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Abstract— Learning and exploring the connectivity of
unknown networks represent an important problem in practi-
cal applications of communication networks and social-media
networks. Modeling large-scale networks as connected graphs
is highly desirable to extract their connectivity information
among nodes to visualize network topology, disseminate data, and
improve routing efficiency. This paper investigates a simple mea-
surement model in which a small subset of source nodes collect
hop distance information from networked nodes in order to gen-
erate a virtual coordinate system (VCS) for networks of unknown
topology. We establish the VCS to define logical distance among
nodes based on principal component analysis and to determine
connectivity relationship and effective routing methods. More
importantly, we present a robust analytical algorithm to derive
the VCS against practical issues of missing and corrupted
measurements. We also develop a connectivity inference method
which classifies nodes into layers based on the hop distances and
derives partial information on network connectivity.

Index Terms— Network connectivity, error measurement, prin-
cipal component analysis, hop distance.

I. INTRODUCTION

IN network applications, information characterizing network
connectivity for purposes such as routing and node local-

ization can often be categorized into two types depending on
practical constraints and applications. Specifically, geograph-
ical coordinate system (GCS) characterizes network nodes
locations by using their physical coordinates whereas virtual
coordinate system (VCS) characterizes network connectivity
by specifying a binary connectivity (or adjacency) matrix that
captures pairwise connections of all network nodes [1]–[6].
This work focuses on establishing VCS of a network with
unknown topology or physical locations for network applica-
tions such as topology exploration, information dissemination,
and routing.

The VCS is usually generated by using network mea-
surement techniques that differ in complexity and cost
of collecting connection information from network nodes.
We distinguish hereafter between two vastly different mea-
surement approaches: one based on hop distance and another
one based on connection path measurement. On one hand,
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path-based methods, such as traceroute [7], must record all
intermediate nodes along the path connecting a source node
with a destination node. This approach has the advantage
of collecting detailed path information between nodes to be
probed such that a single path measurement can establish
the node connectivity along the path. Its drawback is the
significant amount of network bandwidth and power resources
needed to transmit the detailed measurements to a data col-
lection center. Thus, path-based methods are less attractive
in practice when dealing with resource-limited and large
scaled networks subject to bandwidth and power constraints.
This method is mainly used for Internet map discovery [7]
without stringent resource constraints. On the other hand, hop-
based measurement methods require much less bandwidth and
power resources to collect and they are more applicable to
simple network architectures and power-limited nodes such
as in wireless sensor networks. Even though hop distance
measurement is easier to achieve and report, it can still
provide valuable network connectivity information to establish
the VCS. In this paper, we focus on exploiting the hop distance
between network nodes and several anchor or source nodes
that can simply be obtained at low cost through a controlled
flooding mechanism [8].

Establishing VCS based on hop measurement offers several
advantages such as reliability and practical simplicity. Physical
distance measurement critically depends on received signal
quality, channel distortions or fading, noise, co-channel inter-
ference, and synchronization error. Without relying on physical
distance measurement, VCS is less sensitive to localization
errors and indoor GPS outage. In addition, hop distances are
much easier to implement through a simple controlled flood-
ing [8], [9] of beacon signals from several source or anchor
nodes. Therefore, hop measurement consumes little bandwidth
to transmit and is much more reliable to estimate since hop
measurements are integer-valued measurements.

The problem of establishing VCS for unknown networks
using anchor based hop distances does pose several unique
challenges in practice. To start, it is always practically desir-
able to utilize fewer anchor nodes and record fewer measure-
ments in order to reduce cost and complexity. For this reason,
the decision with respect to the number and the placement
of anchor nodes [10] within a network is an important open
problem. If the number of anchors is small or their placement
is not sufficiently diverse, the accuracy of VCS and the esti-
mated network connectivity will degrade [11]. When used for
routing, the performance will be less than satisfactory. On the
other hand, too many anchors will substantially increase
the cost and the complexity of the measurement as well as
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the required network resources for collecting the measurement
data. For large and dense networks, even the low complexity
measurement of hop distances can form a large data set.
An efficient approach to reduce the effective dimensionality of
the VCS is to utilize principal component analysis (PCA) [1],
[3], [12], [13]. Another practical challenge for large networks
lies in the risk of temporary malfunction or disruption of
certain nodes during measurement, thereby leading to critical
loss or corruption of measurement information. In the event
of security breach, some nodes may even be maliciously
hacked to provide erroneous (corrupted) measurement data.
Our proposed VCS must be robust against unexpected loss
of measurements and corrupted data at unknown locations
without causing severe performance degradation when the
VCS is used in practical network applications [3], [12], [14].

There exist several related works that utilized the concept
of VCS for applications such as network topology preserva-
tion and routing. Dulanjalie and Anura [1] and Dhanapala
and Jayasumana [12] applied eigen-analysis to analyze and
simplify a given hop matrix in order to produce a Cartesian
coordinate map. The authors suggested that the second and the
third principal components of the hop measurement matrix
appear to provide 2-dimensional (2-D) physical coordinates
of the network map, possibly homomorphic to the network
physical topology. Although several examples were presented
to suggest its potential, such visualization method is highly
speculative and does not provide a quantitative metric regard-
ing the virtual connectivity matrix of the network. Other than
some visualized 2-D topology examples, no analytical justifi-
cation or interpretation was given in, e.g., [12], to support the
drastic practice of neglecting the first principal component in
PCA-based VCS. Another related work [2] also aims to con-
struct a 3-dimensional (3-D) visual topology map by proposing
to exploit hop measurements from only three selected anchors
to define zones in which nodes are assigned with the same
(similar) coordinates without a VCS. These existing works
do not consider missing measurements or corrupted measure-
ments that can occur in practical networks.

Instead of artificially constructing visualizable 2-D or
3-D network maps, Shao et al. [13] [13] applied a PCA-based
dimension reduction on hop measurement between “landmark”
(anchor) nodes and the remaining network nodes to compute
logical path distances for routing data traffic among nodes in a
network. The protocol proposed in [3] lets each node forward
its packets to the neighbor node nearest to the destination node
within the VCS. Another connectivity-based routing protocol
is proposed in [15] where the authors apply a tree based
method in order to avoid locally optimum solutions [15].

We note that the aforementioned works in the literature
attempt to generate heuristic network topology maps for rout-
ing without fully examining the connectivity of the network
in terms of adjacency matrix. More importantly, the practical
issue of missing measurements or measurement error due to
malfunction, power outage, or hacking of certain measurement
nodes has never been robustly addressed.

