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Abstract

Accurate models of gravitational waves from merging black holes are 

necessary for detectors to observe as many events as possible while extracting 

the maximum science. Near the time of merger, the gravitational waves from 

merging black holes can be computed only using numerical relativity. In this 

paper, we present a major update of the Simulating eXtreme Spacetimes (SXS) 

Collaboration catalog of numerical simulations for merging black holes. The 

catalog contains 2018 distinct configurations (a factor of 11 increase compared 

to the 2013 SXS catalog), including 1426 spin-precessing configurations, with 

mass ratios between 1 and 10, and spin magnitudes up to 0.998. The median 

length of a waveform in the catalog is 39 cycles of the dominant ℓ = m = 2 

gravitational-wave mode, with the shortest waveform containing 7.0 cycles 

and the longest 351.3 cycles. We discuss improvements such as correcting for 

moving centers of mass and extended coverage of the parameter space. We 

also present a thorough analysis of numerical errors, finding typical truncation 

errors corresponding to a waveform mismatch of  ∼10−4. The simulations 

provide remnant masses and spins with uncertainties of 0.03% and 0.1% 

(90th percentile), about an order of magnitude better than analytical models 

for remnant properties. The full catalog is publicly available at www.black-

holes.org/waveforms.

Keywords: numerical relativity, black holes, gravitational waves

(Some figures may appear in colour only in the online journal)

1. Introduction

Advanced LIGO [1] and Virgo [2] inaugurated the era of gravitational-wave astronomy in 

2015 by observing gravitational waves passing through Earth for the first time [3–5]. This first 

gravitational-wave signal, named GW150914, was emitted during the merger of two black 

holes [6]. Subsequently, gravitational-wave signals have been observed from a merger of two 

neutron stars, GW170817 [7], and from nine further black-hole mergers [8–12].

Making the most sensitive searches for binary coalescence in noisy detector data requires 

accurate gravitational-wave templates. Further, inferring properties of the sources of these sig-

nals requires comparing the data against millions of accurate templates. During the late stages 

of a compact binary merger, when the components move at relativistic speeds and spacetime 

becomes nonlinearly dynamical, analytic approximations to the binary dynamics [13] break 

down. This strong-gravity regime reveals the behavior of curved spacetime under the most 

extreme conditions, such as the nonlinear dynamics of merging black holes, the formation and 

relaxation of dynamical horizons [14], and the nature of the remnant black hole left behind 

following the merger of a binary black hole (BBH) [15]. The strong-gravity regime also has 

the potential to place strong upper bounds on deviations from general relativity (or to reveal 

such deviations if they exist) [16–19].
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In this highly nonlinear regime, accurate solutions of Einstein’s equations of general rel-

ativity require numerical-relativity calculations: direct solution of the full dynamical field 

equations  using high-performance computing (for summaries, see [20–23] and references 

therein), which became possible in 2005 [24–26]. Such simulations are essential in exploring 

the dynamics of spacetime curvature itself. They have revealed the simplicity of the merger 

phase [27] and the potentially strong recoil of the remnant (e.g. [28–30]), motivating studies 

of the interplay between the linear momenta of the black holes and of the surrounding space-

time [31, 32]. Simulations have also been used for visualizations of curved spacetime [33–40], 

investigations of spin quantities [41], and the relaxation of spacetime to the Kerr solution 

following merger [42–44]. The motion of the black hole horizons and horizon curvature 

quanti ties have been used to explore eccentric dynamics [45–48], spin precession [49–52], 

and the first law of binary black hole mechanics [53–57]. These in turn have been compared 

to analytic post-Newtonian and self-force approximations (see also [58–60]), mapping out the 

bounds of validity of these approximations.

A key application of BBH simulations is the accurate modeling of gravitational waves 

emitted by these systems during their late inspiral, merger, and final ringdown. Waveforms 

extracted from BBH simulations are essential for analyzing observed gravitational-wave sig-

nals from black hole binaries. Indeed, all BBH observations by LIGO and Virgo were ana-

lyzed using waveform families that rely on numerical relativity for their construction, most 

notably effective-one-body waveform models [61–65] and phenomenological waveform 

models [66–68]. Numerical simulations are also central in validating such waveform models 

[69–76], and were used to validate GW searches [77–79]. Waveforms from numerical relativ-

ity are also used directly in parameter estimation [80, 81], to construct template banks [82], 

and to construct waveform families without intermediate analytical models, using methods 

such as reduced order modeling [83–86]. Today’s simulations span ground-based detectors’ 

frequency bands only for total masses �50M⊙. For smaller total masses, numerical-relativity 

waveforms can be ‘hybridized’ by attaching them to the end of analytic inspiral waveforms to 

produce waveforms that span detectors’ sensitive bands [84, 87–90].

Most applications of numerical relativity to gravitational-wave astronomy [64, 67, 79, 86, 

91] require merger simulations for a large number of different BBH configurations. Several 

groups have answered this challenge by creating public catalogs of numerical-relativity simu-

lations for merging black holes [92–94]. Even with this considerable progress, computing 

simulation catalogs that meet the needs of current and future gravitational-wave observatories 

remains quite challenging. Simulations must be long enough to span LIGO’s sensitive fre-

quency band or to allow reliable hybridization. This is straightforward for black-hole binaries 

with sufficiently high total masses (such as GW150914, which remained in LIGO’s band 

for only  ∼0.2 s [3]) but not yet possible for BBHs with lower masses (such as GW170608, 

which remained in LIGO’s band for  ∼2 s [10]). Moreover, simulations must achieve sufficient 

accuracy (as discussed further in the text surrounding equation (25)), which is especially chal-

lenging when computing the waves’ higher-order spherical-harmonic modes. Additionally, 

catalogs must span a vast, 7-dimensional (7D) parameter space, including the different possi-

ble mass ratios and black-hole spins. While a small number of simulations with extremely high 

mass ratios (up to m1/m2 ∼ 100 [95, 96]) and nearly extremal spins [97] have been achieved, 

much of the high-mass-ratio, high-spin parameter space remains completely unexplored.

Early efforts to explore the extensive parameter space of BBHs with numerical relativ-

ity highlighted the importance of collaborative efforts for development of numerical-rela-

tivity codes, production of numerical-relativity waveforms, error estimation, analysis of the 

resulting waveforms, and in storing and making broadly available the resulting data. This in 

turn inspired the creation of several collaborative projects rooted in numerical relativity and 
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gravitational wave analysis, with the goal of creating the simulation catalogs that gravita-

tional-wave astronomy requires. The first such collaboration resulting in a catalog was the 

numerical injection analysis (NINJA) project that began in 2008 [98]. The goal of NINJA was 

to test how well ground-based gravitational-wave detectors could find gravitational waves in 

their data, by injecting realistic gravitational-wave signals (created from numerical-relativity 

waveforms) into detector noise [77, 98]. NINJA was a pioneering example of collaboration 

between members of the numerical relativity and gravitational wave analysis communities. Its 

catalog included simulations generated with a variety of numerical-relativity codes, including 

BAM [99], CCATIE [100–104], Hahndol [105, 106], LAZEV [107], LEAN [108], MayaKranc 

[109, 110], the Princeton University code [24, 27, 111, 112], the University of Illinois code 

[113], and our code SpEC [114] (see section 2.1). Members of the NINJA project created a 

catalog of 23 simulations for creating injected signals, but this initial catalog spanned a very 

limited subspace of the 7D BBH parameter space.

In 2012, a followup effort, ‘NINJA-2’ yielded a catalog [78, 115] of 63 simulations span-

ning a broader region of the parameter space, but still not including any simulations with 

precessing black-hole spins. As the simulations were created by various groups and collabora-

tions, the simulations in the NINJA-2 catalog use a variety of codes, including SpEC [114] 

as well as the moving puncture/BSSN [116] codes BAM [99], LAZEV [107], LEAN [108], 

Llama [117], and Maya/MayaKranc [109, 110]. Note that many of the moving puncture codes 

utilize a common Cactus infrastructure [118] and the Einstein Toolkit [119], a finite-volume 

discretization code. In 2013 the numerical relativity analytical relativity (NRAR) collabora-

tion [120] computed and published 25 simulations, with the main focus being the comparison 

of the numerical relativity waveforms with the analytical waveform families in use by LIGO.

Building on the NINJA and NRAR efforts, a number of numerical-relativity groups have 

begun building larger, more comprehensive catalogs, spanning more of the parameter space 

(including spin precession) and including more orbits before merger (enabling the waveforms 

to span the detectors’ frequency bands for lower total masses). These catalogs are summarized 

in table 1. In 2013 the SXS collaboration released a catalog [121] with 174 BBH simulations 

created using the Spectral Einstein Code (SpEC) [114]. By the end of 2018, this catalog had 

grown to include 337 simulations for BBHs, seven from binaries with a black hole and a 

neutron star, and two from a pair of neutron stars. The full SXS catalog (including the new 

simulations presented here) is publicly accessible at www.black-holes.org/waveforms [92]. In 

May 2016 the Georgia Tech group released a catalog [94] of 452 distinct BBH simulations 

(from a pool of more than 600 BBH simulations [122]). The Rochester Institute of Technology 

(RIT) group released a catalog [93] in 2017 that included 126 simulations [123], as well as an 

updated catalog in 2019 containing a total of 320 simulations [124].

In this paper, we present a major update to the SXS Collaboration’s catalog. Our catalog, 

created using SpEC, now includes 2018 simulations, an increase of a factor of 11 over our 

2013 catalog. The median waveform length is now Ncyc = 39 cycles of ℓ = m = 2 gravita-

tional waves, while in our initial catalog [121], only half of the simulations had more than 24 

gravitational-wave cycles. Here Ncyc is approximated by doubling the number of orbits during 

inspiral up to merger (when a common horizon forms), as determined by the coordinate trajec-

tories of the black holes. The increased number of cycles means that typical waveforms in our 

catalog now tend to span LIGO’s sensitive band over a broader range of total masses. We esti-

mate the numerical uncertainty for most waveforms in the catalog, finding a typical mismatch 

of  ∼10−4 between the highest and second-highest resolutions. Our catalog now includes spins 

up to 0.998 and mass ratios up to 10, with considerably better coverage in the space of mass 
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ratios up to 2 and spins up to 0.8 (motivated by the estimated properties of GW150914). In 

addition we have re-run a number of earlier simulations with a more modern version of SpEC. 

In some cases this improves the precision of higher order modes and removes the imprint of 

gauge changes from the coordinate trajectories. Since our past simulations have been widely 

used, we retain all versions of the simulations in our catalog with different labels; further 

details are given in appendix A. Our catalog is publicly available at www.black-holes.org/

waveforms [92], in a format based on that of the NRAR project [126].

The rest of this paper is organized as follows. Section 2 summarizes the numerical methods 

that we employ in SpEC. Then, section 3 summarizes the areas of the parameter space our 

catalog covers (and what areas it does not yet cover). Section 4 estimates the accuracy of the 

catalog’s waveforms. After comparing the remnant properties to analytic fits in section 5, we 

conclude in section 6. We document the formats of our publicly available data in appendix A, 

our definitions for calculation of mismatches in appendix B, and sign conventions in appendix C.

2. Summary of methods

2.1. Spectral Einstein Code

We use the Spectral Einstein Code (SpEC) [114] to model merging black holes and the gravi-

tational waves they emit. The first step in a binary black-hole simulation is constructing initial 

data. We construct constraint-satisfying BBH initial data using the extended conformal thin 

Table 1. A comparison of BBH simulation catalogs. The mass of the larger black hole 
is m1, and the mass of the smaller black hole is m2. We use the convention that the 
mass ratio is m1/m2 > 1. The dimensionless spin magnitudes of the black holes are 
denoted |χ1,2|. The ‘SXS (2018)’ row corresponds to the number of publicly available 
simulations at the end of 2018.

Catalog Started Updating? Simulations
m1/m2 
range

|χ1|  
range

|χ2|  
range Precessing?

Median  
Ncyc Public?

