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ABSTRACT
With close to native performance, Linux containers are becoming
the de facto platform for cloud computing. While various solutions
have been proposed to secure applications and containers in the
cloud environment by leveraging Intel SGX, most cloud operators
do not yet offer SGX as a service. This is likely due to a number
of security, scalability, and usability concerns coming from both
cloud providers and users. Cloud operators worry about the security
guarantees of unofficial SDKs, limited support for remote attestation
within containers, limited physical memory for the Enclave Page
Cache (EPC) making it difficult to support hundreds of enclaves, and
potential DoS attacks against EPC bymalicious users. Meanwhile,
endusersneed toworryabout careful programpartitioning to reduce
the TCB and adapting legacy applications to use SGX.

We note that most of these concerns are the result of an incom-
plete infrastructure, from the OS to the application layer.We address
these concerns with lxcsgx, which allows SGX applications to run
inside containers while also: enabling SGX remote attestation for
containerized applications, enforcing EPCmemory usage control on
a per-container basis, providing a general software TPM using SGX
to augment legacy applications, and supporting partitioning with a
GCCplugin.We then retrofitNginx/OpenSSL andMemcached using
the software TPM and SGX partitioning to defend against known
and potential attacks. Thanks to the small EPC footprint of each
enclave, we are able to run up to 100 containerized Memcached in-
stances without EPC swapping. Our evaluation shows the overhead
introduced by lxcsgx is less than 6.9% for simple SGX applications,
9.5% for Nginx/OpenSSL, and 20.9% for containerized Memcached.

CCS CONCEPTS
• Security and privacy→ Trusted computing; Virtualization
and security;Operating systems security.
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1 INTRODUCTION
In the past few years, solutions such as Linux Containers (LXC)
and Docker have provided compelling alternatives to heavyweight
solutions such as virtual machine monitors running guest operat-
ing systems. Container mechanisms provide OS-level virtualization,
wheremultiple isolated systems can be rununder the sameoperating
system kernel. Cloud computing providers, in particular, stand to
gain from containers, as their substantially lighter use of computing
resources allows far greater density of deployments per physical ma-
chine and drives down infrastructure costs. However, a significant
concern with this approach is the extent to which separation be-
tween containers is possible. Specifically, because containers share a
common OS kernel, any vulnerability that exploits the kernel would
affect all other containers on the system.

Intel SoftwareGuardExtensions (SGX) [22] provides a compelling
newway to establish guarantees of trustworthy execution and plat-
form integrity. SGX preserves the confidentiality and integrity of
sensitive data in enclaves, secure regions of memory that are pro-
tected from unauthorized access by higher privileged processes and
system software. Unfortunately, while there has been a surge of
research into providing SGX-enabled security guarantees within
cloud environments, including Haven [5], Graphene-SGX [59, 60],
SCONE [3], and Panoply [54], these have not been adopted to-date
by most cloud providers. This may be due to a number of security,
scalability, and usability concerns from both cloud providers and
users: cloud operators worry about the security guarantee of unoffi-
cial SDKs (current solutions that integrate SGX do not interface with
the official SDK provided by Intel), limited support for remote attes-
tation within containers, limited physical memory for Enclave Page
Cache (EPC) making it difficult to support hundreds of enclaves, and
potential denial-of-service attacks against EPC by malicious users;
meanwhile, end users need to carefully partition SGX programs to
reduce the TCB and face the challenge of rewriting legacy applica-
tions to make use of SGX. Solutions such as Haven, Graphene-SGX,
and SCONE do offer convenience by removing this need to partition,
but come at the cost of an increased TCB that includes all of an ap-
plication’s insensitive components. While Panoply places different
parts of application logic into separate enclaves, the creation of and
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communication with multiple enclaves per application increases
EPCmemory consumption.

In particular, when deploying SGX in a cloud environment, we
believe the following issues must be addressed:

(1) Limited support for remote attestation:A critically important
feature of SGX is its ability to attest to the identity and in-
tegrity of SGX applications to third parties (e.g., cloud users),
but neither Haven nor SCONE provides native support for
CPU remote attestation.

(2) SGX application security: Solutions that involve placing en-
tire applications within a secure enclave, such as Haven,
Graphene-SGX, and SCONE, do not necessarily guarantee
security, as they can dramatically expand the TCB and may
contain vulnerabilities fromwithin either applications or li-
braries, such as the Heartbleed [9] bug within OpenSSL.

(3) Limited EPC memory: The current maximum EPC size is 128
MB, with approximately 90MB left for users after accounting
for enclave management [28]. While EPC page swapping is
supported onLinux, it leads to a considerable performance hit.
A cloud operator has a vested interest inminimizing themem-
ory footprint of enclaves, which would allow the supporting
of many users and reducing of performance degradation (due
to swapping) at the same time. The EPC limit also implies
cloudproviders need toprotect theEPC from (malicious) over-
consumption, a factor not considered by existing solutions.
SGXv2 even allows dynamic EPC page allocation during the
enclave runtime, exacerbating EPCmemory consumption.1

(4) Support for legacy applications: To reduce the TCB inside en-
claves, Intel [21, 23] mandates program partitioning. Unfor-
tunately, this makes programming for SGX non-trivial.2

We note that most of the concerns surrounding adoption of SGX-
supported containers in the cloud are the result of an incomplete
infrastructure, from the OS to the application layer. We address
these concerns through our development of lxcsgx, a platform fully
enabling Intel SGX deployment for Linux Containers (LXC) in the
cloud environment. Unlike past solutions, we pay particular atten-
tion to the practical deployment concerns in a cloud environment
mentioned above. In so doing, our contributions include:

• Enabling SGX remote attestation for containerized applica-
tions. Compared to native host attestations, the overhead is
6.9% and 4.9% for containerized local and remote attestations.
• Enforcing EPC memory usage control per container in the
Linux kernel to prevent (malicious) overuse of resources.
• Implementing a GCC plugin to assist program partitioning to
reduce the TCB in the enclave and better support scalability.
• Implementing a software TPM using SGX, providing a fast
hardware TPM replacement as well as socket APIs for legacy
applications, which can access the TPM functionality in an
attestable enclave instead of being fully refactored for SGX.
The speed of TPM operations ranges from 10 to 280 µs.

1 We provide further discussion on why SGXv2 is not a panacea in Section 6.
2The Intel SGX SDK Developer Manual v1.9 has 320 pages.

• Retrofitting and evaluating Nginx/OpenSSL and Memcached
using SGX based on lxcsgx. Compared to original native ap-
plications, the overhead is less than 9.5% for Nginx/OpenSSL
and 20.9% for containerized Memcached.

Outline. The remainder of this paper is structured as follows:
Section 2 further motivates our work on lxcsgx; Section 3 describes
the design and implementation of lxcsgx; Section 4 shows how to
retrofit applications by leveraging lxcsgx; Section 5 evaluates the
performance of lxcsgx and the applications built atop it. Finally we
discuss takeaways from our work in Section 6, while contrasting it
against the existing literature in Section 7, and conclude in Section 8.

2 MOTIVATION
Solutionsallowinganentireapplication torunwithinanSGXenclave
without anymodifications, such as Graphene-SGX and SCONE, ease
the integration of SGX with existing (legacy) applications. However,
these approaches tend to bloat both TCB and enclave size, miss key
features such as remote attestation, and ignore hardware constraints
on EPC size (instead totally relying on EPC page swapping). We
examine limitations of these solutions to further motivate our work.