In this work, we investigate new ways to utilize the hop
distance measurement efficiently to generate a more accurate
and robust VCS. Initially, instead of constructing 2-D topology

maps [12] [1] that are artificially restricted to only two
principal components of the measurement matrix, we analyze
the anchor-based hop distance measurement matrix to generate
a network VCS that is more informative about the network
connectivity. Our special contribution lies in the establishment
of virtual coordinates based on the PCA and the associated
pairwise logical distances between nodes. Unlike existing
works, we provide a clear explanation as to why neglecting
the 1st principal component for some network topologies can
be analytically justified. However, such practice is fragile and
can be replaced by the step of centralizing the mean of the hop
measurement. We further exploit the low rank property of the
hop distance matrix to develop a robust VCS that is resilient
against missing measurement by recovering the missing entries
with an adapted matrix completion algorithm. Another key
contribution is the derivation of a robust PCA method to locate
and recover corrupted measurements because of measurement
errors, link failures, or malicious hacking.

To present our problem formulation and technical contri-
butions, this manuscript is organized as follows. Section II
presents the system model and the problem formulation of
anchor based hop distance measurement for network explo-
ration. We also describe ways to establish the VCS for the
network and define the associated logical distances among
network nodes. In Section III, we provide an analysis of the
proposed VCS to better understand the impact and sensitivity
of different principal component selections. In Section IV,
we focus on solving the practical problems of missing
measurements and measurement errors through robust PCA.
In Section V, we present network applications that utilize the
hop distance measurements for connectivity inference or traf-
fic routing. We provide numerical results in Section VI to
demonstrate the benefits of our robust PCA methods through
several simulation test examples before concluding the paper
in Section VII.

Notations: We use lower-case letters, bold lower-case,
and bold upper-case letters to denote scalars, vectors, and
matrices, respectively. If A is a matrix, then AT and A′,
respectively, denote the transpose and conjugate-transpose of
A whereas A(i, j) denotes the entry of A in the ith row and
jth column.

II. NETWORK ANALYSIS THROUGH

VIRTUAL COORDINATE SYSTEMS

A. Exploring Network Connectivity

Our problem begins with the need to explore a network
of unknown topology consisting of N nodes denoted by the
set N = {n1, n2, . . . nN}. We denote the network topology
by its N × N connectivity (adjacency) matrix A in which
A(i, j) = 1 denotes the existence of a connection between
node ni and node nj whereas A(i, j) = 0, otherwise.
The connectivity matrix A of the network is unknown. Our
objective is to estimate the entries of A based on sim-
ple network measurement known as hop distances (or hop
measurement).

More specifically, we designate a subset of network nodes A
as anchor nodes that can transmit probing packets to other
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nodes within the network. To collect hop distances, each
network node receiving the beacon packet would simply
record the number of hops it has taken from the originating
anchor node. Through such a simple method, the anchors can
measure and collect their hop distances to the rest of the net-
work through controlled network flooding. The measurement
consists of transmitting probing packets to flood the whole
network [8], [9] before collecting the hop measurements from
receiving nodes.

Hop distance measurement for network exploration has the
clear advantage of simplicity and low cost deployment in
comparison with other measurement methods such as tracer-
oute [7]. In fact, we can determine the hop distance (count)
between anchor node nj and any other node ni by letting node
nj broadcast a probing packet Pj which contains its address αj

and initial hop count hj = 0 to its neighbors which will
continue to forward Pj one hop at a time. During this process,
any node receiving the tuple (αj , hj) in Pj will increment its
hop measurement hj = hj + 1 before forwarding the updated
tuple (αj , hj) as part of Pj to its own neighbors. To maintain
the correct hop measurement i.e. the shortest path’s length,
each node must always store the minimum value for each
anchor address αj . The flooding process terminates when the
probing packets from the anchors reach all the networked
nodes. After the flooding and hop distance measurement, each
node ni needs to report, to each anchor nj or a network
center, its own address αi and its hop distance H(i, j) = hj

where H denotes the hop measurement matrix collected from
the hop distance reports. H will be used later to analyze the
network connectivity. Notice that computation and processing
of matrix H is done offline after uploading the measurements
to a server. Since we are only collecting hop count information,
the amount of data that needs to be reported by anchor nodes to
the server is also light. We also assume that during offline data
processing step, the network topology remains static, i.e., there
is no link failure or node movement.

Alternatively, one can directly explore network connectiv-
ity by applying a traceroute method. In traceroute, network
topology information can be extracted by finding the shortest
path connecting a large number of node pairs. To establish and
report the shortest trace from ni to nj , traceroute needs every
node to record and report the addresses of all intermediate
nodes forming the shortest path between ni and nj . It is clear
that tracerouting is much more complex to execute and is more
costly to report.

Fig. 1 shows a simple example of a small network consisting
of 9 nodes N = {n1, n2, . . . , n9}. If we let A = {n1, n6} be
the anchor set, we can generate a 9 × 2 hop matrix H also
given in Fig. 1. To illustrate the hop distance measurement,
the propagation of hop distance h1 relative to anchor node n1

is labeled on top of each node in the network. After executing
a controlled flooding, the minimum hop distance from node
n9 to anchor node n1 is 4. Therefore n9 needs to report hop
measurement H(9, 1) = 4 along with the address α9 back
to the anchor node n1. However, in the traceroute method,
the full list of addresses (α2, α7, α8, α9) must be reported to
describe the shortest path between n1 and n9 and is obviously
much more costly.

Fig. 1. Graph representing anchored network node and generated anchor
measurements.

B. Virtual Coordinate Analysis Based on Hop Measurement

To analyze network connectivity, we select M of the
N network nodes as anchors. Denote the subset of anchors
as A = {A1, A2, . . . , AM} ⊂ N . Once the anchor nodes
receive the hop distance reports from all N network nodes,
the hop measurements form an N ×M hop matrix H such
that H(i, j) records the shortest hop distance between node ni

and anchor Aj . The hop distance H(i, j) specifies the number
of hops through the shortest path linking node ni to anchorAj .
Since each node ni collects a hop vector hi consisting of hop
distances to the M anchors, we can write matrix H as

H = [hT
1 ,h

T
2 , . . . ,h

T
N ]. (1)

We can view hi as the raw virtual coordinate vector associ-
ated with node ni because it contains all the hop measurements
from node ni to the set of anchors A without any processing.
Using such a raw coordinate system allows us to define the
logical distance between any pair of nodes (nk, n�) using the
l2-norm as follows

dh (nk, n�) = ‖hk − h�‖. (2)

This logical distance can be used to measure the proximity
(such as delay) between any two nodes in the network.
If the logical distance between two nodes nk and n� is small,
then we can conclude that the link distance between nk and
n� must be small. In fact, we can claim that the number of
hops separating nk and n� is small. In the most optimistic
case, we can even conclude that the two nodes are directly
connected, i.e., A(k, �) = 1.

For large scale and dense networks, we often require many
anchor nodes to gather sufficient information for network
analysis. Since the dimension of the raw VCS equals M , it is
more efficient to process and analyze the collected hop mea-
surement so as to remove the redundantly high dimensionalitiy
of the raw VCS. In particular, some preliminary works have
applied principal component analysis (PCA) to process the
hop measurement matrix for dimension reduction [3], [13] or
topological visualization [1], [12].

