Proactive Work Stealing for Futures

Kyle Singer
Washington University in St. Louis
kdsinger@wustl.edu

Abstract

The use of futures provides a flexible way to express paral-
lelism and can generate arbitrary dependences among paral-
lel subcomputations. The additional flexibility that futures
provide comes with a cost, however. When scheduled using
classic work stealing, a program with futures, compared to
a program that uses only fork-join parallelism, can incur a
much higher number of “deviations,” a metric for evaluat-
ing the performance of parallel executions. All prior works
assume a parsimonious work-stealing scheduler, however,
where a worker thread (surrogate of a processor) steals work
only when its local deque becomes empty.

In this work, we investigate an alternative scheduling
approach, called Prows, where the workers perform proac-
tive work stealing when handling future operations. We
show that ProWS, for programs that use futures, can pro-
vide provably efficient execution time and equal or better
bounds on the number of deviations compared to classic
parsimonious work stealing. Given a computation with T;
work and T, span, ProWS executes the computation on P
processors in expected time O(T; /P + Ty, 1g P), with an ad-
ditional Ig P overhead on the span term compared to the
parsimonious variant. For structured use of futures, where
each future is single touch with no race on the future handle,
the algorithm incurs O(PT?) deviations, matching that of
the parsimonious variant. For general use of futures, the
algorithm incurs O(my T + PTw 1g P) deviations, where my
is the maximum number of future touches that are logically
parallel. Compared to the bound for the parsimonious vari-
ant, O(kTe + PT,), with k being the total number of touches
in the entire computation, this bound is better assuming
mi = Q(PlgP) and is smaller than k, which holds true for
all the benchmarks we examined.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6225-2/19/02...$15.00
https://doi.org/10.1145/3293883.3295735

Yifan Xu
Washington University in St. Louis
xuyifan@wustl.edu

257

I-Ting Angelina Lee
Washington University in St. Louis
angelee@wustl.edu

*CCS Conceptse Software and its engineering —
Scheduling; « Theory of computation — Parallel com-
puting models; « Computing methodologies — Shared
memory algorithms; Parallel programming languages;

1 Introduction

The use of future constructs provides a flexible way to ex-
press parallelism. Similar to fork-join parallelism, one can
spawn off a future task that executes logically in parallel
with the continuation of the spawning statement. Unlike
fork-join parallelism, however, the termination of a future
task is not restricted to a lexical scope. Rather, the spawn
statement returns a future handle that can be used to retrieve
the value produced by the future task. When the handle is
touched, the control is blocked until the corresponding fu-
ture task terminates and returns a value.

The additional flexibility of futures allows one to write
a wider range of parallel programs and/or provide a higher
level of parallelism beyond what can be specified using
only fork-join parallelism. For instance, Blelloch and Reid-
Miller [9] show that one can asymptotically reduce the span
of various tree operations using parallel futures. Since its
proposal in the late 70s [4, 20], future constructs have been
incorporated into various task parallel languages and plat-
forms [14-16, 19, 23, 33, 39, 44, 47], including the C++11
standard [31].

Modern task parallel platforms typically employ work
stealing [10, 13, 23, 33, 50], a class of scheduler for load
balancing parallel computations. Examples of such platforms
include, but are not limited to, OpenMP [42], Intel TBB [29],
various dialects of Cilk [18, 30, 35, 38] and Habanero [5, 14],
X10 [16], and Java Fork/Join framework [34].

Work stealing utilizes a randomized distributed protocol,
which admits an efficient implementation [21]. During paral-
lel execution, each worker thread (a surrogate of a proces-
sor) maintains its own double-ended queue (deque) to keep
track of available work. Primarily, a worker operates on its
own deque locally; only when it runs out of work (i.e., its
deque is emptied) does a worker become a thief and steal
work from the top of a randomly chosen victim’s deque.

It has been shown that such a work-stealing scheduler
provides strong performance guarantees [2, 3, 11, 12]. For
a given computation, let work (T;) be the time it takes to
execute on one processor; similarly, let span' (T.,) be the
time it takes to execute on infinitely-many processors — one

The term span is sometimes called “critical-path length” and “computation
depth” in the literature.

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

can also think of it as the length of a longest dependence
chain in the computation. A work-stealing scheduler can
schedule the computation on P processors in expected time
Ty /P + O(T) [2, 3, 11, 12], which leads to linear speedups
for computations containing ample parallelism.

Even though work stealing and its execution time bound
apply to programs that use futures [2, 3], the flexibility of
futures can incur additional costs. Specifically, prior works [1,
25, 43] show that using work stealing with futures, compared
to work stealing with only fork-join parallelism, can incur
a much higher number of “deviations,” a better metric for
evaluating the performance of parallel executions.

As articulated by Spoonhower et al. [43], the number of de-
viations provide a better metric for evaluating performance
bounds because it is highly correlated to the additional cache
misses and scheduling overheads of parallel executions. Infor-
mally, a deviation occurs during a parallel execution when
a processor executes an instruction whose ordering in the
instruction stream deviates from that of the serial execution.
A deviation forces the scheduler to perform additional book-
keeping to keep track of the events that cause the deviations.
Moreover, the number of deviations can be used to bound
the extra cache misses incurred on the private caches dur-
ing parallel executions (as first shown by Acar et al. [1]) —
intuitively, the bound holds by considering each deviation
to execute with an empty private cache.

Given a computation that employs only fork-join paral-
lelism, Acar et al. [1] show that the expected number of
deviations? incurred by a work-stealing scheduler is O(PT,).
In contrast, given a computation that employs k future opera-
tions, Spoonhower et al. [43] show that the expected number
of deviations incurred is O(kT. + PT), an additional k mul-
tiplicative factor. More recently, Herlihy and Liu [25] show
that if futures are used in a restricted fashion one can bound
the number of deviations to be O(PT2).

Although these bounds suggest that futures can indeed
incur much higher overhead than strict fork-join parallelism,
all these prior works assume a parsimonious work-stealing
scheduler, where each worker maintains a single deque and
only steals to load balance when its deque becomes empty.
Due to the parsimonious nature of work stealing, each future
touch can lead to O(T) number of deviations, contributing
to the O(T) multiplicative factor in the deviation bound.

In this work we propose proactive work stealing: when-
ever a worker thread encounters a future touch that is not
ready, it suspends the execution of its current task and tries to
find something else to do. By proactively suspending the com-
putation instead of expanding what’s already on the deque,
one can minimize the deviations and their corresponding
scheduling overhead and cache misses.

We show that the proposed proactive work-stealing algo-
rithm, called ProWsS, can provide a comparable execution

2 Acar et al. refer to deviations as drifted nodes in [1].

258

Kyle Singer, Yifan Xu, and I-Ting Angelina Lee

time bound to the parsimonious variant, as well as equal
or better bounds on the number of deviations for programs
that use futures. Given a computation that employs futures
with T; work and T, span, the proposed algorithm executes
the computation on P processors in O(T; /P + T, lg P) time,
which is asymptotically comparable to the parsimonious ver-
sion (except for the lg P overhead on the span term). For
structured use of futures, where the future is single-touch
with no races on the future handle, the algorithm incurs
O(PT2) number of deviations, the same as the bound for
the parsimonious variant. For general use of futures, where
the only restrictions are a constant number of touches per
future and deadlock-freedom during one-worker execution,®
the algorithm incurs O(my T + PT lg P) deviations, where
my is the maximum number of future touches that are log-
ically parallel. This bound is better than the bound for the
parsimonious variant if my = Q(Plg P) and is smaller than
k, the total number of touches in the entire computation;
these assumptions hold true for all the benchmarks exam-
ined. Since proactive and parsimonious work stealing behave
the same for programs that utilize only fork-join parallelism,
they have the same bounds for such programs.

We have implemented a work-stealing runtime system
called Cilk-F, extending the task parallel runtime system
of Cilk Plus [30] to incorporate support for parallel fu-
tures scheduled using ProwS. Even though futures have
been incorporated into various task parallel platforms [14—
16, 19, 23, 33, 39, 44, 47], Cilk-F is the first provably efficient
proactive work-stealing runtime that supports futures. An
interesting design question arises when considering the im-
plementation of the “cactus stack” [35] in supporting futures,
which we discuss in more detail in Section 5. No prior stack
space bound exists for parallel futures when scheduled using
parsimonious work stealing. Interestingly, when scheduled
using proactive work stealing, it’s possible to bound the stack
space, albeit loosely.

We empirically evaluate Cilk-F with nine benchmarks and
compare it to Cilk Plus. For benchmarks where the use of
futures does not provide additional parallelism, Cilk-F per-
forms comparably to Cilk Plus, indicating that the additional
lg P term in front of the span does not adversely impact
performance in practice. For benchmarks where the use of
futures provides additional benefit, Cilk-F can obtain better
speedup. Nevertheless, future operations do incur higher
scheduling overhead compared to pure fork-join parallelism,
and we empirically analyze this overhead.

Contributions
In summary, this paper makes the following contributions:

e We propose ProWs, a proactive work-stealing algorithm
for scheduling computations with futures (Section 3). Even

3Prior work by Spoonhower et al. [43] assumes single-touch per future, but
constant number of touches does not change their bound.

Proactive Work Stealing for Futures

though the algorithm is stated in terms of futures, the
algorithm works for computations with general synchro-
nization patterns.

e We show that ProWS provides equal or better bounds on
the number of deviations than the parsimonious variant
(Section 4).

e We describe the implementation of Cilk-F, the first prov-
ably efficient proactive work-stealing runtime system that
supports the use of futures (Section 5). We discuss in detail
how Cilk-F supports futures in the cactus stack and the
resulting stack space usage bound.

e We empirically evaluate Cilk-F and show that ProWsS can
be implemented efficiently (Section 6).

