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Abstract. Determining correctness and performance for complex engi-
neered systems necessitates testing the system to determine how its
behaviour is impacted by many factors and interactions among them.
Of particular concern is to determine which settings of the factors (main
effects) impact the behaviour significantly. Detecting arrays for main
effects are test suites that ensure that the impact of each main effect is
witnessed even in the presence of d or fewer other significant main effects.
Separation in detecting arrays dictates the presence of at least a specified
number of such witnesses. A new parameter, corroboration, enables the
fusion of levels while maintaining the presence of witnesses. Detecting
arrays for main effects, having various values for the separation and cor-
roboration, are constructed using error-correcting codes and separating
hash families. The techniques are shown to yield explicit constructions
with few tests for large numbers of factors.

1 Introduction

Combinatorial testing [21,31] addresses the design and analysis of test suites
in order to evaluate correctness (and, more generally, performance) of complex
engineered systems. To set the stage, we introduce some basic definitions. There
are k factors F, . .., Fy. Each factor F; has a set S; = {v;1, ..., v;s, } of 8; possible
levels (or values or options). A testis an assignment of a level from v;1, ..., v;s, to
F;, for each 1 < ¢ < k. The execution of a test yields a measurement of a response.
When {i1,...,4:} € {1,...,k} and o;, € S;,, the set {(ij,04,):1<j<t}isa
t-way interaction. The value of ¢ is the strength of the interaction. A main effect
is a 1-way interaction. A test on k factors covers (’;) t-way interactions. A test
suite is a collection of tests. A test suite is typically represented as an N X k
array A = (0 ;) in which ¢, ; € S; when 1 < ¢ < N and 1 < j < k. The size
of the test suite is N and its type is (s1,. .., sg). Tests correspond to rows of A,
and factors correspond to its columns.

When the response of interest can depend on one or more interactions, each
having strength at most ¢, a test suite must cover each interaction in at least one
row (test). To make this precise, let A = (0, ;) be a test suite of size N and type
(815-++,88). Let T'={(i;,04,) : 1 < j <t} be a t-way interaction. Then p4(T)
denotes the set {7 : a,;; = 04;,1 < j <t} of rows of A in which the interaction
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is covered. A t-way interaction T must have |p4(T)| > 1 in order to impact the
response. For a set 7 of interactions, pa(7) = Upcr pa(T).

When used in practical testing applications, as in [1,18,33], further require-
ments arise. First, if we suppose that some set 7 of interactions are those that
significantly impact the response, yet there is another interaction 7" ¢ 7 for
which p4(T) € Ugeq pa(S), the responses are inadequate to determine whether
or not T impacts the response significantly. This requirement was explored in
[14], and later in [15,16,27]. Secondly, one or more tests may fail to execute cor-
rectly, and yield no response or yield outlier responses. To mitigate this, Seidel
et al. [34] impose stronger ‘separation’ requirements on the test suite.

Extending definitions in [14,16,34], we formally define the test suites with
which we are concerned. Let A be a test suite of size N and type (s1, ..., sg). Let
7Z: be the set of all t-way interactions for A. Our objective is to identify the set
T C I, of interactions that have significant impact on the response. In so doing,
we assume that at most d interactions impact the response. Without limiting d,
it can happen that no test suite of type (s1, ..., sx) exists for any value of N [27].

An N x k array A of type (s1,...,sk) is (d,t,§)-detecting if |pa(T)\pa(T)| <
0 < T € T whenever 7 C Ty, and |T| = d. To record all of the parameters, we
use the notation DAs(N;d, t,k, (s1,...,sk)). To emphasize that different factors
may have different numbers of levels, this is a mized detecting array. When
all factors have the same number, v, of levels, the array is uniform and the
notation is simplified to DAs(N;d, ¢, k,v). The parameter § is the separation of
the detecting array [34], and the definition in [14] is recovered by setting § = 1.
Rows in pa(T)\ pa(7) are witnesses for T that are not masked by interactions in
T. A separation of d necessitates 0 witnesses, ensuring that fewer than ¢ missed
or incorrect measurements cannot result in an interaction’s impact being lost.

