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Deployment and Trajectory Optimization of UAVs:
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Abstract—Optimal deployment and movement of multiple
unmanned aerial vehicles (UAVs) is studied. The considered
scenario consists of several ground terminals (GTs) communi-
cating with the UAVs using variable transmission power and
fixed data rate. First, the static case of a fixed geographical GT
density is analyzed. Using high resolution quantization theory,
the corresponding best achievable performance (measured in
terms of the average GT transmission power) is determined
in the asymptotic regime of a large number of UAVs. Next,
the dynamic case where the GT density is allowed to vary
periodically through time is considered. For one-dimensional
networks, an accurate formula for the total UAV movement that
guarantees the best time-averaged performance is determined.
In general, the tradeoff between the total UAV movement and
the achievable performance is obtained through a Lagrangian
approach. A corresponding trajectory optimization algorithm is
introduced and shown to guarantee a convergent Lagrangian.
Numerical simulations confirm the analytical findings. Extensions
to different system models and performance measures are also
discussed.

Index Terms—Unmanned vehicles, node placement, trajectory
optimization, quantization theory.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) can be effectively utilized
in a variety of wireless communication scenarios. Example
applications include providing coverage to geographical areas
lacking a wireless infrastructure, relaying to overcome terrain
obstacles such as mountains, improving cell edge performance
by creating femtocells, among many others [2]–[4].

One of the most distinguishing features of UAV networks
is the opportunity of very fast dynamic adaptation to the
ever-changing environment through relocation. Environmental
variations in this context may include ground terminal (GT) lo-
cation/density variations, UAV node failures, etc. Although the
ability of relocation potentially offers significant performance
gains, including improved coverage and rate for GTs, it also
comes with many theoretical and practical challenges. Even
in a static scenario where the locations or the density of GTs
are known and fixed, finding the optimal UAV locations is a
non-convex optimization problem whose dimensionality grows
with the number of UAVs [2]. Dynamic scenarios further
involve optimization of UAV trajectories, thus leading to much
more complicated infinite-dimensional optimization problems.

Several approaches to resolve the challenges of UAV de-
ployment/relocation have been proposed. In the case of static
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deployment, [5]–[8] consider the optimal placement of UAVs
to maximize coverage and propose several algorithms. These
works assume that a UAV can cover a GT provided that they
are separated no more than a certain distance. In [9], the
authors consider instead the average throughput as the objec-
tive function, and incorporate possible hover time constraints
of UAVs into the problem formulation. Static placement of
UAVs as relays for offloading cellular traffic [10], or generic
multihop communication [11] have also been studied. Random
deployments of UAVs are analyzed in [12] using tools from
stochastic geometry. In [13], [14], the authors consider the
optimal deployment of cache-enabled UAVs.

There are also numerous works on dynamic deployment of
UAVs. One well-studied scenario is to view UAVs as mobile
access points serving GTs. For such a use case, algorithms
for UAV coverage under variable coverage radii and possible
UAV losses are proposed in [15]. For one UAV and one GT,
[16] optimizes the UAV trajectory to achieve high throughput
with low UAV energy consumption. In [17], the authors
consider a single UAV serving a device-to-device commu-
nication network. A genetic algorithm for UAV trajectory
optimization has been proposed in [18] with the specific goal
of restoring network service after natural disasters. In [19],
the authors optimize the trajectory of a single UAV serving
multiple mobile GTs via space-division multiple access. A
Kalman filter predicts the future GT locations, which, in turn,
determine the UAV trajectory. Given several sensors on a one-
dimensional space and one UAV, [20] determines the time-
varying UAV speed that minimizes the data collection time.
A related problem is to optimize the UAV trajectories subject
to speed constraints [21], [22]. In [23], the authors consider a
UAV multicasting network-coded information to several GTs
and the corresponding trajectory optimization problem. An
algorithm to minimize the energy consumption of moving the
UAVs from one deployment to another can be found in [24].

Several other works have considered the dynamic deploy-
ment problem in the context of UAVs serving as commu-
nication relays. In particular, for a single source-destination
pair and one UAV, [25] develops a mobile UAV relaying
method. The goal is throughput maximization via jointly
optimizing UAV trajectory and temporal power allocation. The
utilization of UAVs as relays between GTs and a central
base station has been studied in [26], and a joint heading
and adaptive handoff algorithm is proposed. In [27], [28], the
authors design trajectory optimization algorithms for amplify-
and-forward UAVs. For the case of one UAV and a circular
trajectory, [29] optimizes the speed and load factor of the
UAV for maximum energy efficiency. UAVs can also offer
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computation offloading opportunities in the context of edge
computing. A corresponding trajectory optimization problem
has been studied in [30] for the special case of a single UAV.

Despite many recent studies on UAV deployment and trajec-
tory optimization, some of which have been described above,
there are many fundamental open problems that are yet to
be resolved. In particular, for static networks, there is no
general analytical framework that can provide the optimal
UAV positions for a given number of UAVs and spatial user
density. Also, for the dynamic scenario, an analytical charac-
terization of achievable performance gains are largely missing,
and most of the above work relies on numerical methods
for optimizing UAV trajectories and determining the resulting
performance. Moreover, some of these trajectory optimization
algorithms, including [16], [19], [25], [28]–[30], work only for
one UAV, or one dimension [20]. Some, including [21]–[24],
[26], [27], [31], only consider UAV speed or instantaneous
movement/energy limitations, and thus, do not incorporate
a constraint on the long-term cost of mobility. Some other
algorithms rely on methods such as simulated annealing [10]
or genetic algorithms [18], and do not offer convergence
guarantees or local optimality.

Quantization theory of data compression and source coding
[32] has proved to be a very successful analytical tool in
addressing many existing problems that involve geographical
deployment of agents [33]; example applications of the theory
include the deployment of antenna arrays [34], sensors [35],
or general heterogeneous nodes [36]. Other applications out-
side node deployment include image and video compression,
classification, and clustering [37]. The preliminaries of the
theory as well as other applications can also be found in
[37]. The main contribution of this paper is to show that
many of the aforementioned open problems on UAV networks
can as well be formulated and ultimately resolved using a
quantization theory approach. Our setup consists of a density
of GTs that are served by an arbitrary number of UAVs. Each
GT employs variable-power fixed-rate transmission to ensure
outage-free reception at its closest UAV. In the static case, our
goal is to find the optimal UAV deployment that minimizes the
average GT transmission power, while in the dynamic case,
we wish to minimize the time-averaged power consumption
subject to a constraint on the total movement of the UAVs. The
specific main contributions of this paper are then summarized
as follows:
• In the static case, and a uniform distribution of GTs on

a line segment on the ground, we determine the optimal
deployment of UAVs and the resulting average GT power
consumption. For a general one or two dimensional area
on the ground and an arbitrary GT distribution, we
determine the optimal deployment and the corresponding
performance in the asymptotic regime of a large number
of UAVs.

• In the dynamic case, for any dimension and any time-
varying GT densities, we analytically characterize the
optimal UAV deployments and the corresponding GT
power consumptions in the two extremal cases of no UAV
movement and unlimited UAV movement. In the special
case of one dimension, our approach leads to an analytical

formula for the total UAV movement that guarantees
the lowest possible average GT power consumption. In
general, compared with the existing studies, the main
advantage of our quantization theory approach is that it
allows us to obtain similar exact analytical results on the
network performance.

• In order to address moderate UAV movements, we in-
troduce a trajectory optimization algorithm that relies on
time discretization, and alternating optimization over each
discretized time instance. The algorithm is a descent over
the Lagrangian combination of GT power consumption
and UAV movement. Optimization at each time instance
is carried out through a generalization of Lloyd algorithm
[38], [39] in vector quantization. Certain sub-optimization
problems that arise in this context are solved in closed
form. Our algorithm can numerically provide the optimal
UAV trajectories for any dimension and any GT density.