2 Preliminaries

Fork-Join Parallelism vs. Futures. To explain the seman-
tic distinctions between fork-join parallelism and futures,
we will use syntax such as spawn, sync, fut-create, and
get and assume that they operate with function instances.*

When a function F spawns another function G by prefix-
ing the call with a spawn, the continuation of the spawn in F
may execute in parallel with G. The sync keyword ensures
that control cannot pass beyond the sync until all functions
previously spawned via spawn have returned. If not specified
explicitly, a function containing spawn has a sync inserted
implicitly at the end the function, and thus all previously
spawned children must return before the parent can return.

Like spawn, fut-create can be used to create parallelism.
A function F may spawn off a function G representing a
future task by prefixing the call to G with fut-create,
and the continuation of F may execute in parallel with G.
Unlike spawn, however, the termination of G is not confined
to the enclosing lexical scope of the call, and the execution of
a sync in F has no effect on it. Rather, the fut-create call
returns a _future handle, which can be used later to ensure
termination of G and retrieve the result of its evaluation. One
can invoke get on the future handle, an operation referred
to as the future touch, which causes the control to block
until the corresponding future task terminates. Implicitly,
we assume that the end of a future task always executes a
put, depositing the task’s resulting value into its handle.

Given these constructs, one can derive a serial elision of
the parallel code by removing spawn and sync, and replacing
fut-create with a simple call and using the return value
from the call wherever get is invoked.

Modeling Parallel Computations. The execution of a
parallel computation can be modeled as a directed acyclic
graph, or dag [12], where each node represents a strand,
a sequence of instructions containing no parallel keywords,
and the edges represents control dependencies between

4 Although syntax for other platforms may vary, the scheduling algorithm
specified in terms of the computation dag should be broadly applicable.

259

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

strands (i.e., an edge from u to v means that v cannot execute
until u finishes).

The execution of a spawn terminates the current strand,
which is a spawn node with two outgoing edges, one to the
first strand in the spawned child, and one to the continua-
tion in the parent. The execution of a sync terminates the
current strand and creates a sync node, representing the
continuation after the sync, with multiple incoming edges
(one from each spawned child).

The fut-create keyword behaves similarly to spawn. It
terminates the current stand, which is a_ future spawn node
with two outgoing edges: one to the first strand in the future
task, and one to the continuation of fut-create. A future
touch, or invocation of get, terminates the currently exe-
cuting strand and creates a future join node (or join node
for short) that has two incoming edges: one from the strand
that was terminated by the invocation of get, referred to
as the local parent of the join node, and one from the last
strand of the corresponding future task that executes the
put, referred to as the future put node.

For ease of description, we will refer to the edge that goes
from a future spawn node to the first strand of the spawned
future task as a create edge. We will refer to the edge that
goes from the last strand of a future task to the corresponding
future join node as a join edge.

For a computation that uses only spawn and sync, the
resulting dag is a series-parallel dag (SP dag) [49] with
a single source and a single sink that can be constructed
recursively using the following rules:

e base case: a single strand (a node) is an SP dag;

e series composition: given two SP dags G; and G,, com-
pose them in series by adding an edge between the sink
of Gy and source of Gy;

e parallel composition: given two SP dags G, and G;, com-
pose them in parallel by adding a new source s and a new
sink ¢, with edges from s to the sources of G; and G,, and
edges from the sinks of G; and G, to t.

When the program uses futures, the computation can be
modeled as multiple independent SP dags, connected via
create edges and join edges. That is, if F spawns G via spawn,
then the SP dag of G is part of the SP dag of G. On the
other hand, if F spawns G via fut-create, then F and G are
independent SP dags, with the first strand of G being the
source of a separate SP dag and the last strand of G being
the sink.

Prior works on work stealing analysis typically assume
that a dag consists of nodes with at most two outgoing edges
(e.g., [1,2,12,25,43]). One can transform the dag by replacing
a node with multiple outgoing edges into a chain of nodes,
each with two outgoing edges. This becomes relevant if a
future handle can be touched multiple times. Provided that
the number of touches per handle is constant, however, such
a transformation does not adversely impact the span.

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

Parsimonious work stealing. Given a program and an
input, the computation dag unfolds dynamically as the pro-
gram executes, and it’s the job of a scheduler to determine
how to best map the computation to processing cores in a
way that respects the dependences specified by the paral-
lel constructs. We say that u is an immediate predecessor
of v if there is an edge from u to v and v an immediate
successor of u. A node v is ready or enabled when all its
immediate predecessors in the dag have executed, and only
ready nodes can be executed.

With parsimonious work stealing, each worker maintains
a deque that contains only ready nodes. For the most part,
each worker accesses the bottom of its own deque like a stack
(FILO). When a worker executes a node, the execution may
enable zero, one, or two nodes (e.g., spawn node). If zero are
enabled, the worker pops off the bottommost node from its
deque and executes it. If one is enabled, the worker executes
the enabled node. If two are enabled, a worker executes one
(say the left one) and pushes the other (say the right one)
onto the bottom of its deque. When a worker runs out of
work, (i.e., the deque becomes empty), it turns into a thief
and randomly picks a victim to steal from by removing the
topmost (oldest) node from the victim’s deque.

As customary to prior works, we shall assume that the
spawned function or future task is always the left child of
the spawn node and the continuation strand the right child.
Thus, a serial (one-worker) execution of a computation
dag follows the left-to-right depth-first traversal. This also
means that we assume eager evaluation of futures, where
the future task is always evaluated before the continuation
of fut-create under serial execution.

Given a dag, the serial execution imposes a total order on
the nodes. Say in this total order, v executes immediately
after u. In a parallel execution, if a worker w executes v but
not immediately after it executes u, then we say v incurs
a deviation. This could happen either because a different
worker executed u or because worker w executed something
else between u and v.

Types of futures. A structured use of futures imposes
the following restrictions: 1) single touch, meaning that only
a single get is invoked on each future handle, and 2) no
race on a future handle, meaning that there is a directed
path between a future spawn node to the local parent of its
corresponding touch. Note that this restriction is the same
as prior work [25] and does not preclude a future task to
execute in parallel with the function that performs its touch
before the get keyword. It simply means that the spawning
of the future (which writes to the future handle) must be in
series with the invocation of the corresponding get (which
reads the future handle). A general use of futures imposes
the following restrictions: each future is touched a constant
number of times and all the join edges are forward pointing,
namely, a fut-create is always before its corresponding get
in a serial execution.

260

Kyle Singer, Yifan Xu, and I-Ting Angelina Lee

3 Proactive Work-Stealing

This section describes the proactive work stealing algorithm,
which we shall refer to as ProWs in the rest of the section. We
will refer to the original parsimonious algorithm analyzed
by Arora et al. [2] (described in Section 2) as ABP.

The main distinction between ProWS and ABP is as fol-
lows. When a worker executes a get, the associated future
task may not be ready, so executing the get does not en-
able the subsequent future join node. With ABP, this simply
falls under the case of enabling zero nodes, and the worker
continues execution by popping off the bottommost node
to execute next. ProWS handles the execution of get differ-
ently. If its future task is not ready, the worker suspends the
entire deque and tries to find work elsewhere. An important
consequence of such behavior is that there can be more than
P deques in the system, where P is the number of workers.

In ProWs, suspended deques are still stored in a distributed
fashion, thus each worker now manages a single active
deque that it actively works on and a set of stealable deques
that are not being actively worked on but contains ready
nodes. When stealing, once a victim is chosen, a thief can
steal from any deque that belongs to the victim with equal
probability (including its active deque).

Data Structures Used

We shall first discuss the data structures used by the algo-

rithm. Each deque supports the following operations:

e popTop: remove and return the node from the top;

e popBottom: remove and return a node from the bottom;

e pushBottom: insert a node onto the bottom;

e pushBottomImplicit: insert a node onto the bottom of
the deque and mark the node as suspended; and

e isEmpty: return true if there are no ready nodes in the
deque (but may contain one suspended future join node).

Just as in ABP, we assume that multiple workers can make

calls to a deque concurrently; if more than one worker tries

to pop the same element off the deque, one of them succeeds
and the other one fails in a constant number of time steps.

Throughout the lifetime of a deque, it can be in one of the
following four states:

e active: it is actively been worked on by a worker;

o suspended: it is suspended due to a get call; every node
in the deque is ready, except for the bottommost node,
which is the corresponding suspended future join node;

e resumable: it contains only ready nodes, but it is not
actively being worked on by a worker; and

e muggable: similar to a resumable deque, except that the
entire deque can be stolen and resumed.

These states are exhaustive, and a deque can only transition:

1) from active to suspended due to execution of a get call,

2) from suspended to resumable due to termination of the

future task enabling the join node at the bottom, 3) from re-

sumable to active if the worker who finishes the future task

Proactive Work Stealing for Futures

has an empty deque and resumes one of the now-resumable
deques suspended with the future handle; 4) from resumable
to muggable after a thief steals from it once, and 5) from
muggable to active when a thief mugs it and resumes its
execution. Since a resumable deque transitions to muggable
once it is stolen from, only its top item may be stolen be-
fore transitioning. If a thief steals into a muggable deque, it
takes the entire deque and resumes its execution from the
bottommost node.