2.1 Why could unofficial SDKs be problematic?
We observe that some cloud providers (e.g., IBM and Azure [48])
had SGX-capable servers available as early as 2017, but they did not
officially support SGX applications until recently. We speculate that
concern over unofficial SDKswas a contributing factor to the holdup.

Solutions built on customized software stacks or unofficial/home-
made SDKs, such as Haven and SCONE, cannot provide native
support for remote attestation.3 Remote attestation requires Intel’s
Quoting Enclave (QE), which leverages Intel Enhanced Privacy ID
(EPID) [32] and is part of the Intel SGX software stack. The missing
remote attestation is critical, because it provides cloud users with a
guarantee that the desired enclave has the right measurement and
is running on a genuine Intel CPU with SGX enabled (rather than a
software emulator).4 Without such a guarantee, it is impossible to
reason about the security of the SGX-supported cloud platform.5

Runtime libraries within the enclave impose security concerns
as well. Software Grand Exposure [7] and Cachezoom [40] have
shown that traditional crypto libraries inside the enclave, such as the
OpenSSL used by Graphene-SGX and Panoply, are still vulnerable
to cache-based side channel attacks. Intel Integrated Performance
Primitives (IPP, built into the Intel SGX SDK) appears more secure
due to its usage of AES-NI [30]. Similarly, putting glibc or musl6
into the enclave naively, as Graphene-SGX and SCONE do, might
still be a vulnerable practice due to the insecure functions included
(e.g., strcpy). In contrast, all “dangerous” functions are removed from
Intel’s trusted C library, and “sensitive” functions are implemented
using hardware instructions (e.g., RDRAND for rand).

3 Haven’s attestation is emulated and requires trust in the cloud provider.
4 SCONEprovides only local attestation,whichdoesnot give the latter guarantee.Haven,
while not strictly a container environment, does not support remote attestation either.
5 With regard to the recent Foreshadow [61] attack, which leverages out-of-order
execution to extract a SGX-enabled machine’s private attestation key and allows an
adversary to forge valid attestation responses, Intel has releasedmicrocode updates [27].
As stated by Van Bulck et al. [61], Foreshadow exploits an implementation bug and does
not invalidate the architectural design of Intel SGX.
6https://www.musl-libc.org/

Session 6: Hardware Assisted Data Security CODASPY ’19, March 25–27, 2019, Richardson, TX, USA

256

https://www.musl-libc.org/


Compared to other SGX software stacks, the official Intel SGX
SDK seems to be the most secure open-source solution, designed for
security and with defenses against Spectre attacks [34]. Azure also
exclusively supports the Intel SGXSDK in its cloud environment [48].
While other libraries may provide alternative means for attestation
and hardening against attacks, reliance on them consequently alters
the SGX trust model. In the remainder of the paper, we assume the
official Intel SGX SDK to be deployed in the cloud environment.

2.2 Why is program partitioning preferred?
Program partitioning requires application developers to figure out
the most security-sensitive parts of the code, and transform them to
use SGX. Though cumbersome, this methodology may be the best
security practice to reduce the attack surface via reducing the TCB
in the enclave. Because syscalls are not allowed inside the enclave,
any SGX solution that does not require program partitioning instead
relies on an additional middle layer (e.g., LibOS) to emulate these
syscalls; this practicemight bloat theTCBdependingon the coverage
of the emulation. Furthermore, as explicitly mentioned in the SGX
Developer Manual [24]), putting vulnerable code into enclaves does
not suddenly make the code secure.

The other benefit of program partitioning comes from the po-
tentially small EPCmemory consumption in both loading time and
runtime. The binary size of Drawbridge LibOS used byHaven is over
200 MB, which is even beyond the maximum 128 MB EPCmemory
limitation. While TCB size does not directly determine the memory
consumption, they are related. For example, a partitioned OpenSSL
library in Panoply takes around 6MB of EPCmemory, whereas an
unmodified library takes 65MB in Graphene. To assist with program
partitioning, lxcsgx contains a GCC plugin gccsgx, which supports
security level tagging in the source file and lightweight tainting
analysis based on the tagging.

2.3 Why is EPCmemory control important?
Supporting many users with only 128 MB EPCmemory on a single
server imposes fundamental challenges to cloud providers. A simple
memory leakagebug inSGXapplicationscanexhaust the limitedEPC
resource and cause the SGX kernel driver [25] to swap out enclaves
of other users. Evenworse, amalicious user could launchDoS attacks
against the EPCmemory or conceal cache attacks in the enclave [52].
The result of these attacks are performance degradations [45] and
security breaches. The situationgetsworse forKVMSGX[26], Intel’s
SGX virtualization on KVM solution. KVM SGX does not support
EPC oversubscription, meaning a VM cannot be created if the virtual
EPC requested is beyond the physical EPC limit. Unlike any existing
SGX solutions, lxcsgx recognizes the importance of EPC memory
protection, and enforces EPCmemory usage control per container.

2.4 Why is a software TPM crucial?
Programming SGX applications using the Intel SGX SDK is not easy.
It requires application developers to have a deep understanding of
security concerns specific to the application, as well as of the SDK
APIs. Moreover, as shown in later sections, even a simple enclave
implementationmay take 1MB of EPCmemory. This means a single
server can support no more than 100 users at the same time.7 As a
7Recall that the actual EPCmemory left for users is around 90 MB.

Haven Graphene SCONE Panoply tpmsgx

209 64.7 >4.0 5.9 1.1
Table 1: Enclave size (MB) for Nginx/OpenSSL in different
SGX solutions.

result, EPC page swapping will eventually happen when a new user
needs to create an enclave, impacting performance and security by
introducingpage faults.Unfortunately,unlikea typical shared library
such as glibc, an enclave cannot be shared by different processes to
reduce EPCmemory consumption. Each process needs to allocate
a new virtual address region to load the same enclave, which maps
into different EPC pages. By design, EPC pages are not shared.

Weobserve that thedesiredSGXfunctionalities areusually shared
among a number of applications; these include crypto operations,
random number generation, and secure storage. Therefore, it is pos-
sible to have this general platform service create a single enclave
that serves many different applications at the same time. This cloud
service can provide user-friendly APIs, and reduce the EPCmemory
consumption by avoiding user enclave creation. We instantiate this
service as a softwareTPM8 usingSGX (tpmsgx).As a core component
of lxcsgx, it provides common crypto implementations based on the
Intel SGX SDK, and a typical socket API for application developers.
As we will later demonstrate, we transform Nginx/OpenSSL to use
tpmsgx for crypto operations during the SSL/TLS handshake. Table 1
shows howmuch tpmsgx helps to reduce the EPCmemory consump-
tion by reducing the enclave size, compared to other SGX solutions.9

We summarize and compare the various features of existing SGX
solutions and lxcsgx in Table 2. We also separately list tpmsgx in the
table, because it can be used independently of the other components
of lxcsgx. We believe lxcsgx provides an SGX solution that considers
practical deployment issues for containers in a cloud environment.