Our algorithmic approach is thus aligned with the Voronoi-
based coverage control algorithms that were originally envi-
sioned for mobile sensor networks [40]–[42]. These existing
studies, however, do not consider total movement constraints
and are thus not applicable. Except for the analytical charac-
terization of trajectories and the corresponding total movement
for dynamic deployment, where we focus on the case of
one dimension, our analysis and algorithms hold for any
dimension and any GT density. Also, [5]–[7] only consider
static placement of UAVs without any movement, and provide
no analytical results on where to place the UAVs and the
resulting network performance. In contrast, we consider a
dynamic network with UAV mobility and analyze the optimal
UAV trajectories and the resulting performance. Also, in the
current work, we focus on optimizing the locations and the
trajectories of the UAVs. However, in [8], the locations of the
UAVs are not optimization variables, but rather are given fixed
parameters.

Part of this work has been presented in a conference [1].
Compared to [1], most aspects of the trajectory optimiza-
tion algorithm and the solutions to the accompanying sub-
optimization problems are new. In particular, we use a Lloyd
algorithm based approach that favors distributed implementa-
tion as opposed to the gradient descent based approach in [1].
We also provide the implementation details and complexity
analysis of the algorithm. Moreover, we extend our results
to channel models that incorporate fading, interference, and
probabilistic line of sight. We also provide more connections to
the existing literature and more detailed numerical simulations.

The rest of this paper is organized as follows: In Section
II, we introduce the system model. Static deployment of
UAVs is analyzed in Section III. We consider the extremal
cases of dynamic deployment in Section IV. Our trajectory
optimization algorithm is introduced in Section V to address
moderate movement constraints. We provide numerical sim-
ulation results in Section VI. In Section VII, we extend our
results to different system models. Finally, in Section VIII, we
draw our main conclusions. Some of the technical proofs are
provided in the appendices.
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II. SYSTEM MODEL

We consider several GTs at zero altitude and several UAVs
at a fixed altitude h>0. Mathematically, the GTs are located
on Rd, d ∈ {1, 2}. While typically one is interested in the
case d = 2, i.e., when the GTs are in general positions on
the ground, the case d = 1 is also relevant: The GTs may be
constrained to lie on a line on the ground, e.g., as cars on a
straight highway.

We distinguish between what we refer to as the static and
the dynamic deployment scenarios. In static deployment, we
assume that the GTs are located on Rd according to a certain
fixed (time-invariant) density function f , where

∫
Rd f(q)dq =

1. In the more complicated dynamic deployment scenario, we
will allow the user density to vary over time.

A. Static Deployment

In order to formally describe the static deployment scenario,
let x1, . . . , xn ∈ Rd denote the UAVs’ (projected) locations
on the GT space, measured in meters. The squared Euclidean
distance between a GT at q and the ith UAV at xi is then
given by ‖xi − q‖2 + h2. Fig. 1 provides an illustration for
the special case of n = 2 and d = 2. Also, for d = 1, one can
imagine that the horizontal and the vertical positions of UAV
i are given by xi and h, respectively.

We consider optimization over only the ground coordinates
x1, . . . , xn of the UAVs, while the altitude h of the UAVs
is kept fixed. This is because, for all the scenarios that we
consider (including the interference-aware model in Section
VII-C), decreasing the altitude of any given UAV also de-
creases the GT’s access distance to the UAV, resulting in
a better overall network performance. Therefore, all UAVs
should ideally be located on the lowest possible altitude. From
this viewpoint, h could also be interpreted as a common
minimum altitude constraint that is imposed due to physical
obstacles or governmental regulations on the area of interest.

Fig. 1: A network of two UAVs serving a GT.

We first consider fixed-rate variable-power transmission at
GTs. The case of fixed-power variable-rate transmission will
be discussed later. Suppose that a GT at location q wishes

to communicate an information-bearing symbol s with rate ρ
bits/s/Hz, and transmits with power P W. Due to the aerial
nature of the communication system, we assume that there is
line of sight between the GT and the UAVs. We also assume
that there are no full or even partial physical obstructions
between the GTs and the UAVs so that non line of sight
effects such as fading are negligible (Extensions to fading or
probabilistic line of sight models will be discussed later). The
channel input-output relationships are yi = s(‖xi − q‖2 +
h2)−

r
2

√
P + ηi, i = 1, . . . , n, where yi is the received signal

at the ith UAV, r is the path loss exponent, and η ∼ CN (0, 1)
is the noise at UAV i. The received signal power at UAV i is
thus given by (‖xi − q‖2 + h2)−

r
2P . Since the noise power

is normalized to unity, the signal-to-noise ratio (SNR) at UAV
i also equals (‖xi − q‖2 + h2)−

r
2P . Reliable communication

between the GT and the UAV is possible provided that the
channel capacity between the GT and the UAV is at least ρ,
or, mathematically if

log2(1 + (‖xi − q‖2 + h2)−
r
2P ) ≥ ρ. (1)

According to (1), for reliable communication to the UAV
at xi, the transmission power of the GT should satisfy P ≥
(2ρ−1)(‖xi− q‖2 +h2)

r
2 . The minimum transmission power

that guarantees successful data reception at one or more of the
UAVs is therefore mini(2

ρ− 1)(‖xi− q‖2 +h2)
r
2 . Averaging

out the GT density, and setting ρ = 1 throughout the paper
without loss of generality, the average transmission power of
GTs given UAV locations x , [x1 · · ·xn] and density f is

P (x, f) ,
∫
Rd

min
i

(‖xi − q‖2 + h2)
r
2 f(q)dq. (2)

The static deployment problem is then to find the optimal UAV
locations that minimize the average GT power consumption.
In other words, we wish to determine P ?(f) , minx P (x, f),
and the optimal deployments x? that achieve P (x?, f) =
P ?(f).

B. Dynamic Deployment
In practice, the GT density may vary over time. For ex-

ample, in daily urban communications, the GT density over
highways will be higher during rush hours, when compared to
nighttime. In order to model such scenarios, we let ft denote
the GT density function at time t. We assume ft is periodic
over a time interval of length T , i.e., ft(q) = ft+T (q), ∀t, ∀q.
For example, one may set T = 24 hours for the urban highway
communication scenario, as the traffic or GT density at a given
highway stretch can be assumed to be the same for the same
hours of different days. In general, we assume that ft(q) is
continuous in both t and q. Thus, the GT density does not
experience abrupt changes over space or time. In practice, for a
fixed number of GTs, variations of the GT density correspond
to GT mobility.

Let xt,i denote the location of UAV i at time t, and xt =
[xt,1 · · ·xt,n] denote the vector of UAV locations at time t.
The power consumption of GTs at time t is P (xt, ft). The
average power consumption over time can be expressed as

Q ,
1

T

∫ T

0

P (xt, ft)dt. (3)
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Throughout the paper, we assume that the start and the end
locations of each UAV over one period is the same; i.e., x0,i =
xT,i, ∀i. The time-averaged distance traversed by the ith UAV
can then be calculated to be the line integral

Mi ,
1

T

∫ T

0

√√√√ d∑
j=1

∣∣∣∣∂xt,i,j∂t

∣∣∣∣2dt, (4)

where xt,i,j represents the jth component of xt,i. In this case,
the goal is to find the optimal UAV trajectories that minimize
the average GT power consumption Q subject to a constraint∑n
i=1Mi ≤M on the total UAV movement

∑n
i=1Mi, where

M ≥ 0 is given. Note that, for the special case of no UAV
movement M = 0, and a time-invariant density ft = f, ∀t, the
dynamic deployment scenario reduces to the static deployment
scenario described in Section II-A.