Setting d = 0 in the definition, 7 = @ and pa(@) = @. Then a (0,t,9)-
detecting array is an array in which each t-way interaction is covered in at least §
rows. This leads to a standard class of testing arrays for testing: A covering array
CAs(N;t,k, (s1,-..,5k)) is equivalent to a DAs(N;0,¢,k, (s1,...,Sk)). Again the
simpler notation CAs(N;t, k,v) is employed when it is uniform.

In this paper we focus on detecting arrays for main effects. In Sect. 2, we
develop a further parameter, corroboration, for detecting arrays to facilitate the
construction of mixed detecting arrays from uniform ones. In Sect. 3 we briefly
summarize what is known about the construction of detecting arrays. In Sect. 4
we develop constructions of (1, 1)-detecting arrays with specified corroboration
and separation using results on perfect hash families of strength two and higher
index, or (equivalently) using certain error-correcting codes. In Sect. 5 we extend
these constructions to (d, 1)-detecting arrays for d > 1 using a generalization of
perfect hash families, the separating hash families.

2 Fusion and Corroboration

Covering arrays have been much more extensively studied [10,21,31] than have
detecting arrays and their variants; they are usually defined only in the case when
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6 =1, and in a more direct manner than by exploiting the equivalence with cer-
tain detecting arrays. Often constructions of covering arrays focus on the uniform
cases. In part this is because a CA5(N;t, k&, (S1,...,8i-1,8i—1, Si+1,---,Sk)) can
be obtained from a CAs5(N;t, k, (S1,...,8i—1, Si, Sit1, .- -, Sk)) by making any two
levels of the ith factor identical. This operation is fusion (see, e.g., [11]).

When applied to detecting arrays with 6 > 1, however, fusion may reduce the
number of witnesses. Increasing the separation cannot overcome this problem.
Because techniques for uniform covering arrays are better developed than for
mixed ones, generalizations to detecting arrays can be expected to be again
more tractable for uniform cases. As with covering arrays, fusion for detecting
arrays promises to extend uniform constructions to mixed cases.

In order to facilitate this, we propose an additional parameter for detecting
arrays. We begin with a useful characterization. Let A be an N x k array. Let
T ={(ij,04,) : 1 < j <t} be a t-way interaction for A. Let C' = {¢; : 1 <i < d}
be a set of d column indices of A with {iy,...,4:}N{c1,...,ca} = 0. A set system
Sa,r,c is defined on the ground set {(c, f) : ¢ € C, f € S.} containing the collec-
tion of sets {{(c1,v1),...,(ca,va)} : TU{(e1,v1),...,(cd,vq)} is covered in A}.

Lemma 1. An array A is (d,t,0)-detecting if and only if for every t-way inter-
action T and every set C' of d disjoint columns, every subset X of elements of
the set system Sa r,c, whose removal (along with all sets containing an element
of X ) leaves fewer than 0 sets in Sar,c, satisfies | X| > d.

Proof. First suppose that for some t-way interaction T = {(ij,0,) : 1 < j < t}
and some set C' = {¢; : 1 < i < d} of d disjoint columns, in the set system
Sa,r,c there is a set of elements X = {(c1,v1),..., (cq,vq)} for which fewer than
d sets in the set system contain no element of X. Define T; = {(i;,0,) : 1 < j <
t—1yU{(c;,vs)}. Set T ={T1,...,T4}. Then T ¢ T but |pa(T) \ pa(T)| <4,
so A is not (d, t, §)-detecting.