We aim to analyze the hop matrix to establish reduced-
dimension virtual coordinates based on PCA. We shall utilize
the logical distance from the VCS to explore the network
connectivity and topology. Applying PCA to extract the rank
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characteristics of the measurement matrix H, we further
exploit the low rank property of the measurement matrix
to develop robust network analysis algorithms to overcome
missing network measurements because of malfunctions such
as power shortage or packet loss. In addition, we also propose
a robust PCA algorithm for network connectivity analysis that
is resilient against measurement errors caused by practical
problems such as hop failures or hackers.

C. PCA and Logical Distance

Applying PCA on H consists of approximating the column
rank of the N × M measurement matrix H from M to K
(K < M ). To begin, the first step is to centralize the
measurement matrix by removing the mean of matrix H in
order to avoid any translational ambiguity when performing
PCA [16]. The mean vector µ of H can be defined as:

µ =
1
N

N∑

j=1

hj =
1
N

1T
N H (3)

where 1N is the all one vector of dimension N×1. We denote
by H̃ the zero-mean hop measurement matrix as

H̃ = H− 1N µ =
[
IN − 1N 1T

N

N

]
H = Z H, (4)

where IN is the identity matrix of dimension N×N and Z =
IN −N−11N1T

N . Now we arrive at a centralized measurement
matrix H̃ for PCA.

We perform singular value decomposition (SVD) on H̃

H̃ = ŨS̃ṼT =
M∑

i=1

σ̃iũiṽT
i , (5)

where Ũ = [ũ1 ũ2 · · · ũM ] and Ṽ = [ṽ1 ṽ2 · · · ṽM ] respec-
tively, are matrices consisting of the left and right singular
vectors. The diagonal matrix S̃ = diag(σ̃1, · · · , σ̃M ) is formed
by non-negative singular values {σ̃i}M

i=1 in descending order.
For dimensionality reduction, we project H̃ over

[ṽ1, ṽ2, . . . , ṽK ] i.e. the first K columns of Ṽ which
correspond to the first K principal components associated
with the K strongest singular values. We obtain the N × K
reduced-dimension coordinate matrix

G = H̃ [ṽ1, ṽ2, . . . , ṽK ]. (6)

Since the matrix Ṽ is orthonormal, we can write

G = ŨS̃ =
K∑

i=1

σ̃iũieT
i , (7)

where ei = [0 . . . 0 1 0 . . . 0] is the ith vector in the standard
basis of R

N .
Note that the rows in G represent the newly transformed

low rank VCS for the network. In other words, if we let

G = [g1 g2 · · · gN ]T .

Then we have the two virtual coordinate vectors hj and gj

for the j-th node using, respectively, raw VCS and PCA-based

VCS as follows:

hj =
M∑
i=1

σ̃iũi(j) ṽT
i , j = 1, 2, · · · , N (8)

gj =
K∑

i=1

σ̃iũi(j) eT
i , j = 1, 2, · · · , N. (9)

The logical distance dh defined by the raw VCS is simply

dh (nk, n�)2 = ‖hk − h�‖2 (10)

=

∥∥∥∥∥

M∑

i=1

σ̃i(ũi(k) − ũi(l))ṽT
i

∥∥∥∥∥

2

(11)

=
M∑

i=1

|σ̃i|2 |ũi(k) − ũi(l)|2 ‖ṽT
i ‖2 (12)

=
M∑

i=1

|σ̃i|2 |ũi(k) − ũi(l)|2, (13)

whereas the logical distance dg within the PCA-based VCS is
given by

dg (nk, n�)2 = ‖gk − g�‖2 (14)

=

∥∥∥∥∥

K∑

i=1

σ̃i(ũi(k) − ũi(l))eT
i

∥∥∥∥∥

2

(15)

=
K∑

i=1

|σ̃i|2 |ũi(k) − ũi(l)|2 ‖eT
i ‖2 (16)

=
K∑

i=1

|σ̃i|2 |ũi(k) − ũi(l)|2. (17)

Therefore, we find that

dh(nk, n�)2 = dg(nk, n�)2 +
M∑

i=K+1

|σ̃i|2 |ũi(k) − ũi(�)|2

= dg(nk, n�)2 +Rk�(K), (18)

where Rk�(K) =
∑M

i=K+1 |σ̃i|2 |ũi(k) − ũi(l)|2 is a resid-
ual term corresponding to less important singular values
{σ̃K+1, . . . , σ̃M}. Notice that if σ̃i ≈ 0, ∀i > K thenRk� ≈ 0
thus dh(nk, n�) ≈ dg(nk, n�), ∀ k, � ∈ {1, 2, . . . , N}. There-
fore, the analysis clearly shows that, as long as K is chosen
such that σ̃i ≈ 0, ∀i > K , then the PCA-based low rank
VCS can capture the logical distance between nodes with
little or no loss of information.

III. ANALYSIS OF DIFFERENT TOPOLOGY

INFERENCE METHOD

To better understand the proposed VCS and the impact of
principal component analysis, we provide several analytical
results in this section. We present our analysis by first consid-
ering an earlier publication [12] that motivated our work and
analysis to better understand the underlying issues.

A. Analytical Comparison With Existing Works on VCS

Dhanapala and Jayasumana [12] proposed an interesting
approach to generate a virtual coordinate for network topology
by constructing a visualizable 2-D virtual coordinate based on
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matrix H and suggested its likely homomorphism with the
unknown network topology. Dhanapala and Jayasumana [12]
attempted to explore the network topology by projecting
matrix H onto the second and the third principal components.
This interesting method naturally generates a 2-D visual
graph or map for the unknown network. However, it was
unclear whether or not such a dimension-reduced graph would
indeed reveal the true topological information (e.g. homomor-
phism) about the network connectivity. Here we examine the
accuracy of this second and third principal component analysis
(STPCA) by neglecting the first principal component and its
relationship with our proposed VCS based on PCA.

First, we define the kth principal component (PC) of H as
the kth column of matrix G defined in (6). We note that the
PCA of [12] is performed directly on H without the step
of centralization. In fact, Dhanapala and Jayasumana [12]
were unable to explain the reason for ignoring the first PC
of H while choosing the second and third PCs as the 2-D
coordinates of the nodes in the derived topology map. In this
work, we shall bridge this gap by analyzing the impact of
STPCA on H without mean removal on the PCA analysis
and provide a clear connection between the use of STPCA
on H and the PCA on H̃ = ZH.

