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We analyze gravitational-wave data from the first LIGO detection of a binary black-hole merger

(GW150914) in search of the ringdown of the remnant black hole. Using observations beginning at the

peak of the signal, we find evidence of the fundamental quasinormal mode and at least one overtone,

both associated with the dominant angular mode (l ¼ m ¼ 2), with 3.6σ confidence. A ringdown model

including overtones allows us to measure the final mass and spin magnitude of the remnant exclusively

from postinspiral data, obtaining an estimate in agreement with the values inferred from the full signal. The

mass and spin values we measure from the ringdown agree with those obtained using solely the

fundamental mode at a later time, but have smaller uncertainties. Agreement between the postinspiral

measurements of mass and spin and those using the full waveform supports the hypothesis that the

GW150914 merger produced a Kerr black hole, as predicted by general relativity, and provides a test of the

no-hair theorem at the ∼10% level. An independent measurement of the frequency of the first overtone

yields agreement with the no-hair hypothesis at the ∼20% level. As the detector sensitivity improves

and the detected population of black-hole mergers grows, we can expect that using overtones will provide

even stronger tests.
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Introduction.—The coalescence of two astrophysical

black holes consists of a long inspiral followed by a violent

plunge, during which the full richness of spacetime dynam-

ics comes into play. The two objects merge, forming a single

distorted black hole that rings down as it settles to a final

stationary state. Gravitational waves are emitted throughout

the entire process, at each moment carrying information

about the evolving source. In general relativity, radiation

from the ringdown stage takes the form of superposed

damped sinusoids, corresponding to the quasinormal-mode

oscillations of the final Kerr black hole [1–4]. The frequen-

cies and decay rates of these damped sinusoids are uniquely

determined by the final hole’s mass Mf and dimensionless

spin magnitude χf. This is a consequence of the no-hair

theorem—the statement that mass and spin are the only two

properties of astrophysical black holes in general relativity.

(In general, black holes may also possess electric charge, but

this is expected to be negligible for astrophysical objects.)

The ringdown spectrum is thus a fingerprint that identifies a

Kerr black hole: measuring the quasinormal modes from

gravitational-wave observations would provide us with a

unique laboratory to test general relativity and probe the true

nature of remnants from compact-binary mergers, including

testing the no-hair theorem [5–13]. This program has been

called black-hole spectroscopy, in analogy to the spectro-

scopic study of atomic elements [6].

Although LIGO [14] and Virgo [15] have already

confidently detected gravitational waves from multiple

binary-black-hole coalescences [16–22], black-hole spec-

troscopy has remained elusive [23–29]. This is because

past analyses looked for the ringdown in data at late times

after the signal peak, where the quasinormal modes are too

weak to confidently characterize with current instruments.

The choice to focus on the late, weak-signal regime

stemmed from concerns about nonlinearities surrounding

the black-hole merger, which were traditionally expected to

contaminate the ringdown measurement at earlier times

[8,25,26,28–31].

Concerns about nonlinearities are, however, unfounded:

the linear description can be extended to the full waveform

following the peak of the gravitational wave strain [32].

Rather than nonlinearities, times around the peak are

dominated by ringdown overtones—the quasinormal

modes with the fastest decay rates, but also the highest

amplitudes near the waveform peak [32,33]. Indications of

this can be found in the waveform modeling literature, with

overtones an integral part of earlier equivalent one-body

models [34–36] (although later abandoned, cf., Ref. [37]).

Yet, with a few exceptions [12,27], previous ringdown

analyses have neglected overtones, under the assumption

that their contribution to the signal should always be

marginal [8,23–26,28,29,38]. As a consequence, these
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studies ignored important signal content and were unable to

extract multiple ringdown modes.