The stealable deques belonging to a worker are maintained
as a set. Each future handle also maintains a deque set with
references to suspended deques, allowing any deques sus-
pended with the handle to be resumed when the future task
completes. A deque set supports the following operations:

e add(deq) : add deque deq into the set;
e remove(deq) : remove deque deq from the set;
e removeRandom() : remove and return a deque from the
set, chosen uniformly at random; and
e pickRandom(): return a reference to a deque in the set,
chosen uniformly at random (but does not remove it).
We assume that one can make concurrent calls to a given
set, and an operation will finish in constant amortized time.
When operating on the stealable set of a worker, the worker
is always chosen uniformly at random among the P workers.
Thus, the contention can be resolved in a constant number
of time steps in expectation (e.g., see lemma 6 in [12]). In
practice, a set can be implemented as a growable array (per-
forming array doubling when necessary), which maintains a
constant amortized insertion cost.

The Algorithm

Algorithm 1 shows the main scheduling loop for ProWS and
its helper functions. Ignoring the special handling of future
operations in lines 29-37, ProWS behaves the same as ABP.
Each worker starts out with one active deque; it operates off
the bottom of the deque (line 22 and lines 26-28) and steals
when it runs out of work to do (lines 23-24). A worker, when
enabling two nodes, pushes the right node (i.e., continuation)
first (line 27) and then the left node (i.e., the spawned task)
(line 28), which means that the left node gets executed next.

Future operations are handled differently. If the execution
of this strand terminates with get (lines 29-35) and the corre-
sponding future task f has not terminated, get enabled zero
nodes. The worker then pushes the corresponding future
join node j (the immediate successor of n) onto the bottom of
the deque via pushBottomImplicit (line 31) and suspends
the deque (line 32). The reference to the suspended deque is
stored with the future handle of f (line 33) and the worker’s
active deque is set to null (line 34). It will be set to something
else after the steal. On the other hand, if the executed strand
terminates with put, that its corresponding future task f
has terminated and all suspended deques stored with f can
now be resumed (lines 36-42). At this point, if the worker

261

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

Algorithm 1: The main scheduling loop

1 Function suspend(deq) //w is the executing worker
2 | deq.status «— SUSPENDED;
3 | if dep.IsEmpty() then deq.worker « null;

4 | else

5 v « ChooseRandomVictim() ; //can include w itself
6 v.stealable.add(deq);

7 deq.worker « v;

s | end

9 end

Function setToActive(deq) //w is the executing worker
if deq.worker then

12 rebalanceStealables(deq.worker);

13 deq.worker.stealable.remove(deq);
14 | end

15 | deq.worker < null;//deq is not in any stealable set
deq.status «— ACTIVE;

if w.active is not null then freeDeque(w.active);

16
17
18 | w.active « degq;
19 end

20 while computation is not done do //w is the executing worker
n « null ; //n points to next strand to execute

//w.active points to either null or its active deque

21
22 | if w.active is not null then n «— w.active.popBottom();
if n is null then
‘ steal() ; //steal returns when work is found
else //execute n
left, right « execute(n);
if right is not null then w.active.pushBottom(right);
if lef't is not null then w.active.pushBottom(left);
//special case: f is a future handle
if n terminated with f.get() then
if f is not ready then
//j is the future-join node after n
w.active.pushBottomImplicit(j);

23
24
25
26
27

28

29
30

31
32 suspend(w.active);
f.suspended.add(w.active);

w.active « null;

33
34
35 end
36 else if n terminated with f .put() then
//Mark every deque in f.suspended RESUMABLE
37 markSuspendedResumable(f.suspended);
38 if w.active is empty then
deq « f.suspended.removeRandom();
setToActive(deq);

end

39

40

41

42 end

43 | end

14 end

executing put has an empty active deque, it will set its active
deque to one of the suspended deques stored with the future
handle and resume its execution next (lines 38-41).

The implementation of suspend is shown in lines 1-9.
Since ProWS may potentially suspend many deques, it takes
extra steps to ensure that the number of stealable deques
are roughly balanced among workers. Instead of suspending

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

with the current worker w, it chooses a target worker v uni-
formly at random (which can include w itself) and suspends
the deque with v. The reference to v is stored with the sus-
pended deque so that when the deque gets resumed it can
be removed from worker v’s stealable set.

If the suspended deque contains no ready nodes (line 3) we
don’t store the deque in any worker’s stealable set, as it has
nothing to be stolen from. Such a deque, once gets resumed,
is inserted into a stealable set of a worker chosen uniformly
at random (by markSuspendedResumable in line 37).

Finally, a key thing to note in setToActive is that it in-
vokes rebalanceStealables (line 12), which is invoked
whenever w is about to remove a deque from v’s stealable
set — it randomly chooses another victim v’; if v = v/, wis
done; otherwise w moves a stealable deque from v’ to v if
v’ has one. Section 4 explains why we do such a rebalance.

Algorithm 2: The steal protocol

Function steal() //w is the executing worker
while true do //steal returns only when work is found.
v « ChooseRandomVictim() ; //can include w itself

45
46
47
48 deq « pickRandom(|v.active|U |v.stealablel);
if deq is null then continue; //Nothing to steal from v
if deq.status is MUGGABLE then
setToActive(deq);
break;
end
n « deq.popTop() ; /deq is suspended or resumable
if deq.isEmpty() then
handleEmptyDeque();
rebalanceStealables(v);
else if deq.status is RESUMABLE then

| deq.status — MUGGABLE
end

49

50
51

52
53
54
55
56

57

58
59
60
if n is not null then

if w.active is null then w.active < newDeque();

61
62
w.active.pushBottom(n);
break;

end

63

64

65

66 | end

67 end

Algorithm 2 shows the implementation of the steal proto-
col that a worker w invokes when its deque becomes empty
or after it loses its deque due to suspension. The steal func-
tion performs steal attempts until w finds work successfully.

When stealing, w chooses a victim v uniformly at ran-
dom (line 47, which again includes w) and chooses a deque
uniformly at random among v’s deques (line 48). If the cho-
sen deque is muggable, w takes the whole deque and set
it to be its active deque. Otherwise, w steals from the top
(line 54). After popTop, if the deque runs out of ready nodes,
it is removed from v’s stealable set and possibly destroyed if
there isn’t even a suspended future join node at the bottom,
such as in the case of resumable deque (line 56). Moreover,

262

Kyle Singer, Yifan Xu, and I-Ting Angelina Lee

rebalanceStealables is invoked again. If the deque is re-
sumable and not empty, it is marked as muggable (line 59).
After a successful steal, w may need to allocate a new deque
(lines 62 and 63).

4 Performance Bounds for Prows

This section analyzes Prows to show that, 1) for a computa-
tion with T} work and T, span, it executes the computation
in expected time O(Ty/P + T lg P), and 2) the number of
deviations is bounded by O(PT2) for a program that uses
structured futures and O(myTo + PT lg P) for a program
that uses general futures.

Before we analyze the bounds, we first show that, at any
point during the execution, the set of stealable deques are
roughly evenly distributed across workers, which we utilize
when we discuss the bounds. We use the following lemma
on the classic balls-into-bins problem, which is not hard to
show (see e.g., [40, Chp. 5]):

Lemma 4.1. When m balls are thrown independently and
uniformly at random into n bins, the probability that the max-
imum load is more than 7+ + O(lg n) is at most 1/n. Similarly,
the probability that the minimum load is less than 7: — O(lg n)
is at most 1/n.

Lemma 4.2. Given P workers and S number of stealable de-
ques in the system, with probability 1 — o(1) each worker has
at most S/P + O(lg P) deques.

ProoF SKETCH. One can model the number of stealable
deques per worker as the classic balls-into-bins problem,
where the workers are modeled as bins and the stealable
deques are modeled as ball tosses. Our process also includes
muggings, however, which changes the size of the stealable
sets, and thus the analysis requires additional care.

We model the entire process as two separate ball-toss
processes: a deque-suspension process, where a suspended
deque is modeled as a ball toss into a randomly-chosen bin
(worker to leave the deque with), and the deque-removal
process, where removing a deque is also modeled as a ball
toss into a randomly-chosen bin (worker to remove the deque
from). Then the size of a given stealable set is the number of
balls resulted from the deque-suspension process minus the
number of balls resulted from the deque-removal process.
The upper and lower bounds on the maximum and minimum
loads in Lemma 4.1 thus give us the desired bound.

It is not hard to see that the workers from the deque-
suspension process is chosen uniformly at random. What
remains to be shown is that the same holds true for the
deque-removal process. There are a couple ways a deque
can disappear from a stealable set: 1) a worker takes the
whole deque to resume it (lines 40 and 51); and 2) a deque
becomes empty after it is stolen from (lines 55-57). In both
cases, we always invoke rebalanceStealables: if we are
removing a deque from v, we randomly choose a victim v’

Proactive Work Stealing for Futures

to move a stealable deque to v. If v” has a stealable deque
to move to v, it’s as if we removed the deque from v’. If
v’ does not have a stealable deque, it’s as if we first moved
the deque to v and then removed it. Pretending to move a
deque from v to v’ is ok, since v has a larger stealable set at
the moment, and doing so simply balances the load from a
more-loaded worker to a less-loaded one. Even though such
load balancing is conditioned on v’ not having any deque,
doing so does not hurt the bound. O

4.1 Bound on Execution Time

Our time bound analysis follows a similar structure to the
analysis done in [2] and [48]. We separately bound the num-
ber of time steps devoted to various activities: work, steal
attempts, and muggings. By bounding how many time steps
each activity takes, the final bound arises by summing all
the time steps divided by P, the number of workers used.
Obviously, the total work is bounded by T; time steps.

It remains to bound the number of steal attempt and mug-
ging operations, each taking a constant number of time steps.
In the original work stealing analysis by Arora et al. [2, 3],
henceforth referred to as ABP, steal attempts are bounded
by a potential function argument that states the following.
Assuming there are P deques in the system, after O(P) steal
attempts, the overall potential decreases by a constant frac-
tion. This is because, the topmost node in a deque contributes
to a constant fraction of the overall potential among nodes
within the deque.