III. OPTIMIZATION OF A STATIC DEPLOYMENT

We begin with the simpler scenario of a static deployment
and its optimization. Namely, we study the minimization of
(2) with respect to UAV locations x. We begin by considering
the degenerate case h = 0, in which case we can imagine that
the network consists of unmanned ground vehicles (UGVs)
instead of UAVs. The analysis of such a UGV scenario will
be very useful for our analysis of the UAV case h > 0.
Later, we will also apply the results of this section to the
dynamic deployment problem for UGVs in Sections IV and
V. In this context, although there are some existing works on
static UGV deployment (see [36] and the references therein),
none consider our dynamic deployment scenario with a total
movement constraint.

A. The UGV Case h = 0

For h = 0, the cost function in (2) becomes P (x, f) =∫
Rd mini ‖xi− q‖rf(q)dq. This expression is the well-known

average rth power distortion of a quantizer whose reproduction
points are x1, . . . , xn for a given source density f . Finding
its exact minimizers and the corresponding minimum distor-
tions is possible only for a few special cases. In particular,
if f(q) = 1(q ∈ [0, 1]) is the one-dimensional uniform
density, then the optimal reproduction points are given by
the uniform quantizer codebook xu = [ 1

2n
3

2n · · ·
2n−1

2n ] with
P (xu, f) = 1

(1+r)(2n)r .
For a general uniform density, we have the following result

of Bennett [43] and Zador [44]. Given A ⊂ Rd, let m(A) ,∫
A
‖q‖rdq/(

∫
A

dq)
d+r
d denote the normalized rth moment of

A.

Proposition 1. Let f(q) = 1(q ∈ [0, 1]d), h = 0. As n→∞,
we have P ?(f) = κrdn

− rd + o(n−
r
d ), where κrd depends

only on r and d. In particular, κr1 = 2−r

1+r and κr2 are the
normalized moments of the origin-centered interval and the
origin-centered regular hexagon, respectively.

This implies that for d = 2 and a uniform distribution, the
best arrangement of quantization points is asymptotically the
regular hexagonal lattice. Equivalently, for a two-dimensional

uniform GT density, the best arrangement of UAVs is asymp-
totically the regular hexagonal lattice.

Making the transition from uniform to non-uniform f can
be accomplished using the idea of point density functions.
In detail, one assumes the existence of a function λ(q) such
that the cube [q, q + dq] of volume dq contains nλ(q)dq
reproduction points with

∫
Rd λ(q)dq = 1. Since f should

be approximately uniform on [q, q + dq], the conditional
average distortion on [q, q + dq] is κrd(nλ(q))−

r
d + o(n−

r
d )

by Proposition 1. Averaging out the density, we obtain the
formula

P̃ (λ) , κrdn
− rd
∫
Rd
f(q)λ−

r
d (q)dq + o(n−

r
d ). (5)

for the average distortion given λ. Using reverse Hölder’s
inequality, we have

P̃ (λ) ≥ κrdn−
r
d ‖f‖ d

d+r
+ o(n−

r
d ), (6)

where ‖f‖α , (
∫
Rd(f(q))αdq)

1
α is the α-norm of the density

f . In (6), equality holds if

λ(q) = f
d
d+r (q)/

∫
Rd f

d
d+r (q′)dq′, ∀q (7)

Thus, the minimum distortion κrdn
− rd ‖f‖ d

d+r
+ o(n−

r
d ) is

achieved by the point density in (7).

B. The UAV Case h > 0

We now consider the case h > 0. We begin with the simple
case of a uniform one-dimensional distribution. The proof of
the following proposition can be found in Appendix A.

Proposition 2. Let f(q) = 1(q ∈ [0, 1]). A minimizer of
(2) is the uniform quantizer codebook xu. In other words,
the optimal placement for n UAVs and uniform GT density is
given by xu. The corresponding minimum average power is
P (xu, f) = 2n

∫ 1
2n

0
(u2 + h2)

r
2 du.

For a general d and f , we observe that if x1, . . . , xn is
an optimal deployment, the set of points q with the property
that mini ‖q − xi‖ → 0 as n → ∞ has probability one
(Otherwise, there is a constant a > 0 such that with some
positive probability ε > 0, one has mini ‖q−xi‖ > a infinitely
often. This implies P ?(f) > εa infinitely often, contradicting
Proposition 1). This amounts to the intuitive observation that
every GT should be assigned to a closer UAV as the number
of available UAVs grows to infinity. As a result, we may use
the Taylor series expansion(

min
i
‖xi − q‖2 + h2

) r
2

= hr + 1
2rh

r−2 min
i
‖xi − q‖2+

o
(

min
i
‖xi − q‖2

)
(8)

so that, substituting to (2), we have

P (x, f) = hr + 1
2rh

r−2

∫
Rd

min
i
‖xi − q‖2f(q)dq+∫

Rd
o
(

min
i
‖xi − q‖2

)
f(q)dq. (9)

Using (6) and (7), we can then obtain the following theorem.
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Theorem 1. As n→∞, we have

P ?(f)=

{
κrdn

− rd ‖f‖ d
d+r

+o(n−
r
d ), h=0,

hr+ rhr−2κ2d

2 n−
2
d ‖f‖ d

d+2
+o(n−

2
d ), h>0.

(10)

The optimal point (UAV) density function is given by

λ?(q; f) ,

{
f

d
d+r (q)/

∫
Rd f

d
d+r (q′)dq′, h = 0,

f
d
d+2 (q)/

∫
Rd f

d
d+2 (q′)dq′, h > 0.

(11)

Hence, as n → ∞, for any q, the infinitesimal [q, q + dq]
should contain nλ?(q; f)dq UAVs.

This provides a complete asymptotic characterization of
the achievable GT power consumption and the corresponding
optimal UAV configuration.

IV. OPTIMIZATION OF A DYNAMIC DEPLOYMENT:
EXTREMAL CASES

We now consider the dynamic scenario, where the GT den-
sity varies periodically over time. As discussed in Section II-B,
the goal in this case is to minimize the time-averaged power
consumption Q in (3), subject to the constraint

∑n
i=1Mi ≤M

on the total movement of UAVs. Here, Mi denotes the total
movement of the ith UAV, and has been defined in (4). Given
M ≥ 0, we use the notation Q?(M) to denote the minimum
of (3) subject to

∑n
i=1Mi ≤M . In particular, in this section,

we consider the two extremal cases M = 0 and M →∞. The
remaining moderate cases will be discussed in Section V.

A. No UAV movement: M = 0

The case M = 0 corresponds to a scenario where we do not
allow any UAV movement. Equivalently, the UAV locations are
fixed over time as xt = x′, ∀t for a collection x′ = [x′1 · · ·x′n]
of UAV locations to be optimized. By (2) and (3), we have

Q?(0)=min
x′

1

T

∫ T

0

∫
Rd

min
i

(‖x′i−q‖2+h2)
r
2 ft(q)dqdt. (12)

Now, let f(q) , 1
T

∫ T
0
ft(q)dt be the “time-averaged density.”

Note that
∫
Rd f(q)dq = 1 so that f is a valid density function.

According to (2) and (12), we have Q?(0) = minx′ P (x′, f),
and optimizing over x′ leads to the following.

Proposition 3. The optimal GT power consumption without
any UAV movement is Q?(0)=P ?(f).

Theorem 1 can be applied to provide an asymptotically tight
expression for P ?(f).

Example 1. Let us consider a one-dimensional network d = 1,
a period of length T = 2 with path loss exponent r = 2. For a
simpler exposition, we further consider an UGV network where
h = 0. Let the time-varying GT density be given by ft(q) =
(1+3|t|)(q−2+2|t|)3|t|, q ∈ [2−2|t|, 3−2|t|], t ∈ [−1, 1]. This
defines shifted power-law densities. For example for t = −1,
we obtain the density f1(q) = 4q3, q ∈ [0, 1], and for t = 0,
we obtain f0(q) = 1, q ∈ [2, 3]. The time-averaged density f
as well as its 1

3 -norm ‖f‖ 1
3

= (
∫
R(f(q))

1
3 dq)3 ≈ 6.08 can be

found by numerical integration. By Proposition 3 and Theorem
1, it follows that

Q?(0) ≈ 6.08

12

1

n2
+ o

(
1

n2

)
=

0.507

n2
+ o

(
1

n2

)
. (13)

The optimal point (UAV) density function is λ?(q, f), as
defined in (11). Different GT densities can be analyzed in
the same manner by using the formulae in Proposition 3 and
Theorem 1.