In the other direction, suppose that A is not (d, t, §)-detecting, and consider
aset 7 = {T1,...,Tq} of d t-way interactions and a t-way interaction T' for
which T' ¢ T but [pa(T) \ pa(T)| < 6. Without loss of generality, there is no
interaction 77 € 7 for which T and T” share a factor set to different levels in
each (and so, because T # T’, T' contains a factor not appearing in T'). For each
T; € T, let ¢; be a factor in T} that is not in 7, and suppose that (¢;,v;) € T; for
1 < < d. Then the set X = {(¢;,v;) : 1 <i < d}, when removed from Sa 7,c,
leaves fewer than § sets. O

Lemma 1 implies that a (d, ¢, §)-detecting array must cover each t-way inter-
action at least d 4+  times; indeed when d > 1, for each t-way interaction T
and every column ¢ not appearing in 7', interaction 7" must be covered in at
least d + 1 rows containing distinct levels in column c. In particular, a nec-
essary condition for a DAs(N;d, t,k, (S1,...,8i—1,8i—1,8i,5---,5k))) to exist is
that d < min(s; : 1 <7 < k) (see also [14]).

These considerations lead to the parameter of interest. For array A, with
t-way interaction 7" and set C' of d disjoint columns, suppose that in S4 7.¢, for
each column in C' one performs fewer than s fusions of elements within those
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arising from that column. Further suppose that, no matter how these fusions
are done, the resulting set system has the property that every subset X of
elements of the set system, whose removal (along with all sets containing an
element of X)) leaves fewer than 0 sets, satisfies | X| > d + 1. Then (7, C) has
corroboration s in A. When every choice of (T, C') has corroboration (at least) s
in a DAs(N;d,t,k,(s1,...,8k)), it has corroboration s. We extend the notation
as DAs(N;d,t, k, (s1,--.,Sk),s) to include corroboration s as a parameter.

3 Covering Arrays and Sperner Partition Systems

As observed in [14], one method to construct detecting arrays is to use covering
arrays of higher strength. The following records consequences for separation and
corroboration.

Lemma 2. A CA)\(N;t, k,v) is

1. a DAs(N;d,t —d, k,v,1) with 6 = A(v — d)v?~ !, and
2. a DAs(N;d,t —d, k,v,v — d) with 6 = \(d + 1)4~!

whenever 1 < d < min(¢,v).

Proof. Let A be a CA\(N;t, k,v). Let d satisfy 1 < d < min(¢,v). Let T be a
(t—d)-way interaction, and let C be a set of d columns not appearing in 7. Using
the parameters of the covering array, Sa r,c contains at least Av? sets, and each
element appears in at least Av?~! of them. Suppose that d elements of S AT,C
are removed, and further suppose that the numbers of elements deleted for the d
factors are eq, ..., eq (so that d = 2?21 e;). Then the number of remaining sets is
A H?Zl(v —e;), which is minimized at § = A\(v —d)v9~!. This establishes the first
statement. For the second, performing at most v —d—1 fusions within each factor
of Sa7.c and then deleting at most d elements leaves at least § = A(d + 1)?~!
sets by a similar argument. O

The effective construction of detecting arrays is well motivated by practi-
cal testing applications, in which the need for higher separation to mitigate
the effects of outlier responses, and higher corroboration to support fusion of
levels, arise. Despite this, other than the construction from covering arrays of
higher strength, few constructions are available. In [43] uniform (1, ¢)-detecting
arrays with separation 1, corroboration 1, and few factors are studied. This was
extended in [36,38] to (d,t)-detecting arrays, and further to mixed detecting
arrays in [37]. Each of these focuses on the determination of a lower bound on
the number of rows in terms of d, ¢, and v, and the determination of cases in
which this bound can be met. For d + ¢t > 2, however, the number of rows must
grow at least logarithmically in k, because every two columns must be distinct.
Hence the study of arrays meeting bounds that are independent of k£ necessarily
considers only small values of k. In addition, none of these addresses separation
or corroboration.
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For larger values of k, algorithmic methods are developed in [34]. The algo-
rithms include randomized methods based on the Stein-Lovész-Johnson frame-
work [20,25,40], and derandomized algorithms using conditional expectations
(as in [7,8]); randomized methods based on the Lovdsz Local Lemma [3,19]
and derandomizations using Moser-Tardos resampling [30] (as in [12]). Although
these methods produce (1,t)-mixed detecting arrays for a variety of separation
values, they have not been applied for d > 1 or to increase the corroboration.
Extensions to larger d for locating arrays are considered in [23].