NINJA 

[98, 115]

2008 ✗ 63 1–10 0–0.95 0–0.95 ✗ 15 ✗

NRAR 

[120]

2013 ✗ 25 1–10 0–0.8 0–0.6 � 24 ✗

Georgia 

Tech 

[122]

2016 � 452 1–15 0–0.8 0–0.8 � 4 �

RIT 

(2017) 

[123]

2017 � 126 1–6 0–0.85 0–0.85 � 16 �

RIT 

(2019) 

[124]

2017 � 320 1–6 0–0.95 0–0.95 � 19 �

NCSA 

(2019) 

[125]

2019 ✗ 89 1–10 0 0 ✗ 20 ✗

SXS 

(2018)

2013 � 337 1–10 0–0.995 0–0.995 � 23 �

SXS 

(2019)

2013 � 2018 1–10 0–0.998 0–0.998 � 39 �

M Boyle et alClass. Quantum Grav. 36 (2019) 195006
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sandwich (XCTS) [127, 128] equations. In the XCTS formulation of the BBH initial value 

problem, the initial spatial slice has (i) a spatial metric proportional to a freely chosen con-

formal metric and (ii) a freely chosen trace of its extrinsic curvature. Typically, when solving 

the XCTS equations, we choose the conformal metric and trace of extrinsic curvature to be 

weighted superpositions of the analytic solutions for two single black holes in Kerr–Schild 

coordinates [129], but some (typically older) simulations in the SXS catalog instead are con-

formally flat and have a vanishing trace of the extrinsic curvature (i.e. maximal slicing) [130]. 

In the XCTS formulation, the conformal metric and trace of the extrinsic curvature have 

freely chosen time derivatives; we construct quasi-equilibrium initial data by setting these 

time derivatives to zero. We then solve the XCTS equations on a grid with two excised regions 

using a spectral elliptic solver [131], with boundary conditions on the excision boundaries 

chosen to ensure that these boundaries are apparent horizons (AH) [129, 130]. The solution 

yields initial data for a BBH evolution, including the initial spatial metric, the initial extrinsic 

curvature, and the initial lapse and shift, which determine the initial coordinate choice.

We iteratively construct BBH initial data, tuning the initial data to achieve a BBH with the 

desired properties. Our iterative scheme uses two nested loops. The inner loop solves the XCTS 

equations, adjusting our choices for the free data (conformal metric, trace of extrinsic curva-

ture, and the time derivatives of each) and boundary conditions, until the resulting BBHs have 

the desired mass ratio and spins [132, 133]. The outer loop briefly (typically for a few orbits) 

evolves the initial data resulting from the inner loop, and adjusts the initial coordinate velocities 

to yield a BBH with small orbital eccentricity [46, 47, 134], typically e0 ∼ 10−4 as defined in 

equation (17). For some simulations in the SXS catalog, we intentionally omit the eccentricity-

reduction loop, to obtain initial data for BBHs with non-negligible orbital eccentricity.

We evolve the initial data using a first-order version of the generalized harmonic form-

ulation [111, 135–137] of Einstein’s equations with constraint damping [111, 137, 138]. We 

choose an initial gauge that approximates a time-independent solution in a co-rotating frame, 

and then we smoothly change to damped harmonic gauge [139–141], which we have found to 

work well numerically near the time of merger.

We evolve the initial data using a multidomain spectral method [137, 141–144]. 

Timestepping is done via the method of lines using a fifth-order Dormand–Prince integrator 

with a proportional-integral adaptive timestepping control system that chooses an appropri-

ate step size while achieving a desired time-stepping error [145]. The computational domain 

extends from pure-outflow excision boundaries conforming to the shapes of the AH [141, 143, 

144, 146] to an artificial outer boundary where we impose constraint-preserving boundary 

conditions [137, 147, 148]. We also impose boundary conditions on the incoming characteris-

tic fields at each internal boundary of the computational domain [149, 150]. After a common 

AH forms, the simulation automatically stops, interpolates onto a new grid with only a single 

excision boundary [143, 144], and continues evolving on this new domain through ringdown, 

until the ringdown gravitational waves have left the domain.

Spectral methods are exponentially convergent, i.e. spatial truncation errors in a given sub-

domain of fixed size and shape decrease exponentially with the number of collocation points. 

Our simulations use multiple subdomains, and the size, shape, and even the number of these 

subdomains changes dynamically as a simulation proceeds (h-refinement), as controlled by 

our spectral adaptive mesh refinement (AMR) procedure [151, 152]. Moreover, we choose the 

accuracy of a simulation not by picking the number of grid points directly, but instead by spec-

ifying a tolerance parameter that governs when AMR should add or subtract grid points within 

a given subdomain (p -refinement), or when it should split or join subdomains (h-refinement). 
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As a result, we should not always expect strict convergence as a function of the AMR toler-

ance parameter. Convergence may fail in several ways. For example, two otherwise-identical 

simulations with different AMR tolerances may happen to have the same number of grid 

points in a particular subdomain at a particular time, because their local truncation errors are 

below or above both thresholds. Alternatively, the two simulations may have entirely different 

subdomain boundaries in a given region at some other time. Furthermore, AMR’s decisions 

exhibit hysteresis. Despite these issues, most of our simulations do exhibit convergence with 

AMR tolerance, as shown in section 4.

2.2. Black hole masses, spins, and centers

2.2.1. Quasi-local definitions. Defining mass and spin in general relativity is nontrivial; for 

recent reviews, see [153–155]. The simplest definitions apply to asymptotically flat space-

time, in the limit of approaching either spacelike infinity i0 (i.e. the ADM mass and angular 

momentum [156]) or future null infinity I + (the Bondi mass and angular momentum [157]). 

These ADM and Bondi quantities give global values for the entire spacetime, including bind-

ing energy and energy in gravitational waves, but they do not yield the masses and spins of the 

individual component black holes. One possible approach for determining component masses 

and spins, while the black holes are far from merger, is to perform asymptotic matching in a 

buffer region [158]. This approach, however, has not been explored in numerical simulations, 

and becomes invalid as the black holes approach merger.

Instead, NR simulations rely on ‘quasi-local’ mass and spin [153] measurements from 

AHs. Quasi-local masses and spins recover the Kerr mass and spin when evaluated on the AH 

of a Kerr black hole, and also evolve in agreement with tidal torquing and heating approx-

imations [97]. The definition of quasi-local mass that we adopt relies on our chosen measure 

of quasilocal spin. Given an apparent horizon H within the current constant-time hypersurface 

Σ, and a vector field φi tangent to H, the component of spin angular momentum inside this 

2-surface generated by φi is given by [159] (following the conventions of [129])

Sφ ≡

1

8π

∫

H

φis jKij dA. (1)

Here si denotes the outgoing spacelike unit normal to H tangent to Σ, Kij is the extrinsic cur-

vature of Σ (with sign conventions given in appendix C), and dA is the induced proper area 

element on H.

In axisymmetry, making φi the symmetry’s rotational Killing vector field yields the corre-

sponding conserved angular momentum. But black holes in a binary merger are only approxi-

mately axially symmetric long before merger and after ringdown. With no exact rotational 

Killing vector available, instead we follow [129, 160] and compute approximate Killing vec-

tors on the apparent horizon. For details on our procedure for measuring quasi-local spin, and 

a discussion of other approaches, see [51]; here, we briefly summarize our method.

We solve an eigenvector problem to find the three tangent vectors {φA
(1),φ

A
(2),φ

A
(3)} that 

come closest to solving the Killing equation. Here, capital Latin indices A, B, . . . run over 

the two-dimensional tangent space of H. The Killing equation implies that a Killing vector 

is divergence-free, which means the vector has vanishing expansion and shear. We choose to 

begin with expansion-free vectors φA
(i) = ǫABDBz(i), writing them as the ‘curl’ of a potential z(i). 

Here ǫAB and DA are the induced Levi-Civita tensor and covariant derivative of H, respectively. 
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Minimizing the average squared shear of φA over the surface then yields an eigenvector prob-

lem for the three z(i). As in [129], we fix the normalization of each z(i) by requiring the vari-

ance of each z(i) to agree with the same variance in the Kerr metric (see equation (A22) and 

the surrounding discussion in [129] for details). Finally, we define the spin magnitude S as 

the Euclidean magnitude of a vector with three components of angular momentum found by 

inserting the three φA
(i) with smallest eigenvalues into equation (1):

S ≡

√

S2
φ(1)

+ S2
φ(2)

+ S2
φ(3)

. (2)

We define the ‘spin function’ Ω ≡ ǫ
ABDAωB, where ωA is the projection of the 1-form Kijs

j  

into the tangent space of H. Then, we take the three moments of the spin function [51] to 

compute the direction of the spin,

χ̂Ωm ≡

1

N

∫

H

�r Ω dA, (3)

where �r  is the Euclidean position vector in the coordinate system of the simulation. We choose 

the normalization factor N so that the Euclidean norm of χ̂Ωm is 1. Finally, we define the full 

dimensionful spin vector as

�S ≡ Sχ̂Ωm. (4)

With the dimensionful spin in hand, we define the mass interior to H from the Christodoulou 

formula for (uncharged) Kerr BHs [161],

M2
≡ M2

irr +
S2

4M2
irr

, (5)

where the irreducible mass Mirr depends only on the apparent horizon’s area:

M2
irr ≡

A

16π
=

1

16π

∫

H

dA. (6)

Even though the Christodoulou relation is, strictly speaking, only justified for stationary BHs, 

we also use it on dynamical AHs as a quasi-local mass.

From the dimensionful spin vector �S  given by equation (4) and the mass M given by equa-

tion (5), we define the dimensionless spin vector

�χ ≡

�S

M2
. (7)

We compute the magnitude of this vector �χ using the Euclidean norm. Equation (5) implies 

0 � |�χ| < 1 for all of our black holes. For a discussion of how well this relation is satisfied in 

simulations of merging black holes with nearly extremal spins, see [41].

Finally, we define a coordinate center �x  for each AH as the surface-area weighted average 

of the location of the AH,

�x =
1

A

∫

H

�r dA. (8)

This means that the (irreducible) mass dipole moment of the surface vanishes in a coordi-

nate system centered on �x . In practice, we require that this condition be only approximately 
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satisfied by truncating our representation of the shape of the AH at ℓ = 1 in an expansion in 

spherical harmonics, as shown in equations (37)–(40) in [144].

2.2.2. Definition of relaxation time and reference time for measuring initial BH quantities. The 

initial data do not perfectly describe two black holes in quasi-equilibrium. At the start of 

each simulation, therefore, the geometry relaxes to equilibrium on the dynamical time-scale 

of the individual BHs, changing the masses and spins of each BH by a fractional amount of 

order 10−5, and emitting a spurious pulse of gravitational radiation (often referred to as ‘junk 

radiation’). Our simulations do not attempt to resolve this pulse of short-wavelength gravi-

tational radiation. Therefore, BH quantities (like their masses) fluctuate with an amplitude 

of about  ∼10−5 for a few 100M0, before the fluctuations subside. Here, M0 denotes the sum 

of the two Christodoulou masses at t  =  0. Subsequently, BH quantities vary on the inspiral 

time-scale.

To avoid the impact of junk radiation on our output quantities, we define a reference time 

tref > 0 as early in the simulation as possible16, but after the initial transients have decayed. 

We define a relaxation time trelax > 0 at which we deem that transients have decayed, and 

then we set tref to be at least trelax. We extract the ‘initial’ BH properties we ascribe to each 

black hole in our simulations at tref. For most simulations in the catalog tref = trelax, but we 

allow the two times to be different because they represent different concepts and because for 

some simulations (e.g. comparisons with waveform models or other NR codes) we desire to 

specify parameters at particular times. Since we do not attempt to resolve the initial transients, 

waveforms computed at different resolutions correspond to binaries with slightly different 

physical parameters. Because of our high precision, these small differences complicate our 

convergence testing, as discussed further in section 4. We also recommend to only use the 

gravitational waveforms for retarded time u > tref .

In practice, we compute trelax as follows: we begin by defining a window of size 

Twindow = 300M0 and a time interval δt = 10M0. Considering the time series Mirr,1(t) of irre-

ducible masses for the primary black hole17, we compute its standard deviation σn  for sliding 

time windows t ∈ [nδt, nδt + Twindow], n = 0, . . . 30. We compute a running average of the 

σn  using sequential sets of 10 segments. As the junk radiation propagates away, the running 

average of σn  decreases with time. We identify the earliest time at which the running average 

stops decreasing, calling the center of this time window trelax,1 (if this condition fails, we set 

trelax,1 = 600M0). We repeat this calculation for the secondary BH, and take the larger of the 

two values as the final relaxation time, trelax = max(trelax,1, trelax,2).

