1810.09704v1 [cs.SE] 23 Oct 2018

arxiv

Understanding and Formalizing Accountability
for Cyber-Physical Systems

Severin Kacianka
Technical University of Munich
Chair for Software and Systems Engineering
Munich, Germany
severin.kacianka@tum.de

Abstract—Accountability is the property of a system that
enables the uncovering of causes for events and helps under-
stand who or what is responsible for these events. Definitions
and interpretations of accountability differ; however, they are
typically expressed in natural language that obscures design
decisions and the impact on the overall system. This paper
presents a formal model to express the accountability properties
of cyber-physical systems. To illustrate the usefulness of our
approach, we demonstrate how three different interpretations of
accountability can be expressed using the proposed model and
describe the implementation implications through a case study.
This formal model can be used to highlight context specific-
elements of accountability mechanisms, define their capabilities,
and express different notions of accountability. In addition, it
makes design decisions explicit and facilitates discussion, analysis
and comparison of different approaches.

Index Terms—CPS, STS, accountability, formal model

I. INTRODUCTION

Cyber-physical systems (CPS), such as robots, drones, ve-
hicles, and industrial control systems, use sensors, software,
and actuators to sense, monitor, and control or influence the
physical world. CPSs cannot be tested completely and, differ-
ing from information systems, mistakes made by such systems
are always permanent. It is impossible to “undo” actions of
CPS or roll the world back to the last known good state. The
primary problem is that such systems are open, i.e., they work
jointly with other systems that are not known a priori. This
lack of clearly defined system boundaries results in unexpected
interactions and problems. Thus it is important that such
systems are accountable: They should provide evidence of
their actions that an investigator can understand, and the gained
knowledge can then be used to improve the system, trace bugs,
or as forensic evidence in legal actions [1]. An accountability
mechanism will not prevent unwanted events; however, it
will help to detect them and determine their root cause. In
addition, the analysis can be applied to improve the system
and develop preventive measures. For example, consider a
recent fatal accident involving a self-driving Uber car [2]
(Section IV). For a currently unknown reason the autonomous

This work was supported by the Deutsche Forschungsgemeinschaft (DFG)
under grant no. PR1266/3-1, Design Paradigms for Societal-Scale Cyber-
Physical Systems. This article was accepted in the IEEE Conference on
Systems, Men and Cybernetics and is ©2018 IEEE.

Alexander Pretschner
Technical University of Munich
Chair for Software and Systems Engineering
Munich, Germany
alexander.pretschner @tum.de

car crashed into and killed a pedestrian who was crossing
the street at night. In this example, accountability does not
automatically imply legal liability or even punishment for Uber
or the safety driver. Here, accountability is the requirement to
explain the chain of events that led to this tragic death. The
results may then be used to infer legal liability and improve
the system to avoid such accidents in the future. However,
accountability is a context specific concept and will differ
in various contexts. For example, an autonomous car will
be held to a different standard than a toy helicopter. Many
different notions of accountability exist in various domains,
and no unified framework exists to capture their differences
and evaluate their impact on the implementation of CPSs.

In this paper, we investigate the problem of capturing the
relevant accountability properties of a CPS. As a solution, we
propose a formal model of accountability that allows us to
express and compare notions of accountability.

Our primary contribution is the formalization of three
notions of accountability. In addition, we demonstrate how
these formalizations can be used to compare such notions and
analyze their impact on the implementation of a CPS in a case
study inspired by the self-driving Uber car incident.

II. BACKGROUND
A. Accountability in Computer Science

In computer science, accountability came into focus follow-
ing a study published by Weitzner et al. [3], who looked at
preventing data leaks in information systems (e.g., medical
record systems) and proposed abandoning the classic preven-
tive approach to data privacy in favor of a detective approach.
Rather than attempting to prevent data leaks, they suggested
systems be built such that leaks can be easily identified.
Their approach relies on existing social measures (e.g., courts)
to punish perpetrators and deter misbehavior. Feigenbaum et
al. [4] and Kiisters et al. [5] provided detailed formal defini-
tions of specific interpretations of accountability in particular
contexts. The problem with such approaches is that they adopt
a single interpretation of accountability and build their system
around it. However, accountability is highly dependent on
social and cultural contexts. Thus, any system that claims
to be accountable must necessarily support different notions
of accountability depending on the context. To validate this

http://arxiv.org/abs/1810.09704v1

assumption, we recently conducted a systematic mapping
study [6] and found that implementations of accountability
mechanisms in the literature are very diverse and do not follow
a unified model or interpretation of accountability.