More formally, the following lemma is a straightforward
generalization of lemma 7 and 8 in ABP [2] which we utilize:

Lemma 4.3. Let ®; denote the potential at timet and say that
the probability of each deque being a victim of a steal attempt
is at least 1/X. Then after X steal attempts, the potential is at
most ®(t)/4 with probability at least 1/4. O

Effectively, this lemma says that the number of steal at-
tempts is at most O(XT), since the potential function is a
function of T. For ABP, it is always the case that X = P,
leading to a steal attempts bound of O(PT,).

The ABP analysis cannot be applied to Prows directly,
since 1) ProWsS can have more than P deques in the system,
and 2) a thief stealing into a muggable deque will resume
the bottommost node in the deque instead of the topmost
one, which may not contain sufficient amount of potential.

To resolve issue 1), we apply a similar technique to Ut-
terback et al. [48] and divide the computation into two
types of phases: a steal-bounded phase when there are
at most 2P stealable deques, and a work-bounded phase
when there are more than 2P stealable deques. During a
steal-bounded phase, by Lemma 4.2, we know each worker
has at most O(lg P) deques, leading to a steal attempts bound
of O(TwP lg P) by Lemma 4.3. During a work-bounded phase,
the total number of deques in the system is more than 3P.

263

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

However, since there are many deques in the system dis-
tributed roughly equally among workers, steal attempts are
likely to succeed, each followed by a unit of work. Thus,
we can bound the steal attempts by O(T;) during a work-
bounded phase. Overall, this leads to an execution time
bound of O(T; /P + T Ig P).

We still need to resolve issue 2) and in addition bound the
time spent on muggings. Recall that in ProWS, we enforce
that every resumable deque has to be stolen from once before
it becomes muggable. This may seem counter-intuitive —
why not simply resume the deque from the bottom if it is
already resumable? This steal-before-mug ensures that for
each mugging there is a corresponding successful steal on the
same deque to amortize against. Doing so prevents the worst
case scenario where a deque with a high-potential node on
top repeatedly becomes resumable and mugged but never
stolen from. This scenario would prevent us from bounding
steal attempts that lead to a successful mugging.

Thus, we can also bound the time steps spent on mugging
against steals, resulting the following time bound:

Theorem 4.4. Consider a computation with T; work and T
span. The expected execution time is O(T; /P + T lg P).

4.2 Bounds on Deviations

We first define some notations. Given a computation dag G,
we say that u is a predecessor of v and v is a successor of
u iff there is a directed path from u to v.

We make the following assumption. Let u be a node with
two outgoing edges, meaning that u can be a spawn node,
a future spawn node, or a future put node. The only way
for a future put node to have an out-degree of two is if the
corresponding future is multi-touch, which creates a chain
of put nodes, each with an out-degree of two.

Given a computational dag G, the sequential order is a
total ordering of nodes in G that arises from the sequential
(one-worker) execution. A processor order of a worker w is
the sequence of nodes processed by w in a parallel execution
of ProWsS. We say u <; v if u is before v and u <; vifu is
immediately before v in the sequential order. Similarly, we
say u <,, v if u is before v and u <,, v if u is immediately
before v in the processor order of w. Given this notation, we
now formally define deviation:

Definition 4.5. Let u and v be two nodes in a dag and u <;
v. We say that v is a deviation in the parallel execution if for
some worker w that executed v, we have u %, v.

Given the definition of SP dags (Section 2), it’s not hard to
see that for every sync node v in an SP dag G, there is a cor-
responding spawn node u. Let u.lchild denote the left child
of u and u.rchild denote the right child of u. Similarly, let
v.Iparent denote the left parent of v and v.rparent denote
the right parent of v. Then, let G;¢f; be the SP subdag that
consists of the set of nodes x in G such that there is a path

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

from u.lchild to x and from x to v.Iparent. We say G, is
the SP dag enclosed by u.lchild and v.lparent.> We define
Gright symmetrically. We first show properties of the sequen-
tial and parallel executions when scheduled with Prows.

Lemma 4.6. Given an SP dag G enclosed by a spawn node
u and a sync v, let x be a node in Gy.f; and let y be a node
in Gyright. Then, x <q u.rchild <y y <; v.rparent. Moreover,
v.rparent <1 v.

ProoF SKETCH. Since each future task is modeled as a
separate SP dag, and a worker w performs eager evaluation
on a future task when it encounters a fut-create, we can
show that this lemma holds by inducting on the number of
independent SP dags. O

Effectively, this lemma says that the sequential order of
ProWsS follows the depth-first left-to-right traversal of the
dag. Moreover, since for either structured or general use of
futures the fut-create of a future task f must appear before
the corresponding get in sequential order, the sequential
execution of ProWsS can never suspend due to a get.

Now we prove lemmas about parallel executions.

Lemma 4.7. Let v be a sync node and u its corresponding
spawn node. If v is a deviation, then u.rchild must be stolen.

PrROOF SKETCH. A similar lemma has been shown by
Acar et al. [1] for pure SP dags scheduled using classic
work stealing (i.e., ABP). Here, we additionally need to con-
sider how ProWsS diverges from ABP when handling futures.
Let G be the SP dag enclosed by u and v and a worker w
pushes u.rchild onto its deque deq. By Lemma 4.6, sequen-
tially w will not pop u.rchild off the deque before executing
v.Iparent. Then, the only way for w to deviate from the se-
quential execution if to encounter a get and suspend deq. In
which case, either u.rchild is popped off the deque due to a
successful steal, or the entire deq is mugged, in which case
the worker mugging the deque will resume execution from
the bottom and follow sequential order for the rest of G. O

Lemma 4.8. Ifa worker w enables no children after executing
the right parent of a sync node, then w’s deque is empty.

Proof. Let v be the sync node and u the corresponding spawn
node. By 4.7, if v is a deviation, u.rchild is stolen. Consider
the SP subdag G enclosed by u.rchild (G’s source node) and
v.rparent (G’s sink node). Then any node in G is executed
before v.rparent in any execution. We know w must steal
u.rchild or any node in G, otherwise there is no possibility
for w to process v.rparent. Suppose the deque is not empty
after executing v.rparent. Let z be bottommost node on the
deque. We must have z outside G since any node in G has
been executed. Furthermore, w’s deque is empty when w
performs the steal. Then everything in the deque afterwards
SRecall that each future task is treated as its own SP dag and thus if a node

x in G spawns a future task via fut-create none of the nodes belonging
to the future task is in G.

264

Kyle Singer, Yifan Xu, and I-Ting Angelina Lee

is a descendent of u.rchild. So z can only be a node in a
future dag spawned by G.

Worker w will turn to the future subdag immediately after
executing the corresponding future spawn node. There are
two ways that w can resume the execution of G: (1) the future
completes, or (2) w’s deque is empty again and it performs
a steal targeting a node in G. In both cases, z cannot be on
w’s deque, which contradicts our supposition. O

At a high-level, we bound the number of deviations as
follows. We define the notion of “traces” that divide the
sequence of nodes executed by a worker based on the types
of nodes. We then show that only the first node in a trace can
incur a deviation. Lastly, we show that, such a node is either
the direct result of a successful steal or can be amortized
against a successful steal.

Definition 4.9. Consider a sequence of nodes processed
by w, which we then separate into a set of traces, where
each trace begins with one of the following nodes: (1) a
sync node, (2) a node that gets executed immediately after w
performs a successful steal, and (3) a node that gets executed
immediately after w performs a successful mugging.

Observation 1. Given a node n in the dag, n can be one of
the following:

1. n is a regular node: n has one child in the dag, and the
child has only n as a parent;

2. n is a spawn node: n has two children in the dag, where
each child has only one parent;

3. n is a future put node: n can have either one child
(single touch future) or two children (chain of put nodes
for multi-touch futures).

4. n is a parent of a sync node: n has one child, where
the child has two parents;

5. n is the local parent of a future join node: n has one
child, where the child has two parents.

It can be seen that these types are exhaustive by enumer-
ating all the possible combinations of the out-degree of n
and in-degree of n’s children. Note that we can never have
a spawn node n leading to a child who is a sync node or
join node — the act of invoking get or sync terminates the
current strand and creates a new node with an in-degree of
two. Thus, a get/ sync that immediately follows a spawn/
fut-create will have a node inserted between them.

Lemma 4.10. Consider a sequence of nodes executed by a
worker w during parallel execution scheduled using Prows,
which we separate into traces according to Definition 4.9. For
a given trace t = (ny,ny, ..., n;), only ny can be a deviation.

Proof. Lets = (ny, Hy, . . ., Hj) be the sequence of I nodes that
starts with n; in sequential execution. We show that n; = ;
for i = 2...1 by inducting on the length of the trace and
argue that either processor w behaves exactly as sequential
execution, or the trace ends.

Proactive Work Stealing for Futures

Inductively, assume n; = n; for i 2...j—1land w
behaves exactly the same as the sequential execution up to
that point (i.e., each n; enabled exactly the same nodes as
1;). Now we consider n;. Based on Observation 1, n; can be
one of the following. regular node: n; must enable its only
child and execute it next, just as in sequential execution.

spawn node: n; must enable both children, executing the
left one and pushing the right one onto the deque, just as in
sequential execution.

future put node: if n; is a put node for a single-touch
future or one at the end of a put chain, then n; can either
enable nothing or the corresponding future join. If n; enables
nothing, this is the same as sequential execution, and w
either pops its bottom deque (which leads to the same n;,4
by inductive hypothesis), or trace t ends at n; if w’s deque
is empty, since the next node has to follow from either a
successful steal or mugging. If n; enables the corresponding
future join node j, that means the local parent of j executed
and couldn’t enable j and thus pushed j onto the bottom of
some (now suspended) deque. Even though n; enabled j, note
that in ProWs, it does not push j onto w’s deque. Instead, it
simply marks the deque as resumable.