3 DESIGNAND IMPLEMENTATION
Intel SGX provides a means to improve the security of applications
via runtime integrity and confidentiality.We investigatehow toprop-
erly intertwine Linux containers and SGX in a cloud environment
through our lxcsgx architecture, shown in Figure 1. We choose to fo-
cus on LXC, but lxcsgx can be extended to support Docker as well.10
Although the components of lxcsgxmayappear to be loosely coupled,
they share a unified goal and work together under a common plat-
form infrastructure to facilitate SGX use within cloud environments.
We fully describe the design and implementation of each component
in this section;we also discuss the considerationsmade for balancing
practical architectural limitations and the programming paradigm
of SGXwith respect to security, scalability, and usability.

3.1 Threat Model and Trust Model
Weconsideracooperativecloudenvironment,whereeachserver sup-
ports hundreds of Linux containers. This number is reasonable [33]
for deploymentdue to the lightweightnatureof containers compared
to VMs, and is particularly apt for microservice-based environments.

8 While simply plugging in a TPMdoes not necessarilymake a legacy application secure,
we hope the familiarity of a TPM, along with the provided software APIs for interfacing
with it, will ease the process of supporting legacy applications.
9 Please note that the number for SCONE is conservative, sinceOpenSSL is not included.
10Docker isdescended fromLXCand,whiledifferent, sharesmanyof thesameprinciples.
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Solution Container Support Remote Attestation EPC Control TCB (LoC) Enclave Size (MB) Software Stack Overhead FOSS

Haven [5] N/A N N >1.0M 209 Simulation <54% N
Graphene-SGX [59, 60] N/A Y N 1.3M 58.5+App Custom 50% (avg) Y

SCONE [3] Docker N N >187K 2.5+App Custom <40% N
Panoply [54] N/A Y N 140K PartitionDep Custom 24% (avg) Y

lxcsgx LXC Y Y 119K PartitionDep Intel <20% Y
tpmsgx LXC Y N 2K 1.1 Intel <10% Y

Table 2: Comparison among existing SGX solutions versus lxcsgx and tpmsgx

Application
LXC

Abstract UNIX Socket 
Pass-through

aesmd tpmsgxd

SGX DriverEPC control

Quoting
Enclave

Application

user

kernel

Software 
TPM

Enclave

Legacy
Application

Enclave

Figure 1: lxcsgx’s design enables containerized applications to communicate out from LXC via an abstract UNIX socket. This
gives applicationswithin a container access to Intel’s aesmd and our softwareTPM (tpmsgxd), all while the SGXdrivermonitors
each LXC container’s EPC usage. tpmsgxd is also available to applications outside a container.

Cloud
LXC aesmd

Quoting
Enclave

Application

Enclave

Challenger

X

Figure 2:Where therewas previously no path between an ap-
plication in LXC and aesmd, our abstract UNIX socket pass-
through enables this path and thus attestation.

We expect that the cloud service provider attempts to uphold its
contract with customers (e.g., through timely system patching to fix
bugs and isolating containers using kernel features). However, we
do not necessarily trust the cloud provider, which may be interested
in breaking the confidentiality of hosted containers unbeknownst
to its customers. Malicious cloud providers may also actively try to
compromise the confidentiality and integrity of hosted containers.

The TCB of lxcsgx comprises SGX-enabled CPUs and code/data
loaded into enclaves. Neither the Linux kernel nor the LXCprograms
running on the cloud server are trusted, although we expect them
to provide certain basic functionality (e.g., starting the system and
containers). We do not consider DoS attacks launched by ring-0
attackers (e.g., to prevent users from using Intel SGX). Additionally,
we do not consider controlled-channel attacks from ring-0 attackers
or side-channel attacks from ring-3 attackers. These attacks [7, 52,
62, 65] are orthogonal to the problem lxcsgx is trying to solve and
have been well considered in the literature [6, 14, 31, 38, 53, 63].

3.2 Remote Attestation for LXCApplications
When challenger and attester applications are both running within
thesamecontainer, local (intra-platform)attestationmaybeachieved
by the twoapplications communicatingwitheachother andexchang-
ing the enclave measurement [2]. However, when the challenger is

running in a different container or on a different physical machine,
remote (inter-platform) attestation is needed, where the remote chal-
lenger is provided a proof, or quote, of the desired enclave. Getting a
quote requires the attester to communicatewith theQuotingEnclave
(QE) [2, 32], provided by Intel SGX SDK as daemon process aesmd
running on the native machine. Due to the use of an abstract UNIX
socket by aesmd, and the inability of LXC/Docker tomount a nonfile-
backend socket, remote attestation for containerized applications
does not simply work out-of-the-box, as shown in Figure 2.

The simplest solution would be to make the network namespace
of the container the same as that of the native host (e.g., by bridg-
ing the container’s network interface card (NIC) to one in the host
machine). However, this configuration breaks network isolation be-
tween containers and the host, meaning it cannot be used in a cloud
environment. Another potential solution would be to run aesmd
inside containers. Unfortunately, this does not work either because
the SGX kernel driver cannot be installed inside containers. Further-
more, the driver only supports one aesmd/QE given a platform. Even
in the absence of these limitations, cloud providers might not wish
to duplicate all the SGX platform services per container, which both
runs up against disk quotas and wastes EPCmemory.
Linux kernel implementation.While it is easier to modify the
Intel SGXSDKdirectly,11we add a new feature to the Linux kernel to
support abstract UNIX socket pass-through for Linux containers.12
We believe this to be a missing feature for both the Linux kernel and
LXC. We modify the connect() syscall for UNIX sockets. We add a
new directory under /proc called lxcsgx, and add an entry sgx_sock,
which accepts inputs from user space (e.g., the container process)
specifying the abstract UNIX socket to be passed through. When
applications write into /proc/lxcsgx/sgx_sock, the kernel retrieves
the PID and network namespace of the application, along with the
abstract socket name, storing these together in the kernel space as

11 Intel actually did this in the recent versions, downgrading the abstract UNIX socket to
a traditional one, whose pass-through is supported both by the Linux kernel and LXC.
12 Open-source kernel changes can be verified by the community andLinuxmaintainers.
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a record indexed by network namespace. For a connection request
using an abstract UNIX socket, the original network namespace
checks will reject the request unless both source and destination
sockets share a namespace. We extend these checks for abstract
socket pass-through by looking to see if a pass-through record exists
with the source and destination abstract sockets.
LXC implementation. To enable LXC to use the abstract UNIX
socket pass-through feature provided by the kernel, we add a new
configuration to LXC named lxcsgx.sgx.sock. Requests are passed to
the kernel using /proc/lxcsgx/sgx_sock. For example, to support re-
mote attestation, setting “lxcsgx.sgx.sock = sgx_aesm_socket_base” is
sufficient to let the kernel pass the connection request from the con-
tainer to aesmd outside the container. Aftermounting the SGXdriver
using lxc.mount.entry, we are able to support remote attestation of
SGX applications running inside containers.