The notion of determining causes and attributing respon-
sibility is not a new idea and is not always referred to as
accountability. For example, programs are instrumented with
logging statements [7] to audit and reconstruct their execution.
In computer security, developing systems to gather relevant
evidence during cyber attacks is referred to as forensics-by-
design [8]. Runtime verification [9] is a collection of tech-
niques to check whether a system violates some correctness
property. As with current approaches to accountability, such
runtime verification techniques do not lend themselves to the
expression and comparison of system’s accountability relative
to its socio-technical contexts.

B. Accountability in Social Sciences

As an example for a definition of accountability, Lind-
berg [10] surveyed the social science literature and provided
the following synthesized definition of accountability:

1) An agent or institution who is to give an account (A for

agent);

2) An area, responsibilities, or domain subject to account-

ability (D for domain);

3) An agent or institution to whom A is to give account (P

for principal);

4) The right of P to require A to inform and explain/justify

decisions with regard to D; and

5) The right of P to sanction A if A fails to inform and/or

explain/justify decisions with regard to D.

However, the seeming clarity of the definition hides many
small differences and one major point: The definitions do not
agree on whether a principal should have the right to sanction
agents for the content of their account, or only if they fail to
provide a justification for their decisions.

In psychology, Hall et al. [11] surveyed felt accountability
literature and found that accountability is generally understood
to mean that actors think there is a possibility that their actions
will be evaluated by a third party.

C. Accountability in Organizations

In contrast to social sciences, organizational sciences of-
ten apply a Responsible-Accountable-Consult-Inform (RACI)
framework [12] to visualize the roles of people in an organiza-
tion. The elements of the framework are described as follows:

o Responsible: The individual who completes a task. Re-

sponsibility can be shared.

o Accountable: The person who answers for an action or

decision. There can be only one such person.

o Consult: Persons who are consulted prior to a decision.

Communication must be bidirectional.

o Inform: Persons who are informed after a decision or

action is taken. This is unidirectional communication.

Note that the RACI framework focuses on the organization
rather than individuals in the organization. While differing

from Lindberg’s definition [10], this perspective can be very
useful to model the accountability of CPSs that work in
conjunction with humans such as service robots. We modify
the RACI framework as follows to make it more appropriate
for CPS contexts.
« Responsible: The entity whose action(s) caused an out-
come.
o Accountable: The person/institution who knows about the
machine’s actions and has the ability to change its action.
o Consult: Persons/institutions who build and set-up the
machine(s).
o Inform: Persons/institutions who know about the system
and are tasked with after-the-fact analysis of an outcome.
Relative to this modified definition, many studies, notably
Feigenbaum et al. [4], have defined accountability more in
line with what is the responsible element of the RACI model.
While it is important to know which machine caused a
given outcome, stopping at responsibility is often insufficient,
because we cannot reasonably punish a machine. We want to
make it easy to identify which person or institution can be
held accountable for the action of the machine.

III. FORMAL MODEL
A. Overview

To help express and discuss accountability concepts, we
developed the following formal model, in which we employ
Z notation [13]. Initially, the proposed model introduces
some given sets. These sets represent the basic concepts
of our universe of discourse and they are underspecified.
In other words, we leave it to the concrete implementation
to define a suitable representation for them. Next, the pro-
posed model describes some context-specific interfaces that
are implementation-specific and thus are also underspecified.
Based on these interfaces, we describe some basic axioms that
are valid independent of the concrete system. We conclude
with a description of a state space suitable for CPSs and
provide detailed examples in Section IV.

B. Given Sets

[Account, Action, Component]

Being ::= Human | Animal

Event ::= EnviromentEvent | SystemEvent
Principal ::= Person | LegalEntity

Here, an Account can, for example, be a well-structured
log file or a story told by a human witness, and Actions are
anything a principal can do to prevent a CPS from doing some-
thing. How Component s look, are scoped, and implemented
depends on the given use case. Beings are entities that the
system may encounter; however, Beings have no control
over the system and do not play an active part. Events can
either be SystemEvents or EnviromentEvents. The
sources of EnviromentEvents are external to the system,
and such events will not show up in log files directly. In con-
trast, SystemEvents are recorded in log files. Furthermore,
Principals can either be Persons or LegalEntities,
e.g., companies.