When t = 1, one is considering detecting arrays for main effects. A Sperner
family is a family of subsets of some ground set such that no set in the family is
a subset of any other. Meagher et al. [28] introduced Sperner partition systems
as a natural variant of Sperner families. An (n,v)-Sperner partition system is a
collection of partitions of some n-set, each into v nonempty classes, such that no
class of any partition is a subset of a class of any other. In [24,28], the largest
number of classes in an (n,v)-Sperner partition system is determined exactly
for infinitely many values of n for each v. In [9], lower and upper bounds that
match asymptotically are established for all n and each v. As noted there, given
an (n,v)-Sperner partition system with k partitions, if we number the elements
using {1,...,n} and number the sets in each partition with {1,...,v}, we can
form an n x k array in which cell (7, ¢) contains the set number to which element
r belongs in partition c. This array is a DA;(n;1,1,k,v,1), and indeed every
such DA arises in this way. Even when d =t = s = § = 1, the largest value of k
as a function of n is not known precisely. Therefore it is natural to seek useful
bounds and effective algorithms for larger values of the parameters.

4 (1, 1, §)-Detecting Arrays

In this section, we consider the case when d = ¢ = 1. As noted, Sperner parti-
tion systems address the existence of such detecting arrays when the separation
0 = 1. A naive way to increase the separation simply forms § copies of each
row in a DA{(N;1,1,k,v,1) to form a DAs(dN; 1,1, k,v,1). This leaves the cor-
roboration unchanged; in addition, it employs more rows than are needed to
obtain the increase in separation. In order to treat larger values of separation
and corroboration, we employ further combinatorial arrays.

An (N;k,v)-hash family is an N x k array on v symbols. A perfect hash
family PHF\(N; k,v,t) is an (N;k,v)-hash family, in which in every N X ¢ sub-
array, at least A rows each consist of distinct symbols. Mehlhorn [29] introduced
perfect hash families, and they have subsequently found many applications in
combinatorial constructions [41].

Colbourn and Torres-Jiménez [17] relax the requirement that each row have
the same number of symbols. An N x k array is a heterogeneous hash family,
or HHF(N; k, (v1,...,vN)), when the ¢th row contains (at most) v; symbols for
1 < i < N. The definition for PHF extends naturally to perfect heterogeneous
hash families; we use the notation PHHF(N; &, (v1,...,vN),1).

Returning to detecting arrays, we first consider larger separation.
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Lemma 3. Whenever a PHFs(N;k,v,2) exists, a DAs(v(N + 6);1,1,k,v,1)
exists.

Proof. Let A be a PHFs(N;k,v,2) on symbols {0,...,v—1}. Let A; be the array
obtained from A by adding ¢ modulo v to each entry of A. Let B be the dv x k
array consisting of § rows containing only symbol i, for each ¢ € {0,...,v — 1}.
Vertically juxtapose A, ..., A,—1, and B to form a v(N + J) x k array D. To
verify that D is a DAs(v(N + §);1,1,k,v,1), consider a main effect (¢,0) and
let ¢ # ¢ be a column. Among the rows of D covering (¢, o), we find o exactly
d times in the rows of B (and perhaps among rows of one or more of the {4;}).
Further, each of the § rows in the PHF having different symbols in columns ¢
and ¢ yield a row in one of the {A;} in which (¢, o) appears but ¢’ contains
a symbol different from o. Hence no symbol in ¢’ can cover all but § — 1 rows
containing (c, o). O

When does a PHF5(N; k, v, 2) exist? Treating columns as codewords of length
N on a v-ary alphabet, two different codewords are at Hamming distance at least
0. Hence such a PHF s(V; k, v, 2) is exactly a v-ary code of length N and minimum
distance 4, having k codewords. (See [26] for definitions in coding theory.) When
§ = 1, the set of all vV codewords provides the largest number of codewords,
while for 6 = 2, the set of vV~! codewords having sum 0 modulo v provides the
largest code. For § > 3, however, the existence question for such codes is far
from settled, particularly when v > 2 (see [22], for example). As applied here,
this fruitful connection with codes permits increase in the separation but not
the corroboration. We address this next.