The inclusion of overtones enables us to perform a

multimodal spectroscopic analysis of a black-hole ring-

down, which we apply to LIGO data from the GW150914

event [16] (Fig. 1). We rely on overtones of the l ¼ m ¼ 2

angular mode to measure the remnant mass and spin from

data starting at the peak of the signal, assuming first that

quasinormal modes are as predicted for a Kerr black

hole within general relativity. We find the least-damped

(“fundamental”) mode and at least one overtone with 3.6σ

confidence (Fig. 2). At least one overtone, in addition to the

fundamental, is needed to describe the waveform near the

peak amplitude. This agrees with our expectations from

Ref. [32] given the signal-to-noise ratio of GW150914.

Assuming the remnant is a Kerr black hole, frequencies

and damping rates of the fundamental mode and one

overtone imply a detector-frame mass of ð68� 7ÞM⊙

and a dimensionless spin magnitude of 0.63� 0.16, with

68% credibility. This is the best constraint on the remnant

mass and spin obtained in this work. This measurement

agrees with the one obtained from the fundamental mode

alone beginning 3 ms after the waveform peak amplitude

(Figs. 1 and 3) [39]. It also agrees with the mass and spin

inferred from the full waveform using fits to numerical

relativity. The fractional difference between the best-

measured combination of mass and spin at the peak with

one overtone and the same combination solely with the

fundamental 3 ms after the peak is ð0� 10Þ% [40]. This is

evidence at the ∼10% level that GW150914 did result in a

Kerr black hole as predicted by general relativity, and that

the postmerger signal is in agreement with the no-hair

theorem. Similarly, the fractional difference between the

best-measured combination of mass and spin at the peak

with one overtone and the same combination using the full

waveform is ð7� 7Þ%.

FIG. 1. Remnant parameters inferred with different number of

overtones, using data starting at peak strain amplitude. Contours

represent 90%-credible regions on the remnant mass (Mf) and

dimensionless spin magnitude (χf), obtained from the Bayesian

analysis of GW150914. The inference model is that of Eq. (1),

with different number of overtones N: 0 (solid blue), 1 (solid

yellow), 2 (dashed purple). In all cases, the analysis uses data

starting at peak strain (Δt0 ¼ t0 − tpeak ¼ 0). Amplitudes and

phases are marginalized over. The black contour is the 90%-

credible region obtained from the full IMR waveform, as

described in the text. The intersection of the dotted lines marks

the peak of this distribution (Mf ¼ 68.5 M⊙, χf ¼ 0.69). The top

and right-hand panels show 1D posteriors for Mf and χf,

respectively. The linear quasinormal mode models with N > 0

provide measurements of the mass and spin consistent with the

full IMR waveform, in agreement with general relativity.

FIG. 2. Measured quasinormal-mode amplitudes for a model

with the fundamental mode and two overtones (N ¼ 2). The

purple color map represents the joint posterior distribution for the

three amplitudes in the N ¼ 2 model: A0, A1, A2, as defined in

Eq. (1). The solid curves enclose 90% of the probability mass.

A yellow curve in the A0-A1 plane, as well as corresponding

yellow dashed lines, represents the 90%-credible measurement

of the amplitudes assuming N ¼ 1. Similarly, blue dashed lines

give the 90%-credible measurement of A0 assuming N ¼ 0. All

amplitudes are defined at t ¼ tpeak, where all fits here are carried
out (Δt0 ¼ 0). Values have been rescaled by a constant to

correspond to the strain measured by the LIGO Hanford detector.

Assuming N ¼ 1, the mean of the A1 marginalized posterior lies

3.6 standard deviations away from zero; i.e., A1 ¼ 0 is disfavored

at 3.6σ. Assuming N ¼ 2, A1 ¼ A2 ¼ 0 is disfavored with 90%

credibility.
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Traditional proposals for black-hole spectroscopy

require frequency measurements for two or more quasi-

normal modes [6]. In that spirit, we also consider a single-

overtone model that allows the overtone frequency and

damping time to deviate from the Kerr prediction for any

given mass and spin. This enables us to evaluate the

agreement of the observed ringdown spectrum with the

prediction for a perturbed Kerr black hole, regardless of

the specific properties of the remnant. From analysis of data

starting at peak strain, we find the spectrum to be in

agreement with the no-hair hypothesis to within ∼20%,

with 68% credibility (Fig. 4). This is a test of the no-hair

theorem based purely on the postinspiral regime.

