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ABSTRACT: Heterogeneous metal nanocatalysts have re-
cently emerged as attractive catalysts for a variety of couplings
(e.g., C−C, C−N, C−S, C−O, etc.). However, the character-
ization of the catalytic pathway remains challenging. By
exploiting localized surface plasmon resonance (LSPR) of the
catalytically relevant gold (Au) nanostructure, we show that
UV−vis spectroscopy can be used to confirm the homoge-
neous catalytic pathway. Specifically, we have demonstrated
that Au nanoparticles under C−C coupling conditions
undergo substrate-induced leaching to form homogeneous
Au catalytic species. The LSPR spectroscopic approach opens
a new door to track stability of nanocatalysts and characterize
the catalytic pathway in a range of coupling reactions.

■ INTRODUCTION

Metal-catalyzed coupling reactions (MCCRs) have found
widespread application in premier organic synthesis from
pharmaceutical compounds to polymers.1,2 MCCRs have been
traditionally carried out by homogeneous Pd-complexed
catalysts.1,3 However, Pd and most of the ligands associated
with the homogeneous catalysts are toxic. Therefore, conven-
tional homogeneous Pd-catalyzed processes typically require
several expensive downstream unit operations to reduce the
metal residue below the maximum allowable level in the final
product (e.g., active pharmaceutical ingredient, API).4−6 In
recent years, heterogeneous metal nanocatalysts have emerged
as high-performance alternatives to conventional homogeneous
complexes to drive coupling reactions.2,7−29 For example,
nanocatalysts built on Au, Cu, Pd, and their alloys can drive a
variety of couplings (e.g., C−C, C−N, C−S, C−O, etc.) and
exhibit excellent yield, catalytic activity, and broad substrate
scope.7−15,30−38 These catalysts do not require ligands and are
in general not sensitive to air and moisture. They have the
potential to reduce the need for expensive downstream
operations for separating the metal catalyst from the final
product (e.g., API).
While recent years have witnessed a growing demand for

nanocatalysts, there is also a continuing controversy whether
the catalysis occurs on the surface of nanoparticles (i.e.,
heterogeneous pathway) or on leached metal ions in solution
(i.e., homogeneous pathway). Therefore, characterization of
the catalytic pathway and determination of nanocatalyst

stability under relevant reaction conditions remain ongoing
challenges within the field.7−15,30−38 The leaching of surface
atoms into solvent can depend on the reaction temperature,
size of the nanoparticle, nature of the solvent, substrate, base,
and stabilizer.30,39 A common leaching test used to determine
nanocatalyst stability mainly employs filtration. This test
involves post-catalytic analysis of the leached metal atoms in
the filtered supernatant reaction solution using techniques such
as inductively coupled plasma mass spectrometry (ICP-MS)
and characterization of the spent nanocatalyst using trans-
mission electron microscopy (TEM). This test has several
drawbacks; for example, it has been reported that the leached
metal atoms can redeposit quickly onto the catalyst during
filtration and may not be detected in the supernatant
solution.31

Herein, for coupling reaction involving Au nanoparticles, we
propose an alternative method that is based on localized
surface plasmon resonance (LSPR). LSPR of metal nano-
particles can conveniently be monitored by ultraviolet−visible
(UV−vis) light extinction spectroscopy.40−44 Specifically, the
LSPR spectrum of metal nanoparticles of a given average size is
characterized by a certain extinction intensity, peak wave-
length, and full width at half-maximum. Therefore, when the
nanoparticles undergo leaching of surface atoms, changes in
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these characteristics can be exploited to trace the change in the
average size of the nanoparticles (for more details, see the
Supporting Information).45