The distinction between Principal and Being is not
obvious. While persons are generally humans, in this context,
we differentiate them in terms of their function, where a
Principal is an entity that is part of the system, its legal
“surroundings” and can be responsible for actions of the
system, and a Being is not an active component of the
system. Note that humans can be both principals and beings.

C. Context- and Implementation-specific Interfaces

Next, we define a few axiomatic relations. Similar to the
basic types above, we leave the details to the specific imple-
mentation. We simply require them to exist and comply with
the given signature.

Observation : (Event X Component) — Account
ComponentConfiguration : Component — Principal
hasAccount : Account <> Principal

correctionAction : (Principal x Component) — Action
caused : Event -+ P(Component)

An Observation indicates that an event caused by or
about a component was observed by someone or something
and is part of their account. ComponentConfigurations
track if a component was set up and/or configured by some
principal. hasAccount is a relation that should contain all
accounts belonging to a principal. Note that we cannot assume
to know all such accounts because a principal may lie or
forget. correctionAction gives the set of all actions a
principal can take to correct the behavior of a component.
caused returns the set of components directly responsible for
an event. In some cases, this can be computed efficiently [14].
The cause of an event may be unknown; thus it is a partial
function. Furthermore, this function could point to multiple
possible causes. Therefore we require a dedicated resolution
process to resolve such disagreements.

D. Context-independent Axioms

informed : Component — P(Principal)

V¢ : Component ® Y/ p : Principal ®
p € informed(c) <
e : Event @ hasAccount(Observation(e, c)) = p

constructed : Component — P(Principal)

V¢ : Component ® X/ p : Principal
p € constructed(c) <
J¢ : Component ® ComponentConfiguration(c) = p

responsible : Component < Principal

V¢ : Component ® X/ p : Principal
responsible(c) = p <
p € informed(c) A (p,c) € dom(correctionAction)

informed provides the set of all principals that gain
knowledge about a component. This means that the prin-
cipal has an account in which an observation about a
component that is somehow responsible for this event is
logged. A principal has helped construct a system if
they worked on the ComponentConfiguration. The no-
tion of responsible is closely linked to the notion of

caused above. However, while causality is a much broader
concept, responsible means actual people who can stop
someone or something from doing something. A principal is
responsible for some component, if it knows about it and
could do something about it.

E. Definitions of Accountability

With these basic building blocks, we define three notions
of accountability:

raci_accountable : Event <> Principal

Ve : Event @ Y p : Principal e
raci_accountable(e) = p <
¢ : Component o ¢ € caused(e) N responsible(c) = p

lindberg_accountable : Component <> Principal

Y ¢ : Component e X p : Principal
lindberg_accountable(c) = p <

p € informed(c) N

(responsible(c) = p V p € constructed(c))

hall_accountable == {c : Component |
3p : Principal e p € informed(c) e c}

First, a principal is raci_accountable (Section II-C)
for some event if a component for which the principal is
responsible caused the event. The second definition expresses
Lindberg’s definition of accountability [10] (Section II-B). A
component is 1indberg_accountable to a principal if:

+ The component must give an account to a principal. In
our model this means that the principal is informed
about the component.

o There is an area of accountability. The area of account-
ability is implicitly defined by the purpose of the CPS.

o A principal exists.

o The principal has the right to require information from A.
This is the case when a principal is either responsible
for a component or constructed a component.

o The principal can sanction the component if it fails to
give an account.

The last point is the most difficult to translate into the
technical domain because machines cannot be sanctioned,
i.e., they feel neither remorse nor pain. Thus, we translate
this point to mean that a principal either constructed a
component and can thus also change the component’s future
behavior, access all logs and data, or that a principal is
responsible for a machine and thus knows about what
the machine does and can take some actions. Finally, we
formulate the generic definition given by Hall et al. [11] in
psychology: A principal is hall_accountable for some
component if the component’s actions might be evaluated by
some principal. This can be expressed by using the informed
relation defined above. Note that while hall_accountable
and lindberg_accountable focus on the component,
raci_accountable focuses on the event. This difference
stems from the different perspective of the underlying the-
ories, i.e., social theories focus on the individual and thus

on the component, and RACI focuses on events in an or-
ganization. Another noteworthy point is that raci- and
lindberg_accountable consider only one principal for
a component, whereas hall_accountable is a set.