Method.—Each quasinormal mode has a frequency ωlmn

and a damping time τlmn, where n is the “overtone” index

and ðl; mÞ are indices of spin-weighted angular harmonics

that describe the angular dependence of the mode. We

focus on the fundamental and overtones of the dominant

l ¼ m ¼ 2 spin-weighted spherical harmonic of the strain

[41]. This is the only angular harmonic expected to be

relevant for GW150914 [45,46]. (Dedicated studies have

found no evidence of higher angular harmonics in the late

ringdown of GW150914 [29].) For ease of notation, we

generally drop the l and m indices, retaining only the

overtone index n. The l ¼ m ¼ 2 mode of the parame-

trized ringdown strain (h ¼ hþ − ih×) can be written as a

sum of damped sinusoids [1–4],

hN
22
ðtÞ ¼

XN

n¼0

An exp ½−iðωntþ ϕnÞ − t=τn�; ð1Þ

for times t greater than some start time t0, where Δt ¼
t − t0. The overtone index n orders the different modes by

decreasing damping time τn, so that n ¼ 0 denotes the

longest-lived mode. N is the index of the highest overtone

included in the model, which in this work will be N ≤ 2.

Importantly, higher n does not imply a higher frequency

ωn; rather, the opposite is generally true. All frequencies

and damping times are implicit functions of the remnant

mass and spin magnitude (Mf, χf), and can be computed

from perturbation theory [47–49]. The amplitudes An and

phases ϕn encode the degree to which each overtone is

FIG. 3. Remnant parameters inferred only from the fundamental

mode, using data starting at different times after the peak. Contours

represent 90%-credible regions on the remnant mass (Mf) and

dimensionless spin magnitude (χf), obtained from the Bayesian

analysis of GW150914. For the blue contours, the inference model

included no overtones (N ¼ 0) and used data starting at different

times after the peak: Δt0 ¼ t0 − tpeak ∈ ½1; 3; 5� ms. For the

yellow contour, the analysis was conducted with one overtone

(N ¼ 1) starting at the peak (Δt0 ¼ 0), as in Fig. 1. Amplitudes

and phases are marginalized over. The black contour is the 90%-

credible region obtained from the full IMR waveform, as described

in the text. The intersection of the dotted lines marks the peak of

this distribution (Mf ¼ 68.5 M⊙, χf ¼ 0.69). The top and right-

hand panels show 1D posteriors for Mf and χf, respectively.

Around Δt0 ¼ 3 ms, the overtones have become unmeasurable

and only the fundamental mode remains; consequently, at that time

N ¼ 0 returns a measurement of the final mass and spin consistent

with both the full IMR waveform and the N > 0 models at the

peak, in agreement with general relativity.

FIG. 4. Measurement of the frequency and damping time of the

first overtone, using data starting at the peak. The color map

represents the posterior distribution of the fractional deviations

δf1 and δτ1 away from the no-hair value δf1 ¼ δτ1 ¼ 0 (gray

dotted lines). The solid contour and dashed vertical lines enclose

90% of the posterior probability. All other parameters, including

Mf and χf , have been marginalized away. Fixing δf1 ¼ δτ1 ¼ 0

recovers the N ¼ 1 analysis in Figs. 1 and 3.
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excited as the remnant is formed and cannot be computed

within perturbation theory, so we treat them as free

parameters in our fit.