Let us examine the first PC of H which was neglected
in [12]. We can write the SVD of H as follows

H = USVT =
M∑

i=1

σiuivT
i . (19)

The first PC of H is associated with the largest singular value
σ1 = uT

1 Hv1.
Recall from Eq. (4) that H = H̃ + H0 where H0 is a rank

one matrix

H0 = N−11N1T
NH =

‖HT1N‖√
N︸ ︷︷ ︸

σ̄0

1N√
N︸︷︷︸

ū0

· (HT 1N )T

‖HT1N‖︸ ︷︷ ︸
v̄T

0

H0 can be seen as a low rank perturbation for matrix H̃.
The work in [17] studied the convergence of the extreme
singular values of the perturbed matrix which is in our case H.
Theorem 2.9 in [17] states that if σ̄0 is greater than some
threshold θ̄ then the highest singular value of H will converge
almost surely to some function of σ̄0:

σ1 → D−1
μH

(1/σ̄2
0), (20)

where DμH (.) is the D-transform of the singular value distri-
bution of H denoted by μH and θ̄ = DμH (σ̃1)−1/2.

According to (20), we can claim that the mean matrix H0

directly affects the first PC of the hop measurement matrix H:
In fact, it makes the highest singular value σ1 converge to some
function of σ̄0 along the PC directions (u1,v1). Although this
partially supports the choice of ignoring the first PC of H
in [12] it does not mean this is the optimal way of obtaining
VCS from H. In fact, based on the definition of Z, it is
clear that 1N1T

NZ = 0. Thus, we can see that the subspace
R(H̃) spanned by the columns of H̃ and the subspace R(H0)
spanned by the columns of H0 are orthogonal:

HT
0 H̃ = N−1

(
1N1T

NH
)T

ZH = N−1HT1N1T
NZH = 0.

Fig. 2. Variation of the singular values in function of the number of
anchors M .

However, this orthogonality does not hold for the row sub-
spaces R(H̃T ) and R(HT

0 ) because H0H̃T 	= 0. Therefore,
we cannot claim that σ̄0ū0v̄T

0 = σ1u1vT
1 . That is why

discarding the first PC of H associated with the singular
value σ1, as in [12], is not the best way to get rid of the
mean component associated with the singular value σ̄0 because
it will engender some connectivity information loss as it is
demonstrated in section III-B. Our proposed VCS generation
method given by equation (5) consists in performing PCA
on H̃ after centralizing H.

We show in Fig. 2 the variation of the studied singular
values for different number of anchors scattered in a randomly
generated network composed of N = 60 nodes. We notice that
σ̄0 is always above the threshold θ̄. We also plot the analytical
expression of the limit of σ1 given in (20) and we notice it is
close to the numerical value of σ1. It is also worth noting that
σ̄0 is close but not exactly equal to σ1. That is why ignoring the
first PC of H does not always yield the correct VCS especially
with random anchor placement as we will demonstrate with
numerical examples in the following section.

B. PCA Examples

The effect of centralizing H is further shown through
the illustrative examples given in Fig. 3(b) and Fig. 4(b).
We also remark from those two figures that the singular values
of H and H̃ may differ depending on the anchor placement.
In particular, when the anchors are more uniformly deployed,
as in Fig. 3(a), the second and third PCs of H are very close to
the first and second PCs of H̃. However, when the anchors are
more concentrated in one region of the map, as in Fig. 4(a),
the first and second PCs of H̃ are more significant than
the second and third PCs of H. Thus, these pair contain
more network’s topological information, as clearly seen from
the resulting connectivity maps in Fig. 4(c)-(d). In Fig. 4(c),
the x and y axes are respectively the second and third PCs
of H and in Fig. 4(d), the x and y axis are respectively the
first and second PCs of H̃.

To quantify the performance of connectivity preservation,
we can simply compute the variance of the logical distances
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Fig. 3. Hop measurement matrix centralization effect, anchor placement
scenario 1. (a) Anchored network. (b) Singular values. (c) 2nd and 3rd PC
of H. (d) 1st and 2nd PC of H.

Fig. 4. Hop measurement matrix centralization effect, anchor placement
scenario 2. (a) Anchored network. (b) Singular values. (c) 2nd and 3rd PC
of H. (d) 1st and 2nd PC of H.

between pairwise connected nodes in the network. The bench-
mark variance is obviously zero since connected nodes are
always 1 hop away from each other (Figs. 3(a),4(a)). Hence,
the smaller the variance, the better the topology preserva-
tion. Fig. 3(c) and Fig. 3(d) have the same variance (equal
to 0.016). However, we observe a much lower variance
of 0.059 in Fig. 4(d) when compared with Fig. 4(c) for which
the variance is 0.901. Hence, utilizing the first and second PCs
of H̃ as virtual coordinates is more robust to random anchor
placement variations than the strategy proposed in [12] which
uses the second and third PCs of H. Since the network
topology is unknown and the anchor placement tends to
be random, instead of directly analyzing the non-negative
measurement matrix H, we have shown that analyzing the
zero mean matrix H̃ is not only fully justified for PCA, but
also results in topology maps that are more robust to anchor
selection.

C. K-Dimensional Logical Distance

It is clear that a direct projection onto two singular vectors
of H̃ would neglect other important singular values that play

Fig. 5. CDF of correlation coefficient ρ, N = 50, M = 10, γ = 50,
P = 4.

an important role in defining logical distances. In fact, if we
use d2 to denote this benchmark logical distance obtained by
projecting H̃ over [ṽ1 ṽ2], we find that

dh(nk, n�)2 = d2(nk, n�)2 +Rk�(3). (21)

A simple comparison shows that the logical distance error
between dh and d2 is proportional to Rk�(3), which can
be substantial. Therefore, by over reducing the dimensions
of H̃ to 2-D (for visualization purposes), the obtained low-
rank graph does not reflect the true logical distance among
network nodes. Curiously enough, this method provided appar-
ently homomorphic maps that shared similar shapes with the
original network graph for several special pedagogical network
shapes chosen from [12]. Here we shall test more generic
networks to assess the efficacy of applying logical distances dg

and d2 to characterize neighboring node relationships.
We construct multiple networks with N randomly deployed

nodes in a 2-D coverage area of radius γ. We generate
the connectivity edges among the nodes based on physical
communication range γ/P . If any two nodes are separated by
a distance of γ/P or less, then they will be directly connected.
We compare the accuracy of applying the three logical dis-
tances to characterize network connectivity or topology. More
specifically, we use dh, d2 and dg for different values of K
in the following figures by averaging results from 100 Monte
Carlo random tests.

In Fig. 5 we use the well known Spearman’s rank correlation
coefficient to assess the correlation between the hop distance
and different logical distances. For each node ni we form two
vectors vi

h and vi
d of length N − 1. vi

h contains the hop
distances between node ni and all other nodes whereas vi

d

contains the corresponding logical distances. Spearman’s rank
correlation method consists in associating rank vectors ri

h and
ri

d with vi
h and vi

d, respectively [18]. The rank coefficient ρi

associated with node ni is computed as follows

ρi =

∑N−1
j=1 (ri

h(j) − r̄i
h).(ri

d(j) − r̄i
d)√∑N−1

j=1 (ri
h(j) − r̄i

h)2
∑N−1

j=1 (ri
d(j) − r̄i

d)2
, (22)
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Fig. 6. Logical distance comparison in terms of nearest neighbor violation
α, N = 100, γ = 100, P = 4.

where r̄i
h and r̄i

d are the mean ranks. Fig. 5 shows the
distribution of the correlation coefficients relative to all the
network nodes.