3.3 Controlling EPCMemory Usage
To prevent EPC memory from being (maliciously) exhausted by
certain users or containers, we count the number of EPC pages al-
located per container, rejecting further allocation requests if the
EPC quota of the requesting container is exceeded. However, finding
the corresponding container that is responsible for each EPC alloca-
tion request is non-trivial, because containers are transparent to the
underlying Linux kernel, which only sees processes. One possible
solution is to trace the Parent PID (PPID) all the way back to the
container process (i.e., lxc-start) if the given process belongs to a
container. Unfortunately, thismethodhasO (n) complexity, and does
notwork if the process is not directly forked by the container process
(e.g., if running applications using lxc-attach). Instead, we use the
network namespace as a unique identifier for containers, since it is
shared by all applications running inside the container. Inmost cases,
containers are configured with different virtual NICs (veth in LXC),
and thus have different network namespaces. When one network
namespace is shared by multiple containers, the EPC control will be
applied to every container within the namespace.
SGX kernel driver implementation. The SGX kernel driver is
responsible for EPC memory management, including allocation,
swapping, and reclaiming. To access EPC control from user space,
we add another two entries under the /proc/lxcsgx directory, named
epc_control and epc_limit. The former is used to enable/disable EPC
control globally on themachine,while the latter is usedby containers
to pass the EPC control information to the kernel. Each EPC control
record saved in the kernel contains network namespace, PID of
the record creator, EPC usage limit (number of 4K pages), a flag to
activate/deactivate this record, and the currentusageofEPCmemory
of the container. Upon each attempted EPC page allocation (EADD),
we find the PID of the requesting process using the enclave owner
information maintained by the SGX driver. Given the PID, we find
the corresponding network namespace and retrieve the EPC control
record. If the record is activated and the requested EPC usage is
within the limit, allocation is permitted and usage count increased.
Similarly, for EPC page deallocation, we reduce the current usage
count of the corresponding EPC control record.
LXCimplementation.To leverage theEPCcontrolmechanism, an-
other twonewconfigurations (lxc.sgx.epc.limitand lxc.sgx.epc.control)
are added into LXC. For example, “lxc.sgx.epc.limit = 1000” is used to

TPM Enclave

TPM Application

Keystore

TPM API

(Op, Data) (Ret, Data)

UNIX Socket

LOAD_KEY

SIGN

RDRAND

SGX
Trusted

Crypto API

Figure 3: The architecture of tpmsgxd. The TPMAPIs are ex-
posedviaaUNIXsocket.ThewholesoftwareTPMimplemen-
tation is self-contained, running inside the enclave.

set the maximum EPCmemory usage to be 1000 pages for the con-
tainer, while “lxc.sgx.epc.control = 1” is used to activate the EPC con-
trol for thiscontainer.Thecontainerwrites into /proc/lxcsgx/epc_limit
to add the EPC record into the kernel during startup. System admin-
istrators may also apply commands to the /proc entries to modify
EPC control records in the kernel as needed.

3.4 tpmsgx: A Software TPMUsing SGX
To reduce the learning curve of SGXprogramming and free the users
from creating their own enclaves, we design a software TPM using
SGX, tpmsgx, as a general platform service providing a socket API
for applications not written with SGX in mind. The whole design
of tpmsgx is grounded in the functionality and security features
provided by TPM; we focus on application-facing functionality and
not on additional features (such as measured boot and system at-
testation) that are built upon TPM.We summarize the differences
among (hardware) TPM, fTPM [47],13 and tpmsgx in Table 3. Unlike
low-speed TPM chips with fixed firmware installed, tpmsgx enjoys
bothCPU speed andflexible implementations,with the SGX-enabled
CPU becoming the hardware root of trust. This also means the secu-
rity of tpmsgx is heavily dependent on the code in the enclave.14 We
build upon Intel IPP within the SDK to provide common TPM func-
tionality in tpmsgx, including random number generation, hashing,
symmetric/asymmetric crypto primitives, and secure storage.

An issuewith using SGX as a TPM is the lack of persistent storage.
The data (keys) saved in the enclave will be lost after a reboot. This
can be solved with CPU sealing, which encrypts data to the disk
using a sealing key generated by the EGETKEY instruction based
on different sealing policies [2]. For instance, the sealing can bind to
the measurement of the enclave, so only the enclave with the same
measurement can unseal the data (similarly to TPM sealing using
PCRs). Compared to TPM-based attestation, tpmsgx also supports
SGX attestation, which not only provides a trusted measurement of
the implementation to the challenger, but also establishes a secure
channel with the remote party thanks to the key exchange which
occurs during the remote attestation procedure. Since the cloud
provider is not trusted in our threat model, we expect tpmsgx to be
auditable (e.g., open source), and customers can use SGX attestation
to retrieve the measurement of the tpmsgx running within the cloud
environment and verify it is as expected, thus establishing trust.
13 An alternative TPM implementation built atop ARM TrustZone.
14Again, putting the entire OpenSSL/GnuTLS inside an enclave to use its functionality
for tpmsgxmight be a bad idea, due to their large attacking surfaces [15, 16].
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Solution Trust Anchor Implementation CPUMode Software Stack Secure Storage RT Integrity Secure Channel Speed*

TPM [58] TPM Hardware Ring-0 TSS NVM N/A N/A 10-400ms [57]
fTPM [47] TrustZone Firmware SecureWorld OP-TEE eMMC RPMB N/A N/A 10-200ms
tpmsgx SGX Software Ring-3 Intel SGX SDK Sealing Y Y 15-280µs

Table 3: Comparison between tpmsgx and other TPM technologies. Note that the speed column provides a timing range of
different TPM commands, such as RNG, key generation, quote, etc.

Program

a b c

tagged
global

variable

tainted
global

variable
b = a c = b …

Enclave
ba

Figure 4: Given a set of tagged global variables (e.g., a), gcc-
sgx identifies intermediate tainted variables (e.g., b). These
global variables (e.g., a and b) constitute a minimal TCB for
the enclave. The same process applies to tagged functions.

Software TPM implementation. tpmsgx is implemented as a dae-
monprocess tpmsgxd running on the native host (similarly to aesmd).
It uses an abstract UNIX socket to receive requests from either native
applications or containerized ones. Figure 3 summarizes its inter-
face and components. Applications use the socket API to access
TPM functionalities inside tpmsgxd. When remote attestation is en-
abled, an AES128 shared secret is established between the tpmsgx
enclave and the requesting application. All responses from tpms-
gxd are encrypted using AES128-GCM before leaving the enclave.
tpmsgx provides the operations listed below:
• Random number generation using RDRAND.
• Loading of AES128 symmetric or ECC256 private keys.
• ECC256 key generation.
• AES128-GCM encryption/decryption.
• DH key exchange.
• SHA256 hashing.15
• ECDSA signing and verification.

LXC implementation. For applications running inside containers
to use tpmsgx, we add another new configuration into LXC, named
lxc.sgx.tpm.sock. Similarly to lxc.sgx.sock, “lxc.sgx. tpm.sock = tpms-
gxd_sock_base” enables communication between the containerized
applications and the tpmsgxd, with the help of the abstract UNIX
socket pass-through feature in the kernel.