B. Unlimited UAV movement: M →∞
We now allow an unlimited UAV movement to obtain the

minimum possible time-averaged GT power consumption. For
this purpose, at each time t, we use the UAV locations that
provide the minimum “instantaneous” GT power consumption.
This results in the time-averaged power

Q?(∞) =
1

T

∫ T

0

P ?(ft)dt. (14)

We recall that Theorem 1 provides an asymptotic expression
for the integrand P ?(ft). This can be substituted to (14) for
an asymptotically tight characterization of Q?(∞).

We now argue that (14) is, in fact, achievable with a finite
amount of total movement as well. In other words, there is
a constant M > 0 such that Q?(M) = Q?(∞) for every
M ≥M . The idea is to observe that the GT density ft at time
t is not “vastly different” than the GT density ft+dt at time
t + dt. This stems from our practical assumption in Section
II-B that the spatiotemporal density ft(q) is continuous in both
space and time. As a result, we expect the optimal location for
each UAV to be a well-behaved continuous function of time,
resulting in a finite amount of total UAV movement.

We utilize high-resolution quantization theory to estimate
M . The key is to recover the location of each UAV at any
given point t in time through the optimal quantizer point
density function at time t. Namely, let x?t , [x?t,1 · · ·x?t,n]
denote the optimal UAV locations at time t for density ft. We
first consider the case of one dimension d = 1. Without loss
of generality, suppose x?t,1 ≤ · · · ≤ x?t,n. Given x ∈ [0, 1], let
Λ?inv(x; ft) be the unique real number that satisfies∫ Λ?inv(x;ft)

0

λ?(q; ft)dq = x, (15)

where λ?(q; ft) is the optimal point density function for
ft, as defined in (11) of Theorem 1. Note that Λ?inv(x; ft)
is the inverse of the cumulative distribution function u →∫ u

0
λ?(q; ft)dq. Our idea is to approximate the optimal UAV

locations via

x?t,i ' x̃t,i , Λ?inv

(
2i− 1

2n
; ft

)
, i = 1, . . . , n. (16)

Note that if U is a random variable that is uniformly distributed
on [0, 1], then, according to the inverse transform sampling
method, the random variable Λ?inv(U ; ft) is distributed accord-
ing to the density function λ?(q, ft). The transformation in
(16) can thus be considered to be a “deterministic version”
of inverse transform sampling, where the uniform random
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variable U is replaced with the uniform quantizer with re-
production points 2i−1

2n , i = 1, . . . , n. The resulting estimates
x̃t,1, . . . , x̃t,n are consistent with the density function λ?(q; ft)
in the sense that for every q and ε > 0, the fraction
1
n |{i : x̃t,i ∈ (q, q+ε)}| of UAVs that are located on (q, q+ε)
converges to λ?(q; ft)ε as n → ∞. Now, substituting (16) to
(4), we obtain the following result.

Theorem 2. Let d = 1. As n → ∞, the minimum possible
average power consumption of Q?(∞) = 1

T

∫ T
0
P ?(ft) is

achievable with a total movement of

M i ,
1

T

∫ T

0

∣∣∣∣∣∂Λ?inv

(
2i−1
2n ; ft

)
∂t

∣∣∣∣∣ dt (17)

for the ith UAV. Correspondingly, M =
∑n
i=1M i.

Example 2. We continue the setup in Example 1. We have

‖ft‖ 1
3

= (1 + 3|t|)

(∫ 3−2|t|

2−2|t|
(q − 2 + 2|t|)|t|dq

)3

= (1 + 3|t|)
(∫ 1

0

q|t|dq

)3

=
1 + 3|t|

(1 + |t|)3
. (18)

This yields

Q?(∞) =
1

2

∫ 1

−1

P ?(ft)dt

=
1

24n2

∫ 1

−1

‖ft‖ 1
3
dt+ o

(
1

n2

)
(19)

=
1

24n2

∫ 1

−1

1 + 3|t|
(1 + |t|)3

dt+ o

(
1

n2

)
=

1

16n2
+ o

(
1

n2

)
. (20)

The first three equalities follow from (14), (10), and (18),
respectively. In order to estimate M , we use the formula
(11) to first calculate λ?(q, ft) = (1 + |t|)(q − 2 + 2|t|)|t|.
In the light of (15), we then solve for θ in the integral
equality

∫ θ
0

(1 + |t|)(q − 2 + 2|t|)|t|dq = x to obtain the
inverse cumulative distribution function Λ?inv(x, ft) = θ =

2−2|t|+x
1

1+|t| , x ∈ [0, 1], t ∈ [−1, 1]. According to (16), we
can then obtain

x̃t,i = Λ?inv

(
2i− 1

2n
; ft

)
= 2− 2|t|+

(
2i− 1

2n

) 1
1+|t|

, i = 1, . . . , n. (21)

Note that, for a fixed index i, the function t 7→ x̃t,i is symmetric
around the origin and decreases on [0, 1]. Theorem 2 combined
with the fundamental theorem of calculus then yields

M i =
1

2

∫ 1

−1

∣∣∣∣∂x̃t,i∂t

∣∣∣∣ dt
= x̃0,i − x̃1,i

= 2 +
2i− 1

2n
−
(

2i− 1

2n

) 1
2

. (22)

Thus, the power consumption of Q?(∞) is achievable with a
total UAV movement of

M =
n∑
i=1

M i = 2n+
n∑
i=1

(
2i− 1

2n
−
(

2i− 1

2n

) 1
2

)
, (23)

and the optimal trajectories are given by (21). As n→∞, we
have

M

n
→ 2 +

∫ 1

0

(x−
√
x)dx =

11

6
. (24)

Therefore, for a per-UAV movement of 11
6 , a GT power

consumption of roughly 1
16n2 is achievable. On the other hand,

Example 1 shows that without any UAV movement, a GT power
consumption of roughly 0.507

n2 is achievable. For the particular
scenario in Examples 1 and 2, allowing mobility of access
points thus potentially yields an 8-fold reduction in the GT
power consumption.

The arguments that we have used to obtain Theorem 2 are
not immediately applicable to the case of two dimensions. The
main difficulty is to find a simple analogue of (16) that can
faithfully extract the optimal UAV locations from the optimal
UAV density functions. We leave a resolution of this problem
as future work. Nevertheless, M and Q?(M) can still be
numerically approximated for two dimensional densities as we
show in Section VI.

V. OPTIMIZATION OF A DYNAMIC DEPLOYMENT:
MODERATE DISTANCES

We recall that our goal in the dynamic deployment scenario
is to find the minimum average GT power consumption
Q?(M) subject to the total movement constraint M on the
UAVs. In the previous section, we have analytically character-
ized the achievable performance in the extremal cases of no
UAV movement M = 0 and unlimited UAV movement M =
∞. In particular, we have shown that there exists a sufficient
amount of total movement M such that Q?(M) = Q?(∞).
We now consider the achievable performance between the
two extremal cases. In other words, we consider the moderate
distances regime 0 < M < M .

A precise analytical characterization of the achievable per-
formance appears to be very challenging for the case 0 < M <
M . We thus mainly follow a numerical approach. Specifically,
we introduce a Lagrangian-based descent algorithm for trajec-
tory optimization.