F. State Space

A cyber-physical system (CPS) is a collection of compo-
nents and may have a log file (multiple log files should be
aggregated into a single logical account). A CPS will naturally
be able to perform actions that can affect its surroundings.
We decided not to model these actions explicitly because
obtaining such a list a priori is typically impossible, having
a list of potential actions is not immediately useful, and all
actions taken by the CPS should be reflected in the log file.
Furthermore, each CPS has some associated principals and all
of its components require some configuration.

— CPS
system : P Component

logs : P Observation

principals : P Principal

setups : P ComponentConfiguration

system = ran(dom(logs))
system # @ N principals # & N setups # &
ran(setups) C principals N system = dom(setups)

Typically CPS are not considered on their own, i.e., they
are considered as part of a larger socio-technical system
(STS) that encompasses the CPS and its surroundings. In our
model, an STS consists of the ego_system, which is the
system whose point of view we consider, and foreign_cps,
i.e., other CPSs in the universe of discourse. We model
them as a sequence, which implies that any foreign_cps
will have some form of unique ID. Furthermore, it includes
principals, of which the principals of the ego_system
and the foreign_cps are a subset, as well as other Beings
that may affect the technical systems.

—STS
ego_system : CPS
foreign_cps : seq CPS
principals : P Principal
beings : P Being

ego_system & ran(foreign_cps)
ego_system.principals C principals
V¢ : ran(foreign_cps) e c.principals C principals

An AccountabilityMechanismis constructed over an
STS and extends it with abilities to log events and reason about
them. It contains the STS, Events that can be observed by
principals, Observations, i.e., events observed by prin-
cipals, Accounts that contain a list of all observations by
principals, external sources or CPSs, knownAccounts, i.e.,
a list of accounts a principal knows about and can thus use for
reasoning, directCause, which provides a list of compo-
nents that caused some event, and correctionActions,
i.e., the actions that can be taken by principals to prevent
a CPS from doing something. In addition, missedByEgo
contains all events recorded somewhere but which are not
known to the ego_system. This set should be as small as

possible because not sensing an event often leads to errors or
unexpected behaviors.

—AccountabilityMechanism
STS
events : P Event
observations : P Observation
accounts : P Account
knownAccounts : P hasAccount
directCause : P caused
correctionActions : P correctionAction
missedByEgo : P Event

ran(ego_system.logs) C accounts

Y ¢ : ran(foreign_cps) e ran(c.logs) C accounts
dom(hasAccount) C accounts

dom(knownAccounts) C accounts

missedByEgo = events \ dom(dom(ego_system.logs))

IV. APPLYING THE MODEL
A. Example

Here, we show how our model can help clarify accidents,
such as the previously mentioned deadly crash of an au-
tonomous vehicle operated by Uber. At the time of writing,
the official investigation was still on going, and we do not
intend in any way to second guess its results. The goal of this
example is to show how difficult it is to clearly state what
“accountable” means and capture its impact on the system
design. To that end, we base our example on the Uber accident
and fill any gaps in real system data with assumptions. To
keep the example concise, we limit the number of components,
principals, and other elements. Note that a real system would
be significantly more complex than this example. Furthermore,
we do not claim that our understanding of the state space is
complete. The example illustrates how modeling allows us to
be precise in understanding accountability. As notation, we use
a pseudo Z syntax that uses state spaces to show the potential
values of the given sets and axioms. These values, particularly
those for the accountability relation or even caused, do not
need to be provided; however, they can be computed (e.g., [14]
for causality). In this example, we focus on two questions:
(1) “Is Uber or the safety driver accountable?” and (2) “Did it
matter if the LIDAR worked?”. The first question is a classic
question when discussing cooperative systems, and the second
questions assumes that a working LIDAR, unimpaired by light
conditions, could have avoided the accident.

B. Realizing the Given Sets

We can define the chassis of the car, the accompanying
sensors, its Al control software and manual override as
Components. The Account would encompass system logs,
any sensor data, such as the recently released video [2], or
even human observation. Note that the Event s depend on the
exact implementation. We assume that processed sensor data,
e.g., object detection, or human testimonies, such as “there
was a crash” will be such events. Of course all events must
be converted to a common format, which is a nontrivial task.
Here, the Principals are Uber because they programmed,
built, and configured the car, and the safety driver, because,
here, we assume that she could always intervene and stop the

car. In addition, other companies, like Volvo, who built the
chassis, could be the principal for some component. Finally,
Actions encompass countermeasures such as “breaking to a
full stop,” “swerve around the pedestrian,” or similar maneu-

vers. Beings include the pedestrian killed in the accident.