3.5 gccsgx: A SGX Program PartitioningHelper
Retrofitting legacy applications using SGX is challenging. Develop-
ers need to find and place security-sensitive parts of their program
into an enclave while minimizing TCB, making it as small as pos-
sible to reduce the attack surface. We design gccsgx based on GCC
to help facilitate SGX program partitioning by finding a minimal
TCB for the enclave using static tainting analysis. We first add a
new attribute in GCC – SGX_ENCLAVE(), allowing developers to tag
global variables or functions considered security-sensitive within
the application. We design the attribute to model multilevel security
(MLS) labels supporting different security levels, such as top-secret

15Even though SHA256 is not a keyed operation, SHA256 is often used in security-
sensitive contexts (e.g., hashing of raw data by the SGX SDK to produce signatures).

or confidential, for two purposes. Given the EPC quota in a cloud
environment, developers can decide whether or not to include code
or data with lower security levels based on the resulting enclave
binary size and runtimememory consumption. The tainting analysis
may also taint the code or data with a different security level from
what it was tagged as. By keeping the tagged level unchanged and
providing a tainting level at the same time, we are able to reveal in-
trinsic connections within the program and catch potential mistakes
made in security analysis for program partitioning.

To find a minimal TCB for the enclave, we consider global vari-
ables and functions which are directly tagged and intermediately
tainted, as shown inFigure 4. This is a tradeoffbetweenanactualmin-
imal TCB, which only includes tagged components, and a complete
minimal TCB, which incorporates everything along the tainting
paths.16 We do not consider implicit flows in gccsgx.

Glamdring [35] may be used instead if a complete minimal TCB is
desired.TouseGlamdring, developersfirst annotate inputandoutput
variables in the source code that contain sensitive data. Startingwith
the annotated inputs, Glamdring performs static dataflowanalysis to
track the propagation of sensitive data through the application. Us-
ing these annotations, Glamdring performs static backward slicing
to identify functions that annotated outputs depend on. All security-
sensitive functions identified by the above two processes are placed
inside the enclave. Glamdring is compatible with our lxcsgx archi-
tecture, but we choose gccsgx; by not fully propagating taint, gccsgx
produces a smaller TCB than approaches targeting completeness.

We assume developers would find most obvious places to tag
after a security analysis, and gccsgx extends the minimal TCBwith
minimal taint propagation. Note that once this security-sensitive
data/code is inside the enclave, the original tainting path will be
broken. For instance, variable c in Figure 4 cannot get the value of b
until an ECall is explicitly defined to grant access permission. We
leave the choice to developers to determine if an ECall should be
made or that part of code/data should be inside the enclave as well.17
Implementation.Weimplement gccsgx as aGCC4.8.4 pluginusing
the GCC Python Plugin interface [37]. We implement three security
levels for the SGX_ENCLAVE() attribute: “top-secret”, “secret”, and
“confidential.”18 To handle memory aliasing, we require the “-O”
optimization during compilation, as gccsgx hooks right after the
“alias” GCC pass, which performs structural alias analysis, points-to
and escape analysis, and flow-sensitive/insensitive analysis [18].
Example output from gccsgx is provided below. For example, tainting
analysis may raise the tagged security level, such as var1, or find
missing components during initial tagging, such as var3 and fun3.

16 It is possible that a large part of an application needs to be put inside the enclave as a
result of high taint propagation.
17 gccsgx only identifies theminimal TCB and does not perform enclave code generation,
so we must ultimately rely on the developer to make decisions like these.
18Note that these labels are only used by tainting, rather than for policy control or
privilege separation.
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Figure 5: Relationship of tpmsgxd, sgxengine (e_sgx.so), and
Nginx. HTTPS connections are routed throughNginxwhich
communicates with OpenSSL to establish a TLS session.

********************

Global vars:

var1[test.c:14]: tagged [" confidential "], tainted [" secret "]

var2[test.c:25]: tagged [" secret"], tainted ["N/A"]

var3[test.c:17]: tagged ["N/A"], tainted [" confidential "]

--------------------

Functions:

fun1[test1.c:9]: tagged [" secret"], tainted ["N/A"]

fun2[test1.c:10]: tagged [" confidential "], tainted ["N/A"]

fun3[test1.c:33]: tagged ["N/A"], tainted [" secret "]

********************

4 APPLICATIONCASE STUDY
We now consider how lxcsgx can support containerized applica-
tions. We examine Nginx/OpenSSL (a web server providing HTTPS
services) andMemcached (a key-value in-memory database). Each
application leverages different components of lxcsgx, based on dif-
ferent threat models and tradeoffs. Both run inside LXC containers.

4.1 Hardening Nginx/OpenSSL
Nginx [55] is a popular open-source web server that touts high
performance and scalability. It embeds the OpenSSL [44] library
to handle all low-level details for the web server, such as crypto
operations. In order to provide authenticity to remote users via
HTTPS, the web server requires a server certificate and private key
to be generated. This certificate is signed by a Certificate Authority
(CA) in order to create a chain of trust from a well-known issuer to
the website. The server’s private key is an important component
in running HTTPS. This key is loaded upon Nginx boot from the
file system and passed into the OpenSSL library for signing. During
an SSL/TLS handshake, the private key is used to sign data, and the
client verifies the signature using the server’s public key (available
in the server certificate). The security of the private key is essential;
if compromised, an attacker can impersonate the web server.

A major bug found in OpenSSL in 2014 called Heartbleed [67]
allowed remote attackers to leak random ranges of server memory,
some of which were discovered to contain cookies, HTTP request
bodies, passwords, and server private keys. Unless a web server was
using a physical TPM for all TLS signing operations, the private key
would have to be in memory at some point during Nginx’s lifetime.
For most cloud users running on remote hosting, placing private
keys in a physical TPMmay be difficult or impossible to coordinate

with their cloudproviders. The low speed ofTPMalso interfereswith
the scalability of Nginx [41]. In response, software-only solutions
have attempted to partition server private keys away from theNginx
process and OpenSSL library [56]. Unfortunately, these solutions
merely place the private key in a different process/service on the
same machine, while requiring changes to Nginx and OpenSSL.

This is a typical use case of tpmsgx, where legacy applications
need a trusted execution environment for crypto operations, and yet
developers do not need to accommodate a new programming par-
adigm. Leveraging tpmsgx, we develop an OpenSSL ENGINE called
sgxengine, a pluggable module that allows hooking of key crypto-
graphic operations. This ENGINE talks to tpmsgxd, transferring and
translating function calls dealing with the private key into the TPM
enclave, as shown in Figure 5. With all functionality pushed into the
SGX-based TPM, the private key never has to be loaded into Ng-
inx/OpenSSLmemory. As we show in later sections, our solution
achieves security and scalability at the same time.
Implementation.OpenSSL started to support theENGINEAPI from
version 0.9.6 onwards. Thus we choose OpenSSL 1.1.0c as the testing
base. For Nginx, we choose 1.11.9, and slightly patch it to force the
usage of our OpenSSL ENGINE. Note that we do not modify OpenSSL
itself. In the sgxengine,we set thedefault private key loading function
of OpenSSL to the one provided by tpmsgx. We then do a one-time
load of the private key into the TPM and receive a key-id back for
future reference. To guarantee that this key only stays inside the
enclave memory, we fake the PKEY structure that is returned to
OpenSSL so that we don’t break the ENGINEAPI.

We configure Nginx to use the strongest cipher suite, ECDHE-
ECDSA-AES128-GCM-SHA256, also known as NSA Suite B [49]
combination 1, supporting TLSv1.2 connections. The sgxengine is
essentially ahooked implementationof EC_KEY_METHOD inOpenSSL.
This covers key generation, shared key computation, and signing,
which are mapped into EC key generation, ECDH shared secret
computation, and ECDSA signing in tpmsgx. During TLS session key
generation, the real public key and a fake private key are returned
to OpenSSL, while the real private key stays only inside the enclave
memory. All future TLS operations that would normally use the
private key in OpenSSL are now routed to and handled by tpmsgx.

