflation for both platforms.
Note that one cannot entirely avoid work inflation, since any
shared data (i.e., multiple workers taking turns to write to the
same memory location) or any work migration (i.e., successful
steals) will inevitably incur work inflation. However, compared
to Cilk Plus, NUMA-WS indeed mitigates work inflation.

In general, cg, cilksort, heat, and hull (both inputs)
obtain visible decrease in work inflation when running on
NUMA-WS; matmul has little to begin with, and strassen
did not use locality hints as explained in earlier. Benchmark
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hulll has a higher work inflation than hull2, because for
the particular input used for hulll, points were eliminated
quickly. Thus, the majority of the computation time is spent
doing parallel prefix sum, where the forward and backward
propagations touch different parts of the data array and simply
does not have much locality.

C. Maintaining Processor-Oblivious Model

Next, we show that, NUMA-WS retains the processor-
oblivious programming model and the same benchmarks work
well across different number of cores. Figure 9 shows the
scalability (T} /Tp) plot across benchmarks. The workers are
packed tightly using the smallest number of sockets. For a given
benchmark, its data points are collected using the same user
applications without modification. The only thing that changed
is the input argument to the runtime specifying the number
of cores and sockets to use. Even though we ran the program
on different number of sockets, there is no need to change
the program. The program queries the runtime how many
physical sockets are used during the initialization phase and
initializes variables storing the IDs of virtual places accordingly
depending on how many sockets are used.

As can be seen in Figure 9 the scalability curves are smooth,
indicating that the application indeed gains speedup steadily
as we increase the number of cores. An exception is hulll,
which as explained earlier, spends majority of the computation
time on prefix sum, which does not have much locality. Its
scalability clearly degrades once we move from a single socket
to multiple sockets.

VI. RELATED WORK

Researchers have observed the problems of scaling task
parallel programs due to work inflation, and proposed various
mechanisms and scheduling policies to mitigate the effect [19]—
[29]. None of the proposed platforms achieve all the desired
goals, however. In particular, none of them focuses on achieving
work efficiency nor provides provably efficient time bound.

One common approach is to utilize some kind of work-
stealing hierarchy, where the scheduler employs a centralized
shared queue among workers within a socket so as to load
balance across sockets. Work described by [20], [22]-[24], [27],
[28], [38] take such an approach. In order to aid load balancing
across sockets, work described by [20], [23], [38] also propose
heuristics to perform the initial partitioning of the work so that



Cilk Plus NUMA-WS

benchmark Ty Wsg S32 IED) T Wsg S3o IED)
cg 385.41 898.60 (2.33x) 1044  21.48 | 38448 443.63 (121x) 6.75 17.36
cilksort 20.47 31.56 (1.54x) 0.33 0.14 20.95 2539 (1.21x) 0.15 0.06
heat 83.05  435.11 (5.24%) 1.09 2.96 83.05 186.83 (2.25x) 043 1.89
hulll 4.12 16.71 (4.05x) 0.08 0.09 4.11 14.50 (3.53x) 0.05 0.14
hull2 4495  102.45 (2.28%) 0.17 0.23 44.69 69.62 (1.56x) 0.16 0.28
matmul 191.03  207.78 (1.09x) 0.25 0.15 | 190.39  202.79 (1.07x) 0.40 0.52
matmul-z 73.64 74.99 (1.02x) 0.25 0.11 73.65 7479 (1.02x) 0.28 0.29
strassen 111.78  168.17 (1.50x) 0.39 0.52 | 111.99 168.28 (1.50x) 1.22 0.39
strassen-z 82.03  119.44 (1.46x) 0.88 0.75 81.78  118.34 (145%x) 2.29 0.43

Fig. 8. T} shows the one-core running time on each platform. W3a, S32, and I32 show the work time, scheduling time, and idle time, respectively, when
running on 32 cores. The numbers in parentheses next to W32 indicates the work inflation (i.e., W32 /7T1) compared with the 7 from the same platform.
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work distributed to different sockets can be somewhat balanced
to begin with. It’s not clear the scheduler proposed by these
prior work provide the same theoretical guarantees as the classic
work stealing. Moreover, if the initial partitioning was not done
in a load-balanced way, the performance may degrade, since
load balancing among sockets require more centralized control.
In contrast, our work still utilizes randomized work stealing and
provides sound guarantees.