■ EXPERIMENTAL METHODS
Representative Procedure for Coupling Reaction. In

the present work, we investigated the C−C coupling reaction
catalyzed by Au nanoparticles. Specifically, the homocoupling
of phenylacetylene (PA) was selected as a model reaction. The
reaction was carried out on a magnetic hot plate with an
aluminum reaction block around a 200 mL three-necked round
bottom flask. To control temperature, a thermocouple was
connected to the hot plate and submerged in the reactor. As a
first step in the reaction procedure, Au nanoparticles dispersed
in water was heated to 85 °C in a three-necked round bottom
flask. Twenty-four milliliters of DMF was then added to this
Au nanoparticle suspension. After the addition of DMF to Au
nanoparticle suspension, the composition of the solvent
mixture in the RBF was an 83%/17% v/v mixture of water/
DMF. Two grams of potassium carbonate was then added
under stirring. Two milliliters of phenylacetylene (18.2 mmol)
was finally added to this mixture at 85 °C to start the reaction.
UV−vis extinction spectra were acquired using an Agilent Cary
60 spectrophotometer. In operando measurements were taken
using a dip probe accessory and a fiber optic coupler with a
stainless steel tip. The reaction solution was also characterized
using GC−MS (Shimadzu QP2010S), TEM, and HR-ESI-MS.
TEM images of the reaction samples were taken using a JEOL
JEM-2100. HR-ESI-MS spectra of the reaction samples were
collected on an LTQ Orbitrap system with an ESI source (for
more details, see the Supporting Information).45

■ RESULTS AND DISCUSSION
The homocoupling reaction of PA was carried out at 85 °C
using potassium carbonate (K2CO3) and 83/17 (volumetric
ratio) mixture of water/dimethylformamide (DMF) as the
base and solvent, respectively. Samples of reaction mixture
were taken at frequent time intervals for UV−vis extinction
spectra measurements and TEM imaging. In Figure 1, we show
the UV−vis extinction spectra of the reaction mixture
measured before the addition of the substrate (i.e., PA) and
at different reaction times. We also show the representative
and complete deconvoluted extinction spectra in Figure 2 and

Figure S5, respectively. As seen from Figure 2 and Figure S5,
the extinction acquired before the addition of phenylacetylene
shows mainly the LSPR peak after baseline (mainly interband
absorption in Au) subtraction.45 Upon addition of phenyl-
acetylene, the LSPR peak is attenuated along with the
appearance of new peaks in the 400−500 nm region. It has
been shown that organometallic complexes of noble metals
exhibit absorption peaks in this region.46,47 After PA addition,
the LSPR peak of Au nanoparticles also red-shifts slightly as
seen from Figure 1. This adsorbate-induced red-shift in the
LSPR peak position is due to the expected adsorbate-induced
change in the dielectric constant of the surrounding
medium.44,48 The decrease in LSPR extinction and the
appearance of new extinction peaks in the 400−500 nm
region suggest that the phenylacetylene is inducing a leaching
process from the surface of the Au nanoparticles forming
soluble Au complexes in the reaction solution. It is worth
mentioning here that the leaching of Au nanoparticles has also
been confirmed in the literature using other spectroscopic
techniques such as inductively coupled plasma mass spectrom-
etry and X-ray photoelectron spectroscopy for similar reaction
conditions in Au-nanoparticle-catalyzed Sonogashira coupling
between phenylacetylene and iodobenzene.30 It could be
argued that the changes observed in the UV−vis extinction
spectra may be due to Au nanoparticle aggregate formation.
However, when there is aggregate formation, an additional
lower-energy LSPR peak is expected for Au aggregates. Since
the UV−vis extinction spectra in Figure 1 do not show any
such features, we rule out any significant aggregation
formation.49

We also verified that the reactant (i.e., PA) and the expected
homocoupling product (diphenyldiacetylene (DPDA)) exhibit
absorption peaks only in the 200−350 nm region and do not
exhibit any absorption features in the 400−500 nm region
(e.g., see Figure S2).45,50 Therefore, the new extinction peaks
observed in the 400−500 nm region are most likely due to the
different Au homogeneous catalytic species that participate in
the homogeneous catalytic cycle. As seen from Figure 2d and
Figure S5, the deconvoluted extinction spectra show up to five
extinction peaks due to the homogeneous Au catalytic species
at peak wavelengths of 403, 416, 445, 470, and 492 nm, along
with the LSPR peak of Au nanoparticles at 528 nm. It is worth
mentioning here that a combination of two (or more) of these
extinction peaks may correspond to a single homogeneous Au
species. For example, it has been reported that homogeneous
copper-phenylacetylide complex (Cu-PA) exhibits two absorp-
tion peaks with peak wavelengths of ∼390 and 476 nm.46,47