We use the model in Eq. (1) to carry out a Bayesian

analysis of LIGO Hanford and LIGO Livingston data for

GW150914 [16,22,50,51]. For any given start time t0, we
produce a posterior probability density over the space

of remnant mass and spin magnitude, as well as the

amplitudes and phases of the included overtones. We

parametrize start times via Δt0 ¼ t0 − tpeak, where tpeak ¼
1126259462.423 (global positioning system time) refers to

the inferred signal peak at the LIGO Hanford detector

[23,52]. We define the likelihood in the time domain in

order to explicitly exclude all data before t0. We place

uniform priors on ðMf; χf; An;ϕnÞ, with a restriction to

corotating modes (ωn > 0). All overtones we consider

share the same l ¼ m ¼ 2 angular dependence, allowing

us to simplify the handling of antenna patterns and other

subtleties. Details specific to our implementation are

provided in the Supplemental Material [53].

We compare our ringdown-only measurements of the

remnant mass and spin magnitude to those obtained from

the analysis of the full inspiral-merger-ringdown (IMR)

signal. To do so, we rely on fitting formulas based on

numerical relativity to translate measured values of the

binary mass ratio q and component spins ðχ⃗1; χ⃗2Þ into

expected remnant parameters [54,55]. We use posterior

samples on the binary parameters made available by the

LIGO and Virgo Collaborations [22,56], marginalizing

over unavailable component-spin angles.

We consider explicit deviations from the Kerr spectrum

by allowing the frequency and damping time of the first

overtone to differ from the no-hair values. Under this

modified N ¼ 1 model, the overtone angular frequency

becomes ω1 ¼ 2πf
ðGRÞ
1

ð1þ δf1Þ, with δf1 a fractional

deviation away from the Kerr frequency f
ðGRÞ
1

for any

givenMf and χf. Similarly, the damping time is allowed to

vary by letting τ1 ¼ τ
ðGRÞ
1

ð1þ δτ1Þ. Fixing δf1 ¼ δτ1 ¼ 0

recovers the regular N ¼ 1 analysis. We may then compute

the relative likelihood of the no-hair hypothesis by means

of the Savage-Dickey density ratio [57].

Results.—Figure 1 shows the 90%-credible regions for

the remnant mass (abscissa) and spin magnitude (ordinate)

obtained by analyzing data starting at tpeak with different

numbers of overtones (N ¼ 0, 1, 2) in the ringdown

template of Eq. (1). The quasinormal-mode amplitudes

and phases have been marginalized over. For comparison,

we also show the 90%-credible region inferred from the full

IMR signal, as explained above. If the remnant is suffi-

ciently well described as a perturbed Kerr black hole, and if

general relativity is correct, we expect the ringdown and

IMR measurements to agree. As expected, this is not the

case if we assume the ringdown is composed solely of the

longest-lived mode (N ¼ 0), in which case we obtain a

biased estimate of the remnant properties. In contrast, the

ringdown and IMR measurements begin to agree with the

addition of one overtone (N ¼ 1). This is expected from

previous work suggesting that, given the network signal-to-

noise ratio of GW150914 (∼14 in the postpeak region, for

frequencies> 154.7 Hz), we should be able to resolve only

one mode besides the fundamental [32].

Indeed, a ringdown model with two overtones (N ¼ 2)

does not lead to further improvement in the mass and spin

measurement. On the contrary, the 90%-credible region

obtained with N ¼ 2 is slightly broader than the one with

N ¼ 1, as might be expected from the two additional free

parameters (A2, ϕ2). This is because the analysis is unable

to unequivocally identify the second overtone in the data, as

shown by the amplitude posteriors in Fig. 2. The N ¼ 2

posterior supports a range of values for A1 and A2, but

excludes A1 ¼ A2 ¼ 0with 90% credibility (center panel in

bottom row of Fig. 2). The joint posterior distribution on A1

and A2 tends to favor the first overtone at the expense of

the second: the maximum a posteriori waveform scarcely

includes any contribution from n ¼ 2, and favors a value of

A1 in agreement with the N ¼ 1 posterior (yellow traces

in Fig. 2).

We next compare measurements carried out with

overtones at the peak with measurements without over-

tones after the peak. Figure 3 shows 90%-credible regions

for the remnant mass and spin magnitude obtained with

the fundamental mode (N ¼ 0) at different times after

tpeak (Δt0 ∈ ½1; 3; 5� ms). As the overtones die out, the

fundamental mode becomes a better model for the signal.