2.2.3. Remnant masses, spins, and recoil velocities. After merger and ringdown, there 

remains a single remnant BH with its own mass, spin, and a recoil velocity (a ‘kick’ caused by 

asymmetry in momentum carried by GWs).

As described in section  2.2.1, our simulations extract at regular intervals the BH mass 

M(t), spin �χ(t) and center �x(t) from local quantities on each apparent horizon. This is also 

true after merger, when we extract the mass, spin, and center for the AH of the remnant 

from local quantities on the common apparent horizon. These quantities are highly dynami-

cal immediately after merger because the remnant horizon is strongly, dynamically curved 

16 In principle, one can choose any time to define the BBH parameters, since the dynamics provide a unique map 

from one time to the next. In practice, for analytical understanding and comparison with post-Newtonian theory, we 

want to choose the earliest possible time, where the post-Newtonian approximation is most accurate.
17 In some earlier simulations, we used the timeseries of the magnitude of the dimensionless spin. For most simula-

tions, these two quantities give comparable relaxation times. In practice, the areal mass tends to oscillate less than 

the spin magnitude.
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when it forms. After the common AH forms, it relaxes, quickly at first, and then rings down 

over a characteristic timescale determined by the remnant’s spin [162, 163]. After merger, 

we compute the remnant AH mass and spin on a dense (though not uniformly sampled) set 

of times. To compute the final AH mass and spin, we simply split these time samples into 

thirds, and choose the mass and spin averaged over the final third of the time samples. This 

approach seeks to mitigate small, residual time-dependent variations in the remnant mass and 

spin caused by numerical noise.

We also employ a simple procedure to estimate the coordinate recoil velocity (this turns out 

to be very close to the well-defined recoil velocity arising from gravitational-wave momentum 

flux integrals [164, 165]). We compute the coordinate center of the remnant AH as we do for 

the individual AHs during inspiral, using equation (8). Taking the last third of time samples of 

�x(t), we model each of its components with a least-squares fit to a linear function of time. We 

then interpret the slopes of these fits as the coordinate velocities of the remnant BH.

2.3. Gravitational wave extraction

We extract the emitted gravitational waves from our simulations through two independent 

methods. The first computes the Newman–Penrose scalar Ψ4 on a set of coordinate spheres 

centered at the initial (coordinate) center of mass (COM) of the two black holes. This is done 

by computing the Weyl tensor, projecting with a flat-space orthonormal null tetrad to form 

Ψ4, and expanding in terms of spherical harmonics of spin weight  −2. See [134, 166] for 

details. We do not use a properly orthonormalized null tetrad in computing Ψ4 from the Weyl 

tensor, nor do we use anything other than coordinate-sphere extraction surfaces. Therefore, 

our computation of Ψ4 at a finite radius differs from the standard definition by a multiplicative 

factor 1 +O(1/r). We eliminate these differences by extrapolating the waveforms to future 

null infinity (discussed in section 2.4.1) to remove these and other near-zone effects. We also 

remove some artifacts of our choice of coordinates in the initial data via center-of-mass cor-

rection (discussed in section 2.4.2).

Applications using the waveforms from the SXS catalog should use the extrapolated wave-

forms with center-of-mass corrections; however, for diagnostic purposes, we also make avail-

able the raw, finite-radius spherical-harmonic modes rΨℓ,m
4  (available in the SXS catalog as 

files named rPsi4_FiniteRadii_CodeUnits.h5). In each case, the value of Ψ4 can 

be evaluated at a point (θ,φ) using

Ψ4 =
∑

ℓ,m

Ψℓ,m
4 −2Yℓ,m(θ,φ),

 (9)

where −2Yℓ,m are the spin-weight s  =  −2 spherical harmonics, using the conventions given 

in [126].

The second gravitational-wave extraction method is independent of the first one. In this 

method, we compute the metric perturbation directly using Sarbach and Tiglio’s [167] form-

ulation of the Regge–Wheeler and Zerilli equations [168, 169]. First, we compute the met-

ric perturbation δgab = gab − ηab about a Minkowski background ηab. From the variables of 

our first-order formulation of Einstein’s equations, we also read off the first time and spatial 

derivative of δgab. We evaluate δgab and its derivatives on a set of coordinate spheres centered 

at the initial (coordinate) COM of the binary, and on each of these coordinate spheres we 

18 We use the opposite sign convention for Φ(+) as does [170]; in particular, we replace the minus sign in front of 

equation (29) of [170] with a plus sign. Our sign convention agrees with that of [164], and ensures that a linearized 

wave in TT gauge satisfies equations (C.21) and (C.22) of appendix C, assuming equations (10) and (11).
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expand these quantities in terms of spin-weighted spherical harmonics. We then compute the 

spin-weighted spherical-harmonic modes of the Regge–Wheeler quantity Φ(−) and the Zerilli 

quantity Φ(+), which are combinations of the metric perturbations and their derivatives given 

in equations (16)–(18), (22)–(29) and (A12)–(A21) of [170]18. Finally, we compute the modes 

of the strain using (see equation (83) of [171] and equation (4.34) of [164])

r hℓ,m =
√

(ℓ− 1)ℓ(ℓ+ 1)(ℓ+ 2) (Φ
(+)
ℓ,m + iΦ

(−)
ℓ,m ). (10)

Note that Φ(±) are not gauge invariant in the general sense, but are sometimes referred to 

as such in the context of perturbation theory [167, 172–174]. Specifically, the definitions of 

Φ(±) involve quantities that are invariant at first order under infinitesimal gauge transforma-

tions about a fixed background, assuming small metric perturbations from that background. 

However, gauge changes that cannot be treated as infinitesimal affect the waveforms at a 

significant level. In section 2.4.2, we describe and remove some such gauge effects that are 

present in the waveforms even after extrapolation to future null infinity.

For diagnostic purposes, we make the modes rhℓ,m of the raw finite-radius quantities avail-

able in the SXS catalog as files rh_FiniteRadii_CodeUnits.h5. However, as with the 

Ψ4 waveforms described above, the raw finite-radius quantities contain near-zone and gauge 

effects. For applications using the waveforms in the SXS catalog, one should instead use the 

version of these waveforms that are extrapolated to future null infinity and center-of-mass cor-

rected (see section 2.4 below). The strain at a point (θ,φ) can be evaluated as

h = (h+ − i h×) =
∑

ℓ,m

hℓ,m
−2Yℓ,m(θ,φ).

 (11)

Finally, note that each file in the SXS catalog describing raw, extrapolated, or center-of-mass 

corrected h contains the real and imaginary parts of hℓ,m, which differs by a minus sign in the 

imaginary component from the format described in [126]. More significantly, all waveforms 

in our catalog prior to this release have had an overall sign change in the definition of the 

strain. The strain as given in equation (11) reflects the current definition of the waveforms in 

our catalog, for more information see appendix C. For details on checking the sign convention 

of the waveform files, see appendix A.3.1.

2.4. Waveform post-processing

Our catalog contains waveforms that are extrapolated to future null infinity and corrected 

for center-of-mass motion. Here, we detail the extrapolation and center-of-mass corrections 

applied to each h and Ψ4 waveform in this catalog.

2.4.1. Extrapolation. During the evolution, we extract each waveform at a series of times 

on a set of concentric coordinate spheres surrounding the binary, decomposed in modes of 

spin-weighted spherical harmonic functions. We then extrapolate the waveforms to future 

null infinity, I +. Our method is similar to the one described previously in [175, 176], but 

we modify it to permit accurate extrapolation of precessing systems as follows. We transform 

the waveform modes into a corotating frame [177], in which the rotation is factored out, so 

that the corotating waveform modes vary slowly in time, even for precessing systems. We 

then simply extrapolate the real and imaginary parts of the corotating waveform modes. [175] 

shows that such slow time-varying behavior is crucial to convergence of the extrapolation 

process. We then transform the extrapolated result back into an inertial frame. Our previous 
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extrapolation method [175, 176] decomposed the complex waveform modes into phase and 

amplitude, which results in slow temporal variations only for non-precessing binaries.

For each simulation, we compute both h and Ψ4 independently (section 2.3). We extrapo-

late both quantities to I + by the same method, though for simplicity we will only describe 

extrapolation of h here. We extract the strain waveform as hℓ,m(Ti, Rj) on a grid of coordinate 

times Ti (where T  =  0 is the start of the simulation) and on coordinate spheres of fixed radii 

Rj . The extraction radii are chosen between R = Rmin and the outer boundary of the simulation 

domain, typically with about 24 extraction radii spaced uniformly in 1/R. For most simula-

tions in the catalog, we choose the innermost extraction radius Rmin to be 100M0. For newer 

simulations, we chose Rmin to be at least π/Ω0, where Ω0 is the initial orbital frequency; thus 

Rmin is at least one gravitational-wave wavelength from the origin, and the waveform there is 

not dominated by near-field effects. We explicitly compute the areal radius of each sphere rj, 

which depends on the time, by integration using the evolved metric. We also extract the aver-

age value of the metric component gTT over this sphere19. These quantities allow us to define 

the retarded time

ui,j =

∫ Ti

0

√

−1/gTT
j (T)

1 − 2MADM/rj(T)
dT − rj(Ti)− 2MADM ln

[

rj(Ti)

2MADM

− 1

]

,

 (12)

where MADM is the ADM mass measured in the initial data. The second and third terms are 

essentially the familiar tortoise coordinate of the Schwarzschild solution, while the first term 

is a correction to the time coordinate. We choose this retarded time so that the one-form du is 

approximately null with respect to the evolved metric [175].

Using these quantities, we can also express the waveform modes hℓ,m(ui,j, ri,j). Then, we 

interpolate the data to a common set of retarded times, uk. We construct this set to be the larg-

est subset of u0,j  such that the waveform at each radius has known values at each time uk. We 

also interpolate the areal radius of each sphere to the set of common times, so that the wave-

form can now be expressed as hℓ,m(uk, rk,j).
The next step is to rotate the waveform at each radius into a corotating frame [177]. To 

avoid the complication of extrapolating the transformation to the corotating frame itself, 

we simply choose the outermost extraction radius to define the corotating frame. We cannot 

expect the waveform at any other radius to be in precisely its own corotating frame, but in 

practice we still achieve our objective of ensuring that the waveform at each radius is slowly 

varying. We denote the waveforms in this frame as ĥℓ,m(uk, rk,j).
Now, with slowly varying data tabulated on a common set of retarded times and a series of 

radii, we can extrapolate the waveform to infinite radius by approximating each mode with a 

polynomial of order N:

ĥℓ,m(uk, r) ≈

N∑

j=0

ĥℓ,m
( j)(uk)

r j+1
. (13)

At each time step, we choose the coefficients ĥℓ,m
( j) to minimize the sum of the squared dif-

ferences between the numerical data at that time and the polynomial value—real and imagi-

nary parts being treated separately. The asymptotic waveform in the rotating frame is simply 

ĥℓ,m
(0)(u). We then obtain the final asymptotic waveform by inverting the rotation that was 

applied above.

19 Each quantity used in the extrapolation is made available for download in files named rh_FiniteRadii_Co-

deUnits.h5 and rPsi4_FiniteRadii_CodeUnits.h5, documented in appendix A.3.
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Note that the m  =  0 modes in SpEC waveforms appear to be generally unreliable, in the 

sense that they do not appear to converge with increasing extrapolation order or varying 

extraction radii, and they do not agree with CCE results [176]. This is true in the inertial frame 

for non-precessing systems, and typically true in co-precessing [66, 110, 178] or co-rotating 

[177] frames for precessing systems. This means that other modes in the inertial frame may be 

polluted by these inaccurate co-rotating frame m  =  0 modes for precessing systems.