On the other hand, n; can be a put node for a multi-touch
future that enables the next put node and may or may not
enable the corresponding future join node. Enabling the next
put node is exactly the same as sequential execution, and
whether the corresponding future join node is enabled or
not does not matter, following similar argument as above.

parent of a sync node: If executing n; enables this sync
node, then trace t ends at n; (by the definition of the trace).
If in both sequential and parallel executions, n; enables no
child, then w tries to pop a node off the bottom of its deque,
which leads to the same n;,; by the inductive hypothesis.
On the other hand, if n; enables no child but in sequential
execution, ri; enables the sync node, then n; must be the
right parent of the sync node. Then by Lemma 4.8 w’s deque
must be empty and thus trace ¢ ends at n;.

local parent of a join node: In the sequential execution,
since the local parent always enables the join node, 7ij4; will
be the join node. In the parallel execution, either n; also
enables the join node, which means nj,; = fij41, or it enables
no child. In the latter case, w will push the join node onto
the bottom of the deque and suspend the deque, which mean
trace t ends at n; because the next node has to follow from
either a successful steal or mugging. O

Finally, a key theorem to bound the number of deviations:

Theorem 4.11. Given an execution of Prows. Let n be the
number of successful steals in the execution. Then, the number
of deviations is O(n).

Proof. From the definition of traces and Lemma 4.10, we
know a deviation may only occur at the beginning of a trace.
Each trace begins with a sync node, a stolen node, or a node

265

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

processed after a successful mugging. Thus, the number of
deviations is bounded by the sum of the numbers for deviated
sync nodes, successful steals, and muggings.

From Lemma 4.7, we know each deviation at a sync nodes
has a unique corresponding stolen node, thus we can bound
the number of deviated sync nodes by the number of success-
ful steals. Also recall that in ProWs, a resumable deque has
to be stolen from successfully before it becomes muggable.
Thus, the number of successful muggings is also bounded
by the number of successful steals. Thus, the total number
of deviations is bounded by O(n), where n is the number of
successful steals. O

Given Theorem 4.11, we can now bound the deviations
by bounding the number of successful steals, which is less
than the number of steal attempts during the computation.
Recall Lemma 4.3, which effectively states that the number
of steal attempts can be bounded by O(XT,,), when a deque
can be stolen into with probability at least 1/X. We provide
a bound on 1/X by bounding the the maximum number of
stealable deques possible during the execution.

Lemma 4.12. Given a computation that uses structured fu-
tures scheduled using Prows, there can be at most O(PT)
stealable deques during execution.

Proof. In the case of the structured use of futures, the steal-
able deques can only include suspended deques. Recall that a
structured use of futures is restricted to single touch and no
race on the handle (i.e., the future spawn node has a directed
path to the local parent of the join node). Due to the former,
there can exist only one suspended deque per future handle
f. Moreover, due to the directed path, the continuation of
the future spawn node that spawned f must be stolen in
order for a corresponding get on f to suspend. Thus, when-
ever a worker w eventually executes the put that completes
f’s corresponding future task, w’s deque must be empty. By
Algorithm 1, w will then resume the single deque suspended
with f, making it active, and thus there cannot be resumable
or muggable deques in the stealable set.

Whenever a worker has to suspend a deque due to get, the
corresponding future task f is either being actively worked
on by another worker (due to eager evaluation), or f is also
suspended because f itself invoked a get on a different fu-
ture, creating a chain of suspended future tasks. Such a chain
has length at most T, (as any chain in the dag). Moreover, at
least one worker is working on the future task at the begin-
ning of the chain. Therefore, there can be at most O(PT,)
suspended (stealable) deques. O

Lemma 4.13. Given a computation that uses general futures
scheduled using ProWs, there can be at most my stealable
deques during execution.

Proof. By Algorithm 1 lines 29-35, a deque can only suspend
when encountering a get (future touch). When a future touch

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

node n causes a deque to suspend, no descendant of n can
execute until the deque becomes active again. By definition,
since there can be at most my number of future touches
executing in parallel, this leads to a maximum number of my
stealable deques at any given time. my. O

Finally, we can prove the following deviation bounds:

Theorem 4.14. Given a computation that uses structured
futures with span Ts, and scheduled using ProwsS on P workers,
the number of deviations is O(PTZ2) in expectation.

Proof. By Lemma 4.12, we know the maximum number of
deques possible during execution is O(PT,). By Lemma 4.2,
each worker can have up to O(T + lgP) deques. Thus, a
deque is stolen into with probability of at least O(WlPlg[’)'
Then by Lemma 4.3, the steal attempts across the compu-
tation is at most O(PT2 + PT lg P), or O(PT?2) assuming
Teo = Q(Ig P), which is likely the case. O

Theorem 4.15. Given a computation that uses general fu-
tures with span To and scheduled using Prows on P workers,
the number of deviations is O(my Te +PTc 1g P) in expectation,
where my. is the maximum number of future touches that are
logically parallel.

Proof. By Lemmas 4.13 and 4.2, we similarly derive the prob-
ability that a deque is stolen into to be at least O(m).
Then by applying Lemma 4.3 we obtain the bound. O

5 Cilk-F: A Prototype System

This section describes Cilk-F, our prototype implementation
of ProWs that extends Intel Cilk Plus [27, 30], a C/C++-based
task parallel platform. An interesting design issue that arises
is how to best support the “cactus stack” [24] abstraction
needed by a task parallel platform. This section discusses
the issue, our design choice, and a bound on the stack space
based on our particular implementation.

The Cactus-Stack Abstraction

A serial language such as C [32] or C++ [45] utilizes an array-
based linear stack because the activation frames of all child
functions of a given parent can reuse the same stack space re-
peatedly. In a task parallel language, since a parent can have
multiple spawned children executing simultaneously, their
activation frames can no longer occupy the same space. Thus,
the underlying system must maintain a cactus stack [24]
abstraction that supports the stack views of multiple children
that are active simultaneously, such as in Figure 1.

A natural question that arises is how to best support a
cactus stack while providing a good resource usage bound.
While multiple mechanisms exist to support a cactus stack,
the answer to this question is nuanced, and different im-
plementations make different tradeoffs [35]. For programs
that use strictly fork-join parallelism scheduled using work

266

Kyle Singer, Yifan Xu, and I-Ting Angelina Lee

A B C D E
-
(b)

Figure 1. A cactus stack. (a) The invocation tree, where
function A invokes B and E, and B invokes C and D. (b) The
view of the stack by each of the five functions. In a serial
execution, only one view is active at any given time. In a
parallel execution, however, if some of the invocations are
spawns, then multiple views may be active simultaneously.

(@

stealing, the best possible bound is PS; [11, 12], where S; is
the stack space needed for special execution.

It turns out that there are inherent tradeoffs between space
usage, time bound, and interoperability with serial bina-
ries [35]. Known mechanisms that allows for such space
efficiency (e.g., “heap-based” cactus stack [21, 22]) do not
allow for interoperability with serial binaries. Cilk Plus’s
runtime system utilizes a strategy that allows for an efficient
time bound, but exchanges a somewhat worse space bound
for interoperability with serial binaries, resulting in a bound
of PS1D [35], where D is the maximum number of parallel
functions nested on the stack during serial execution. Unfor-
tunately, for a program with futures, neither space bound
holds, because work stealing no longer maintains the neces-
sary “busy-leaves” property [11].

Maintaining Cactus Stack for Futures

Cilk-F utilizes the same strategy that Cilk Plus uses, called
stack stitching, where a worker grabs a new stack when
necessary, and the cactus stack is maintained by stitching
together linear stacks. With the work-first policy and fork-
join parallelism as described in Section 2, a linkage point,
the stitching of two linear stacks, is created only upon a suc-
cessful steal, since that’s when actual parallelism is realized.
In Figure 1 for instance, if a worker w1l executes A, which
spawns B, a different worker w2 that steals the continuation
of A will grab a new stack to invoke E and remembers that
its parent is A. With this strategy, the runtime maintains the
invariant that only a parallel function with stealable con-
tinuations (i.e, spawn) can form linkage points and needs to
know about the cactus stack; a serial function can operate
with the old calling convention assuming a linear stack.
The use of futures raises unique issues with the mainte-
nance of cactus stacks. In this example, say A is an ordinary
C function which calls a parallel function B, and B subse-
quently spawns C via fut-create. Since the termination of
a future task C is not confined within its enclosing lexical
scope, without a corresponding get, B can return (and so
can any of its ancestors) without waiting for C to complete.

Proactive Work Stealing for Futures

The first issue that arises is that C may access resources
allocated on its ancestor’s stack. We won’t be too concerned
with this issue, since in this case, it’s only appropriate that
the get on C is invoked within the subcomputation of the
said ancestor; otherwise it’s a programming error.®

Second, and more importantly, the continuation of B can
be stolen and resumed by a different worker, and B can sub-
sequently return while C executes on the original worker. In
this case, however, all three functions are still on the same
linear stack used by the original worker, and resumption of
A can clobber the execution of C.

This is a function of both the work-first policy, which
allows a future task to be allocated on the same stack, and
the fact that that a future allows its ancestor, which may
be an ordinary C function, to resume execution while the
outstanding future task uses the same stack. To get around
this, whenever a worker executes a future, we opt to spawn
the future task on newly allocated linear stack and let the
parent (continuation of fut-create) reuse the stack.