One ENGINEAPI limitation we discovered was how the design of
signing in OpenSSL differs from that in Intel SGX SDK. The signing
function in OpenSSL expects the message digest, while the SGX
SDK receives the raw data and performs hashing internally. We opt
to not change any source code within OpenSSL or Intel SGX SDK.
Therefore, we hook the SHA256 digest functions in the sgxengine to
record the raw data of digest for future transfer to tpmsgx.

4.2 SecuringMemcached Credentials
Memcached [17] is a key-value store used to alleviate the load from
webdatabases byfirst attempting tohandle queries fromRAMbefore
forwarding them to the database. While Graphene-SGX [60] and
Glamdring [35]have tried to secure thedatabasebyputting thewhole
applicationoraportionof it into theenclave,weconsideruser creden-
tial protection as an alternative. Starting from 2014 [19],Memcached
supports the Simple Authentication and Security Layer (SASL) [42]
which requires clients to supply a username and password before
a connection. During authentication, the supplied credentials are
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checked against an internal SASL password database containing
plaintext entries, which are loaded from disk into memory.

Unfortunately, due to remote code execution vulnerabilities [10–
12], attackers could not only change the data saved in the memory,
but also steal user credentials. Ironically, one of the vulnerabilities
lies in the SASL authentication [12]. Ideally, SASL should be used
only as a way to provide an authentication protocol for receiving
the input from the client and sending back the authentication result.
Even if the SASL layer is compromised, the sensitive information
saved in Memcached should not be leaked to its third-party libraries.
Weachieve this securitygoalby retrofitting theauthenticationpartof
Memcached using SGX.We find the security-sensitive code and data
with the help of gccsgx, and put them into the enclave, preventing
credential leakage to the untrusted code.
Implementation. As the first step in security analysis, We first
pinpoint the global variable memcached_sasl_pwdb, which refers
to the database holding credentials. We then tag this variable as an
enclave candidate with security level “top-secret”, and enable gccsgx
for GCC in the Makefile. The output of gccsgx is shown below:
********************

Global vars:

memcached_sasl_pwdb[sasl_defs.c:37]: tagged ["top -secret"], tainted

["N/A"]

--------------------

Functions:

init_sasl[sasl_defs.c:170]: tagged ["N/A"], tainted ["top -secret "]

sasl_log[sasl_defs.c:122]: tagged ["N/A"], tainted ["N/A"]

sasl_server_userdb_checkpass[sasl_defs.c:40]: tagged ["N/A"],

tainted ["top -secret "]

********************

Even though we have not tagged any functions, there are two func-
tions tainted by the tagged global variable, these being init_sasl and
sasl_server_userdb_checkpass. We manually verified that this result
of gccsgx is correct (e.g., no memory aliasing for the tagged global
variable). The tainted functions, together with the global variable,
need to be placed in the enclave. We also provide an interface for
sasl_server_userdb_checkpass function in EDL, making this function
accessible to the untrusted part of the program as an ECall. We will
later demonstrate the running of 100 containers with SASL-enabled
Memcached at the same time without introducing EPC page swap-
ping, thanks to the limited TCB and EPCmemory consumption as
the result of program partitioning.

5 EVALUATION
All evaluation is done on a machine with a 4-core SGX-enabled CPU
and 8 GBmemory. The machine is running Ubuntu 14.04 LTS, with
Linux kernel 4.2.8, LXC 2.0.0, GCC 4.8.4, Intel SGX SDK 1.7, and
Intel SGX driver 1.0.19 In evaluating our case study applications,
we use Nginx 1.11.9, OpenSSL 1.1.0c, and Memcached 1.4.33. Our
Linux container instances also use the template for Ubuntu 14.04
LTS on amd64. All containers are created with abstract UNIX socket
pass-through and EPC control enabled. The socket pass-through is
configured with aesmd and tpmsgxd; the EPC limit is set to 1000K
pages (4MB) for each container, making sure all tests run to com-
pletion without being throttled. Both aesmd and tpmsgxd run on
the native host, as shown in Figure 1. We consider three running
environments:

19 No fundamental changes were made to the driver since the tested version (e.g., still
no EPC control), but incremental changes to SGX added support for SGXv2 instructions.

(1) Stock: stock kernel + original SGX driver.
(2) lxcsgx: lxcsgx kernel + SGX driver with EPC control.
(3) LXC: container running atop the lxcsgx environment.

Unless stated otherwise, assume all cases are repeated 100 times.

Simple SGX Applications. To measure the general overhead of
enclave creation, local attestation, and remote attestation in each of
our three environments, we use the SampleEnclave, LocalAttesta-
tion, and RemoteAttestation applications contained in the Intel SGX
SDK. Our results are displayed in Figure 6(a). In all testing cases, the
stock kernel has the best performance, followed first by our lxcsgx
kernel, with added overhead fromEPC control, and then LXC,which
is slowed down by both the socket pass-through and EPC control in
the container environment. The overhead introduced by lxcsgx and
LXC is fairly small compared to the stock setting, ranging from 0.6%
to 4.6% and 4.9% to 6.9%, respectively. In fact, since EPC control is en-
forced only during the initialization phase,20 the overhead of lxcsgx
andLXCwill be amortized once the application reaches a stable state.

tpmsgx. To measure the performance of our software TPM, we run
tpmsgxd on the host machine and our benchmark tool in all environ-
ments to time eight TPM commands, including: generating a 16-byte
random number, loading an AES 128-bit key, encrypting/decrypting
32-byte data using AES128-GCM, generating an ECC256 key pair,
computing DH key exchange based on ECC256, and signing/veri-
fying 32-byte data or a 64-byte signature using ECDSA.We repeat
all test cases with remote attestation enabled to establish a secure
channel between the benchmarking tool and tpmsgxd, measuring
the overhead due to the extra encryption/decryption. The results
are shown in Figure 6(b).

Randomnumber generation, key loading, and encryption/decryp-
tion commands return a response to the client in less than 15 µs.
When remote attestation is enabled, the response is slower due to the
internal encryption before the result leaves the enclave. However,
the response is stillwithin 23 µs. Key loadinghas the lowest overhead
with remote attestation enabled. Whereas other TPM commands
return at least 16 bytes of data to be encrypted, key loading just re-
turns a 4-byte key handle. Crypto operations involving ECC256 are
slow compared to the first group of TPM commands, ranging from
200 µs to 280 µs. The overhead of remote attestation is not obvious
anymore, as the operations themselves takemost of the computation
cycles. Since we run the same command 100 times, the overhead
introduced by the SGX enclave creation, EPC control, and abstract
socket pass-through in both lxcsgx and LXC environments are amor-
tized, achieving close performance to the stock environment.