Also, in Figure 2f, we show the intensity of the five extinction
peaks as a function of reaction time. These plots basically
provide qualitative trends for kinetics of homogeneous Au
catalytic species concentrations. As seen from Figure 2f, the
concentrations of Au catalytic species exhibit maxima at 2 h of
reaction followed by a decreasing trend. It has been shown that
the in situ generated homogeneous palladium catalytic species
can undergo decomposition to form palladium black when the
concentration of stabilizing species such as ligand or reactant
concentration is low.4,8,51−53 As such, we attribute the
decreasing trends in Figure 2f to the expected decomposition
of the homogeneous Au catalytic species with the decreasing
concentration of PA.
To identify the soluble Au complexes present in the reaction

solution, we performed high-resolution electrospray ionization
mass spectrometry (HR-ESI-MS) on the supernatant solution

Figure 1. UV−vis extinction spectra of reaction mixture measured
before the addition of phenylacetylene (PA, 0 h) and at different
reaction times during homocoupling of phenylacetylene.
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of reaction solution. In the HR-ESI-MS spectrum (Figure 3a),
we observe seven negative ions in the m/z range of 400. Five of
these ions have a fractional mass of 0.22, and the other two
ions (with m/z = 399.04 and 400.04) have a fractional mass of
0.04. These fractional masses indicate that these ions are
derived from two different compounds. Since the ions with a
fractional mass of 0.22 give an isotope distribution inconsistent
with gold’s single isotope, we disregard them for further
consideration. The ions with a fractional mass of 0.04 give an
isotope distribution consistent with that predicted for the
[Au(PA)2]

− compound, and the mass error for the predicted
compound is less than 5 ppm.45 We have also analyzed the
reaction samples with gas chromatography−mass spectrometry
(GC−MS) and confirmed the presence of the homocoupling
product DPDA in the solution (see Figure S3).45 The leaching
of Au nanoparticles and the presence of a homogenous Au
species (Figures 1−3b) confirm the homogeneous catalytic
pathway contribution for the homocoupling of phenylacetylene
(PA) investigated in this study. Although these results confirm
the contribution of the homogeneous catalytic pathway in Au-
nanoparticle-mediated C−C coupling of PA, we do not rule

out the possible heterogeneous pathway that can happen in
parallel.
To further support our conclusions that Au complexes can

catalyze the homocoupling reaction, we carried out the
reaction using the supernatant solution containing homoge-
neous Au complexes as the only catalytic species. The
homocoupling reaction of PA was first carried out using Au
nanoparticles, and reaction progress was monitored using
GC−MS. DPDA was observed as the only product of the
homocoupling of PA. When the PA conversion was ∼52%, the
reaction was stopped and Au nanoparticles were removed from
the reaction solution using centrifugation. The reaction was
then allowed to continue, and PA conversion was monitored in
the supernatant solution containing homogeneous Au
complexes. Figure 3b shows PA conversion observed as a
function of reaction time from this experiment. The results
shown in Figure 3b confirm that the homogeneous Au
complexes can indeed catalyze the homocoupling reaction to
100% conversion.
To test the applicability of LSPR spectroscopy to predict the

average size of Au nanoparticles in the reaction samples, the
samples collected after 1, 1.5, 2, and 2.5 h of reaction were

Figure 2. (a−e) Deconvoluted extinction spectra of Au nanoparticles after the addition of PA at 0, 1, 2, 4, and 5.5 h. The spectra are baseline-
corrected and fit to Gaussians, which are coded with different colors. Representative peak positions of the deconvoluted peaks are given for (d) 4.0
h. (f) Time evolution of the peak intensities at 0.5 h intervals. Colors are as in panels (a−e).