The code that we use to perform this entire extrapolation procedure is available in the 

open-source python module GWFrames [179]. We provide all finite-radius waveforms, along 

with the extrapolated waveforms for N  =  2, 3, and 4, for both h and Ψ4. The extrapolated data 

files also contain a waveform from the outermost extraction radius, which is also given as a 

function of the corrected retarded time u and scaled by the areal radius; we expect this will 

remove some (though not all) of the gauge artifacts present in raw waveforms extracted at 

finite radius. The waveform measured at the outermost extraction radius is different from the 

waveform computed using N  =  0 in equation (13), because the latter essentially averages the 

contributions from data extracted at smaller radii—which can be worse than doing no extrapo-

lation at all. For this reason, we do not provide a waveform extrapolated using N  =  0, nor do 

we provide one for N  =  1 [175].

The choice of extrapolation order N for a particular purpose must be informed by the 

behavior of near-field effects. If λ is a typical wavelength present in a given mode, we expect 

the higher-order terms in the polynomial to scale not just as 1/r j relative to the lowest-order 

term, but as (λ/r) j [175, 180]. Thus, as the binary spirals in toward merger and the length 

scales λ become smaller, the polynomial will converge much more quickly with N. Thus, for 

example, if extrapolation with N  =  4 is required for accurate results early in the waveform, 

then N  =  2 may be sufficient closer to merger. On the other hand, using a large value of N 

when the polynomial converges quickly can lead to overfitting of features that are poorly 

modeled as functions of retarded time and polynomials in 1/r—so that N  =  2 extrapolation 

may actually be better than higher-order extrapolation during the merger and ringdown. The 

general rule of thumb, then, is to use higher-order extrapolation for analyses that require 

more accuracy during the inspiral, and lower-order extrapolation for analyses that require 

more accuracy during the merger and ringdown; there is no single choice that is best for all 

applications. In all cases, it is best to test the dependence of results on the extrapolation order 

by running an analysis multiple times using each of the various extrapolation orders. For the 

application of building waveform surrogate models [84, 181, and references therein], we use 

N  =  2 for the entire waveform.

2.4.2. Center-of-mass correction. The catalog provides extrapolated waveforms in two ver-

sions: one without, and one with, a correction for displacement and drift of the COM. These 

COM-corrected waveforms have filenames ending in ‘CoM’. We recommend using COM-

corrected waveforms for all applications of our catalog, but provide the original data for com-

pleteness and to allow for comparisons between COM-corrected and uncorrected waveforms.

These corrections are necessary because the waveform modes depend on the origin of 

coordinates used to define the spherical harmonics: if we move the origin, the modes will be 

mixed. Naively, we expect the origin to be centered on the binary, as that is the natural choice 

and is used in post-Newtonian models, for example. That choice leads to desirable features 

like relatively slowly varying mode amplitudes, and frequencies that are roughly proportional 

20 Spin–orbit coupling introduces effects for precessing systems where small additional components are present, and 

oscillate at frequencies roughly proportional to (m ± 1) times the orbital frequency. However, if the origin coincides 

roughly with the COM, these additional components can also be modeled to high accuracy without accounting for 

spurious mode mixing [110, 182].
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to the orbital frequency times the azimuthal number m of the mode20. However, all binary-

black-hole systems simulated with SpEC contain essentially random offsets and drifts of the 

origin of coordinates relative to the COM, causing mode-mixing that manifests as irregular 

behavior in the waveform modes. To a good approximation, these irregularities can be thought 

of as direction-dependent time translations that appear uncorrelated between different physi-

cal systems or different numerical resolutions of the same system. These irregularities appear 

as essentially random contributions to waveform modes that are discontinuous with respect 

to changing physical parameters. These random and discontinuous effects would have to be 

modeled by surrogate, EOB, and phenomenological waveform models [61, 64–67, 69–73, 

75, 79, 83–86, 183], or be optimized away in direct searches of detector data [76, 80–82]. By 

removing these effects, we simplify such analyses.

Figure 1 shows the translations and boosts of the COM for two example simulations (the 

non-precessing SXS:BBH:0314 and the precessing SXS:BBH:0627) from our catalog, each 

shown at multiple resolutions. We define the COM at each instant in time using the Newtonian 

definition,

�xCOM ≡

m1(t)�x1(t) + m2(t)�x2(t)

m1(t) + m2(t)
, (14)

Figure 1. Center of mass (COM) corrected and uncorrected waveform mode 
amplitudes (left) and COM drift in simulation units (right) for spin-aligned system 
SXS:BBH:0314 (top) and precessing system SXS:BBH:0622 (bottom). For the 
waveform mode amplitude plots on the left, the thick translucent curves show the 
COM corrected amplitudes and the solid thin curves show the uncorrected amplitudes. 
Removing unphysical modulations with our COM correction allows for the physical 
amplitude modulations of precessing systems to become more apparent. For the COM 
drift plots on the right, the axes show the coordinate positions of the apparent-horizon 
centers, normalized by the initial total mass of the system M0. The different colored 
lines correspond to the Newtonian COM, equation (14), at different resolutions. Note 
that each resolution for a simulation uses the same initial conditions. The COM values 
are plotted for each system from start until a common horizon is found.
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where m1and m2 are the Christodoulou masses (as defined in section 2.2.1) of the primary and 

secondary black holes, and �x1and �x2 are the coordinate positions of the AH centers as defined 

in equation (8). In our convention, black hole ‘1’ is the more massive of the two.

Two causes contribute to the COM motion visible in figure 1. First, while the initial data 

achieves PADM = 0 [133], the initial transients during relaxation to equilibrium may cause 

asymmetric GW emission, and thus impart a net linear momentum onto the binary. Second, 

since we do not attempt to resolve this junk radiation, we do not expect that the COM motion 

in our simulations will be convergent; indeed, we observe essentially randomly varying coor-

dinate velocities of the COM for evolutions at different resolutions of the same initial data set.

As can be seen in the right column plots of figure 1, the total COM displacement is gener-

ally only a fraction of the total mass M0 of the binary, and much smaller than the radii of the 

gravitational wave extraction spheres (Rj � 100M0, see section 2.3). Nevertheless, these small 

COM displacements do have a noticeable impact on the higher-order modes of the computed 

gravitational radiation, as can be seen in the left column plots in figure 1. During inspiral and 

close to merger, the uncorrected higher-order waveform amplitudes oscillate—most notably 

the (l, m) modes (2, 1), (3, 1), and (3, 3). This modulation is not expected on physical grounds; 

it is a gauge effect caused by mode mixing that follows from the COM displacement. The 

strongest effect of mode mixing is the leaking of power from the dominant (2,±2) modes into 

the subdominant modes, because we decompose our waveform using spin-weighted spherical 

harmonics centered on an offset, moving origin, which is unnatural.

We apply COM corrections to remedy these effects as a post-processing step. We compute 

the parameters necessary for the correction from the simulation and, as the corrections are 

BMS transformations [157, 184–186], they do not alter the physically meaningful aspects of 

the waveform. Deciding how to correct waveforms for center-of-mass motion is complicated 

and is described in a separate paper [187]. The final procedure itself is relatively straightfor-

ward, and we summarize it here.

We implement the measurement of and corrections to the COM using the open-source 

python module scri [186, 188]. While there is significant COM motion, as seen in fig-

ure 1, our COM correction deals only with the offset and drift—that is, the linear motion. 

Woodford et al [187] presents investigations into potential physical contributions to the total 

COM motion, and the epicycles seen in figure 1.

We remove these gauge effects using translations and boosts. To re-center the simulations, 

we first measure the offset and drift of the COM and then retroactively apply the opposite 

motion to the waveform, to cancel out that motion. We define a time average of any quantity 

Q(t),

〈Q〉 ≡
1

tf − ti

∫ tf

ti

Q(t) dt. (15)

We choose ti to be the relaxation time for the simulation (defined in section 2.2.2) and set 

tf = 0.9tCAH, where tCAH indicates the time of common apparent horizon formation, so that 

merger and ringdown are not included in the average.

Now we would like to find a translation �α and boost �β  that give the best linear approx-

imation to the motion of the measured �xCOM. Within the interval [ti, tf ] we perform a linear 

least-squares fit to �xFCOM(t) resulting in a best-fit motion �α+ �βt. As described in appendix E 

of [186], the fit can be performed analytically, giving

�α =
〈t2〉〈�xCOM〉 − 〈t〉〈t�xCOM〉

〈t2〉 − 〈t〉
2

=
4(t2

f + tf ti + t2
i )〈�xCOM〉 − 6(tf + ti)〈t�xCOM〉

(tf − ti)2
,

 (16a)
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�β =
〈t�xCOM〉 − 〈t〉〈�xCOM〉

〈t2〉 − 〈t〉
2

=
12〈t�xCOM〉 − 6(tf + ti)〈�xCOM〉

(tf − ti)2
, (16b)

where the second equality of each line comes from 〈t〉 = 1
2
(ti + tf ), 〈t

2〉 = 1
3
(t2

i + titf + t2
f ).

We then apply a displacement to negate the linear motion of the COM given by �α+ �βt, 

computing this displacement separately for each resolution of each simulation. Boyle [186] 

first showed that this method of COM corrections does indeed remove a large fraction of 

mode mixing and remedy the COM offset and drift. Woodford et al [187] further confirms that 

applying the COM correction does improve all waveforms in the SXS simulation catalog, and 

introduces a robust and quantifiable method for this purpose.

Figure 2 shows translation, boost, and total displacement values for spin-aligned (top row) 

and precessing (bottom row) simulations in the catalog. More recent simulations in the cata-

log use an improved initial-data method [133] that achieves PADM = 0 in the initial data even 

for precessing systems and that reduces the overall displacement of the COM, especially for 

precessing cases. For most systems �α and �βtCAH are comparable. Further details on the COM 

correction method and analysis can be found in [187].

Figure 2. Histograms showing the magnitude of the center-of-mass (COM) translations 

�α and boosts �β  as defined in equation (16), and total displacements �α+ tCAH
�β , for all 

simulations in our catalog. The top row shows values for non-precessing systems while 

the bottom row shows values for precessing systems. The blue bars denote the newer 
simulations that utilize the improved initial data procedure [133], whereas the orange 
bars denote earlier simulations.
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3. Parameter space coverage

Expanding the catalog from the original 174 configurations to 2018 configurations has sub-

stantially improved our coverage of the BBH parameter space. Figure 3 shows the binary mass 

ratio q = m1/m2 � 1 and the dimensionless spin magnitudes |χ1| and |χ2| for the simulations 

in our catalog. Each point in the scatter plots in figure 3 represents a simulation, while the 

histograms show the relative number of simulations with the given range of mass ratio and 

dimensionless spin magnitudes. The masses and spins plotted here are measured at the refer-

ence time, as discussed in section 2.2.2. In the scatter plots, we see a substantial number of 

precessing simulations with mass ratios up to q  =  4 and |χA| � 0.8, which were produced in 

order to construct the surrogate models of [83, 181, 189]. The subscript A corresponds to the 

larger (A  =  1) and smaller (A  =  2) black holes. In addition, we show improved coverage of the 

nonprecessing subspace with mass ratios up to q  =  8 and |χA| � 0.8. New simulations in this 

part of the parameter space were produced in order to construct the surrogate model of [84].

In contrast, there remain large regions that are unexplored in all BH merger catalogs, 

including ours. The projections in q − |χA| space in figure 3 show that while we have fairly 
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Figure 3. Coverage of the SXS Catalog parameter space. Each point is one simulation. 
Shown here are the mass ratio q = m1/m2 and the spin magnitudes |χ1| and |χ2| of the 
larger and smaller black hole, respectively. Orange points correspond to configurations 
that are not precessing (spins aligned with the orbital angular momentum), while blue 
points correspond to precessing configurations.
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dense coverage at low mass ratios, mass ratios larger than q  =  4 remain sparsely explored 

or completely unexplored. Similarly, aside from a few equal-mass, equal-aligned spin cases, 

the region of spin magnitudes above 0.8 remains almost completely unexplored. Few simu-

lations exist with both high spins and high mass ratio. These are especially challenging, as 

0 50 100 150 200 250 300 350

Number of cycles

10
0

10
1

10
2

10
3

N
u
m

b
er

o
f
si
m

u
la

ti
o
n
s

non-precessing

precessing

Figure 4. Number of cycles of ℓ = m = 2 gravitational waves before merger for the 
simulations in the catalog, as determined by the coordinate trajectories of the black 
holes. Bin edges are multiples of 10 cycles.
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Figure 5. Initial eccentricities e0 in the catalog. The main population is the result of 
eccentricity-reduction, and those intentionally exploring high e0 constitute the tail.
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they require high resolution and delicate control of the computational domain, including the 

shapes, sizes, and positions of the excised regions inside the black-hole horizons (see, e.g. 