Cilk-F’s Cactus Space Bound

Let D be the maximum number of nested parallel functions
(functions containing parallel keywords) on the stack during
serial execution. Cilk-F provides the stack space bounds of
O(PT S, D) for structured futures and O(myS; D) for general
futures. Effectively, the maximum number of suspended de-
ques at any given time (Lemmas 4.12 and 4.13 in Section 4)
allows us to bound the stack space. Due to the proactive
nature of ProWs, a deque contains only executions that cor-
respond to a particular path in the invocation tree. For a
given path, there can be at most D linkage points, each keep-
ing Sy stack space alive. Thus, the bound follows from the
bounds on the maximum number of deques,

If we had taken the heap-based cactus stack approach,
we would obtain a space bound of O(PTS;) for structured
futures and O(m;S;) for general futures, following similar
arguments: the stack space taken up by the activation frames
fallen on a single path in the invocation tree is at most Sy,
getting rid of the D factor. However, the system would not
allow for interoperability with serial binaries.

Lee et al. [35] and Yang and Mellor-Crummey [53] pro-
posed virtual memory mechanisms to allow for a work-
stealing scheduler to maintain the cactus stack abstraction in
a way that bounds physical space and provides interoperabil-
ity. Although their mechanisms are designed for fork-join
parallelism, they can be adapted to programs with futures. Us-
ing Lee et al.’s mechanism, a space bound of O(PT(S; + D))
for structured futures and O(my(S; + D)) for general futures
can be achieved, though the proposed VM mechanism re-
quires special Operating System support. Mechanisms pro-
posed by Yang and Mellor-Crummey can provide similar
bounds on physical space consumption though not virtual

%The future and async constructs in C++ follow similar philosophy [51].

267

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

address space. Both mechanisms require invoking system
calls for each successful steal, suspension, and mugging.

6 Empirical Evaluation of Cilk-F

This section empirically evaluates Cilk-F, a prototype im-
plementation of ProWs, across nine benchmarks. The use
of futures provides additional flexibility in expressing par-
allelism, but the flexibility comes with some additional cost
compared to fork-join parallelism, namely a higher num-
ber of deviations and higher cost in maintaining the cactus
stack abstraction. To evaluate the overhead in using futures,
we compare the execution times of benchmarks running on
Cilk-F (future implementations) against Cilk Plus (fork-join
implementations) and analyze its overhead. We show that
ProWsS can be implemented efficiently. Despite the slightly
worse theoretical execution time bound compared to classic
work stealing that Cilk Plus implements, Cilk-F performs
comparably to Cilk Plus.

Experimental setup. We ran our experiments on an In-
tel Xeon E5-2665 with 16 2.40-GHz cores on two sockets.
Each core has a 32-KByte L1 data cache, 32-KByte L1 instruc-
tion cache, and a 256-KByte L2 cache. There is a total of 64
GB of memory, and each socket shares a 20-MByte L3-cache.
All benchmarks are compiled with LLVM/Clang 3.4.1 with
-03 -f1to’ running on Linux kernel version 4.4. Each data
point is the average of 10 runs.

Benchmarks. We evaluate Cilk-F using nine benchmarks
implemented with both fork-join parallelism and futures that
fall into three different categories: A) benchmarks where fu-
tures do not provide additional benefits and both versions
effectively do the same thing; B) benchmarks that can be im-
plemented using both, but the versions with futures expose
slightly higher parallelism; C) benchmarks that can only be
implemented with futures.

Benchmarks under category A) include: mm (matrix mul-
tiplication, input 4k-by-4k), smm (the Strassen matrix mul-
tiplication algorithm, input 4k-by-4k), and sort (parallel
mergesort, input 108). Benchmarks under category B) include:
heartwall (adapted from the Rodinia benchmark suite [17]
that tracks the movement of a mouse heart over a sequence
of ultrasound images, input 104 frames), 1cs (dynamic pro-
gramming solving longest common subsequence, input 32k
with base case size 512), sw (dynamic programming that im-
plements Smith-Waterman for sequence alignment, input 2k
with base case 32), bst (the pipelined tree merge using paral-
lel futures from [9], input 8e6 and 4e6). The benchmark under
category C) is ferret (adapted from the PARSEC benchmark
suite [6] that implements a content-based similarity search
on images with pipeline parallelism, with input size native.
Even though ferret cannot be implemented using fork-join
parallelism, it can be implemented as a pipeline program;

"With the exception of bst-fj and bst-gf, which were compiled with -00
and without -f1to due to a compiler bug triggered by the code.

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

bench TS T1 Tz T4 Tg Tl(,
mm-fj| 87.61 89.49 44.74 (1.96x) 22.35 (3.92x) 11.18 (7.84X) 5.59 (15.67x)
mm-sf 88.88 44.45 (1.97x) 22.22 (3.94x) 11.10 (7.89%) 5.56 (15.77x)
smm-fj| 17.54 17.75 9.06 (1.94x) 4.68 (3.75X) 2.54 (6.92x) 1.38 (12.71X)
smm-sf 17.96 9.14 (1.92x) 4.73 (3.71x) 2.61 (6.71x) 1.42 (12.35x)
sort-fj| 13.69 14.16 7.10 (1.93x) 3.58 (3.83x) 1.87 (7.31x) 1.04 (13.15x)
sort-sf 14.02 7.03 (1.95x) 3.55 (3.86X) 1.85 (7.39x) 1.05 (13.06X)
hw-3]170.83 171.20 87.23 (1.96x) 45.04 (3.79x) 23.60 (7.24x) 13.57 (12.59X)
hw-sf 170.12 86.56 (1.97X) 44.77 (3.82x) 23.45 (7.28x) 13.47 (12.68X)
hw-gf 170.66 86.88 (1.97x) 44.58 (3.83x) 23.50 (7.27x) 13.35 (12.80x)
lcs-fj| 8.80 9.06 4.63 (1.90x) 2.49 (3.53x) 1.60 (5.50x) 1.36 (6.47X)
lcs-sf 9.06 4.57 (1.92x) 2.42 (3.63x) 1.53 (5.76x) 1.42 (6.19%X)
lcs-gf 8.84 4.54 (1.94x) 2.34 (3.75x) 1.31 (6.72x) 1.85 (4.75X)
sw-fj| 14.51 12.58 6.43 (2.26x) 3.37 (4.31x) 1.83 (7.95x) 1.05 (13.78x)
sw-sf 14.47 7.27 (2.00x) 3.69 (3.93x) 1.89 (7.69x) 1.00 (14.53X)
sw-gf 13.64 6.93 (2.09x) 3.54 (4.10x) 1.82 (7.99%) 0.98 (14.74X%)
bst-fj| 3.31 3.41 242 (1.37x) 1.96 (1.69x) 1.77 (1.87x) 2.19 (1.51X)
bst-gf 3.42 2.43 (1.36X) 1.98 (1.67x) 1.79 (1.85x) 2.02 (1.63X)
fer-1p|191.54 192.72 97.62 (1.96x) 50.00 (3.83X) 26.05 (7.35X) 14.16 (13.53X)
())

fer-gf 190.66 96.44 (1.99x) 49.85 (3.84x) 25.43 (7.53%) 13.62 (14.07x

Figure 2. The execution times of benchmarks in seconds,
running with Cilk Plus (fj and 1p) and Cilk-F (sf and gf).
T; shows the running time of the serial elision. T, shows
the running time on p processing cores, and the numbers in
parenthesis are the speedups over Ts.

thus, we compare the future implementation running on
Cilk-F with the pipelined version running on Cilk Plus’s im-
plementation of Piper [28], a provably efficient work-stealing
scheduler that supports (linear) pipeline parallelism [36, 37].
The benchmarks are suffixed to indicate their implementa-
tion, with fj for fork-join parallelism, 1p for (linear) pipeline
parallelism, sf for structured futures, and gf for general fu-
tures. The serial elisions are obtained by removing parallel
keywords from the fj/1p versions, but the serial elisions for
the future implementations are comparable.

Performance of Cilk-F

As Figure 2 shows, the performance of Cilk-F is comparable
to the performance of Cilk Plus in all our benchmarks.

For the category A benchmarks this is to be expected;
the future versions are direct conversions from fork-join
parallelism by replacing spawn with fut-create and sync
with get. This structure ensures that when a get causes
a deque to suspend, that deque is always empty. Since all
suspended deques are empty, they never get added to the
stealable set, and thus the Cilk-F implementations have the
same expected execution time as Cilk Plus, T; /P + O(T) for
these benchmarks.

The category B benchmarks also have comparable results
between Cilk Plus and Cilk-F, even though Cilk-F has a
harsher expected time bound of O(T; /P + T, lg P). We expect
different versions of the heartwall benchmark to perform
similarly since the use of futures only provide slightly higher
parallelism by some constant amount (i.e., the same work
and span asymptotically). On the other hand, the Cilk-F

268

Kyle Singer, Yifan Xu, and I-Ting Angelina Lee

implementations of lcs and sw both demonstrate slightly
better speedups than their Cilk Plus counterparts. The future
versions of 1cs and sw have smaller spans than the fork-join
versions: for an input size N and base case B, the fork-join
versions have a span of ONN - B+ ¥ . Ig B) whereas the
future versions have a span of O(N B).8 The final benchmark
in category B, bst, does not show noticeable improvement
in the Cilk-F implementation compared to the Cilk Plus one.
Even though the span is reduced from O(Ig® N) to O(Ig N)
(with work O(N)), this is not a large enough improvement
to be apparent in the data we collected, especially since in
order to reduce the overhead of T; over T, we had to limit
the parallel recursion depth (to depth 5).