A. Outline of an Algorithm for Trajectory Optimization

Our general strategy for trajectory optimization is to follow
the classical Lagrangian approach of constrained optimization.
Namely, we combine the power consumption (objective) func-
tion Q in (3) and the movement (constraint) function

∑n
i=1Mi

through the Lagrangian

Q+ `

n∑
i=1

Mi =

1

T

∫ T

0

P (xt, ft) + `
n∑
i=1

√√√√ d∑
j=1

∣∣∣∣∂xt,i,j∂t

∣∣∣∣2
 dt. (25)
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Minimizing the Lagrangian for different values of the La-
grange multiplier ` > 0 enables travel over the (M,Q?(M))
tradeoff curve: For example, a small ` does not penalize the
total movement as much as a larger ` does. It thus results in a
lower power consumption compared to the case of a larger `,
albeit at the expense of more movement. The formulation in
(25) thus resembles the Lagrangian formulation of the entropy-
constrained quantizer design problem [45].

Minimizing (25) requires optimization over the uncountably
many variables xt,i, t ∈ [0, T ], i ∈ {1, . . . , n}, and is thus
infeasible. The first step towards a feasible optimization is
to discretize the continuous time interval [0, T ] to the set of
discrete time instances {kTK : k ∈ {0, . . . ,K − 1}}, where
K ≥ 2 is a natural number. This results in the discrete-time
Lagrangian

L ,
1

K

K−1∑
k=0

P (yk, f̂k) +
`

K

K−1∑
k=0

n∑
i=1

‖yk,i − yk−1,i‖, (26)

where the discrete time k corresponds to the continuous time
kT
K , and the optimization is over yk , x kT

K
= [yk,i · · · yk,n]

with density f̂k , f kT
K

. Also, for a simple notation, we have
omitted to indicate that all k-dependent indices are evaluated
modulo K. For example, for k = 0, the discrete time index
k−1 = −1 is the same as the discrete time index −1 modK =
K − 1.

It can be shown that, under some technical conditions
on xt,i, i = 1, . . . , n and ft, such as continuity in t, the
discrete time Lagrangian converges to the continuous time
Lagrangian as the number of time steps K grows to infinity.
We thus expect the minimizers of (26) and (25) to coincide
asymptotically as K →∞. In other words, we can obtain the
optimal trajectories for the original continuous-time problem
formulation in Section II as K →∞. Note that this is different
than our approach in the previous sections, where we consid-
ered asymptotically large number of UAVs n→∞. Still, the
direct minimization of (26) is a dnK dimensional optimization
problem. In order to further reduce the dimensionality, we
define

Lk ,
1

K
P (yk, f̂k) +

`

K

n∑
i=1

‖yk,i − yk−1,i‖+

`

K

n∑
i=1

‖yk,i − yk+1,i‖, k = 1, . . . ,K, (27)

and note that L depends on yk only through Lk. The quantity
Lk can be considered to be the Lagrangian cost at time
instance k. Our algorithm is then to perform alternating
optimization over the discrete time instances, as shown in
Algorithm 1.

Algorithm 1 Trajectory Optimization

1: Initialize y0, . . . ,yK−1. Set maxEpochs.
2: for epochs = 1 to maxEpochs do
3: Update the UAV deployments as yk ←

arg minyk Lk, k = 0, . . . ,K − 1.
4: end for

In detail, we begin with an initial (e.g., random) guess on
trajectories y0, . . . ,yK−1. For the sequence of time indices
k = 0, 1, . . . ,K−1, 0, 1, . . . ,K−1, . . . , we minimize Lk over
yk, while keeping all yi, i 6= k fixed (The specific manner
in which we perform the minimization will be discussed
later on). Since each step minimizes Lk over yk for some
k ∈ {0, . . . ,K − 1}, and the dependence of L on yk is only
through Lk, the process guarantees a non-increasing L. To be
more precise, let us write L(Y) to signify the dependence of
L in (26) on the UAV trajectories Y , [y1 · · ·yK ]. Also,
given arbitrary initial conditions in Algorithm 1, let yp,k
be the vector of UAV locations at discrete time k, and let
Yp , [yp,1 · · ·yp,K ] denote the UAV trajectories at the end
of epoch p ≥ 1. Then, we have L(Yp+1) ≤ L(Yp) for every
p ≥ 1. Since L(Y) ≥ 0 obviously holds for any collection of
trajectories Y, it follows by the monotone convergence the-
orem that the sequence of costs L(Y1),L(Y2), . . . provided
by the algorithm converges.

In our numerical experiments, we have observed that the
algorithm also provides convergent trajectories as well; i.e., the
sequence Y1,Y2, . . . also converges. A formal proof of this
observation will remain as an interesting direction for future
research. Also, note that in Algorithm 1, we call one pass
over all discrete time instances as one epoch of optimization.
The algorithm terminates after a certain number of epochs that
is to be chosen depending on the input parameters. Different
termination criteria (such as the convergence of trajectories
or the cost L) can also be considered. Obviously, due to
the non-convex non-linear nature of the trajectory optimiza-
tion problem, the resulting trajectory may not necessarily be
the globally-optimal solution. Nevertheless, since Algorithm
1 provides a monotonically non-increasing cost function, it
can improve almost any initial UAV trajectories for a better
network performance.

B. Minimizing the Lagrangian Cost at a Given Time Instance

We now seek a computationally-efficient solution for the
dn-dimensional optimization problem of minimizing the La-
grangian cost Lk in (27). In other words, we study the
optimization problems in Line 3 of Algorithm 1. We follow the
same decomposition strategy as in Section V-A. This will lead
us to a variant of the Lloyd algorithm of vector quantization
[38], [39]. First, for the term P (yk, f̂k) in (27), we recall from
(2) that

P (yk, f̂k) =

∫
Rd

min
i

(‖yk,i − q‖2 + h2)
r
2 f̂k(q)dq

=
n∑
i=1

∫
Vk,i

(‖yk,i − q‖2 + h2)
r
2 f̂k(q)dq, (28)

where Vk,i , {q : ‖yk,i − q‖ ≤ ‖yk,j − q‖, ∀j ∈ {1, . . . , n}}
is the Voronoi cell of the ith UAV at time k. Given that the
Voronoi cells Vk,i, i = 1, . . . , n are kept fixed, it follows that
for any given UAV index i ∈ {1, . . . , n}, the expression (27)
depends on yk,i only through the quantity

Lk,i ,
1

K

∫
Vk,i

(‖yk,i − q‖2 + h2)
r
2 f̂k(q)dq+
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Fig. 2: Flowchart of the trajectory optimization algorithm.

`

K
‖yk,i − yk−1,i‖+

`

K
‖yk,i − yk+1,i‖. (29)

The quantity Lk,i can be interpreted as the Lagrangian cost
of UAV i at discrete time instance k. In general, given that
Vk,i, i = 1, . . . , n are kept fixed, Lk,i is a convex function
of yk,i and thus be effectively minimized using any convex
optimization method, or gradient descent. For reference, the
gradient of Lk,i with respect to yk,i can be calculated to be

∂Lk,i
∂yk,i

=
r

K

∫
Vk,i

(yk,i − q)f̂k(q)dq

(‖yk,i − q‖2 + h2)1− r2

+
`

K

yk,i − yk−1,i

‖yk,i − yk−1,i‖
+

`

K

yk,i − yk+1,i

‖yk,i − yk+1,i‖
. (30)

As we shall soon discuss, further simplifications or even
closed-form solutions to the problem of minimizing Lk,i
are available in certain special cases. Regardless, once each
Lk,i, i = 1, . . . , n are minimized (while keeping Vk,i, i =
1, . . . , n fixed), the new Voronoi regions Vk,i, i = 1, . . . , n
will be calculated according to the new yk,i, i = 1, . . . , n.
Algorithm 2 summarizes this process of minimizing the cost
function Lk in (27). The algorithm proceeds in an iterative
manner until a certain maximum number of iterations is
reached. By definition, the sequence of costs (as evaluated by
(27)) with Algorithm 2 is non-increasing, and thus convergent.
The convergence proof is identical to that of Algorithm 1 and
is thus omitted for brevity. The flowchart of our algorithm in
Fig. 2 combines Algorithms 1 and 2 in one unifying diagram.