Construction 1 (h-inflation). Let v be a prime power and let 1 < h < wv. Let
{eo,...,ey—1} be the elements of F,. Let A be an (N;k,v + 1)-hash family on

€0, .-+ ey_1} U{oc}. Define 2 x 1 column vectors Cp, containing Coo = L
0

x
and ¢, = <1> for x € F,,. Form a set of ry, row vectors R, = (r1,...,ry,) S0

that for every ¢, € Cp, each d, = (ricy : 1 < i < 1) contains each entry of F,
at least h times. Form B by replacing each element a in array A by the column
vector dX'. Then B is a (r,N;k,v)-hash family, an h-inflation of A.

In Construction 1, each column vector d, contains each element of the field
at least h times. Moreover, if a # b, the h coordinates in which d, contains a
specific element of the field contain h different elements in these coordinates in
d,. Both facts can be easily checked.

Lemma 4. Whenever v is a prime power, a PHFs(N;k,v + 1,2) exists, and
1<s<v—1, a DAss((rs41N;1,1,k,v,s) exists.

Proof. Using Construction 1 and the subsequent facts, any (s + 1)-inflation, B,
of a PHFs(N;k,v+1,2), A, is a DAss((rs21N; 1,1, k, v, s). O

Given a PHFs(N; k,v+1,2), Lemma 4 produces a DAg(v,l)(UQN; 1,1, k,v,v—
1) that is, in fact, a covering array CAs(Nwv;2, k, v). Although this does not lead
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to the largest number of columns in a covering array with these parameters
when § = 1 (compare with [13]), it is competitive and applies for all §. More
importantly, one can make detecting arrays for a variety of separation and cor-
roboration values.

To illustrate this, we adapted the ‘replace-one-column-random extension’
randomized algorithm from [12] in order to construct PHFs of index §. In the
interests of space, we do not describe the method here, noting only that it is
an heuristic technique that is not expected to produce optimal sizes. In Table 1
we report the largest number of columns found for a PHF5(N; k, 6, 2) for various
values of N and 1 < § < 4. Recall that each is equivalent to a 6-ary code of
length N and minimum distance é with k£ codewords.

Table 1. Number & of columns found for a PHFs(N; k, 6, 2)

6| N—|1|2 |3 |4 5 6 7 8 9 10

1 636|216 | 1296 | 7776 | 46656

2 6| 36| 216|1296 | 7776 | 46656

3 6| 33| 156| 704| 315614007

4 6/ 30 116 429 1776|7406 26374

Suppose that we are concerned with a large (but fixed) number of factors,
such as 10000. Together with the Lemma 4, the results in Table1 imply, for
example, the existence of the following:

DA;(84;1,1,10000,5,1) DAs(114;1,1,10000,5,2) CA;(150;2,10000, 5)
DA2(98;1,1,10000,5,1)  DA4(133;1,1,10000,5,2) CA4(175;2,10000, 5)
DA5(112;1,1,10000,5,1) DAg(152;1,1,10000,5,2) CA3(200;2,10000, 5)
DA4(140; 1,1, 10000, 5, 1) DAs(190: 1, 1. 10000, 5,2) CA4(250,2,10000 5)

These examples demonstrate not only that increases in both separation and
corroboration can be accommodated with a reasonable increase in the number
of rows, but also that detecting arrays for main effects can be constructed for
very large numbers of factors.