[97]). For example, most simulations in the catalog with q  >  4 are non-precessing.

Figure 4 shows a histogram summarizing the number of orbits before merger in our simu-

lations. Most simulations have between 10 and 30 orbits. This length is sufficient for many 

gravitational-wave applications, particularly when the systems have higher total masses, and 

thus remain in LIGO’s sensitive frequency band for fewer orbits. Spanning LIGO’s sensitive 

frequency band for binaries with lower total mass is more difficult. This can be done either 

by producing longer simulations, or through hybridizing numerical simulations by attaching 

the final orbits to an approximate post-Newtonian waveform to cover earlier times (see, e.g. 

[190] and the references therein). In both cases, achieving sufficient accuracy for applications 

to gravitational wave science remains challenging.

Figure 5 shows a histogram of the estimated initial orbital eccentricity for each of our simu-

lations. For most simulations, we tune our initial data via an iterative procedure [46, 47, 134] 

to produce nearly quasicircular orbits; the orbital eccentricities of these simulations are almost 

all below 6 × 10−4. For some simulations we intentionally wish to study eccentricity so we 

omit the eccentricity-reduction step; these can be seen as the tail in figure 5. As described in 

[45, 46], we estimate orbital eccentricity by a least squares fit of an analytic function to the 

time derivative of the orbital frequency dΩ/dt . This fit is performed during the  ∼2 orbits fol-

lowing trelax. It captures the monotonic inspiral-driven long-term trend in dΩ/dt , and overlaid 

oscillatory variations caused by orbital eccentricity (see equations  (70) and (76) of [46]). 

Motivated by equation (68) of [46], we report an eccentricity (effectively averaged over the 

first two to three orbits by our fit) computed with

e0 =
BΩ

2Ω0ωΩ

, (17)

where BΩ and ωΩ represent the amplitude and frequency of oscillations in dΩ/dt , and Ω0 is 

the orbital frequency at time t  =  0. We fit to dΩ/dt  rather than to Ω because the time deriva-

tive magnifies eccentricity-induced oscillations, making them easier to fit when eccentricity is 

small. At large separation, equation (17) reproduces the Newtonian definition of eccentricity 

to linear order in e0. Since we neglect higher-order corrections in e0, large values of e0 reported 

for our simulations are only rough estimates of the actual orbital eccentricity. We have not 

made an effort to precisely recover any post-Newtonian eccentricities [191], which we expect 

to differ from equation (17) by fractional corrections of order (v/c)2.

3.1. Coverage in spin space

Of the seven dimensions of parameter space for quasi-circular mergers, six are spin comp-

onents. This high dimensionality makes the parameter space difficult to sample densely and 

uniformly. Previous catalogs [93, 94] have discussed coverage in spin space but without a 

thorough exploration of the degree of coverage.

Visualizing the coverage is difficult due to the high dimensionality, but we can focus on 

certain physically relevant combinations of the spin parameters. A commonly used spin com-

bination that strongly affects total waveform phase is the effective spin [66, 192, 193],

χeff ≡
(m1�χ1 + m2�χ2) · L̂

m1 + m2

=
m1χ1‖ + m2χ2‖

m1 + m2

. (18)
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Here L̂ is the direction of the instantaneous Newtonian orbital angular momentum, and we 

carry out the projection of the spins onto L̂ using the Euclidean metric. When the effective 

spin is positive, the black holes merge more slowly, causing the gravitational-wave frequency 

to increase more slowly; conversely, when the effective spin is negative, the black holes merge 

more quickly, causing the gravitational-wave frequency to increase more quickly. Another 

benefit to considering the effective spin is that while the spin directions can precess in a 

complicated manner, χeff  is conserved up to at least the 2nd post-Newtonian order [194]. By 

contrast, the in-plane components

�χA⊥ ≡ �χA − (�χA · L̂)L̂ (19)

are more relevant for recoil kicks [28–30, 195] and precession dynamics [196, 197].

Figure 6 is one view of the distribution of black-hole spins, measured at the reference time. 

Shown are the effective spin χeff  and the magnitudes of the in-plane vectors, χA⊥ ≡ |�χA⊥|. 
The catalog contains a large number of non-spinning and aligned-spin simulations, leading 

to a spike at low in-plane spins. There is a population of simulations with |�χA⊥| ≈ 0.8, which 

were used to build the surrogate models of [83, 85].
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Figure 6. Distribution of black hole spins in the catalog. Each panel shows a projection 
of the 7D space. Each point is one simulation. We plot the effective spin χeff  (the 
combination of spins that has a strong effect on the phasing of the gravitational waves; 
defined in equation (18)) and the magnitudes of the spins in the orbital plane. Orange 
points correspond to configurations that are not precessing (spins aligned with the 
orbital angular momentum), while blue points correspond to precessing configurations.
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A different view of the parameter space is relevant for understanding precession dynamics. 

Namely, a convenient combination of parameters is given by the two ‘tilt angles’ θA L  [197],

cos θA L ≡ χ̂A · L̂, (20)

and the in-plane angle ∆Φ between the two �χA⊥ vectors,

cos∆Φ ≡ χ̂1⊥ · χ̂2⊥, (21)

with the sign determined according to sgn∆Φ ≡ sgn{L̂ · [(χ1 × L̂) · (χ2 × L̂)]} [197]. 

Figure 7 plots these three parameters. Because of the large number of aligned-spin simula-

tions, there is pileup at values of cos θA L = ±1. There are also larger number of simulations 

with purely in-plane spins, leading to another pileup at values cos θA L = 0. The distribution 

in ∆Φ is relatively flat.

3.2. Parameter space coverage and LIGO measurements

Figure 8 compares the parameter space coverage of the SXS catalog to selected astrophysical 

measurements of coalescing black holes by the LIGO detectors, obtained from [198, 199]. The 

left panel illustrates the magnitudes of the dimensionless spin vectors of the two black holes 
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Figure 7. Projection of parameter space relevant to spin-precession dynamics. Plotted 
are the cosines of the two tilt angles θ1L, θ2L, and the angle in the orbital plane ∆Φ 
between the two spin vectors, all measured at the reference time. Points are colored by 
the effective spin χeff .
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Figure 8. Parameter space coverage of the SXS catalog compared to the properties of 
selected BBH mergers observed through gravitational waves. (Left) Dimensionless spin 
for the two binary components. Scatter dots represent the simulations in the SXS catalog, 
while the greyscale pixels represent the posterior probability density as measured for 
GW151226. (Right) Mass ratio and effective spin. Black dots represent the simulations in 
the SXS catalog. The curves are 90% contours for the 2-dimensional posterior probability 
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only two resolutions are so labeled, and cases with only a single resolution are omitted.
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and their corresponding spin tilt angles θA L  for each simulation in the catalog as measured at 

the reference time (dots, color coded by the simulation’s mass ratio). These are plotted over 

the marginalized posterior distributions for these quantities for GW151226 [8], one of only 

two observed black hole binaries, to date, with evidence for non-zero spin [12] (denoted by 

greyscale pixels). The right panel shows the effective spin and the mass ratio of each system 

in the catalog and, for GW151226 and three additional gravitational wave detections, the 90% 

credible contours of the marginalized 2-dimensional posterior distributions.

In both cases, the SXS catalog covers a large part of the relevant parameter space that 

is consistent with the LIGO measurements. In particular, LIGO observations point towards 

black-hole binaries with small effective spins, a region probed well with the majority of the 

SXS simulations. However, the comparison also suggests that there are regions of the param-

eter space where the coverage is sparse, especially for unequal mass systems. Future simula-

tions will help fill in this region of the parameter space and serve to improve the accuracy of 

waveform models.

4. Waveform quality

As discussed in section 2.1, during a simulation SpEC employs dynamical adaptive p - and 

h-refinement, adding or subtracting grid points, or splitting or joining subdomains, according 
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Figure 10. Mismatches, using a flat spectral noise curve, comparing the two methods 

of gravitational wave extraction. The top panel depicts histograms of the mismatch 

between ḧf−2 and Ψ4f−2 using the highest resolution from each simulation. The factor 

f −2 ensures that the mismatches here have the same frequency weighting as those of 
figure 9. The entries are labeled using the same conventions as figure 9, but in addition 
simulations that are convergent for h but not Ψ4 and vice versa are labeled, as are 

simulations with only a single resolution. The bottom panel depicts a scatter plot of the 

mismatch between ḧf−2 and Ψ4f−2 for the highest resolution and the same mismatch 

for the second-highest resolution.
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to local measures of truncation error and a globally specified AMR tolerance. The vast major-

ity of the simulations in the catalog presented here have been run at multiple levels of this 

AMR tolerance (which we will henceforth call ‘multiple resolutions’ for brevity). As dis-

cussed in section 2.1, because of the adaptivity, a small number of our simulations do not show 

convergence with resolution; these are noted in figures 9 and 10.

It is not always straightforward how to compare two waveforms. Some comparison criteria, 

such as phase or amplitude differences for a particular spherical-harmonic waveform mode, 

might be important for certain applications and not for others. Following [85, 200], here we 

take an approach motivated by the practical application of the waveforms to gravitational 

wave science. We define an overlap O between waveforms and examine overlaps between 

waveforms from simulations with the same initial parameters but differing resolutions. This 

provides one measure for the accuracy of our waveforms. A second accuracy measure involves 

comparing waveforms extracted using the extrapolated metric perturbation h to those extracted 

at the same resolution with the extrapolated Weyl scalar Ψ4.

To define the overlap O, we employ a standard inner product 〈h1, h2〉 between complex 

waveforms h1 and h2 given by

〈h1, h2〉 =

∫ +∞

−∞

h̃1( f )h̃2∗( f )

Sn(|f |)
df , (22)

where the tilde denotes a frequency domain signal. This product is real if h1(t) and h2(t) are 

real. The quantity Sn(|f |) is the noise power spectral density, which quantifies the spectrum 

of the colored Gaussian noise, and is also used to whiten the signals in a gravitational wave 

detector. Here, we assume a flat noise spectrum, and set Sn(|f |)  =  1. This choice has the benefit 

that the results described here are independent of the total mass of the binaries. These overlaps 

are in qualitative agreement with those obtained using the Advanced LIGO noise curve, when 

the total mass of the system is in the range 50–100M⊙, as shown in figure 4 of [181]. Details 

of our implementation of the inner product are given in appendix B.

Given this inner product, we define an overlap that accounts for the information in both 

polarizations h+ and h×
 in h(t, θ,φ) = h+ − ih×, as if measured by two ideally oriented detec-

tors located at a given (θ,φ) position in the source frame,

O(h1, h2) = Re

[

〈h1, h2〉
√

〈h1, h1〉〈h2, h2〉

]

. (23)

For waveforms that are identical up to a re-scaling, O = 1, otherwise O < 1. We are interested 

in quantifying the difference in numerical simulations of the identical physical system at dif-

ferent numerical resolutions, so h1 and h2 correspond to evolutions of the same initial data set, 

but with different numerical resolution. As described in detail in appendix B, when comparing 

two such waveforms h(t, θ,φ) we allow for an overall rotation δφ of one relative to the other, 

and a time offset δt. For each pair of waveforms and direction (θ,φ) from the binary to the 

detector, this results in a mismatch

M(h1, h2) = 1 −max
δφ,δt

O(h1, h2, δφ, δt). (24)

For every configuration we include in figures 9 and 10, we evaluate the mismatch at 20 distinct 

source frame directions (θ,φ).
Figure 9 shows a histogram of the resulting mismatches between the two highest resolu-

tion simulations for the 1872 simulations in the catalog with more than one resolution. The 

majority of the simulations, 1777, have more than two resolutions and in these cases we can 
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assess the convergence of the waveforms by comparing the mismatch between the two highest 

resolutions with that between the second and third highest resolutions. We expect the former 

mismatch to be smaller than the latter mismatch in waveforms that converge with increasing 

resolution settings, and when this fails to occur we label the waveform ‘nonconvergent’.