C. Implementation-specific Interfaces

An Observation in this context is a log entry about a
specific event (e.g., “detect object” or “make a right turn”)
or less formal knowledge such as a person seeing something
and telling about it. Finding useful correctionActions
is tricky and depends on what went wrong. Thus this set may
only be filled a posteriori. In this example, we are seeking
actions that would avoid killing the pedestrian, e.g., “break
to a full stop” or “swerve right.” Of course, these high-level
actions can be broken down into lower levels. hasAccount
returns the logs or information that each principal possesses.
In this example, it is easiest to prove what the safety driver did
and much more difficult to know what Uber did or did not do
and, crucially, at what time they knew. For the safety driver, we
have her testimony and the video released by the police depart-
ment. Here, caused would be implemented with a reasoning
algorithm or can be implemented by manually parsing the log
files. Finally, the ComponentConfiguration should be
done by Uber unless they outsourced some of their setup and
configuration tasks. The following state space captures this
example.

—exampleSTS
STS
VIDEO, LIDAR,Al, CHASSIS, MANUAL_CTRL : Component
DRIVER, UBER, VOLVO : Principal
BLACKBOX, VIDEO_FEED,

DRIVER_TESTEMONY : Account
PEDESTRIAN : Being

ego_system.system = {VIDEO, LIDAR, USONIC, Al'}
ego_system.logs =

{(DETECT_PEDESTRIAN, LIDAR) > AI'}
ego_system.principals = {DRIVER, UBER}

principals = ego_system.principals

ego_system.setups = {VIDEO — UBER, LIDAR — UBER,
USONIC s UBER,Al — UBER, CHASSIS — VOLVO}
foreign_cps = () N beings = {PEDESTRIAN}

D. Context-independent Axioms

The axioms informed, responsible, constructed,
raci_accountable and lindberg_accountable can
be realized on top of the underspecified axioms. If imple-
mented according to the specification, they yield useful and
informed results about the accountability within the system.

E. Notions of Accountability

The formal model highlights that hall accountable,
raci_accountable and lindberg_accountable
require different implementation-specific interfaces. To
illustrate this difference, we first construct a simple
AccountabilityMechanism state space that has
just enough information to tell us which components are
hall_accountable.

In the first state space, we can infer
hall_accountable = {CHASSIS, AT}, because events
relating to these entities are known to some principal. This
form of accountability simply requires the informed
relation, which, in an implementation, means that some form
of logging is present. Note that there is no requirement for
the form or quality of such logs. It is considered accountable,
as long as it is possible for a component to be evaluated by
some principal.
—exampleAMhall

AccountabilityMechanism

exampleSTS

DETECT_PEDESTRIAN, HIT_PEDESTRIAN : Event
BREAK, SWERVE : Action

events = {DETECT_PEDESTRIAN, HIT_PEDESTRIAN }
observations =

{(HIT_PEDESTRIAN, CHASSIS) — DRIVER_TESTEMONY
(HIT_PEDESTRIAN,, CHASSIS) — VIDEO_FEED,
(DETECT-PEDESTRIAN, LIDAR) — BLACKBOX }
accounts = ran(ego_system.logs) U {VIDEO_FEED}
knownAccounts = {BLACKBOX — UBER,
VIDEO_FEED — UBER,

DRIVER_TESTEMONY +— DRIVER}
informed(CHASSIS) = {UBER, DRIVER}

informed(Al) = {UBER}

The next state space shows that, to determine whether
there is a lindberg_accountable principle for some
component, we also require a mechanism to fill the set
correctionAction. This is typically performed manually
after an accident has occurred. For future systems, such
mechanisms could be part of any explanation framework for
an Al [15]. In this example, we assume that the driver could
have paid better attention and stopped the car in time, and that
the AI could have reacted sooner than it did. Here, we can
infer lindberg_accountable(CHASSIS)= DRIVER and
lindberg_accountable(AI) = UBER.