In another test, we compute the percentage of nearest
neighbor estimation errors denoted as ψ. First, we let Ni =
{nj, A(i, j) = 1} define the set of nearest neighbors of
node ni for which a maximum neighbor logical distance
radius ri can be determined

ri = max
nj∈Ni

d(ni, nj) (23)

We then compute the number of nodes that have a virtual
distance to ni that is smaller than ri but are not direct
neighbors of ni:

ψi = cardinality ({nj : d(ni, nj) < ri, nj /∈ Ni}) . (24)

We can cumulatively obtain the total number of nearest
neighbor violations as ψT =

∑N
i=1 ψi. ψT is plotted in Fig. 6

as a function of the number of anchors.
We notice from Fig. 5 and Fig. 6 that d2 results in higher

neighborhood violation and lower correlation coefficient with
the hop distance. Therefore, when we perform PCA on the hop
matrix H̃ to obtain a VCS, the logical distances based on dh

and dg provide, as expected, more informative and accurate
relationship with respect to nodes and their connectivities.
These comparisons shown in Fig. 5 and Fig. 6 illustrate the
risk of oversimplification by relying only on two dimensions
to construct a VCS.

In summary, PCA captures the low rank property of the hop
matrix H without performance loss. In fact, by considering
the first K principal components, we can preserve much
of the connectivity information of the full matrix H. More
importantly, we shall exploit this low-rank property of H to
derive robust network analysis when faced with missing and
corrupted hop measurements in practical scenarios.

IV. ROBUST ANALYSIS AGAINST INCOMPLETE

OR ERRONEOUS MEASUREMENT

Existing works rely on complete measurement matrix for
network analysis. In this section, we generalize our network
connectivity analysis by modeling two types of practical
measurement errors: (a) missing measurement in which some
entries of matrix H are lost; (b) corrupted measurement in
which some entries of H are in error at unknown locations.
We now propose two robust algorithms to exploit the low rank
property of H to tackle these two problems.

A. Matrix Completion for Missing Measurements

Recall that hop distances are collected using a technique
known as controlled network flooding [8]. Even with such
a simple method, there are risks of losing some of the hop
measurement entries. The loss of information may be due to
the random failure of report channels, node malfunctions, or
controlled flooding of limited range. Hence, a small number of
entries in H can be practically absent. Since the missing data
in H will pose challenges to the PCA and the establishment
of the VCS, we shall investigate robust means to effectively
tackle such problems because of missing data without severely
degrading the efficacy of connectivity inference and routing.

Our goal is to generate a virtual coordinate system that
can robustly deal with a hop matrix that contains a small
fraction of missing entries. Unlike the method proposed in [19]
that recovers missing hop measurements using a network-
centric imputation technique by dividing routing path into
source node, core border and measurement (anchor) node, our
fundamental concept is to exploit the low-rank property of
the hop matrix H that has been demonstrated in the previous
section. To find the missing data entries, we propose a low
rank matrix completion method based on PCA.

As shown in Section II, neglecting those small but non-
zero singular values of matrix H does not seriously affect
the logical distance based on PCA. In fact, H exhibits a
strong low-rank property. To model the effect of missing
measurements, we propose to decompose the full matrix H
into a sum of a low rank matrix L and a sparse perturbation
matrix Q. In particular, we let

H = L + Q (25)

where rank(L) < rank(H) and Q approximates the contribu-
tion from the negligible singular values {σi , K < i ≤ M}.
To successfully decompose H, the optimization problem can
be formulated as follows

min
L,Q

rank(L) + λ‖Q‖0

s. t. H = L + Q. (26)

We will discuss later in this section how to efficiently solve
problem (26). Now, we will denote by δ the perturbation level
that forms an upper bound to the Frobenius norm of Q

‖Q‖F < δ.

To establish the validity of this decomposition based on low
rank and sparsity, Fig. 7 shows an example of a random
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Fig. 7. δ variation with the number of anchors, N = 100.

network with 100 nodes averaging the value of δ over
100 independent Monte Carlo simulation runs. It is clear
that the value of the upperbound δ is small and decreases
substantially with the number of anchor nodes.

Having demonstrated the validity of the low-rank matrix
decomposition for H, we now formulate the recovery of
missing hop measurements as a noisy low rank matrix com-
pletion problem. In order to tackle the missing entries, we let
Ω = {(i, j); H(i, j) is observed} denote the set of indices of
H containing observed hop entries. We would like to recover
a low rank matrix Y that is very close to H over the set Ω.
Hence, we define a linear projection PΩ of a nonnegative
N ×M matrix A such that its (i, j)-th entry is given by

PΩ(A)i,j =
{
A(i, j), (i, j) ∈ Ω
0, otherwise

(27)

We can now formulate the matrix completion problem for hop
matrix with missing data entries as follows:

P0 : min
Y

rank(Y)

s. t. ‖PΩ(Y − H)‖F ≤ δ, (28)

where δ is a user-defined value based on experiments similar
to those used to generate Fig. 7.

In order to solve the optimization problem (28), we first
consider the simple case of a truly low rank matrix H with
missing entries. The problem of matrix completion for a true
low rank H has been studied in [20]. The essence is to search
for a low rank matrix Y that coincides with H in Ω. This
leads to the following optimization problem

min
Y

rank(Y)

s. t. PΩ(Y) = PΩ(H). (29)

The solution of this problem requires additional conditions.
In some cases, such as when H is the all-zero matrix except
for one row (or column), it is clearly impossible to recover Y
where Ω provides so few measurements.

To avoid such pathological examples, we introduce the
notion of incoherence with respect to sparse matrices which

ensures that a low rank matrix does not have too spiky singular
vectors and is not too sparse.

Definition 1: (Matrix incoherence with respect to sparse
matrices) A rank-r matrix X of dimension N × M is said
to be ν-incoherent with respect to the set of sparse matrices
if

‖ui‖∞ ≤
√
ν/N

‖vj‖∞ ≤
√
ν/M

where X = USVT is the SVD of X, and ui, and vi are the
ith row of U and jth row of V, respectively.

In addition, the problem (29) is generally NP-hard.
However, under certain conditions as defined by [20] the
problem (29) can be relaxed as follows

min
Y

‖Y‖∗
s. t. PΩ(Y) = PΩ(H), (30)

where ‖Y‖∗ is the nuclear norm of Y (i.e. the sum of all
singular values of Y). We now recite this result from [20] as
Theorem 1 here (the proof is found in [20]):

Theorem 1: Let X be a low rank matrix of rank r and
dimensions N ×M where M < N . Assume that we observe
m entries from X with locations sampled uniformly at ran-
dom and that X satisfies the incoherence assumptions stated
in Definition 1. Then there exists a positive constant c such
as if

m ≥ cν4 N log2(N),

then, with probability 1 − N−3, the exact matrix X is the
solution of the nuclear norm relaxation problem (30).