The top panel of figure 9 depicts the mismatches for the extrapolated metric perturbation h 

computed using the Regge–Wheeler–Zerilli extraction technique described in section 2.3. The 

bottom panel depicts the mismatches between the Weyl scalar Ψ4, weighted by f −2 in order to 

give the same frequency weighting as h. We see that overall the mismatches are small, with 

the mismatches broadly lying between  ∼10−6 and 10−3, appropriate for many current appli-

cations to gravitational wave science. This is true for both the mismatches computed using h 

and Ψ4f−2. There are 37 440 mismatches plotted in each panel of figure 9, corresponding to  

20 detector directions (θ,φ) for 1872 simulations; only 3558 of these mismatches are nonconv-

ergent as determined by h and 4851 as determined by Ψ4f−2.

The error estimates in figure 9 have a tail that extends to rather high mismatches. This fea-

ture was investigated in appendix B of [181], and shown to be a consequence of unresolved 

initial transients. As mentioned in section 2.2.2, these initial transients cause simulations at 

different resolutions to correspond to binaries with slightly different physical parameters. In 

particular, we find that the in-plane spins of different resolutions can be inconsistent with each 

other. Varma et al [181] used surrogate-modeling tools to show that the high-M tail in figure 9 

is dominated by the small differences in system parameters. By training a surrogate model on 

high-resolution simulations, and evaluating it with spins of medium-resolution simulations, 

[181] found mismatches (between the surrogate and medium-resolution NR waveforms) to 

always be below �10−2. Thus our error estimate is overly conservative and does not reflect 

the actual truncation error of the simulations. We expect that the actual truncation error tail in 

figure 9 should only extend to �10−2 rather than  ∼10−1.

Furthermore, the mismatches in figure 9 are somewhat pessimistic measures of the acc-

uracy of the waveforms, since they actually measure the error in the second highest resolution, 

not the highest. Given the refinement scheme in SpEC, we cannot use extrapolation of the 

convergent waveforms to provide an error measurement on the highest resolution simulation. 

The mismatches also combine all possible sources of error together, so that we cannot distin-

guish truncation error from other sources of error, such as inaccuracies in our prescription for 

extrapolating the waveforms to infinity.

Figure 10 provides another perspective on the accuracy of the waveforms in the catalog. 

The top panel provides a histogram of the mismatches between ḧf−2 and Ψ4f−2 from for the 

highest resolution for each waveform. This mismatch is between two quantities that are equal 

in theory, and so it provides an independent assessment of the numerical accuracy of the 

waveform, and especially of the two waveform extraction techniques. The factor f −2 ensures 

the same frequency weighting for the signals used in the mismatches of both figures 9 and 10. 

The overall level of the mismatches is lower here than in figure 9, with fewer cases extending 

beyond a mismatch of 10−3. Instead of comparing ̈h versus Ψ4, one could perform mismatches 

of h against 
∫ ∫

Ψ4, but by using the time derivative ḧ we avoid the difficulty of needing to fix 

two integration constants, which is not straightforward [201].

The bottom panel of figure 10 is a scatter plot of the mismatch between ḧf−2 and Ψ4f−2 

at the highest resolution and the same mismatch at the second-highest resolution. The dashed 

line has unit slope and helps to quickly assess which mismatch is larger. While we see a few 

more points above the line, the plot indicates that the mismatch between ḧf−2 and Ψ4f−2 is 

roughly independent of resolution, but the scatter is wide with many outliers. Furthermore, 

the histogram in the top panel of figure 10 is visually unchanged when computed with the 

second-highest resolution rather than the highest resolution (as is shown). Therefore figure 10 
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shows an additional source of error, perhaps caused by differences in waveform extraction and 

extrapolation, which is independent of numerical resolution and is smaller on average than 

numerical truncation error. This also suggests numerical truncation error affects the strong-

field evolution more than it does the wave propagation in the far zone; otherwise the different 

wave extraction methods would show larger differences with numerical resolution.

All waveforms in figures 9 and 10 have been extrapolated to infinity as described in sec-

tion  2.4.1. To quantify errors in our extrapolation procedure, figure  11 shows mismatches 

between waveforms that are identical except for details of extrapolation. In particular, we 

compare the highest-resolution waveform from each of our simulations, extrapolated to infin-

ity using extrapolation order N  =  2 (the standard choice we make, e.g. in surrogate models 

[181]), versus the same waveform extrapolated to infinity using extrapolation order N  =  3. 

The mismatches peak below M ∼ 10−6 with a tail that extends to 10−3, demonstrating that 

by this measure, errors in our extrapolation procedure are on average unimportant compared 

to numerical truncation error.

A sufficient condition for two waveform models to be indistinguishable is [202–205]

M <
D

2ρ2
, (25)

where M is the mismatch (see equation (24)) and ρ  is the signal-to-noise ratio (SNR) of the 

observation the models are describing. Here D is the number of relevant model parameters, 

with D  =  8 for spin-precessing systems. For ρ = 24 (the case for GW150914 [3]), this cor-

responds to a mismatch of 7 × 10−3. Comparing to figure 9, we find that for most of our 

simulations, different numerical resolutions are indistinguishable in this sense, using a flat 

noise curve. This gives us confidence that our numerical waveforms are well suited for inter-

preting gravitational-wave observations as loud as GW150914, provided that the total mass is 

sufficiently high that the waveform is long enough to span the observed signal. However, note 
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that using equation (25) to determine whether two waveforms are indistinguishable in a par-

ticular detector would require using that detector’s noise curve in the mismatch calculations 

and choosing a total mass for each mismatch.

5. Remnant properties

The remnant properties of the final black hole are of great interest both astrophysically and 

for constructing semi-analytical waveform models. On the astrophysical side, the final mass, 

spin and kick velocity give important information about the possible progenitors of the system 

and may help distinguish BBH formation channels [206]. In waveform modelling, the final 

mass and spins are important ingredients in constructing the full waveform, determining the 

quasi-normal modes whose superposition creates the ringdown signal. This requires one to 

connect the parameters of the black holes far from merger to those of the remnant. Thus the 

task of inferring remnant properties has received a lot of attention [28, 29, 91, 189, 195, 197, 

207–223].

In this section, we compare fits for the final mass and spin magnitude from the literature to 

the simulations in the catalog, restricting our attention to cases where the measured eccentric-

ity is � 2 × 10−3. We make use of the publicly available implementation of the fits in LAL 

[224, 225]. To estimate the error in NR data, we use the difference between the highest and 

second highest resolution, where more than one resolution is available. We define the errors in 

the fitted mass as ∆m = mNR − mfit and similarly for the magnitudes of the final spin.

We begin by considering the fits for the remnant mass from Healy and Lousto [222] 

(HL2016) and Jiménez-Forteza et  al [221] (UIB2016). As can be seen in figure  12, we 

find good agreement between fits and the NR simulations. The errors in the fits are below 

|∆m| � 0.004M  for 90% of the cases, more than an order of magnitude larger than the NR 

errors. There is also a tail that extends to larger negative errors which shows that the fits sys-

tematically overestimate the final mass.
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Figure 12. The difference between NR and two fits for the final mass: UIB2016 [221] 
and HL2016 [222]. The inset shows our numerical error, estimated as the difference 
between the highest and second highest resolutions. The accuracy of the fits is excellent, 
with 90% of the errors �0.004M, about an order of magnitude larger than our NR 
errors.
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We next consider the final dimensionless spin magnitudes, using the models from Hofmann 

et al [220] (HBR2016) in addition to HL2016 and UIB2016, as shown in figure 13. For pre-

cessing cases we follow current LIGO/Virgo analyses and evolve the spins (using the 3.5 

post-Newtonian spin evolution equations) from the relaxed time to the Schwarzschild inner-

most stable circular orbit (ISCO). Projections of these spins along the Newtonian orbital 

angular momentum direction at ISCO are used as inputs for the remnant mass and spin fits. 

The HL2016 and UIB2016 spin fits are augmented by the sum of the in-plane spin comp-

onents at ISCO (for details see [226]). For all models, we find errors of order ∆|χ| � 0.01 

for 90% of the cases, more than an order of magnitude larger than the NR errors. While there 

is little difference in the magnitude of the errors between different models, we find that the 

HBR2016 model shows the least skew around 0, most likely because of special correction fac-

tors included in the model to handle precessing cases.

More accurate fits [181, 189] for the remnant mass, spin and recoil kick velocity have 

recently been developed by training directly against some of these simulations. The errors in 

these fits are comparable to the NR errors, but the fits have been trained only against simula-

tions with q � 4, χ1,χ2 � 0.8. However, they are shown to extrapolate reasonably to higher 

mass ratios and spins in [181, 189]. Note that when applying aligned-spin fits to precessing 

systems, there is an ambiguity as to what time or frequency the precessing spins are to be 

evaluated when using the aligned-spin model. The fits in [181, 189] resolve this ambiguity 

by training directly against precessing simulations. Varma et al [189] also suggests that fits 

built only from aligned-spin NR simulations can become inadequate at SNRs  ∼5 times that of 

GW150914, so there is a need to calibrate directly to precessing simulations.

6. Conclusion

In this paper, we have presented a substantial expansion of the SXS catalog of numerical-

relativity simulations of black-hole binaries, which is publicly available at www.black-holes.
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Figure 13. The difference between NR and three fits for the magnitude of the final 
dimensionless spin: UIB2016 [221], HL2016 [222], and HBR2016 [220]. The inset 
shows our numerical error. The accuracy of the fits is still good, with 90% of the errors 
�0.01, but significantly larger than our NR errors which are of the order 7 × 10−4.
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org/waveforms [92]. Our catalog now includes 2018 simulations (including 1426 that are 

precessing) with a median length of 39 cycles of ℓ = m = 2 gravitational waves. We have 

considerably expanded our coverage of the parameter space, especially for mass ratios up to 

4 and spin magnitudes up to 0.8. While our catalog does include simulations with mass ratios 

up to 10 and simulations spin magnitudes up to 0.998, the parameter space of high mass ratios, 

high spins, or both remains highly challenging and largely unexplored both by our catalog and 

by other catalogs. The remnant masses and spins agree well with existing fits in the literature, 

although differences between the fits and our simulations are larger than differences between 

our different resolutions; as a result, improved fits have recently been constructed directly 

from NR simulations [189].

We also have assessed the quality of our numerical waveforms. We find that mismatches 

between waveforms at different numerical resolutions are smaller than 10−3 for the vast major-

ity of simulations in our catalog, although a few simulations have larger mismatches between 

different resolutions. As discussed in section 4, current simulations are adequate for parameter 

estimation with Advanced LIGO and Virgo signals detected at the current level of sensitivity. 

Significantly louder observations, possible with future ground- and space-based detectors, 

might require numerical waveforms with significantly higher accuracy.

In the future, we will continue to expand our catalog, with the ultimate goal of fully cover-

ing the parameter space of binary black holes. This will likely require novel approaches to 

enable simulations with both high mass ratios and nearly extremal, precessing spins. We will 

also work toward longer simulations, which span detectors’ frequency bands down to smaller 

total masses, and more thoroughly explore cases with higher eccentricity. We will develop 

improved initial data with less spurious ‘junk’ gravitational radiation (e.g. [227]). Finally, we 

are working towards computing gravitational waves using Cauchy-characteristic extraction 

[176, 228–231] rather than extrapolation.
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Appendix A. Contents of the SXS catalog

The SXS catalog contains of a set of binary black hole simulations, each labeled by an iden-

tification string of the form ‘SXS:BBH:dddd’, where ‘dddd’ is a four-digit number. A given 

catalog entry labeled by ‘SXS:BBH:dddd’ usually contains data from several resolutions, i.e. 

several simulations with identical code and identical parameters except for the AMR tolerance 

(see section 2.1). These resolutions are labeled ‘LevN’, where ‘N’ is an integer that increases 

with finer resolution. The resolution labels for different catalog entries are not necessarily 

comparable. Each resolution starts from identical initial data, sampled onto the appropriate 

grid for that resolution.

The entries ‘SXS:BBH:dddd’ are labeled roughly (but not exactly) chronologically, so that 

larger numbers usually correspond to later simulations with more recent versions of SpEC. 