—_exampleAMlindberg
exampleAMhall

correctionAction =

{(DRIVER, MANUAL_CTRL) — BREAK,
(UBER, AI) — BREAK}

responsible(AI) = UBER
responsible(CHASSIS) = DRIVER

The final example requires that an even more complex
operation, i.e., caused, is provided by the system.
While currently causal relationships are determined

by experts, research in the field of causality suggests
that automated reasoning is possible [16]. Here we
incorporate the fact that Uber supposedly used too few
LIDAR sensors to detect the pedestrian [17]. To reflect
this knowledge, we remove DETECT_PEDESTRIAN
from the system logs. This leads to missedByEgo to
hold that event. A causal reasoning algorithm can then
conclude that the lack of detection led to the collision
and identify the AT and the CHASSIS as causes. Thus,
raci_accountable(HIT_PEDESTRIAN) =UBER
would then point to Uber as the accountable entity.

—_exampleAMraci
exampleAMlindberg

ego_system.logs =

{(HIT_PEDESTRIAN, CHASSIS) — BLACKBOX}
events = {DETECT_PEDESTRIAN, HIT_PEDESTRIAN}
missedByEgo = {DETECT_PEDESTRIAN}

directCause = {HIT_PEDESTRIAN — {CHASSIS, AI}}
caused(HIT_PEDESTRIAN) = {AI, CHASSIS}

F. Discussion

Looking at the above examples, we see that both Uber and
the safety driver are accountable for some components. The
reason for this ambiguity is that in our model, the safety driver
could always avoid the accident by being alert, observing the
pedestrian and breaking in time. This tacitly ignores the fact
that to avoid HIT_PEDESTRIAN, a principal would first need
to detect her. This points us directly to the crux of self-driving
cars, i.e., asking humans to monitor a system for hours on
end without anything happening, in the hope they will react
correctly in the split seconds leading up to an accident is
infeasible. Humans, especially people without proper training,
will invariably lose focus and their attention will wander. In
our example, DETECT_PEDESTRIAN is only observed by the
LIDAR, which is therefore the only component that had the
option to execute corrective actions. This does not change
the attribution of accountability for hall_accountable,
but immediately changes 1indberg_accountable to ex-
clude the driver because she could not have done anything.
raci_accountable still depends on the exact implemen-
tation of caused, which should include the new knowledge to
show that the driver is not accountable. Generally, our model
facilitates the comparison of the state of the world and the
system’s knowledge of it. Of course, there are many other ways
to model the exact circumstances of the accident, as well as
many more notions of accountability. However, our goal is not
to find the one correct model or definition of accountability.
On the contrary, we strongly assume that there can be no single
right answer. However, we believe that a precise and formal
model to state any assumptions and explicate the notion of
accountability used by the developers of a system is useful and
necessary. This will allow regulatory bodies to publish their
requirements in unambiguous language and make it possible
to verify whether a system is compliant or not.

V. CONCLUSIONS

In this paper we illustrated the benefits of a formal model of
accountability for cyber-physical systems. Our model allows
us to precisely describe the notion of accountability a system
should fulfill. Such a formal description enables us to analyze
and compare these notions, and facilitates the selection of
the correct one for a system, thereby avoiding expensive, but
superfluous, subsystems and logging facilities. In an over-
simplified case study, we used this model to demonstrate the
difference between three widely used notions of accountability
and described their impact on the implementation for our case
study. One clear area of future improvement is the fact that
there are many more notions of accountability in use today,

which we seek to catalog, formalize, and compare. Having
a unified view of accountability will help us identify the
most suitable notion for specific use cases. Another widely
open problem is how to reason about such data. Relations
like caused or explanations for Al systems are simple to
ask for, but very difficult to realize in real-world systems.
Furthermore, using terms like accountability, responsibility or
causality creates clear connections to the legal domain. Thus,
it remains an open problem to characterize the connection
between legal terms, their technical meaning, and their ap-
plication. Ideally, following a formal model of accountability
will provide guarantees of legal compliance.

REFERENCES

[1] A. Datta, S. Kar, B. Sinopoli, and S. Weerakkody, “Accountability
in cyber-physical systems,” in Science of Security for Cyber-Physical
Systems Workshop (SOSCYPS), April 2016, pp. 1-3.

[2] J. Bhuiyan, “Police have released the first video from inside the Uber
self-driving car that killed a pedestrian,” https://tinyurl.com/yb2tg34m,
2018, [Online; acc. 2018-03-28].