Algorithm 2 Minimizing Lk

1: Initialize UAV locations yk = [yk,1 · · · yk,n]. Set
maxIterations.

2: for iterations = 1 to maxIterations do
3: Calculate the Voronoi regions Vk,i, i = 1, . . . , n.
4: Update the UAV locations as yk,i ←

arg minyk,i Lk,i, i = 1, . . . , n.
5: end for

C. Minimizing the Lagrangian Cost of a UAV at a Given Time
Instance

We now consider the minimization of Lk,i for a given UAV
index k and time instance i. This problem appears in Line
4 of Algorithm 2. As we have mentioned in Section V-B, in
general, Lk,i in (29) can be minimized using gradient descent.

Here, we point out that the minimization becomes considerably
simpler for the special case r = 2 of the path loss exponent.
In fact, we will also provide a closed-form solution for r = 2
and one-dimensional networks d = 1.

Let us first note that for any set A and vector x, we have∫
A

‖x− q‖2f(q)dq

=

∫
A

(
‖x‖2 − 2xT q + ‖q‖2

)
f(q)dq (31)

= ‖x‖2
(∫

A

f(q)dq

)
− 2xT

(∫
A

qf(q)dq

)
+∫

A

‖q‖2f(q)dq (32)

=

(∫
A

f(q)dq

)∥∥∥∥x−
∫
A
qf(q)dq∫
A
f(q)dq

∥∥∥∥2

+∫
A

‖q‖2f(q)dq −
‖
∫
A
qf(q)dq‖2∫
A
f(q)dq

. (33)

Note that the last two terms do not depend on x. When r = 2,
we use the identity in (33) to rewrite the integral in (29).
Then, by removing the terms that do not depend on yk,i, it
follows that the minimization of (29) over yk,i is equivalent
to minimizing

φ(x) , ‖x− u‖+ ‖x− v‖+ c‖x− w‖2 (34)

over all x, where

u , yk−1,i, v , yk+1,i,

w ,

∫
Vk,i qf̂k(q)dq∫
Vk,i f̂k(q)dq

, c ,
1

`

∫
Vk,i

f̂k(q)dq.

Therefore, when we wish to minimize (29) (by using
gradient descent for example), we can avoid integration over
the generally complicated region Vk,i by considering instead
the equivalent problem of minimizing (34). Let us further note
that the domain/search space of minimization of (34) is the
entire Rd. We can also greatly reduce the size of this search
space. For this purpose, we need the following lemma, whose
proof can be found in Appendix B.

Lemma 1. Let T ⊂ Rd be a triangle with vertices u, v, w,
including its boundary and interior. For any x ∈ Rd, there
exists y ∈ T such that ‖y − a‖ ≤ ‖x− a‖ for every vertex a
of T .
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We now have the following proposition, which immediately
follows from Lemma 1.

Proposition 4. A minimizer x? of (34) lies on the triangle T
with vertices u, v, w.

Therefore, without loss of optimality, we may minimize (34)
over all x of the form x = w+αx′+βx′′, where α, β ≥ 0, α+
β ≤ 1, and x′ = u−w, x′′ = v−w are triangle edge vectors.
Hence, the minimization of (34), which should take place over
the entire Rd, can be transformed to a convex optimization
over the (two-dimensional) triangle α, β ≥ 0, α+ β ≤ 1.

In the special case of one dimension, a minimizer of (34)
can be found in closed form. This is shown by the following
proposition, whose proof can be found in Appendix C.

Proposition 5. Let d = 1, and x? = arg minx∈Rd φ(x). For
a simpler notation, we define the intermediate variables u′ ,
min{u, v}, v′ , max{u, v}, α , min

{∣∣w − u+v
2

∣∣ , 1
c

}
. We

have

x? =

 w, w ∈ [u′, v′],
max {v′, w − α} , w > v′,
min {u′, w + α} , w < u′.

(35)

As a result, the computational complexity of the trajectory
optimization algorithm can be greatly reduced for the special
case d = 1, r = 2.

D. Implementation and Complexity

We envision two possible scenarios in which one can
implement our trajectory optimization algorithm in Fig. 2. In
an offline implementation scenario, we may simply run the
algorithm on a dedicated server. The final trajectories may
then be used by the UAVs on site. In this scenario, the UAVs
do not perform any online optimization and simply follow the
predetermined paths resulting from the offline optimization
on the server. On the other hand, the algorithm also favors
online, distributed implementation. For this purpose, suppose
that the period of length T is divided into K discrete time
slots as before. At discrete time k of a certain epoch, where
k ∈ {0, . . . ,K − 1}, each UAV can calculate its position
at time k of the next epoch by communicating with its
nearest neighboring UAVs only. In detail, following Line 4
of Algorithm 2, at any given discrete time k, UAV i first
calculates its Voronoi cell Vk,i. This can be accomplished
by UAV i communicating with its nearest neighboring UAVs
only. Each UAV then solves the optimization problem in
Line 5 of Algorithm 2, possibly by using the closed-form
solutions in Section V-C. This requires only the conditional
GT density function on the Voronoi cell Vk,i, which can either
be made available to UAV i offline, or can be determined
via measurements onboard. This online implementation is also
distributed in the sense that a given UAV only needs to know
the locations of its neighboring UAVs when calculating its
location in the next epoch. In particular, a given UAV does
not need to track the trajectories of other UAVs.

Let us now discuss the computational complexity of imple-
menting our algorithm with respect to the number of UAVs n
in the distributed setting mentioned above. Each UAV needs

to execute Lines 3 and 4 of Algorithm 2 per discrete time
slot. Line 3 takes O(n) operations in the worst-case scenario,
while Line 4 can be accomplished with O(1) operations. Thus,
the total complexity is O(n) operations per UAV per discrete
time, or a total of O(n2) operations per discrete time. Note
that, unless the system parameters are among the special cases
in Section V-C (in which case Line 4 can easily be solved in
closed form), one has to resort to an iterative algorithm to
solve Line 4 of Algorithm 2. For a small number of UAVs,
such an iterative solution may be the dominating factor in
terms of computational complexity.

The advantage of our Lloyd algorithm based approach over
the gradient descent based approach of [1] is that it favors
fast, online, distributed implementation. In fact, comparison
of the numerical simulation results of [1] with the ones in
the next section reveal that, for all scenarios considered,
the performance of our algorithm (in terms of the UAV-
GT transmission power tradeoffs) is also no worse than the
algorithm in [1].

VI. NUMERICAL RESULTS

In this section, we provide numerical simulations that verify
our analytical results. We first consider the one-dimensional
networking scenario in Examples 1 and 2. The corresponding
simulation parameters are shown in the first row of Table I.

In Fig. 3, we show the tradeoff between the UAV movement
and the GT power consumption for different number of UAVs.
The two subfigures show the same data points: While in one
subfigure, the horizontal axis represents the movement per
UAV, in the other subfigure, it represents the total UAV move-
ment. Each marked data point is obtained using the algorithm
in Section V for different values of the Lagrange multiplier `.
Throughout the experiments, we have observed that increasing
the number of discrete time instances beyond K = 20 does not
significantly improve the continuous-time cost function (25).
We have thus set a time discretization of K = 20 for all
simulations. Also, we have run the algorithm with different
values of the parameter maxEpochs, while maxIterations

is chosen large enough to observe convergence of the overall
Lagrangian cost in (26). Eventually, we choose the best
trajectory that minimizes (26). The continuous-time trajectory
is reconstructed from the discrete-time trajectory using linear
interpolation.

We can observe that, doubling the number of UAVs roughly
quarters the average GT power consumption for the same
amount of distance traveled per UAV. The O( 1

n2 ) decay of
the analytical formulae in (13) and (20) justify this observation
for the special cases of zero and unlimited UAV movement,
respectively. The same decay rate can be observed if one
instead considers a total movement constraint.