Sometimes two different catalog entries have identical physical parameters (black hole masses 

and spins), but are separate entries because they follow a different number of orbits, have 

different orbital eccentricities or outer-boundary radius, or because they use different pre-

scriptions for initial data or gauge conditions. In addition, a number of simulations have been 

repeated using identical or nearly identical parameters with an improved version of SpEC, 

including the aligned-spin simulations of [200]. Once an entry is in the catalog, it is never 

replaced by a newer simulation with the same ‘SXS:BBH:dddd’ label; instead, the newer 

simulation is assigned a new label. An existing entry is modified only rarely, in the case of 

simple corrections that can be done by postprocessing: for example, we found that some of 

our waveforms in the catalog had the opposite overall sign convention as intended, so the 

offending waveforms were changed appropriately in the catalog and the version numbers of 

the modified files were updated.

A.1. Available data for each simulation

Each simulation in the catalog contains a metadata.json file that lists physical and code 

parameters, derived quantities such as remnant properties, and informational fields. This file 

is documented in table A1 of section A.2.

Each simulation also includes files that contain the spherical-harmonic modes of gravita-

tional waveforms, as described in section A.3 and listed in table A2. Finally, each simulation 

includes files Horizons.h5 containing masses, spins, and other properties of the AH.

All dimensionful quantities are given in arbitrary units. All vector and tensor quantities 

are given in an asymptotically Cartesian coordinate system in which the black holes at the 

initial time are along the x-axis (BH 1 at positive x), and the initial Newtonian orbital angular 

momentum is along the z-axis.
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Table A1. Names, types, and descriptions of meanings of fields in metadata.json 
files.

Field name (s) Type Description

Identification

simulation_name string A SXS-assigned identifier of the simulation

alternative_names string[ ] Comma-separated list of alternative 
names, longer, more descriptive, and/
or indicating the specific series of simu-
lations this configuration belongs to. 
One of these alternative names is the 
‘SXS:BBH:dddd’ id-number, which is 
guaranteed to be unique.

keywords string[ ] Deprecated

point_of_contact_email string Contact information for questions

authors_emails string[ ] Deprecated

References

simulation_bibtex_keys string[ ] References which should be cited if this 
simulation is used

code_bibtex_keys string[ ] Deprecated

initial_data_bibtex_keys string[ ] Deprecated

quasicircular_bibtex_keys string[ ] Deprecated

Input parameters for initial data

object{1,2} string Keyword description to identify the ob-
ject type. One of {bh, ns}

initial_data_type string Type of initial data. One of  
BBH_CFMS—conformally flat, maximal 
slice  
BBH_SKS—superposed Kerr–Schild

initial_separation double Coordinate separation D0 between  
centers of compact objects, as passed to 
the initial data solver [46, 133, 233]

initial_orbital_frequency double Initial orbital frequency Ω0 passed to the 
initial-data solver [46, 133]

initial_adot double Radial velocity parameter ȧ0 passed to the 
initial data solver [46, 134]

Measurements of initial data

initial_ADM_energy double ADM energy of the initial data

initial_ADM_linear_momentum double[3] ADM linear momentum of the initial data

initial_ADM_angular_momentum double[3] ADM angular momentum of the initial 
data

initial_mass{1,2} double Christodoulou mass of the apparent  
horizon of each body in initial data  
(equation (5); code units)

initial_dimensionless_spin{1,2} double[3] Dimensionless spins of the BHs in the 
initial data (see section 2.2)

initial_position{1,2} double[3] Initial coordinates of the center of each 
body

(Continued)

A.2. Metadata format
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Reference quantities

relaxation_time double Time at which we deem junk radiation to 
have sufficiently decayed (code units)

reference_time double Time at which the quantities are extracted 
from the evo lution (code units)

reference_mass{1,2} double Christodoulou masses of the black holes 
at reference time, see equation (5) (code 
units)

reference_dimensionless_
spin{1,2}

double[3] BH spins at reference time  
(see section 2.2.1)

reference_position{1,2} double[3] Coordinates of the centers of the two  
bodies at reference time

reference_orbital_frequency double[3] Orbital angular frequency vector at  
reference time

reference_mean_anomaly double Mean anomaly at reference time

reference_eccentricity double Orbital eccentricity at reference time [45]

Merger/remnant quantities

number_of_orbits double Number of orbits until formation of a 
common apparent horizon

common_horizon_time double Evolution time at which common horizon 
is first detected

remnant_mass double Final mass of the remnant black hole after 
merger, see section 2.2.3

remnant_dimensionless_spin double[3] Spin of the remnant black hole after 
merger, see section 2.2.3

remnant_velocity double[3] Linear velocity of the remnant black hole 
after merger, see section 2.2.3

Code information

metadata_version int Version of the metadata format itself. All 
simulations in this release of the catalog 
have version number 1

spec_revisions string[ ] (Array of) git revisions of the evolution 
code

spells_revision string[ ] (Array of) git revisions of initial data 
solver

Table A1. (Continued)

Field name (s) Type Description
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A.3. Format of the HDF5 data files

A.3.1. Waveform files. We provide several files in HDF5 format that contain extracted 

gravitational waves. Users should generally use rhOverM_Asymptotic_Geometri-

cUnits_CoM.h5 or rMPsi4_Asymptotic_GeometricUnits_CoM.h5, which 

contain our best-effort gravitational wave modes, extrapolated to future null infinity (see sec-

tion 2.4.1) and corrected for center-of-mass effects (see section 2.4.2). These files contain sev-

eral groups (i.e. the HDF5-equivalent of folders), each one of them containing a separate set of 

GW waveform modes, corresponding to different extrapolation order. The groups are named 

Extrapolated_N  <int>  .dir, where the integer   <int>   indicates the polynomial 

order of extrapolation. See the discussion in section 2.4.1 regarding how to choose extrapola-

tion order. In addition, there is a group OutermostExtraction.dir which contains the 

GW modes at the largest available extraction radius, without extrapolation, but scaled and 

corrected as described in section 2.4.1 for consistency with the extrapolated waveforms.

Each of these HDF5 groups contains one HDF5 dataset for each (ℓ, m) mode; this data-

set is named Y_l  <int1>  _m  <int2>  .dat. The first integer   <int1>   indicates the 

value of ℓ for this particular mode, and the second integer   <int2>   indicates the value for 

Table A2. Data files that contain GW modes. The first two entries are the preferred 
ones; all other files should be used only when a clearly understood need arises. The 
‘time’ and ‘data’ labels indicate the contents of the time and data columns, where u 
denotes the retarded time, corrected for finite-radius effects via equation (12), and T is 
the raw unnormalized time coordinate of the underlying NR simulation. The last two 
columns indicate whether extrapolation and center-of-mass corrections were applied 
(see sections 2.4.1 and 2.4.2).

Filename Time Data Extrap? COM?

rhOverM_Asymptotic_GeometricUnits_CoM.h5 u/M r
M

hℓ,m � �

rMPsi4_Asymptotic_GeometricUnits_CoM.h5 u/M rMψℓ,m
4

� �

rhOverM_Asymptotic_GeometricUnits.h5 u/M r
M

hℓ,m � ✗

rMPsi4_Asymptotic_GeometricUnits.h5 u/M rMψℓ,m
4

� ✗

rh_FiniteRadii_CodeUnits.h5 T r hℓ,m ✗ ✗

rPsi4_FiniteRadii_CodeUnits.h5 T r ψℓ,m
4

✗ ✗

Table A3. The contents of each group of the Horizons.h5 file; these datasets are 
provided for each of the individual AH and the common apparent horizon.

Dataset name Columns Time Data

ArealMass.dat 2 T Mirr Equation (6)

ChristodoulouMass.dat 2 T M Equation (5)

CoordCenterInertial.dat 4 T �x Equation (8)

DimensionfulInertialSpin.dat 4 T �S Equation (4)

DimensionfulInertialSpinMag.dat 2 T S Equation (1)

chiInertial.dat 4 T �χ Equation (7)

chiMagInertial.dat 2 T |�χ| (Euclidean norm)
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m.   <int1>   is always � 2, whereas  <int2>  takes negative values for negative m. Each 

Y_l  <int1>  _m  <int2>  .dat dataset contains three columns—either

u

M

r

M
Re

{

hℓ,m
} r

M
Im

{

hℓ,m
}

 (A.1)

or

u

M
rM Re

{

Ψℓ,m
4

}

rM Im
{

Ψℓ,m
4

}

. (A.2)

Here u/M is the retarded time defined in equation (12), made dimensionless by division with 

the sum of the two Christodoulou masses, M = m1 + m2, where each mass is measured at the 

reference time via equation (5). The time spacing is non-uniform, with more points in regions 

of higher GW frequency. Note that the h files contain the real and imaginary parts of hℓ,m as 

opposed to the polarizations h+ and h×
; see equation (11).

In addition to the primary files rhOverM_Asymptotic_GeometricUnits_CoM.

h5 and rMPsi4_Asymptotic_GeometricUnits_CoM.h5, some files with interme-

diate GW data are provided. These files contain the GW modes without COM-correction 

and/or without extrapolation as listed in table A2. These files may sometimes be useful for 

debugging purposes, but they should not generally be used. Some of these extra waveform-

files contain extrapolated GW modes (extrap=yes) in the same structure and format as 

just described for rhOverM_Asymptotic_GeometricUnits_CoM.h5 and rMPsi4_

Asymptotic_GeometricUnits_CoM.h5. The files with non-extrapolated waveforms 

(extrap=no in table A2) contain groups for different extraction radii, named Rxxxx.dir, 

where the four-digit integer xxxx indicates the radius of the extraction sphere. SpEC chooses 

extraction radii always at integer values, so there is no rounding in this number. However, note 

that the radius is given in dimensionful code units without division by M.

Some of the HDF5 files will have an HDF5 dataset called VersionHist.ver in the 

root HDF5 group, which stores the entire version history of the file. If a file does not have this 

dataset, then it is on version 0. VersionHist.ver is an array of pairs where the first ele-

ment in the pair is the git commit id for the parent of the commit responsible for the change, 

and the second element is a description of the change from the previous version.

Only version 1 of rh∗.h5 files follows the sign convention for the strain h in equa-

tions  (C.21) and (C.22). For version 0, there is an overall minus sign in equations  (C.21), 

(C.22), and hence an overall sign difference between the waveforms contained in version 0 

and version 1 of the rh∗.h5 files. Notice that this also implies that relation between ḧ and Ψ4 

in equation (C.24) is off by a sign for rh∗.h5 files on version 0. We make our best effort to 

ensure each type of data file is on the same version across all runs, but we still recommended 

checking the version when working with files across different runs.

A.3.2. Apparent horizon files. For each simulation, we provide one file, Horizons.h5, 

containing data computed from the AH. Each file contains 3 groups named AhA.dir, AhB.

dir, and AhC.dir; these groups correspond to the two individual horizons (labeled ‘A’ and 

‘B’) and the common apparent horizon (labeled ‘C’). Typically, horizon A corresponds to the 

black hole with the larger initial Christodoulou mass.

Table A3 lists the seven HDF5 datasets given for each horizon (i.e. for each HDF5 group). 

The first column of each data set contain the time T from the simulation, and the next column 

(for scalar quantities) or next three columns (for spatial vector quantities) contain the data. 

Quantities with dimension are each given in the same arbitrary units, and all vector quantities 

are given in the (asymptotically) inertial frame of the simulation. Note that the times T are not 

spaced uniformly.
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Appendix B. Computation of mismatches

One way to assess the quality of numerical waveforms is to compute mismatches between 

waveforms that are supposed to be equal but are computed using different numerical resolu-

tion parameters, boundary conditions, extraction procedures, or methods of extrapolating to 

infinity. Our method of computing mismatches is similar but not identical to the procedure 

described in appendix D of [85].

We begin with two waveforms in the frame of our simulation

h1(t, θ,φ) = h1
+(t, θ,φ)− ih1

×
(t, θ,φ), (B.1)

h2(t, θ,φ) = h2
+(t, θ,φ)− ih2

×
(t, θ,φ), (B.2)

where the complex waveforms include both gravitational-wave polarizations, and the angular 

dependence of the waveforms is usually written as a sum of spin-weighted spherical-harmonic 

modes. We define t  =  0 as the time of maximum power in the waveform, and we truncate the 

first 500M of the waveform to eliminate effects of initial transients sometimes known as ‘junk 

radiation’. This 500M is uniform across all waveforms, distinct from the reference time dis-

cussed in section 2.2.2, which can vary across resolutions.