In the case of the category C, ferret, one would expect
the linear pipeline version to outperform the general fu-
ture version since the expected execution time using Piper
is T;/P + O(Tx) [36] which is asymptotically better than
that of ProWS. In this case, unlike the fork-join case, Cilk-F
would incur some number of suspensions with non-empty
deques. However, ferret-gf turns out to perform slightly
better than ferret-1p running on Piper, likely due to the
fact that Piper automatically throttles (which we set to 8P
for P workers), whereas Cilk-F does not. Thus, ferret-gf
can take better advantage of the parallelism in the ferret
computation at the risk of increased memory usage.

Overhead in Using Futures

To compare the overhead of creating futures implemented
in Cilk-F, we use the microbenchmark fib, which calcu-
lates the n'" Fibonacci number by recursively spawning
fib(n-1) and fib(n-2). By design, fib does not coarsen
the base case so that the majority of the execution time is due
to spawn or fut-create overhead. We implemented three
separate versions of fib: fib-fj (with spawn/sync), fib-sf
(with fut-create and get), and -stack, which is identical
to fib-sf but without the overhead of switching to a new
stack on every fut-create. This “optimization” is not gener-
ally applicable due to the issue discussed in Section 5 but still
correct in this particular case (due to where get is invoked);
we simply use it to gauge how much overhead allocating a
new stack for each fut-create incurs.

Compared to fib-fj, the overhead primarily comes from
two sources: the stack-switch that occurs on a fut-create,
and synchronization between the get and put operations.
By comparing the numbers between fib-sf and -stack, we
see a big drop in Ty, which also helps with T,,. By removing
the synchronization overhead between get and put, we see
T; drops further from 26.78 seconds to 21.06 seconds, which
is comparable to that of fib-fj.? This shows that these are

8This difference in span decreases as B approaches VN.
“Though naturally things cannot run correctly in parallel if there is not
synchronization between get and put.

Proactive Work Stealing for Futures

bench‘ T
fib-fj|22.05 10.84 (2.04x) 5.43 (4.06x) 2.71 (8.13x) 1.35 (16.29%)
fib-sf|34.30 17.09 (2.01x) 8.77 (3.91x) 4.36 (7.86x) 2.29 (15.00x)
-stack | 26.78 13.47 (1.99x) 6.99 (3.83x) 3.46 (7.75x) 1.74 (15.41x)

T Ty T Ti6

Figure 3. The execution times of different versions of fib,
in seconds, running with Cilk Plus (fj) and Cilk-F (sf and
-stack). The -stack row shows the running times of fib-st
on Cilk-F but removes the stack-switch upon a fut-create.
T, shows the running time on p processing cores and the
numbers in parenthesis are the scalability over T;. The T
(serial elision running time) for fib is 2.46.

bench fj sf gf Figure 4. The number of
hw | 10286 | 13419 | 24904 deviations incurred on 16
les| 3672| 4231] 8197 processors. The data is the
sw| 4086 | 4086 | 12068 maximum out of 3 runs.

the two major sources of additional overhead when using
Cilk-F futures compared to Cilk Plus spawn/sync.

To further investigate the overhead of Cilk-F futures com-
pared to Cilk Plus spawn/sync, we instrumented Cilk-F to col-
lect the number of deviations We chose benchmarks where
all three versions are available to show the number of de-
viations; their code structure is similar between versions
although the future versions do achieve slightly more paral-
lelism. As Figure 4 shows, matching the theory, structured
futures generate many fewer deviations than general futures,
but fork-join parallelism generates fewer still.

7 Related Work

Work-stealing runtime for synchronization primi-
tives. Futures have been incorporated into many parallel
platforms (e.g., [14-16, 19, 23, 33, 39, 44, 47]). Many use par-
simonious work stealing [15, 19, 23, 33, 44].

Other variants of work stealing have also been imple-
mented to support synchronization primitives that can cause
suspension, but none of them provide provably efficient
scheduling bounds. In variants of X10 [16, 46] and Habanero
dialects [14, 26], various synchronization primitives other
than futures are provided that can cause the execution to
block while the executing worker’s deque is not empty. In
the initial release of X10 [16], little support was provided
— a blocking synchronization primitive blocks the execut-
ing worker, and to compensate, the runtime spawns a new
worker thread to replace the blocked worker, effectively sus-
pending the deque. Over time, the system could be oversub-
scribed. Tardieu et al. [46] subsequently developed a version
of X10 with better support for suspension. In their system, if a
worker is blocked the worker suspends the blocked task, but
uses a centralized queue to allow resumptions of suspended
tasks. A similar approach is taken by the initial release of
Habanero Java [14]. In a later version, Imam and Sarkar [26]
describe support for suspension in Habanero Java. In their

269

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

system, suspended tasks are stored with the blocking syn-
chronization primitives (similar to how we handle futures),
but once the tasks get resumed, they all get pushed onto the
ready deque of the worker who unblocks them.

Work-stealing analysis with multiple deques. Re-
searchers have proposed provably efficient work stealing
schedulers where the execution allows for suspensions [41,
48]. Muller and Acar [41] studies a work stealing scheduler
that hides latency of I/O operations. When a worker en-
counters I/0O, it may suspend the currently executing task.
Their scheduler is parsimonious, but due to the possibil-
ity of suspension, there can be more than P number of de-
ques in the system. Their scheduler provides a bound of
O(T; /P + T-U(1 + 1gU)), where U is the maximum num-
ber of parallel I/O operations. Utterback et al. propose [48]
a processor-oblivious record-replayer for fork-join paral-
lel computations that utilize locks. During replay, if a lock-
acquire is not “ready” to be replayed, the executing worker
suspends its current deque and steals. Our time-bound anal-
ysis takes inspiration from theirs, but we need to addition-
ally handle muggable deques. In their system, the number
of suspended deques can be unbounded, and the scheduler
provides the time bound of O(T; /P + T 1glg P). Instead of
randomly choose a victim to deposit the suspended deques,
they utilize the power-of-two choices, choosing two victims
and deposit it with the one with the lighter load, thereby
obtaining a slightly better bound (Iglg P in front of the T,
term instead of lg P). We cannot apply the same strategy,
since the power-of-two choices does not seem to help with
bounding the minimum load [52].

Finally, with respect to space bounds, beyond what’s al-
ready stated in Section 5, Blelloch et. al proposed a Par-
allel Depth-First (PDF for short) scheduler [7, 8] that is
more space efficient than work stealing. Unfortunately, a
PDF scheduler is challenging to implement efficiently in
practice because it requires workers to synchronize with
each other at a much higher frequency.

Acknowledgements

We thank our colleagues Kunal Agrawal and Brendan Juba
for their helpful suggestions. We thank the reviewers for
their valuable comments and feedback. This research was
supported in part by National Science Foundation under
grant number CCF-1150036, CCF-1527692, and CCF-1733873.

A Artifact Appendix

The Cilk-F implementation of ProWsS is open source and
available at https://github.com/wustl-pctg/ProWs or through
Zenodo (DOI: 10.5281/zenodo.2227457). Instructions on
building and running all relevant code are contained in the
artifact’s README.md file. Please send bug reports and any
feedback to our github repository in order to help us continue
to improve the project.

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

References

[1] Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. 2000. The Data
Locality of Work Stealing. In Proc. of the 12th ACM Annual Symp. on

Parallel Algorithms and Architectures (SPAA 2000). 1-12.

[2] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. 1998. Thread
Scheduling for Multiprogrammed Multiprocessors. In 10th Annual
ACM Symposium on Parallel Algorithms and Architectures. 119-129.

[3] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. 2001. Thread
Scheduling for Multiprogrammed Multiprocessors. Theory of Comput-

ing Systems (2001), 115-144.

[4] Henry C. Baker, Jr. and Carl Hewitt. 1977. The incremental garbage

collection of processes. SIGPLAN Notices 12, 8 (1977), 55-59.

[5] Rajkishore Barik, Zoran Budimli¢, Vincent Cave, Sanjay Chatterjee, Yi
Guo, David Peixotto, Raghavan Raman, Jun Shirako, Sagnak Tasirlar,
Yonghong Yan, Yisheng Zhao, and Vivek Sarkar. 2009. The Habanero
Multicore Software Research Project. In Proceedings of the 24th ACM
SIGPLAN Conference Companion on Object Oriented Programming Sys-
tems Languages and Applications (OOPSLA *09). ACM, Orlando, Florida,

USA, 735-736.

[6] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008.
The PARSEC Benchmark Suite: Characterization and Architectural

Implications. In PACT. ACM, 72-81.

[7] Guy E. Blelloch, Phillip B. Gibbons, and Yossi Matias. 1995. Provably
Efficient Scheduling for Languages with Fine-Grained Parallelism. In
7th Annual ACM Symposium on Parallel Algorithms and Architectures.

1-12.

[8] Guy E. Blelloch, Phillip B. Gibbons, Yossi Matias, and Girija J. Narlikar.
1997. Space-Efficient Scheduling of Parallelism with Synchronization
Variables. In 9th Annual ACM Symposium on Parallel Algorithms and

Architectures. 12-23.

[9] GuyE.Blelloch and Margaret Reid-Miller. 1997. Pipelining with futures.

In SPAA. ACM, 249-259.
[10]

(11

—

Symposium on Foundations of Computer Science. 356—368.

(13]
(14]

in Java (PPPJ °11). 51-61.
(15]

8 (Aug. 1994), 13-26.
[16

—

(17]

Symposium on Workload Characterization (ISWC). 44-54.