In Fig. 4, we show the average GT power consumption for
different number of UAVs and the extremal scenarios of zero
and unlimited UAV movements. The logarithmically-scaled
horizontal and the vertical axes represent the number of UAVs
and the GT power consumptions, respectively. Note that, the
simulation curves for zero and unlimited UAV movements
respectively correspond to the vertical coordinates of the
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TABLE I: Simulation parameters

Region Node density Number of UAVs Path loss UAV altitude
1D network [0,3] ft(q) = (1 + 3|t|)(q − 2 + 2|t|)3|t|, q ∈ [2 −

2|t|, 3− 2|t|], t ∈ [−1, 1].
n ∈ {1, 2, 4,
8, 16, 32}

r = 2 h = 0

2D network R2 ft(q)=
1

2πσ2 exp( −1
2σ2 ‖q−[ 10 sin 2πt

10 cos 2πt ]‖
2), σ =

3 + 2 sin 2πt, t ∈ [0, 1]
n ∈ {1, 2, 4,
8, 16, 32}

r = 3 h = 10
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Fig. 3: GT power consumptions for different UAV movements in a one-dimensional network.
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Fig. 4: GT power consumptions in extremal cases for a one-
dimensional network.

leftmost and the rightmost data points in Fig. 3. We can
observe that the analytical results in (13) and (20) match
almost perfectly with the simulations. Due to its asymptotic
nature, the analysis is more accurate when the number of
UAVs is large. In the same figure, we also show the GT power

consumptions given a random UAV deployment algorithm as
in [12]. The algorithm follows the idea of random quantizers
[32]. Specifically, for the scenario with no UAV movement,
we place the UAVs uniformly at random over [0, 3], which
is the union of the support of the GT densities over the
entire period. For the scenario with unlimited UAV movement,
we place the UAVs uniformly at random over the support
[2 − 2|t|, 3 − 2|t|] of the GT density at time t. The plotted
curves are averages over all possible deployments. The two
random deployment scenarios are relevant in practice as they
demonstrate the achievable performance when only the support
of the GT densities are known. As can be observed, for
both scenarios of no UAV movement and unlimited UAV
movement, the knowledge of the GT density provides roughly
an 8-fold reduction of the GT power consumption.

In Fig. 5, we show the per-UAV movements for the scenario
of (non-random) unlimited UAV movement. The simulation
curve corresponds to the horizontal coordinates of rightmost
data points in Fig. 3, and the analysis curve corresponds to the
formula (24). Since the values in the vertical axis of the figure
are very close, we can conclude that the analysis matches the
simulation very well. In Fig. 5, the per-UAV distance grows
with the number of UAVs. In this context, one may expect
that more UAVs translate to a lower per-UAV movement. In
fact, as shown in Fig. 3, given that we consider the same
(maximum) GT power consumption, increasing the number
of UAVs indeed decreases the per-UAV movement. This is
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Fig. 5: Distance per UAV for different number of UAVs with
unlimited movement.

not necessarily the case when the UAVs are instead placed to
minimize the GT power consumption without any movement
limitations: In this case, given more UAVs, we can afford to
place more UAVs to locations with low GT density. If the
locations of such low density regions are rapidly varying over
time, the end result is a larger per-UAV movement.
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Fig. 6: Trajectories of 8 UAVs in a one-dimensional network.

Example 2 also provides the optimal trajectories (21) for the
unlimited movement scenario. In Fig. 6, we compare these
analytical trajectories with the trajectories that are obtained
numerically for the special case of 8 UAVs. The horizontal and
the vertical axes represent the time, and the UAV locations,
respectively. Each curve represents the trajectory of one UAV.
We have normalized both the analytical and the simulation
trajectories by subtracting the time-varying drift 2 − 2|t| of

the density function. We can observe that, for any UAV index,
the analysis matches the simulation very well.

In Fig. 7, we show the convergence of the Lagrangian cost
in (26) for an example run of our trajectory optimization
algorithm. In the example run, we have considered a Lagrange
multiplier of ` = 2, which provided a GT power consumption
of around 5.5×10−3 W for a total UAV movement of around
5.4 m. We can observe that the Lagrangian cost decays very
rapidly in the first few epochs, and converges to a value of
approximately 10.8.
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Fig. 7: Convergence for an example run of the trajectory optimization
algorithm.

As an example of two-dimensional (d = 2) dynamic
deployment, we consider the parameters in the second row
of Table I. By Theorems 1 and 2, the asymptotic GT power
consumptions are

Q?(0) = 1000 +
25

6
√

3

‖f‖ 1
2

n
+ o

(
1

n

)
, and (36)

Q?(∞) = 1000 +
25

6
√

3

∫ 1

0
‖ft‖ 1

2
dt

n
+ o

(
1

n

)
, (37)

for the cases of zero and unlimited UAV movement, respec-
tively. For (36), we can obtain ‖f‖ 1

2
≈ 908.16 via numerical

integration. For the case of unlimited movement in (37), after
some calculus, we can obtain

∫ 1

0
‖ft‖ 1

2
dt = 88π in closed

form.
As the asymptotic expressions (36) and (37) also show, the

choice of parameters r = 3 and h = 10 imply that the GT
power consumption is at least hr = 1000 regardless of the
constraints on the total UAV movement. For a clear illustration
of results, we thus normalize the GT transmission power by
subtracting 1000 from the true GT transmission power.

In Fig. 8, we show the tradeoff between the per-UAV move-
ment and the normalized GT power consumption for different
number of UAVs. Unlike the case of the one-dimensional
network shown earlier, for a fixed per-UAV movement, dou-
bling the number of UAVs roughly only halves (instead
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Fig. 8: GT power consumptions for different UAV movements in a two-dimensional network.

of quartering) the normalized GT power consumption. The
asymptotic expression in (36) formally verifies this observation
for the special case of zero movement.
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Fig. 9: GT power consumptions in extremal cases for a two-
dimensional network.

In Fig. 9, we show the average GT power consumption
for different number of UAVs in the zero and unlimited UAV
movement scenarios. We can observe that the analytical results
in (36) and (37) match very well with the simulations. In
particular, for the case of no UAV movement, the mismatch
between the analysis and the simulation increases after 4
UAVs, and decreases after 16 UAVs. The reason for the
mismatch is that our analysis is only asymptotically tight for
a large number of UAVs. In this context, even though the
analysis will provide an asymptotically tight approximation on

the simulation results, the amount of mismatch for a moderate
number of UAVs is also more pronounced as compared to the
case of the one-dimensional network. The reason is the smaller
amount of UAVs per dimension. One encounters the same
phenomenon in the performance analysis of general vector
quantizers.

Finally, in Fig. 10, we show the optimized UAV trajectories
for the three different scenarios of zero, moderate, and un-
limited UAV movements. The moderate movement scenario is
designed with a Lagrange multiplier of ` = 3

2 , and achieves the
data point with a per-UAV traveled distance of approximately
21 in Fig. 9. The t = 0 positions of each trajectory are marked
with a circle. Each point on the trajectory corresponds to
one discrete time instance that is optimized via the trajectory
optimization algorithm. All UAVs travel “clockwise.”

VII. EXTENSIONS

In the previous sections, we have studied the UAV de-
ployment and trajectory optimization problem for a fixed-rate
variable-power system. Also, we have considered a simple
line of sight channel model without fading and ignored the
effects of multi-user interference. In this section, we consider
the extensions of our results to different scenarios.