5 (d,1,0)-Detecting Arrays

Next we extend these methods to treat higher values of d. To do so, we employ
a generalization of PHFs. An (N;k,v, {wy,wa, ..., w:})-separating hash family
of index X\ is an (IN;k,v)-hash family A that satisfies the property: For any
Cl,CQ, .. .,Ct g {1,2, ey k} such that ‘Cl| = wi, |CZ| = w2, ..., |Ct| = Wy,
and C; N C;j = 0 for every i # j, whenever ¢ € C;, ¢ € Cj, and i # j, different
symbols appear in columns ¢ and ¢’ in each of at least A rows. The notation
SHF\(N; kv, {wy, ws, ..., w:}) is used. See, for example, [2,32,39]; and see [4]
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for the similar notion of ‘partially hashing’. When heterogeneous, we use the
notation SHHF(N;k, (v1,...,un), {wi,ws,...,w}). In the particular case of
SHF(N;k,v,{1,d}), these are frameproof codes (see, for example, [39,42]).

Theorem 1. Let v be a prime power. When an SHFs(N; k, v+ 1,{1,d}) exists,
and 1 < s <wv—d, a DAss(rs1aN;d,1,k,v,1) and a DAs(rsyaN;d, 1, k, v, [ (s +
d—1)/d]) exist.

Proof. Using Construction 1, let B be an (s + d)-inflation of an SHFs(N; k, v +
1,{1,d}), A. Then B is a rs 14N x k array with entries from F,. Now consider a
set of distinct columns {¢, c1, ..., cq} of A. Let R be the set of (at least §) rows of
A in which the entry in column ¢ does not appear in any of columns {cy, ..., ¢4}
For each o € F,, the inflation of a row in R yields at least s 4+ d rows in which
column ¢ contains o and each of {cy,...,¢cs} contains d + s distinct symbols.
Indeed, setting T' = {(¢,0)} and C = {¢1,...,cq}, the inflation of each row in
R places d + s mutually disjoint sets in S r,c. Consequently, any removal of d
elements from Sp 7,c can remove at most d of the s + d sets arising from a row
in R. Hence at least ds must remain, and B is a detecting array with separation
(at least) ds. Identification of fewer than |(s+d—1)/d] levels for each factor of
Sp,1,c leaves at least J sets, giving the second DA. O

In order to apply Theorem 1, we require {1,d}-separating hash families.
Their existence is well studied for § = 1 (see [35] and references therein), but
they appear not to have been studied when § > 1. When ¢ = 1, Blackburn [6]
establishes that an SHFy(N;k, v, {1,d}) can exist only when k < dol%] —d.
Stinson et al. [42] use an expurgation technique to establish lower bounds on k
for which an SHF;(N; k,v, {1, d}) exists. One consequence of their results is that

2

N
an SHF (N; k, v, {1,2}) exists for k = ﬁ ( z ) :

20—1

Let us consider a concrete set of parameters. Suppose that we are to construct
an SHF;(13; k,6, {1,2}). The bounds ensure that the largest value of k for which
one exists satisfies 1112 < k < 559870. A straightforward computation yields
such an SHF with & = 8014. Naturally one hopes to improve on both the lower
and upper bounds, and to generalize them to cases with separation more than
6 = 1. Error-correcting codes are not equivalent to the SHF s required when
d > 1, but they again provide constructions; we leave this discussion for later
work. Nevertheless, there appears to be a need to resort to computation as well.

Table 2 gives the largest values of k that we found for an SHFs(N; k, 6, {1,2})
for 1 < ¢ <4 and various values of N. Each yields a DAs(15N;2,1,k,5,1) (and
other detecting arrays, from Theorem 1).