Nginx/OpenSSL.Tomeasure the overhead introducedby sgxengine
communicating with tpmsgx in Nginx, we configure Nginx to use
NSA Suite B [49] combination 121 as the only cipher supported in
the SSL/TLS handshake, and we compare against the original Nginx
running on the native host. We use the OpenSSL client tool (s_client)
to establish a HTTPS connection, and measure the connection setup

20 SGXv1 does not support dynamic allocation of more EPC pages to applications after
enclave build time [64]. Our EPC control is also applicable to SGXv2; the only difference
is that EPC control will be additionally enforced whenever more pages are allocated.
21AES with 128-bit key in GCMmode, ECDH using the 256-bit prime, modulus curve
P-256 [DSS], TLS PRF with SHA-256 [SHS].
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Figure 6: Our evaluation results for (a) simple SGX applications, (b) tpmsgx, and (c) Nginx, and (d) Memcached.

time. As shown in Figure 6(c)-L, the introduced overhead is less than
1ms for all three SGX environments. Comparing to the raw Nginx
performance, the overhead introduced by lxcsgx, tpmsgx, and
sgxengine together is less than9.5%,whichismuchlowerthan
Graphene-SGX (50%), SCONE (20%), and Panoply (24%).22

To understand the overhead caused by tpmsgx in the sgxengine,
wemeasure the time taken for key loading, ECDSA signing, key gen-
eration, and DH key computation, hooked by sgxengine, as shown in
Figure 6(c)-R. The slowest operation is ECDSA signing, which still
takes less than 0.9ms . Besides key loading, all operations exhibit
similar performance regardless of environment. If we compare this
benchmark with the tpmsgx benchmark, we see a big portion of the
overhead resulting from socket communication and OpenSSL rather
than the software TPM itself (e.g., around 0.5ms for signing). Inter-
estingly, key loading is particularly slow in the LXC environment.
We suspect this is related with the container rootfs being mounted
under the native rootfs, complicating file accesses in the kernel.

Memcached. Tomeasure the overhead introduced by performing
the SASL authentication of Memcached in SGX, we use python-
binary-memcached [50] as a client to benchmark the Memcached
server with SASL authentication support. In each run, we set/get/re-
place/delete 2.5K entries andperform1 authentication and 1flush op-
eration.We use stock kernel + unmodifiedMemcached environment
as a baseline, comparing it against our SGX-version of Memcached
under the three environments.

As shown in Figure 6(d), all SGX-enabled environments except
LXC show comparative performance with the baseline, with over-
head ranging from 0.3% to 3.5%. This is reasonable, since most of the

22Panoply did not evaluate Nginx. The number we reference is an average overhead for
applications they tested.

Compilation Min Avg Max Stdev

Memcached 0.59 0.67 0.78 0.06
GCCw/ gccsgx 36.49 36.55 36.66 0.05

OpenSSL 32.61 33.08 33.48 0.27
GCCw/ gccsgx 693.22 695.73 707.86 4.11

Table 4: Memcached and OpenSSL compilation time in sec-
onds using GCC both w/o andw/ gccsgx.

operations are pure database manipulations, which do not involve
SGX. However, the LXC environment does show some overhead
compared to the other configurations, ranging from 16.7% to 20.9%.
We suspect this may be due to its intrinsic resource constraints, such
as default quotas on CPU/memory, and networking overhead in-
troduced by containers. The authentication operation captures the
overhead of using SGX enclave to hold the SASL credentials and
check against the password. With lxcsgx enabled, native host and
LXC environments show an overhead of 9.1% to 17.1% relative to the
stock kernel. Nevertheless, themaximum overhead is less than
0.2ms per authentication.

gccsgx. To measure the overhead of the GCC plugin during the
compilation, we compileMemcached andOpenSSL using GCC, both
without and with gccsgx enabled for 10 times each, as shown in
Table 4. For Memcached, a normal compilation takes less than 1
second to finish. With gccsgx enabled, compilation takes around 36
seconds even thoughwe are performing a lightweight static tainting
analysis. The overhead compared to normal compilation is around
55x. This slowdownmay be the result of Python implementation of
the plugin, the number of global variables contained in the program,
and the fact that gccsgx processes each function three times across
the different compilation phases to pass the tainting information.
OpenSSL compilation with gccsgx takes around 11 min, introducing
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Application Peak Stack Peak Heap Enclave Size

SampleEnclave 11 KB 12 KB 439 KB
LocalAttestation 3*6 KB 3*16 KB 3*1.1 MB
RemoteAttestation 3 KB 16 KB 1.0 MB

tpmsgx 2 KB 12 KB 1.1 MB
Memcached 2 KB 4 KB 130 KB

Table 5: EPC memory consumption for all applications we
tested. Note that LocalAttestation creates 3 enclaves.

Application EADD EREMOVE EPC Pages Used

aesmd 4574 4123 451
LXC/Memcached 75911 52458 23453

Total 80485 56581 23904
Table 6: Number of SGX instructions and EPC pages allocat-
ed/reclaimed by the SGX kernel driver with 100 LXC/Mem-
cached instances. Total EPC consumption is around 96MB.

anoverheadof around21xcompared to thenormalbuild. Fortunately,
this overhead is just a one-time effort during partitioning.

Through gccsgx, we offer a lightweight alternative for partition-
ing SGX programs. Unlike the Glamdring [35] approach, we further
reduce theTCBviaminimal taint propagation basedon taggedglobal
variables and functions. We believe the plugin would be faster than
Glamdring with respect to analysis time; unfortunately, as Glam-
dring is not open-source, we were unable to compare gccsgxwith it.

EPCmemoryconsumption.TheEPCmemory consumptionof an
application includes the static enclave size and the dynamicmemory
allocation. Wemeasure static enclave size by looking at the size of
the enclave image generated during the SGX build. We measure
dynamicmemory consumption using sgx-gdb provided by Intel SGX
SDK with memory measurement enabled in application enclaves.
The results are shown in Table 5. Most applications use 1 MB or less
of EPC memory per enclave, thanks to program partitioning. The
enclave binary itself appears to be responsible for most of the EPC
consumption due to static linking against extra libraries, such as
trusted C/C++ runtime and crypto. To support more keys generated
or loaded into tpmsgx,weneed to increase theheapsizeof theenclave,
which is configurable during the SGXbuild. Ifwe assumeAES128-bit
keys, each EPC page (4KB) can hold around 256 keys. This means 1
MB EPCmemory could support 65536 TLS connections at the same
time. Note that these numbers are conservative. Actual runtime
consumption is higher due to extra memory needed for enclave
management and buffers holding data from untrusted memory.

We create and start 100 LXC containers with SASL-enabled Mem-
cached running inside. We record the number of SGX instructions
issued by the SGX kernel driver, to inspect the actual runtime EPC
page consumption from the kernel, rather than counting what is
visible in the user-space. The SGXv1 instructions we focus on are
EADD, which adds a page into an uninitialized enclave, and ERE-
MOVE, which removes a page from the EPC. As shown in Table 6,
there are around 24K EPC pages used in total. Most of these are re-
quested by the 100 containers.23 Therefore, the actual EPCmemory
consumption is 24K ∗4KB=96MB in total. Each container consumes
less than 1MBEPC at runtime. Although EPCmemory consumption
is application-dependent, given a reasonable security analysis and
program partitioning, having 1 MB EPC memory usage might be
practical for many applications.
23We ignore the impact of other platform software, such as aesmd.