We further note that our original problem formulation (28)
involves a measurement matrix H that is not strictly low-
rank. In fact, H consists of a sparse perturbation matrix Q
in addition to a dominant low rank component matrix L.

Therefore, we relax problem P0 as follows

P1 : min
Y

‖Y‖∗
s. t. ‖PΩ(Y − H)‖F ≤ δ, (31)

and we resort to another result Theorem 2 whose proof is
found in [21].

Theorem 2: Under the assumptions of Theorem 1, let Ŷ be
the solution of problem (31). Then Ŷ obeys

‖H− Ŷ‖F ≤ 4
√

(2p−1 + 1)Mδ + 2δ, (32)

where p = m/(NM) is the fraction of observed entries of H.
Specifically, this result states that, by solving problem (31),

the Frobenius norm of the recovery error is proportional to the
perturbation level δ and can be upper-bounded by (32).

We propose to solve problem (31) more efficiently by
considering a regularized version which is formulated as
follows

P2 : min
Y

1
2
‖PΩ(Y − H)‖2

F + τ‖Y‖∗. (33)

Problem P2 of (33) can efficiently be solved using the
proximal gradient descent method [16]. It has also been shown
that, for a sufficiently large τ [21], the solution of Problem P2
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in (33) converges to that of Problem P1 of (31), allowing us
to tackle the problem of missing measurement data.

B. Robust PCA Against Corrupted Measurement

In addition to missing measurement data, practical networks
may also face occasional hacking or temporary hop outage.
Such problems can lead to corrupted measurement data at
sparse but unknown locations.

We let Hc denote a sparsely corrupted hop matrix. As a
result, we receive the corrupted hop matrix

Hc = H + E, (34)

where E is the sparse matrix of errors affecting the accurate
but unaccessible hop matrix H. We assume that the elements
of Hc remain integers such that the sparse elements of E
belong to Z. The hop measurement error can arise from:

1) Random node or link failure. In this case, the collected
hop distance is no longer the shortest hop path.

2) False hop reports from “corrupted” nodes denoted by
the set Nc ⊂ N .

In both cases, we assume that the locations of the erroneous
measurements are uniformly distributed at random. Conse-
quently, the locations of the non-zero, sparse entries of E are
uniformly distributed at random.

Unlike the case of missing observations, treated in
section IV-A, the corrupted entries locations denoted as Δ =
{(i, j); E(i, j) 	= 0} are unknown. This requires us to locate
the corrupted entries before correcting them. We propose to
combat network measurement errors by adopting the technique
of robust PCA [16]. We now discuss two different approaches.

1) Iterative Re-Weighted Least Square (IRLS): One
approach to recover H from the corrupted hop matrix Hc is
apply the iterative re-weighted least squares (IRLS) algorithm.
The idea of IRLS is to apply PCA iteratively by assigning
different weights to the observations according to the residual
error value.

Specifically, the weight wij assigned to entry H(i, j) is
updated in each iteration via [16]

wij = θ(ei,j)/e2i,j (35)

where θ(.) is a loss function and ei,j = H(i, j) − gT
i νj in

which νj is the jth row of matrix V. The advantage of IRLS is
simplicity of its implementation. However, it is not guaranteed
to converge. For this reason, we propose a better method with
guaranteed convergence.

2) Sparse Matrix Extraction: By combining equation (34)
and the system model adopted in (26). The corrupted hop
matrix Hc can be decomposed into

Hc = H + E = L + (Q + E), (36)

where L and Q are the same matrices defined in the system
model presented in Section IV-A. We propose to find the
corrupted measurements by decomposing Hc into a low rank
matrix L0 and a sparse matrix E0 which leads to the following
optimization problem

P3 : min
L0,E0

rank(L0) + λ‖E0‖0

s. t. Hc = L0 + E0 (37)

Similarly to the case of missing measurements, we need to
impose incoherence assumptions (Definition 1) to matrix L0

to prevent it from being too sparse and to avoid ambiguous
solutions. We also require that the locations of the non-zero
elements of matrix E0 do not form a conspicuous pattern and
are uniformly distributed at random, as stated earlier in this
section.

Problem P3 is another difficult nonconvex optimization
problem. To find a numerically efficient solution, we formulate
a convex relaxation of this problem as

P4 : min
L0,E0

‖L0‖∗ + λ‖E0‖1

s. t. Hc = L0 + E0 (38)

To understand the convergence of problem P4, we recite an
important result of [22] here as Theorem 3 (see [22] for its
proof).

Theorem 3: Let X = L0 + E0 of be an N ×M matrix.
Suppose L0 has low rank and is ν-incoherent with respect to
the set of sparse matrices according to Definition 1. Assume
further that the non-zero elements of the sparse matrix E0 are
uniformly distributed at random (without forming a pattern).
If

rank(L0) ≤ ρdM

ν2 log2(N)
and ‖E0‖0 ≤ ρsNM

for some positive constants ρd and ρs, then there exists a
constant c > 0 such that, with probability of at least 1−cN−10,
the solution of problem (38) for λ = 1/

√
N is exact.

Problem (38) is also known as principal component pur-
suit and it can be efficiently solved using alternating direc-
tion method of multipliers (ADMM) [23]. The solution E0

obtained by solving problem (38) contains both error corrup-
tions as well as the perturbation components as modeled in
equation (36). However, we can easily distinguish the elements
of E from those of Q because we know that the non-zero
elements of E must belong to the integer set Z. Furthermore,
the perturbation level δ introduced by Q decreases with
growing number of anchors (Fig. 7). We can detect and denote
the recovered error matrix as Ê.

V. NETWORK CONNECTIVITY INFERENCE

AND ROUTING APPLICATIONS

Thus far, we have focused on the recovery of the hop matrix
against missing measurement or measurement corruptions.
Once the recovery of H and the robust VCS characterizing the
logical distances are completed, there are at least two practical
applications of interest to consider. The first application uses
the hop matrix or hop-based logical distances to extract
information about node connectivity. The second application
uses the logical distance to perform packet routing within the
network.

A. Network Connectivity Inference

In this section, we propose a method to extract information
about the adjacency matrix A given the (recovered) hop
matrix. The proposed method is applicable to any connected
graph and is based on a search strategy after organizing the
nodes into different layers. The basic principle is presented in
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our preliminary work [14] to infer network topology of large
scale networks from hop distances.