If two waveforms h1 and h2 differ only by an overall coordinate rotation or an overall time 

shift, we would like the two waveforms to compare as equal, and therefore to have an overlap 

of unity. We accomplish this through two steps. First, before we compute the mismatch, we 

rotate both waveforms so that the orbital angular momentum lies along the  +z axis at some 

fiducial time t0. In other words, at t  =  t0 the coordinate frame is momentarily aligned with the 

minimally rotating coprecessing frame of [178]. We choose t0 = tbegin + 1000M , where tbegin  

is the earliest time that is covered by both waveforms, after the above-described truncation 

of the first 500M of each waveform (if we are comparing three waveforms, as is the case in 

figure 9 where we compute overlaps between three numerical resolutions, we choose tbegin  

to be the earliest time that is covered by all three waveforms). Second, after the rotation, we 

allow one of the waveforms (choose it to be h2) to have an arbitrary azimuthal angle shift 

and an arbitrary time shift: h2(t, θ,φ) → h2(t + δt, θ,φ+ δφ). The shift δφ corresponds to a 

redefinition of the position of the two black holes in the orbit at t  =  t0. Later we will minimize 

the mismatch over δt and δφ.

When evaluating the accuracy of our numerical waveforms, we do not wish to ignore the 

polarization information contained in these waveforms. Furthermore, while we are interested 

in the angular dependence of the waveforms, we do not want to concern ourselves with antenna 

patterns of detectors. Therefore, we compute overlaps assuming the most optimistic detector 

scenario: an ideal network of two detectors located at (θ,φ) relative to our source frame and 

oriented normal to the direction of wave propagation, one detector measuring h+ (t) and the 

other measuring h×(t). This motivates the two-detector overlap defined in equation (23) (see 

also appendix D of [85]).

To compute the Fourier transforms in equation (22) we use an FFT after tapering the ends 

of the time-domain waveforms. For the window function we use a Planck-taper window 

(equation (7) of [234]). This function depends on four parameters t1, t2, t3, t4: it rises smoothly 

from zero at t  =  t1 to unity at t  =  t2, and falls smoothly from unity at t  =  t3 to zero at t  =  t4. We 

choose t1 = tbegin  and t4 = tend, where tend is the latest time that is covered by both waveforms 

(or all three, in the case of figure 9). We choose t2 to be the time of the 10th zero-crossing 

of the real part of the (2, 2) mode after t  =  t1, and we choose t3 to be 50M after the peak of 

the waveform. Before we compute the transforms, we pad with zeros and interpolate each 
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resolution’s time-domain waveform onto the same evenly spaced set of time samples, where 

the number of samples is chosen to be

log2 Nresamp = 1 + ⌈log2 max
LevN

Nsamp⌉. (B.3)

We then truncate the Fourier transforms at a low-frequency cutoff fmin chosen to be twice the 

waveform angular velocity (as defined by [177]) at t  =  t2, and a high-frequency cutoff fmax 

chosen to be 16 times the waveform angular velocity at the time of peak waveform power; 

the extra factor of 8 is chosen to resolve up to m  =  8 spherical-harmonic modes, with an extra 

margin of a factor of 2.

The optimization over δt can be simplified by noting that the Fourier transform of h(t + δt) 

is h̃( f )e2πiδt , so the overlap takes the form

O(δφ, δt) = Re

[

〈h1, h2(δt, δφ)〉
√

〈h1, h1〉〈h2(δt, δφ), h2(δt, δφ)〉

]

= Re

[

1
√

〈h1, h1〉〈h2(δφ), h2(δφ)〉

∫

h̃1( f )h̃2∗( f ; δφ)

Sn(|f |)
e−2iπδtdf

]

.

 (B.4)

To compute maxδt O(δφ, δt) for a fixed δφ, we evaluate the integral in equation (B.4) effi-

ciently for many values of δt simultaneously using an inverse FFT, and we take the maximum 

value. We then use standard numerical maximization techniques to maximize over δφ, result-

ing in the mismatch M defined in equation (24).

In order to include the effect of higher-order spherical-harmonic modes, we evaluate the 

mismatch at 20 points on the unit sphere, evenly spaced in cos θ and φ, that describe the direc-

tion of the detector with respect to the source. The mismatch computed using each of those 20 

directions is plotted separately in figures 9 and 10.

Note that some mismatch computations also explicitly minimize over a polarization-angle 

shift ψ, which rotates the polarization tensor that we use to decompose the waveform into the 

two polarizations h+ and h×
. On the z axis, optimization over ψ is precisely degenerate with 

optimization over δφ, even when all modes are included [235]; off the z axis this degeneracy 

is broken. Here we consider h1 and h2 to be different even if they differ only by a polarization-

angle shift, since we are considering the case of a detector network that measures both polari-

zations, and since our numerical waveforms contain polarization information. Hence we do 

not minimize over a polarization-angle shift when computing overlaps and mismatches.

Appendix C. Sign conventions

With so many sign conventions in the literature, we explicitly provide an outline of sign con-

ventions used in SpEC. Here, Greek indices represent four-dimensional spacetime coordi-

nate indices, and Latin indices represent three-dimensional coordinate indices for a space-like 

hypersurface. For a spacetime metric ψµν with signature (−,+,+,+), we foliate the space-

time into space-like slices orthogonal to a timelike unit one-form tµ,

tµ = −N ∇µt, (C.1)

where t is a scalar function representing global time, and N is the lapse. With a shift vector Ni, 

we define the spatial metric and the extrinsic curvature, respectively,

gµν = ψµν + tµtν , (C.2)
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Kµν = −
1

2
Ltgµν , (C.3)

Kij =
1

2N

(

−∂0gij + Nk
∂kgij + 2gk(i∂j)N

k
)

, (C.4)

where Kij represents the spatial components of the extrinsic curvature, and the subscript 0 

indicates the time component. While the sign convention for Kij is rather varied in the litera-

ture, the one chosen here follows the Misner–Thorne–Wheeler convention and is found in 

many prominent texts [20, 236–239]. There are also several texts that follow the opposite sign 

convention [240–242].

We define the 4-volume form ǫαβγδ and the 3-volume form ǫijk  on the spatial slices as 

follows,

ǫ0123 = |det(ψµν)|
1/2, (C.5)

ǫ
0123 = −|det(ψµν)|

−1/2, (C.6)

ǫijk = tµǫµijk, (C.7)

ǫ123 = |det(gij)|
1/2, (C.8)

and all others related by complete antisymmetry, ǫabcd = ǫ[abcd]. Note that some texts define 

the 3-volume form as εijk = ǫijkµtµ, which incurs a minus sign relative to the definition in 

equation (C.7), so that εijk = −ǫijk.

We define the Christoffel symbols and the Riemann, Ricci, and Weyl tensors, respectively, 

following the Misner–Thorne–Wheeler convention,

Γγ
αβ =

1

2
ψγλ (∂βψλα + ∂αψλβ − ∂λψαβ) , (C.9)

Rα
βγδ = ∂γΓ

α
δβ − ∂δΓ

α
γβ + Γ

α
γλΓ

λ
δβ − Γ

α
δλΓ

λ
γβ , (C.10)

(4)Rαβ = Rγ
αγβ , (C.11)

Cαβγδ = Rαβγδ − ψα[γRδ]β − ψβ[γRδ]α +
1

3
Rψα[γψδ]β . (C.12)

The Ricci tensor of the spatial slices is commonly given by Rab, so we denote the spacetime 

Ricci tensor by (4)Rαβ.

This allows us to define the Weyl scalars as follows,

Ψ4 = Cαβγδkαm̄βkγm̄δ , (C.13)

Ψ3 = Cαβγδℓ
αkβm̄γkδ , (C.14)

Ψ2 = Cαβγδℓ
αmβm̄γkδ , (C.15)

Ψ1 = Cαβγδℓ
αkβℓγmδ , (C.16)

M Boyle et alClass. Quantum Grav. 36 (2019) 195006



38

Ψ0 = Cαβγδℓ
αmβℓγmδ , (C.17)

for a complex null tetrad given by,

ℓµ = (tµ + rµ) /
√

2, (C.18)

kµ = (tµ − rµ) /
√

2, (C.19)

mµ = (θµ + iφµ) /
√

2, (C.20)

where rµ is an outward pointing space-like unit vector. The orientation of the tetrad is chosen 

so that in Minkowski spacetime we have θi = x̂i and φi = ŷi on the z axis and every where else 

θi and φi are defined in the usual way on the sphere, for more details about the tetrad see sec-

tion D in [166], but note that they use the opposite sign defining the Weyl scalars.

The sign convention of the strain polarizations h+ and h×
 are chosen as follows. We define 

hµν = ψµν − ηµν where ηµν is the Minkowski metric. For a gravitational wave propagating in 

the outward radial direction, we define the strain as

h+ =
1

2

(

h
θ̂θ̂

− h
φ̂φ̂

)

, (C.21)

h× = h
θ̂φ̂

, (C.22)

h = h+ − ih×, (C.23)

where θ̂ and φ̂ correspond to the usual coordinate vectors on the sphere. From equations (C.21)–

(C.23) we have the following relation between Ψ4 and the second time derivative of the strain,

lim
r→∞

Ψ4 = −ḧ. (C.24)

The sign of the strain defined in equations (C.21)–(C.23) is the current definition of the strain 

for the waveforms in our catalog. This differs by an overall sign for any strain waveform previ-

ously acquired from our catalog. Please see the end of appendix A.3.1 for details on working 

with previous and current versions of the waveform files. In defining the Weyl scalars—and 

thus the relationship between the Weyl tensor and the strain—there is a significant represen-

tation in the literature both agreeing with our sign convention [35, 243, 244] and having the 

opposite sign convention [20, 166, 245, 246]. Newman and Penrose originally defined the 

Weyl scalars opposite to ours, but they also used a (+,−,−,−) metric signature [247].

For the Regge–Wheeler and Zerilli scalars Φ(±) we choose our sign convention so that 

equations (10) and (11) give the same polarizations for a linearized transverse-traceless gauge 

wave as equations (C.21) and (C.22). This means we have the same sign of Φ(−) but the oppo-

site sign of Φ(+) as [170], and the same signs of Φ(±) as [164].

Our waveform quantities are decomposed in terms of spin-weighted spherical harmonics, 

see equations (9) and (11). We use the sign conventions for spin-weighted spherical harmonics 

as given in [126, 235]. In terms of θ and φ we give the spin-weight  −2 spherical harmonics 

for l  =  2 as an example,

−2Y2 ±2 =

√

5

64π
(1 ± cos θ)

2
e±2iφ, (C.25)
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−2Y2 ±1 =

√

5

16π
sin θ (1 ± cos θ) e±iφ, (C.26)

−2Y2 0 =

√

15

32π
sin2

θ. (C.27)

The following is a brief selection of how our sign conventions for the strain h and RWZ 

scalars Φ(±) compare with a few other sources in the literature:

 •  The signs of h and Φ(+) differ by an overall sign compared to our previous catalog release 

[121].

 •  Our conventions agree with [126, 164], except that it appears that equation (II.5) of [126] 

has a sign error.

 •  Rinne et al [170] defines Φ(+) in equation (29) with the opposite sign as we use here, but 

their definition of Φ(−) in equation (18) agrees with ours.

 •  The same sign differences between this paper and [170] also appear in [248]. In [248], 

equation (15) should have an overall sign change to match our convention and the second 

equation (unnumbered) in section 3.3 should have the opposite sign on the Φ(+) term.

 •  Nagar et al [171] defines vector and tensor spherical harmonics with the opposite sign to 

ours, which would indicate that their odd-parity RWZ function has the opposite sign of 

ours. However our sign for Φ(+) is opposite their definition, so our overall definition of 

the strain h ∼ Φ(+) + iΦ(−) agrees with theirs up to a sign. This conclusion assumes that 

both papers use the same sign convention for the surface volume form ǫAB, which is not 

made clear in their paper. There also appears to be a factor of 2 difference in the defini-

tions of the rank-2 tensor spherical harmonics, but this might be due to unclear notation.
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