6 DISCUSSION
Abstract UNIX socket pass-through in lxcsgxmay open a new attack
vector on the host. However, mounting an abstract UNIX socket into
a container should bemore secure thanmounting a traditional UNIX
socket, which has well-known exploitations (20 CVEs [13]) due to
its use of the file backend. The abstract UNIX socket is designed to
solve known vulnerabilities in traditional UNIX sockets. Moreover,
abstract UNIX sockets are still under the control of SELinux [36],
which could also limit the impact of exploiting aesmd or tpmsgxd.

The EPCmemory consumption control in lxcsgx currently only
works for containers rather than normal processes running on the
native host machine, although it can easily be extended to support
EPC control per process. Since SGXv1 does not support addingmore
EPC pages after the enclave is initialized [64], the final EPCmemory
consumption is constrained by the static configuration of the enclave
(determined by the user), and EPC quote (determined by the cloud
provider). For SGXv2, EPC control is the only defense against (mali-
cious) EPCmemory oversubscription, because enclaves can request
more EPC pages during the runtime, breaking the limit in the static
configuration.24 A future work for EPC control is to merge it into
the cgroups [39] subsystem in the Linux kernel as a new resource
controller, providing a more general group-wide policy control.

While fTPM [47] makes fair points onwhyARMTrustZone [1] is
the superior software TPMcandidate, use of SGX comeswith its own
advantages. Since tpmsgx just relies on enclave code running at ring-
3, extending or bug fixing for tpmsgx is much like normal user-space
programming. This upgrade flexibility is important, as demonstrated
when RSA encryption keys were exposed by a recent firmware bug
found in Infineon TPMs [43]. The fix required hardware OEMs to
change their own BIOS/UEFI to update the TPM firmware. tpmsgx is
also very fast, running at CPU speed with a small software stack.

One limitation of tpmsgx lies in the persistent storage (sealing),
since we could not stop the cloud provider from deleting the sealed
data. As we consider a cooperative cloud environment, we assume
the cloud providerwould not erase user data in reality because doing
so is in violation of the service contract with the end users. However,
rolling back the old sealed data is possible since old data can still be
unsealed by tpmsgx. A potential solution is to use the monotonic
counter and trusted time features of Intel Management Engine (ME)
to defend against these rollback attacks [29]. DoS attacks against
tpmgsx are also possible when some containers issue a large number
of requests. A potential solution is to add request rate control per
container within tpmsgx, throttling requests from certain containers
if the sending rate exceeds certain limits.

Automatic program partitioning is a hard problem that has been
an active research topic for years. Being a lightweight static taint-
ing analysis plugin for GCC, gccsgx cannot automatically generate
compiler-ready code partitions, but it gives a framework for assisting
with this problem that is quite challenging to do in a completelyman-
ual fashion.Developers still need towrite in EDL to defineECalls and
OCalls, which bridge the normal application and the enclave imple-
mentation. Nevertheless, gccsgx is designed to seamlessly workwith
the current build system (rather than requiring another toolchain,
24 SGXv2’s max-heap and max-stack parameters [64] only reserve the address space.
Developers may specify a large number (e.g., 1 GB) for these limits to make sure the
address space is large enough for future EPC expansion, in which case actual EPC page
allocation remains unrestricted.
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such as LLVM used by Glamdring [35]), to help facilitate program
partitioning and to provide a minimum TCB option following the
lightweight tainting analysis. For fully automatic SGX program par-
titioning with sound tainting analysis, one can refer to Glamdring,
which can also be integrated into the lxcsgx infrastructure.

7 RELATEDWORK
Intel SGX. Haven [5] is the first attempt to protect user applica-
tions from an untrusted cloud environment using SGX, by putting
the unmodified application and a LibOS together into the enclave.
Subsequently,VC3 [51] tries to secure MapReduce computations in
an untrusted cloud environment. Both Haven andVC3 are based on
an SGX emulator rather than real SGX hardware. Graphene-SGX is
an extension of Graphene LibOS [59, 60] to support SGX. Similarly
to Haven, Graphene-SGX relies on LibLinux to run the application
inside the enclave without changes. Note that these solutions focus
on easing SGX adoption for legacy applications but, unlike lxcsgx,
downplay or ignore the potential impact of a large TCB inside the
enclave and limited EPCmemory available in a system

To reduce the TCB in the enclave, SCONE [3] replaces the LibOS
with a shim layer, and supports running a whole Docker container
inside the enclave. Ryoan [20] alternativelyusesNaCl [66] to build an
application sandboxwithin the enclave.While these solutions have a
thinner middleware layer than LibOS approaches, putting the whole
application into the enclave may still bloat the TCB, introducing a
large attack surface as a result. Panoply [54] further reduces the TCB
by partitioning programs and putting part of the application logic
(namely “micron”) into the enclave. Each application may depend
on interaction with many microns; the creation and communication
of multiple microns per application come at the cost of EPCmemory
consumption and performance degradation. Our solution instead
keeps with the standard partitioning practice for SGX applications.

Eleos [45] notices issues caused by the limited EPCmemory, and
proposes a user-spacememory allocator for EPC to reduce EPC page
faults that result fromEPCpage swapping.WebelieveEleos canbe in-
tegrated into lxcsgx to improve the performance of SGX applications
in general by reducing their EPC memory requirements. To auto-
mate the program partitioning using Intel SGX SDK, Glamdring [35]
applies heavyweight data-flow analysis and backward slicing to find
security sensitive code and data, as well as source-level transforma-
tion to generate compiler-ready code. It requires the LLVM toolchain
rather than GCC, and the compilation overhead is not clear. In cases
where a minimal, yet complete, TCB is desired, Glamdring may be
integrated into lxcsgxasa substitute forourpartitioningusinggccsgx.

TPM.As thecornerstoneofTrustedComputing,TPM[58]providesa
hardware root of trust for software stacks. TPM 2.0 [4] even includes
different specifications for PC client, mobile, and automotive sys-
tems. Unfortunately, these TPMchips arewell-known to be slow and
hard to patch or fix. Software TPM solutions instead try to provide
better performance and/or extend more functionalities. vTPM [46]
virtualizes TPM in the Xen environment, by having slave vTPMs
in domains and a master vTPM in domain 0, which serializes the
communication between vTPMs and the hardware TPM. cTPM [8]
extends the TPM commands for cross-device applications by shar-
ing an additional root key with the cloud. fTPM [47] implements

a software TPM using TrustZone [1], which is available on mobile
platforms. Nevertheless, due to their dependency on a hardware
TPM or on running inside TrustZone’s secure world, these solutions
are still slow when compared to native application speed. Patching
or upgrading is still challenging sincemost of these implementations
are in the form of firmware. To the best of our knowledge, tpmsgx is
the first software TPM solution to use SGX, achieving CPU speed
and enabling normal user-space programming.

8 CONCLUSION
We design and implement lxcsgx, providing a practical Intel SGX
setting for Linux containers in the cloud environment. This includes
an infrastructure that supports remote attestation and EPCmemory
control for containers, a software TPM that can be more easily allow
legacy application to leverage SGX, and a GCC plugin to assist with
program partitioning. We retrofit different applications using the
software TPM or program partitioning to use SGX, while reducing
the TCB and EPCmemory consumption at the same time. The evalu-
ation shows reasonable overhead ranging from 6.9% to 20.9%, which
is the lowest when compared to that of previous SGX solutions.
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