Algorithm 1 describes our layered search algorithm.
We begin by assigning a single anchor node Am to the the
first layer labeled Lm,0. Next, based on the hop measurements
collected by anchor Am i.e. the mth column of matrix H,
we place all the nodes that are k hops away from Am in the
kth layer. Denote these sets as Lm,k = {ni; H(i,m) = k}.
Finally, we follow the rules of Algorithm 1 by drawing
edges between the nodes. Specifically, Algorithm 1 applies
the following observations to specify the connectivity between
nodes ni and nj :

• ni and nj cannot be connected if their hop distances with
respect to a common anchor Am, differ by more than one
hop.

• ni and nj are connected if their hop distances, with
respect to a same anchor Am, differ by exactly one hop,
and there is no other node that has the same hop number
from Am, i.e., at least ni or nj is the only node in its
layer.

• For all other links, an immediate determination can-
not be made. Binary hypothesis to detect whether two
nodes have direct connectivity can rely on the logical
distances [14].

The output of Algorithm 1 is a partial network topology
that is given by the incomplete adjacency matrix Ac in
which

Ac(i, j) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if ni and nj are connected
0, if ni and nj are not connected
x, if connectivity between ni and nj

cannot be immediately determined

(39)

Algorithm 1: Proposed connectivity inference algorithm
Data: H
Result: Ac

for each anchor Am do
Generate layers {Lm,k}k≥0 by assigning the node Am

to the first layer Lm,0 and the remaining nodes to
lower layers {Lm,k}k≥1 based on their hop distance
to Am ;

for each pair of nodes ni and nj do
Denote Lm,hni,Am

and Lm,hnj,Am
the respective

layers of ni and nj ;
if |hni,Am − hnj ,Am | > 1 then
Ac(i, j) = 0

else if |hni,Am − hnj ,Am | = 1 &

Card
(
Lm,min{hni,Am ,hnj,Am}

)
= 1 then

Ac(i, j) = 1
else
Ac(i, j) = x

end
end

end
Merge the obtained adjacency matrix from each anchor
Am;

Fig. 8. Graphical representation the output of Algorithm 1.

As an illustrative example, we consider the simple network
composed of N = 9 nodes shown in Fig. 1. We assume we
only have one anchor node A = {n1}. Thus, the generated
hop matrix H is given by

H =
[
0 1 1 2 2 4 2 3 4

]T
.

Using Algorithm 1 we start by grouping nodes into layers
then inferring the connectivity relationships between nodes as
shown in Fig. 8 where

• solid edge between ni and nj if Ac(i, j) = 1
• no edge between ni and nj if Ac(i, j) = 0
• dotted edge between ni and nj if Ac(i, j) is unknown

The obtained connectivity constraints allow us to define the
incomplete adjacency matrix Ac as shown in Fig. 8. It is clear
that by using the measurements from multiple anchors at the
same time we can reduce the number of unknown adjacency
relationships furthermore.

In addition, we can leverage the logical distance between
two nodes to detect whether they are connected. In one simple
detection algorithm, we can compute the average logical
distance d̄ of node pairs with known connectivity as

d̄ =
1
|K|

∑

(ni,nj)∈K
dg(ni, nj) (40)

where K = {(ni, nj), Ac(i, j) = 1}. This average logical
distance d̄ can serve as a parameter to develop detection
thresholds δ0(d̄) and δ1(d̄) such that δ0(d̄) < δ1(d̄). If the
logical distance between two nodes of unknown connectivity
falls below δ0(d̄), then we can decide that they are directly
connected. If the logical distance is higher than δ1(d̄), then we
decide that they are disconnected. Following such a detection
algorithm, the number of unknown elements in the connectiv-
ity matrix Ac can be substantially reduced.

The adjacency inference method discussed in this section
allows us to evaluate and demonstrate the advantage of the
proposed robust VCS.

B. Routing Using Virtual Coordinates

After recovering the missing and corrupted measurements,
we can establish the logical distance between any two nodes.
The logical distance is also commonly used in routing appli-
cations to optimize the path for packet forwarding.
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In prior works such as [13], the authors defined the logical
distance using the K most important principal components for
routing. In other words, routing can be based on dg introduced
in II-C. Logical distance dg derived from PCA not only pre-
serves the logical distance dh but it also adds more resilience to
degenerate anchor nodes set. We shall apply our robust VCS
algorithms to estimate and recover the optimum hop matrix
from missing and erroneous data before utilizing the routing
protocol of [13] based on the logical distance dg.

The routing protocol [13] simply lets each node forward
its packets to its neighbor node that is closest to the packet
destination node in terms of logical distance. More specifically,
consider a source node S with a reduced dimension virtual
coordinate vector gs = [s1, s2, . . . , sK ]T in a K-dimensional
space after PCA. Similarly let T be the destination node with
coordinate vector gt = [t1, t2, . . . , tK ]T . Based on logical
distance, node S searches among its neighbors to find the next
intermediate hop that has minimum logical distance to destina-
tion node T . In case such an intermediate node is not unique,
a fallback mechanism is activated. It consists in incrementally
reducing the dimension of the virtual coordinates space until
an intermediate node with a unique minimum logical distance
to T is found.

VI. SIMULATION RESULTS

We generate random wireless networks in our simulations
to test our proposed methods for virtual coordinate system
generation. We start by randomly deploying N nodes in
a circular 2-D coverage area of radius γ. Edges between
the nodes are generated based on the communication range
R = γ/P of the wireless nodes, i.e., any node pair separated
by physical distance below R will be connected with an
edge. After generating such a random network with unknown
topology, we randomly select M anchors and collect the hop
measurements by applying the controlled flooding scheme
described earlier in Section II. All simulation results are aver-
aged over 100 independent Monte Carlo runs with the network
nodes and the anchors locations independently generated for
each run according to a uniform distribution.

A. Measurement Recovery

In this part, we test the performance of measurement recov-
ery of our proposed algorithms against missing or corrupted
hop entries.

First, we consider the scenario of missing measurements.
In Fig. 9 we compare the performance of our proposed matrix
completion algorithm P2 with the benchmark imputation
algorithm of [19]. We define the recovery error er as the norm
of the difference between the recovered and the exact hop
matrix. For numerical illustration, we calculate the recovery
error

er = ‖Ĥ− H‖F (41)

as a function of the percentage of missing measurements.
From the simulation results in Fig. 9, one can clearly see

the performance advantage of our proposed convex optimiza-
tion algorithm over the network-centric imputation technique
proposed in [19].

Fig. 9. Comparison of matrix completion methods, N = 100, γ = 100,
P = 4, M = N/4.

Fig. 10. Detection of Corrupted measurements, N = 80, γ = 100, P = 4.