[3] D. J. Weitzner, H. Abelson, T. Berners-Lee, J. Feigenbaum, J. Hendler,

and G. J. Sussman, “Information accountability,” Communnications of

the ACM, vol. 51, no. 6, pp. 82-87, Jun. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1349026.1349043

J. Feigenbaum, A. D. Jaggard, and R. N. Wright, “Towards a formal

model of accountability,” in Proceedings of the 2011 workshop on New

security paradigms workshop. ACM, 2011, pp. 45-56.

[5] R. Kiisters, T. Truderung, and A. Vogt, “Accountability: Definition and

relationship to verifiability,” in Proceedings of the 17th ACM Conference

on Computer and Communications Security. New York, NY, USA:

ACM, 2010, pp. 526-535.

S. Kacianka, K. Beckers, F. Kelbert, and P. Kumari, “How accountability

is implemented and understood in research tools,” in Product-Focused

Software Process Improvement. Springer, 2017, pp. 199-218.

[71 S. Amir-Mohammadian, S. Chong, and C. Skalka, “Correct audit log-
ging: Theory and practice,” in International Conference on Principles
of Security and Trust. Springer, 2016, pp. 139-162.

[8] N.H. A. Rahman, W. B. Glisson, Y. Yang, and K. K. R. Choo, “Forensic-
by-design framework for cyber-physical cloud systems,” IEEE Cloud
Computing, vol. 3, no. 1, pp. 50-59, Jan 2016.

[9]1 M. Leucker and C. Schallhart, “A brief account of runtime verification,”
The Journal of Logic and Algebraic Programming, vol. 78, no. 5, pp.
293-303, 2009.

[10] S. 1. Lindberg, “Mapping accountability: core concept and

subtypes,” International review of administrative sciences,

vol. 79, mno. 2, pp. 202-226, 2013. [Online]. Available:
http://dx.doi.org/10.1177/0020852313477761

A. T. Hall, D. D. Frink, and M. R. Buckley, “An accountability

account: A review and synthesis of the theoretical and empirical

research on felt accountability,” Journal of Organizational Behavior,
vol. 38, no. 2, pp. 204-224, 2017, jOB-13-0646.R4. [Online]. Available:
http://dx.doi.org/10.1002/job.2052

M. L. Smith, J. Erwin, and S. Diaferio, “Role & responsibility charting

(raci),” in Project Management Forum (PMForum), 2005, p. 5.

J. M. Spivey, The Z notation. Prentice Hall Hemel Hempstead, 1992.

[Online]. Available: https://tinyurl.com/y7r77xmd

S. Rehwald, A. Ibrahim, K. Beckers, and A. Pretschner, “Accbench:

A framework for comparing causality algorithms,” in CREST@ETAPS

2017, Uppsala, Sweden, 29th April 2017., 2017, pp. 16-30.

F. Doshi-Velez, M. Kortz, R. Budish, C. Bavitz, S. Gershman,

D. O’Brien, S. Schieber, J. Waldo, D. Weinberger, and A. Wood,

“Accountability of ai under the law: The role of explanation,” arXiv

preprint arXiv:1711.01134, 2017.

J. Y. Halpern, “A Modification of the Halpern-Pearl Definition of

Causality,” Proceedings of the 24th International Joint Conference

on Artificial Intelligence, pp. 3022-3033, 2015. [Online]. Available:

http://arxiv.org/pdf/1505.00162

CNBC, “Uber’s use of fewer safety sensors prompts questions after fatal

crash,” https://tinyurl.com/y9eoxxzm, 2018, [Online; acc. 2018-03-28].

[4

finary

[6

—

(11]

[12]
[13]

[14]

[15]

[16]

(17]

https://tinyurl.com/yb2tg34m
http://doi.acm.org/10.1145/1349026.1349043
http://dx.doi.org/10.1177/0020852313477761
http://dx.doi.org/10.1002/job.2052
https://tinyurl.com/y7r77xmd
http://arxiv.org/pdf/1505.00162
https://tinyurl.com/y9eoxxzm

	I Introduction
	II Background
	II-A Accountability in Computer Science
	II-B Accountability in Social Sciences
	II-C Accountability in Organizations

	III Formal Model
	III-A Overview
	III-B Given Sets
	III-C Context- and Implementation-specific Interfaces
	III-D Context-independent Axioms
	III-E Definitions of Accountability
	III-F State Space

	IV Applying the Model
	IV-A Example
	IV-B Realizing the Given Sets
	IV-C Implementation-specific Interfaces
	IV-D Context-independent Axioms
	IV-E Notions of Accountability
	IV-F Discussion

	V Conclusions
	References