We find that the N ¼ 0 contour coincides with the IMR

measurement ∼3 ms after the peak, in agreement with

Ref. [23]. However, the uncertainty in this measurement

is larger than for the N ¼ 1 contour at the peak (also

shown for reference). This can be attributed to the

exponential decrease in signal-to-noise ratio for times

after the peak.

Finally, we allow the first-overtone frequency and

damping time to float around the no-hair values in an

N ¼ 1 model. As in Fig. 1, we analyze data starting at the

inferred peak of the strain. Figure 4 shows the resulting

marginalized posterior over the fractional frequency and

damping time deviations (δf1 and δτ1, respectively). With

68% credibility, we measure δf1 ¼ −0.05� 0.2. To that

level of credibility, this establishes agreement with the no-

hair hypothesis (δf1 ¼ 0) at the 20% level. The damping

time is largely unconstrained in the −0.06≲ δτ1 ≲ 1 range.

This has little impact on the frequency measurement, which

is unaffected by setting δτ1 ¼ 0. We find that the ratio of

marginal likelihoods (the Bayes factor) between the no-hair

model (δf1 ¼ δτ1 ¼ 0) and our floating frequency and

damping time model is 1.75.

Discussion and prospects.—A linearly perturbed Kerr

black hole radiates gravitational waves in the form of

damped sinusoids, with specific frequencies and decay
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rates determined exclusively by the hole’s mass and spin.

For any given angular harmonic, the quasinormal modes

can be ordered by decreasing damping time through an

overtone index n, with n ¼ 0 denoting the longest-lived

mode (also known as the fundamental). Although modes of

all n contribute to the linear description, the fundamental

has long been the only one taken into account in obser-

vational studies of the ringdown, with overtones virtually

ignored [23–26,28,29]. Yet, these short-lived modes can

dominate the gravitational wave signal for times around

the peak and are an essential part of the ringdown [32,33].

We demonstrate this with a multimode analysis of the

GW150914 ringdown.

Making use of overtones, we extract information about

the GW150914 remnant using only postinspiral data,

starting at the peak of the signal (Fig. 1). We find evidence

of the fundamental mode plus at least one overtone (Fig. 2),

and obtain a 90%-credible measurement of the remnant

mass and spin magnitude in agreement with that inferred

from the full waveform. This measurement is also con-

sistent with the one obtained using solely the fundamental

mode at a later time, but has reduced uncertainties (Fig. 3).

The agreement between all measurements is evidence

that, beginning as early as the signal peak, a far-away

observer cannot distinguish the source from a linearly

perturbed Kerr background with a fixed mass and spin;

i.e., we do not observe nonlinearities in this regime. The

agreement between the IMR and postmerger estimates

implies that the data agree with the full prediction of

general relativity. This is similar to the consistency test

between inspiral and merger ringdown [58,59], but relies

on a manifestly linear description of the postinspiral signal.

More specifically, it validates the prediction for the final

state of a collision between two black holes.

With the identification of multiple ringdown modes, this

is also a step toward the goal of black-hole spectroscopy.

The agreement between postinspiral measurements with

two different sets of modes (Fig. 3) supports the hypothesis

that GW150914 produced a Kerr black hole as described

by general relativity. Moreover, we constrain deviations

away from the no-hair spectrum by allowing the overtone

frequency and damping time to vary freely (Fig. 4). This is

equivalent to independently measuring the frequencies of

the fundamental and first overtone, and establishing their

consistency with the Kerr hypothesis.

Future studies of black-hole ringdowns relying on over-

tones could potentially allow us to identify black-hole

mimickers and probe the applicability of the no-hair

theorem with high precision, even with existing detectors.

Such advances will be facilitated by improvements in our

understanding of how the overtones are sourced, so that we

can predict the amplitudes and phases from the binary

properties. This would reduce the dimensionality of the

problem and lead to more specific predictions from general

relativity.
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