Next, we consider the scenario of corrupted measurements.
We set the number of nodes at N = 80 and let the percentage
of corrupted measurements vary between 0% and 10% of the
total number (NM ) of measurement entries. We define the
detection error ed as the norm of the difference between
the true randomly generated error corruption matrix E and
the estimated error matrix Ê based on optimization P4
in Section IV-B. Specifically, let

ed = ‖Ê− E‖F . (42)

We determine the resulting ed for different numbers of ran-
domly selected anchors and different percentages of corrupted
entries. As shown in Fig 10, the detection error ed decreases
with the number of anchors for all percentages of corrupted
measurements. Such outcome is fully expected, particular in
light of the numerical results from Fig. 7 which shows that
the amount of perturbation δ decreases with growing number
of anchors.
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Fig. 11. Performance of adjacency inference (Algorithm 1) in presence of
missing hop measurements, N = 100, γ = 100, P = 4, K = M/2,
percentage of missing measurements 30%.

B. Connectivity Inference

We test the performance of connectivity inference based
on recovered measurement matrix in the presence of miss-
ing or corrupted measurements.

For connectivity inference, let ec denote the fraction of
remaining unknown and erroneous entries in the adjacency
matrix Ac after executing Algorithm 1. This error ec allows
us to estimate how much information the hop measurements
directly provide about the connectivity relationships between
the networked nodes.

In Fig. 11, we first consider the effect of anchor selection
on our convex relaxation algorithm against missing measure-
ments. For the network with N = 100 nodes, we randomly
drop 30% of the hop measurements as missing. We vary
the number of anchors from 5% to 50% of the total nodes.
We plot ec for different numbers of anchors and compare the
performance based on three virtual coordinate systems:
(a) “Full VCS” based on full measurement matrix;
(b) “Partial VCS” based on measurement matrix with missing

entries;
(c) “Robust VCS” based on Ĥ through matrix completion of

missing entries.
We also show in Fig. 11 the performance from the thresholding
method described in Section V-A. We choose δ0(d̄) = 0.9 d̄
and δ1(d̄) = 1.1 d̄. We notice that in all the cases the percent-
age of unknown connectivities decreases with the number of
anchors because the proposed Algorithm 1 allows us to know
more about the adjacency matrix by considering additional
anchor nodes. In addition, our robust approach ensures a better
connectivity inference which is close to the full VCS with
complete hop measurements.

Another practical case of missing hop measurement is from
applying limited controlled flooding. In some cases such as
large scale or resource limited networks, reducing resource
usage by limiting the controlled flooding can help prolong the
network lifetime and adapt the topology inference method to
limited resource applications. To do so, we fix a hop distance
upper limit hm so that anchors can only probe nodes which are

Fig. 12. Performance of adjacency inference (Algorithm 1) in the case of
limited flooding, N = 100, γ = 100, P = 4, K = M/2.

Fig. 13. Performance of adjacency inference (Algorithm 1) in presence of
missing hop measurements, N = 400, γ = 100, P = 5, K = M/2,
percentage of missing measurements 30%.

at most hm hops away. The parameter hm can be seen as the
exploration range in hop units. Thus, the hop measurements
relative to nodes which are more than hm hop away from
the anchor are considered unknown or missing, for which
we can apply the robust VCS algorithm. Fig. 12 shows that
our method is able to recover the missing measurements for
different values of hm.

Next, we test the proposed methods with larger scale
networks. We increase the number of nodes to 400. Fig. 13
shows that even with a large number of nodes we can keep a
performance similar to Fig. 11.

Similarly to Fig. 11, Fig. 14 demonstrates the results of
connectivity in the presence of measurement corruption. We let
5% of the hop measurements be randomly corrupted with a
sparse error matrix E. We also test three virtual coordinate
systems:

(a) “Full VCS” relying on zero measurement corruption;
(b) “Corrupted VCS” based on measurement matrix with

corrupted entries;
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Fig. 14. Performance of adjacency inference (Algorithm 1) in presence of
corrupted hop measurements, N = 100, γ = 100, P = 4, K = M/2,
percentage of corrupted measurements 5%.

(c) “Robust VCS” based on robust PCA detection and recov-
ery of corrupted entries.

Comparing the detection errors of the three different VCS,
we see a considerable improvement in the accuracy of connec-
tivity inference by the proposed robust VCS method. In fact
the robust VCS method achieves nearly the same connectiv-
ity inference performance as that of the full VCS without
measurement errors. This result demonstrates the strength and
the robustness of the proposed robust PCA algorithm for
establishing a more robust and practical VCS.

C. Traffic Routing Successes

For traffic routing, we also generate random networks with
random anchor positions. We randomly choose the starting and
destination nodes for traffic routing.

For comparison purposes, we include a geographical-
coordinate-based routing method called greedy perimeter
stateless routing (GPSR) [24] as a benchmark performance.
This method is more efficient and obviously independent of
the number of anchors but it requires accurate geographical
coordinates. Such requirement is costly and leads to high
hardware and software complexity which is not practical for
networks with limited resources.

Fig. 15 shows the resulting packet delivery rates (percentage
of successfully delivered packets) under different numbers of
anchors. We suppose that 10% of the hop measurements are
randomly missing. Similar to the connectivity inference tests
in Section VI-B, we test the performance of three different
systems: “full VCS”, “partial VCS”, and “robust VCS”. The
results clearly demonstrate that our robust VCS can lead to
much higher successful delivery rate over “partial VCS” that
does not recover the missing measurements. In fact, robust
VCS achieves performance that is nearly identical to the full
VCS without missing measurements.

We now consider that 5% of the hop measurements are
randomly corrupted with errors. We test the three cases of
VCS: “full VCS”, “Corrupted VCS” and our proposed “Robust
VCS”. Fig. 16 illustrates the resulting packet delivery rates as

Fig. 15. Performance of routing in presence of missing hop measurements,
N = 100, γ = 100, P = 4, K = M/2, percentage of missing
measurements 10%.

Fig. 16. Performance of routing in presence of corrupted hop measurements,
N = 100, γ = 100, P = 4, K = M/2, percentage of corrupted
measurements 5%.

a function of the number of anchors. Once again, the proposed
robust VCS can generate much higher successful delivery
rate over “corrupted VCS” that neither locates nor recovers
the 5% error measurement. In fact, robust VCS achieves
performance that is nearly identical to the full VCS without
any measurement errors.

VII. CONCLUSION

In this work, we proposed to utilize logical distance metric
according to a PCA based virtual coordinate system to infer
unknown network topology by relying only on simple hop
distance measurements. This approach allowed us to capture
the low rank property of the measurement matrix. To ensure
resilience of our VCS against practical issues of missing and
corrupted measurement, we presented two different convex
optimization algorithms to recover missing or corrupted mea-
surements. Our proposed topology inference approaches are
based on the powerful tools of low-rank matrix completion and
sparse signal processing for restoring the imperfect hop matrix.
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Our numerical simulation results demonstrate the robustness of
the proposed VCS for recovering missing measurements and
for locating and correcting measurement errors. Our tests also
demonstrated substantial performance improvement offered by
our new VCS algorithms in applications involving network
connectivity inference and traffic routing. One of our future
works is to investigate new method for network connec-
tivity inference under simultaneous missing and corrupted
measurements.
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