Besides having a hierarchy for work stealing, prior work [27],
[28] also explored the notion of work pushing, but the key
distinction between these work and ours is that, NUMA-
WS performs work pushing in a work-efficient way. Without
judicious selection of when to performing work pushing, the
scheduler can incur high pushing overhead on the work term,
causing the parallel overhead (171/7s) to increase.

Related to work-pushing, the notion of mailbox is first pro-
posed by [18]. In their paper, Acar et. al provided the analysis
for how to bound cache misses for private caches for the classic
work stealing algorithm. The paper also proposed a heuristic for
obtaining better locality for iterative data parallel code, where
the program iteratively executes a sequence of data-parallel
loops that access the same set of data over and over. The
assumption is that, the program can obtain better locality if the
runtime can keep the same set of data-parallel iterations on the
same worker. Upon a spawn, if the work item being pushed
onto the deque has a different affinity (as determined by the
data-parallel loop indices) from the executing worker, the work
item is pushed onto both the executing worker’s deque and
the designated worker’s mailbox, a FIFO queue with multiple
entries. The use of mailbox is proposed as a heuristic, and their
analysis does not extend to include the heuristic.

The use of mailbox is subsequently incorporated into Intel
Threading Building Blocks (TBB) [2], [3]. Majo and Gross
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extended TBB to be NUMA-aware in a portable fashion.
Our proposed programming API took inspiration from them.
However, their work has similar downside that, it’s not work
efficient and does not provide provable guarantee.

Work by [19] also utilizes the notion of places, and the
programmer can specify that a spawned task being executed
at a specific place. The scheduler restricts such tasks to be
executed exactly at the designated place, however, which can
impede scheduler’s ability to load balance and thus leads to
inefficient execution time bound.

Work by [39] targets specifically workload that performs
the same parallel computation over and over and thus their
mechanism is designed specifically for the set of programs that
exhibit such behaviors. In their work, the workers records the
steal pattern during the first iteration, and replay the same steal
pattern in subsequent iterations, thereby gaining locality.

Work by [26], [40] studies a space-bounded scheduler, which
provides provable guarantees for bounding cache misses for
shared caches, but may sacrifice load balance as a result.

Work by [41] proposes a locality-ware task graph scheduling
framework, which provides a provably good execution time
bound. However, the framework is designed for task graph
computations which has a different programming model.

Finally, work by [42] proposed a locality-aware scheduler
called localized work stealing. Give a computation with well-
defined affinities for work items, each worker keeps a list of
other workers who might be working on items belonging to it.
That is, whenever a thief steals a work item, it will check the
affinity of the work item and add its name onto the owner’s list
(who might be a different worker from the victim). Whenever
a worker runs out of work, it checks the list first and randomly
select a worker from the list to steal work back. This steal-
back mechanism, like the lazy work pushing in our work, can
be amortized against steals. However, since a worker is required
to check the list when it runs out of work to do their bound is
slightly worse. The work is primarily theoretical and has not
been implemented.

VII. CONCLUSION AND FUTURE DIRECTION

In this paper, we have shown that NUMA-WS, like the
classic work stealing, provides strong theoretical guarantees.
Moreover, its implementation is work efficient and can provide
better scalability by mitigating work inflation. We conclude
by discussing some of its limitations and potential future



directions. NUMA-WS is designed to give the programmer a
finer control over where a task is executed. In order to mitigate
work inflation, however, the programmer still needs to provide
locality hints and allocates / partitions data in such a way
that allows the task and its data to be co-located. First, the
programmer needs to use the runtime to query the number of
sockets and perform the appropriate data partitioning, and thus
cannot be entirely socket oblivious. Second, it may be chal-
lenging to partition data and provide sensible locality hints for
algorithms that perform random memory accesses (i.e., a task
may access data scattered across sockets). Examples of such
algorithms include various graph algorithms, or strassen
we tested. While NUMA-WS won’t degrade the performance
of such algorithms, it won’t bring benefit, either. Interesting
future directions include devising a programming interface that
allows the programmer to be socket oblivious and investigating
how one may mitigate NUMA effects in algorithms where it’s
challenging to co-locate a task and its data.
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