The entries in Table2 have again been determined using a variant of the
‘replace-one-column-random-extension’ algorithm developed in [12]. This heuris-
tic method is not expected in general to yield the largest possible number of
columuns (and the lower and upper bounds on such largest numbers are currently
far apart). When the number of rows is small, however, we can make some com-
parisons, and we do this next. First we establish an upper bound on k& when
N<d+6-1.
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Table 2. Number k of columns found for an SHFs(N;k,6,{1,2})

6l N—|1 2 3 4 5 6 7 8 9 10 11 |12

1 6 10 36 |51 |154 |201 |373 |634 1003|1751 |2825 4578
2 6 7 |34 39 |142 |152 |262 342| 529 | 805|1257
3 6 6 30 32 | 72 | 80 168 195 | 328| 486
4 6 6 27 | 27 | 56 58| 125 | 134 231

6| N— 13 |14 15 |16 17 18 | 19 | 20 21, 22 23| 24
1 8068 |10000
2 2041| 3163|4920 8431|10000

3 716| 1086|1695|2543| 38916290|9878|10000
4 311 466| 696|1005| 1540(2310|3387| 5181 |8242|10000

Lemma 5. Letd > 2,0 > 1, and o > 1. Then

d+d—a
: -1
k < max <v1, e VS —as {WJ)

whenever an SHHFs(d 4+ 0 — as k, (v1, ..., Va+6—a), {1,d}) exists.

Proof. Let A be an SHHFs(d + 6 — 1; k, (v1,...,Va45-a),{1,d}). An entry in A
is a private entry if it contains the only occurrence of a symbol in its row. If
some row contains only private entries, then k < max(v1,...,V4+5—a). If some
column ¢ were to contain d + 1 — « entries that are not private, for each of
d+1— « such rows choose a column that contains the same symbol as in column
c. Let X be the set of at most d + 1 — « columns so chosen. There could be
at most & — 1 rows separating {c} from X, which cannot arise. Consequently
every column of A contains at least ¢ private entries, and at most d — « that
are not private. Row ¢ employs v; symbols and hence contains at least k —v; + 1

entries that are not private. It follows that (d—a)k > Z?:ffa(kfm +1). Hence

Zfiffa(vi — 1) > 6k and the bound follows. O

When 6 = 1 and N is larger, Blackburn [6] partitions the N rows into d
classes; then when the largest class has r rows in it, he amalgamates all rows
in the class into a single row on v" symbols. He employs a version of Lemma 5,
using 6 = 1 and not exploiting heterogeneity, to obtain the upper bound on k
already mentioned. Our heterogeneous bound underlies an improvement in the
upper bound in some situations. In particular, in the example given before, an
SHF(13;%,6,{1,2}) must have k£ < 326590. Unfortunately, although the amal-
gamation strategy cannot reduce a separation d > 2 to zero, it can nonetheless
reduce it to 1. Hence Lemma 5 does not lead to an effective upper bound on k
as a function of NV when 6 > 1. Despite this, Lemma 5 implies that the upper
bounds on k match the lower bounds found computationally for the entries in
Table2 when N = 2+ § — 1, showing their optimality.
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Proceeding to the next diagonal, when N = d + J, we employ a general
observation: Whenever there exists an SHF 51 (INV; k, v, {1, d}), one can delete any
of the N rows to produce an SHF5(N — 1; k,v,{1,d}). An elementary argument
shows that k& < v? in an SHF(d + 1;k,v,{1,d}) when d < v, and hence this
upper bound on k extends to SHFs(d + §; k,v,{1,d}). Equality is met if and
only if there exist d + § — 2 mutually orthogonal latin squares of side v (via
their equivalence with “(d + §)-nets”, see [5]); we omit the proof here. The non-
existence of two orthogonal latin squares of side 6 explains in part the entries
on this diagonal in Table 2.

For few rows, these observations indicate that the SHF s found in Table 2 are
optimal, or nearly so. We do not anticipate that the numbers of columns given
are optimal for larger numbers of rows, but they provide explicit solutions that
are better than known general lower bounds, and often substantially better.

6 Concluding Remarks

Certain separating hash families, the frameproof codes, can be used to pro-
duce detecting arrays for main effects supporting larger separation (to cope with
outlier and missing test results) and corroboration (to permit fusion of some
levels). Although such SHFs have been extensively researched for index one, the
generalization to larger indices is not well studied. Because we require explicit
presentations of detecting arrays for testing applications, we examine construc-
tions for SHFs for small indices, and demonstrate that a randomized algorithm
can be used to provide useful detecting arrays.
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