Figure 3. (a) Representative HR-ESI-MS spectrum of supernatant solution of reaction mixture taken from Au-nanoparticle-catalyzed
homocoupling of phenylacetylene. (b) Reaction conversion as a function of reaction time for the homocoupling of phenylacetylene.
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characterized using TEM to determine the average size of
nanoparticles, and the deconvoluted LSPR peaks of the
respective Au nanoparticle samples were matched with finite-
difference time-domain (FDTD) simulations. We utilized a
reliable and widely used Lumerical FDTD program to perform
FDTD simulations.54,55 The built-in material model in the
program Au-Palik was used for the optical constants of Au.
This material model in the program is based on the
experimental data (real and imaginary parts of the refractive
index at different wavelengths), rather than on an analytical
model. For the experimental data, the program uses the real
and imaginary parts of the refractive index values taken from
the Palik handbook.56 The simulation procedures are described
in detail in the Supporting Information.45

Figure 4a shows the simulated extinction spectra that are
matched with LSPR spectra of Au nanoparticles. In Figure 4b,
we show the comparison between Au nanoparticle sizes
predicted from LSPR responses and average nanoparticle sizes
measured from TEM for different reaction samples collected as
a function of reaction time. As seen from Figure 4b, the LSPR-
predicted and TEM-measured average sizes match well. We
also show in Figure 4c the representative particle size
distributions measured from TEM for the reaction samples
collected after 1.0 and 2.5 h of reaction. The decreasing trend
in average particle size in Figure 4b along with the shift in
particle size distribution toward smaller sizes in Figure 4c
further confirms the leaching of Au nanoparticles during the
homocoupling reaction.
We also investigated the applicability of LSPR spectroscopy

for nanoparticle growth systems. For this system, we selected

the growth of spherical Au nanoparticles using a seeded growth
approach.57 In this approach, we prepared quasispherical Au
nanoparticles (average size = 8.0 nm and standard deviation in
size distribution = 0.6 nm) and used those as seeds for growth.
Figure 5a shows the representative TEM image of seed
nanoparticles. In Figure S1, we also show the representative
TEM image of larger nanoparticles obtained at the end of the
growth process. For the growth of larger nanoparticles, a
known amount of growth solution comprising the gold
precursor was added gradually to the seed solution. For each
addition, in operando UV−vis extinction spectra measure-
ments were made and TEM samples were taken to determine
the LSPR response and average size of nanoparticles,
respectively. Figure 5b shows the in operando extinction
spectra of Au nanoparticles measured during this growth
process. Figure 5c shows the representative particle size
distributions measured from TEM for the seed and larger Au
nanoparticles obtained at the end of the growth process. In
operando LSPR responses acquired for each addition during
the growth process were matched with FDTD-simulated
results to predict Au nanoparticle size for each growth
step.45 The comparison between nanoparticle sizes predicted
from in operando LSPR responses and average nanoparticle
sizes measured from TEM is shown in Figure 5d. The shift in
particle size distribution toward larger sizes in Figure 5c along
with the increasing trend in average particle size in Figure 5d
confirms the growth of Au nanoparticles. Figure 5d shows that
there is also a consistency between TEM analysis and the
LSPR spectral changes for seeded growth of the particles.

Figure 4. (a) Simulated LSPR responses for the leaching of Au spherical nanoparticles. The legend shows the reaction time and the predicted
average size of Au nanoparticles in the respective reaction sample. (b) Average size of Au nanoparticles predicted from LSPR responses and FDTD
simulations for different reaction samples as a function of % change in extinction intensity of the respective samples at LSPR peak wavelength. For
comparison, TEM-measured average sizes of Au nanoparticles are also shown. (c) Size distributions of Au nanoparticles measured from TEM
images for the reaction samples collected after 1 and 2.5 h of C−C homocoupling reaction.
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■ CONCLUSIONS
For the selected C−C coupling reaction, we have shown that
Au nanoparticles serve as precursors for the in situ formation
of homogeneous Au catalytic species. Specifically, using the
changes observed in UV−vis extinction spectra, we have shown
that Au nanoparticles undergo substrate (i.e., PA)-induced
leaching under C−C coupling reaction conditions. We have
also confirmed the presence of the homogeneous Au complex
in the reaction solution using HR-ESI-MS. In summary, we
have demonstrated that the homogeneous catalytic pathway
can occur in Au-nanoparticle-mediated C−C coupling reaction
of PA, in addition to the possible heterogeneous pathway.
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