[18] John S. Danaher, I-Ting Angelina Lee, and Charles E. Leiserson. 2008.
Programming with exceptions in JCilk. Science of Computer Program-

ming 63, 2 (Dec. 2008), 147-171.
[19]

Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. 1996. Cilk:
An Efficient Multithreaded Runtime System. JPDC 37, 1 (1996), 55-69.

Robert D. Blumofe and Charles E. Leiserson. 1994. Scheduling Multi-
threaded Computations by Work Stealing. In Proceedings of the IEEE

Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling Multi-
threaded Computations by Work Stealing. JACM 46, 5 (1999), 720-748.
F. Warren Burton and M. Ronan Sleep. 1981. Executing Functional
Programs on a Virtual Tree of Processors. In FPCA. ACM, 187-194.
Vincent Cavé, Jisheng Zhao, Jun Shirako, and Vivek Sarkar. 2011.
Habanero-Java: the new adventures of old X10. In Proceedings of the
9th International Conference on Principles and Practice of Programming

Rohit Chandra, Anoop Gupta, and John L. Hennessy. 1994. COOL: An
Object-Based Language for Parallel Programming. IEEE Computer 27,

Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Don-
awa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek
Sarkar. 2005. X10: An Object-Oriented Approach to Non-Uniform Clus-
ter Computing. In 20th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications. 519-538.

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W.
Sheaffer, Sang-Ha Lee, and Kevin Skadron. 2009. Rodinia: A bench-
mark suite for heterogeneous computing. In 2009 IEEE International

Matthew Fluet, Mike Rainey, John Reppy, and Adam Shaw. 2010. Im-
plicitly Threaded Parallelism in Manticore. Journal of Functional
Programming 20, 5-6 (Nov. 2010), 537-576. https://doi.org/10.1017/

270

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Kyle Singer, Yifan Xu, and I-Ting Angelina Lee

50956796810000201

D.P. Friedman and D.S. Wise. 1978. Aspects of Applicative Program-
ming for Parallel Processing. IEEE Trans. Comput. C-27, 4 (1978),
289-296.

Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. 1998. The
Implementation of the Cilk-5 Multithreaded Language. In PLDL. ACM,
212-223.

Seth Copen Goldstein, Klaus Erik Schauser, and David Culler. 1995. En-
abling Primitives for Compiling Parallel Languages. In Third Workshop
on Languages, Compilers, and Run-Time Systems for Scalable Computers.
Troy, New York.

Robert H. Halstead, Jr. 1985. Multilisp: A Language for Concurrent
Symbolic Computation. ACM TOPLAS 7, 4 (Oct. 1985), 501-538.

E. A. Hauck and B. A. Dent. 1968. Burroughs’ B6500/B7500 stack
mechanism. Proceedings of the AFIPS Spring Joint Computer Conference
(1968), 245-251.

Maurice Herlihy and Zhiyu Liu. 2014. Well-structured Futures and
Cache Locality. In Proceedings of the 19th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP ’14). ACM, Or-
lando, Florida, USA, 155-166. https://doi.org/10.1145/2555243.2555257
Shams Imam and Vivek Sarkar. 2014. Cooperative Scheduling of
Parallel Tasks with General Synchronization Patterns. In Proceedings
of the 28th European Conference on ECOOP 2014 — Object-Oriented
Programming - Volume 8586. Springer-Verlag New York, Inc., New York,
NY, USA, 618-643. https://doi.org/10.1007/978-3-662-44202-9_25
Intel 2013. Intel® Cilk™ Plus. https://www.cilkplus.org. (2013).

Intel 2014. Piper: Experimental Language Support for Pipeline
Parallelism in Intel® Cilk™ Plus. https://www.cilkplus.org/piper-
experimental-language-support-pipeline-parallelism-intel-cilk-plus.
(2014).

Intel Corporation 2012. Intel(R) Threading Building Blocks. Intel Cor-
poration. Available from http://software.intel.com/sites/products/
documentation/doclib/tbb_sa/help/index.htm.

Intel Corporation 2013. Intel® Cilk™ Plus Language Extension Specifica-
tion, Version 1.1. Intel Corporation. Document 324396-002US. Available
from http://cilkplus.org/sites/default/files/open_specifications/Intel _
Cilk_plus_lang_spec_2.htm.

ISOIEC14882 2012. ISO/IEC 14882:2011(E) Information technology —
Programming Languages — C++. (2012). Third Edition, 2012-02-14.
Brian W. Kernighan and Dennis M. Ritchie. 1988. The C Programming
Language (second ed.). Prentice Hall, Inc.

David A. Kranz, Robert H. Halstead, Jr., and Eric Mohr. 1989. Mul-T:
A High-Performance Parallel Lisp. In PLDI. ACM, 81-90.

Doug Lea. 2000. A Java fork/join framework. In ACM 2000 Conference
on Java Grande. 36-43.

I-Ting Angelina Lee, Silas Boyd-Wickizer, Zhiyi Huang, and Charles E.
Leiserson. 2010. Using Memory Mapping to Support Cactus Stacks in
Work-Stealing Runtime Systems. In PACT. ACM, 411-420.

I-Ting Angelina Lee, Charles E. Leiserson, Tao B. Schardl, Jim Sukha,
and Zhunping Zhang. 2013. On-the-Fly Pipeline Parallelism. In Proceed-
ings of the 25th Annual ACM Symposium on Parallelism in Algorithms
and Architectures. 140-151.

I-Ting Angelina Lee, Charles E. Leiserson, Tao B. Schardl, Jim Sukha,
and Zhunping Zhang. 2015. On-the-Fly Pipeline Parallelism. ACM
Transactions on Parallel Computing 2, 3, Article 17 (Sept. 2015), 42 pages.
https://doi.org/10.1145/2809808

Charles E. Leiserson. 2010. The Cilk++ Concurrency Platform. J.
Supercomputing 51, 3 (2010), 244-257.

Li Lu, Weixing Ji, and Michael L. Scott. 2014. Dynamic Enforcement
of Determinism in a Parallel Scripting Language. In Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’14). ACM, Edinburgh, United Kingdom,
519-529.

Michael Mitzenmacher and Eli Upfal. 2017. Probability and Computing:
Randomization and Probabilistic Techniques in Algorithms and Data

Proactive Work Stealing for Futures PPoPP ’19, February 16-20, 2019, Washington, DC, USA

Analysis (2nd ed.). Cambridge University Press, New York, NY, USA. 267-276.
[41] Stefan K. Muller and Umut A. Acar. 2016. Latency-Hiding Work Steal- [47] Sagnak Tagirlar and Vivek Sarkar. 2011. Data-Driven Tasks and Their

—

ing: Scheduling Interacting Parallel Computations with Work Stealing.
In Proceedings of the 28th ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA ’16). ACM, Pacific Grove, California,
USA, 71-82.

OpenMP 4.0 2013. OpenMP Application Program Interface, Version 4.0.
Daniel Spoonhower, Guy E. Blelloch, Phillip B. Gibbons, and Robert
Harper. 2009. Beyond Nested Parallelism: Tight Bounds on Work-
stealing Overheads for Parallel Futures. In Proceedings of the Twenty-
first Annual Symposium on Parallelism in Algorithms and Architectures
(SPAA °09). ACM, Calgary, AB, Canada, 91-100. https://doi.org/10.
1145/1583991.1584019

Daniel Spoonhower, Guy E. Blelloch, Robert Harper, and Phillip B.
Gibbons. 2008. Space Profiling for Parallel Functional Programs. In
Proceedings of the 13th ACM SIGPLAN International Conference on
Functional Programming (ICFP *08). ACM, Victoria, BC, Canada, 253-
264.

Bjarne Stroustrup. 2000. The C++ Programming Language (third ed.).
Addison-Wesley, Boston, MA.

Olivier Tardieu, Haichuan Wang, and Haibo Lin. 2012. A Work-stealing
Scheduler for X10’s Task Parallelism with Suspension. In Proceedings
of the 17th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP ’12). ACM, New Orleans, Louisiana, USA,

(48]

[50]

[51]

[52]

[53]

Implementation. In Proceedings of the 2011 International Conference
on Parallel Processing (ICPP °11). IEEE Computer Society, Taipei City,
Taiwan, 652-661.

Robert Utterback, Kunal Agrawal, I-Ting Angelina Lee, and Milind
Kulkarni. 2017. Processor-Oblivious Record and Replay. In Proceedings
of the 22Nd ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP °17). ACM, Austin, Texas, USA, 145-161.
https://doi.org/10.1145/3018743.3018764

[49] Jacobo Valdes. 1978. Parsing Flowcharts and Series-Parallel Graphs.

Ph.D. Dissertation. Stanford University. STAN-CS-78-682.

Mark T. Vandevoorde and Eric S. Roberts. 1988. WorkCrews: An Ab-
straction for Controlling Parallelism. International Journal of Parallel
Programming 17, 4 (1988), 347-366.

Anthony Williams. 2012. C++ COncurrency in Action. Manning Publi-
cations Co.

Weiyu Xu and A. Kevin Tang. 2011. A Generalized Coupon Collector
Problem. Journal of Applied Probability 48, 4 (2011), 1081-1094. http:
//www.jstor.org/stable/23066444

Chaoran Yang and John Mellor-Crummey. 2016. A Practical Solution to
the Cactus Stack Problem. In Proceedings of the 28th ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA ’16). ACM, Pacific
Grove, California, USA, 61-70.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Proactive Work-Stealing
	4 Performance Bounds for ProWS
	4.1 Bound on Execution Time
	4.2 Bounds on Deviations

	5 Cilk-F: A Prototype System
	6 Empirical Evaluation of Cilk-F
	7 Related Work
	A Artifact Appendix
	References