A. Probabilistic Line of Sight Channel Model

We first extend our results to the probabilistic line of sight
channel model [47], [48]. To introduce the model, suppose that
a GT at q wishes to communicate with its closest UAV, which
is within distance mini ‖q− xi‖. Then, the transmitted signal
of the GT undergoes the same line of sight model of Section
II-A with probability pLOS , 1

1+c exp(−b(θ−c)) , where b, c > 0

are constants and θ = tan−1 h
mini ‖q−xi‖ . On the other hand,

with probability 1 − pLOS, the GT signal undergoes an extra
attenuation of δ < 1. It follows that, given UAV deployment
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Fig. 10: Sample trajectories with 4 UAVs. The dimensionalities of the axes are meters.

x, and GT density f , the average GT power consumption for
reliable communication is given by

P ′(x, f) ,
∫
Rd

(
min
i
‖xi − q‖2 + h2

) r
2

(
pLOS +

1

δ
(1− pLOS)

)
f(q)dq. (38)

This expression is the analogue of (2) for the probabilistic
line of sight channel model. For a large number of UAVs, by
a Taylor series expansion, we obtain

P ′(x, f) = hr(d+ 1−d
δ )+

hr( 1
δ − 1)bcd2

∫
Rd

min
i
‖xi − q‖f(q)dq+∫

Rd
o
(

min
i
‖xi − q‖

)
f(q)dq, (39)

where d = 1
1+c exp(−b(π2−c))+c

. The only differences between
(39) and (9) are in the constants. All of our asymptotic results
thus easily extend to the probabilistic line of sight model.

B. Variable-Rate Fixed-Power Systems

Let us now discuss variable-rate fixed-power systems. In
this case, each GT transmits with a fixed power P , resulting
in the achievable average rate (in nats/sec/Hz)

R(x, f),
∫
Rd

log

(
1+

P

(mini ‖xi−q‖2+h2)
r
2

)
f(q)dq, (40)

as the variable-rate analogue of (2). For a large number of
UAVs, a Taylor expansion yields

R(x, f) = log2

(
1 +

P

hr

)
−

rP/ log 2

2h2(P + hr)

∫
Rd

min
i
‖xi − q‖2f(q)dq+∫

Rd
o
(

min
i
‖xi − q‖2

)
f(q)dq. (41)

Similarly, comparing with (9), the only differences are in
the constants. Thus, our results also extend to variable-rate
systems in a straightforward manner.

C. Effects of Fading and Interference in Uplink or Downlink
Communications

We now consider a UAV-based network that takes into
account the effects of fading and interference for either up-
link or downlink communications. Specifically, we study a
scenario where the n UAVs form a distributed base station
with N antennas, and each UAV has N

n antennas. Consider
the case of uplink communications where m single-antenna
users simultaneously wish to communicate with the UAVs;
the downlink case results in the same cost functions and its
analysis is thus identical. In particular, given j ∈ {1, . . . ,m},
User j wishes to communicate the complex Gaussian symbol
sj ∼ CN (0, 1) to the UAVs by transmitting the signal sj

√
P

over its single antenna. Given i ∈ {1, . . . , n}, j ∈ {1, . . . ,m},
and l ∈ {1, . . . , Nn }, let hjil ∈ C be the channel gain
between User j and Antenna l of UAV i. We assume that
hjil ∼ CN

(
0, (h2 + ‖xi − qj‖2)−

r
2

)
, where qj ∈ Rd is the

location of User j.
The channel input-output relationships are yil =∑m
j=1 hjilsj

√
P + τil, where τil ∼ CN (0, 1) is the noise at

the lth antenna of UAV i. All the channel gains, noises, and
the data symbols are assumed to be independent. Here, we
consider the massive MIMO regime where the total number
of UAV antennas N grows to infinity. In such a scenario, the
achievable rate for a generic user at location q is given by
log2(1 +

∑n
i=1

P
(h2+‖xi−q‖2)r/2

) bits/sec/Hz [34]. Given user
density f and UAV deployment x, the average achievable rate
of a user is then

R̃(x, f),
∫
Rd

log2

(
1+

n∑
i=1

P

(h2+‖xi−q‖2)
r
2

)
f(q)dq. (42)

Consider now the static or the dynamic deployment problem
for the cost function in (42). For large path loss exponents,
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Lemma 1 of [34] can be used to obtain the approximation

R̃(x, f)'
∫
Rd

log2

(
1+

P

(h2+mini ‖xi−q‖2)
r
2

)
f(q)dq (43)

that holds for any non-degenerate deployment with xi 6=
xj ⇐⇒ i 6= j. Noting that (43) and (40) are equal, as
discussed after (40), we can use the Taylor series expansion
in (41) to reduce the problem to the one studied in Section
III-A. All of our asymptotic results then extend to a scenario
with fading and interference in a straightforward manner.

VIII. CONCLUSIONS

We have studied the optimal deployment and relocation of
UAV networks. For static networks without any GT density
variations, we have found the asymptotically optimal UAV
locations that minimize the average GT power consumption
or maximize the GT data rate. We have also provided ana-
lytical and numerical methods for dynamic UAV deployment
where the GT density varies over time. In particular, we
have found the asymptotically optimal UAV trajectories for
one-dimensional networks and an unlimited UAV movement.
We have also introduced a trajectory optimization algorithm
for finding good trajectories for moderate UAV movement
constraints.
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APPENDIX A: PROOF OF PROPOSITION 2

First, note that if g is monotonically non-decreasing, A ⊂ R,
and x ∈ R, we have

∫
A
g(‖x−q‖)dq ≥

∫
B
g(‖q‖)dq, where B

is the origin-centered interval with the same measure as A. In
particular, for g(u) = (u2 + h2)

r
2 , we obtain

∫
A

(‖x − q‖2 +

h2)
r
2 dq ≥ h(µ(A)), where h(ν) ,

∫ 1
2 ν

− 1
2 ν

(u2 + h2)
r
2 du =

2
∫ 1

2 ν

0
(u2 + h2)

r
2 du, and µ(A) is the Lebesgue measure of

A. By differentiation, we can show that h(ν) is concave in ν.
Now, let Vi , {q : ‖q − xi‖ ≤ ‖q − xj‖, ∀j}, i = 1, . . . , n
denote the Voronoi cells that are generated by x1, . . . , xn. We
have

P (x, f) =
n∑
i=1

∫
Vi

(‖xi − q‖2 + h2)
r
2 dq ≥

n∑
i=1

h(µ(Vi))

≥ nh

(
1

n

n∑
i=1

µ(Vi)

)
=nh

(
1

n

)
=2n

∫ 1
2n

0

(u2+h2)
r
2 du. (44)

The second inequality follows from the concavity of h(·). It
can easily be verified that the last expression equals P (xu, f).
This concludes the proof.

APPENDIX B: PROOF OF LEMMA 1
Let “y � x” denote the conditions ‖y−u‖ ≤ ‖x−u‖, ‖y−

v‖ ≤ ‖x−v‖, and ‖y−w‖ ≤ ‖x−w‖. If x ∈ T , we set y = x,
and the proof is complete. Otherwise, let x0 be the projection
of x on the two-dimensional subspace that contains T . We

have x0 � x by the Pythagorean inequality. If x0 ∈ T , the
lemma then follows with y = x0. Otherwise, by appropriate
translations of u, v, w, x0, we may assume u = [ 0

0 ], v = [ v10 ],
w = [w1

w2
], and x0 = [ x01

x02
], where v1, x01, x02 ≥ 0, w2 ≤ 0,

and w1 ∈ R. Now, let x1 = [ x01
0 ]. The geometry so far is

illustrated in Fig. 11a.

w

u v
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x1x2
x3

(a) The first case
w

u v

x0

x1

(b) The second case

Fig. 11: Two cases for the proof of Lemma 1.

It is easily verified that ‖x1−u‖ ≤ ‖x0−u‖ and ‖x1−v‖ ≤
‖x0 − v‖. Also, since the angle x̂0x1w is at least 90◦, we
have ‖x1 − w‖ ≤ ‖x0 − w‖, and therefore, x1 � x0. If
x1 ∈ T , the lemma then holds for y = x1. Otherwise, we
consider the following three cases: The first case w1 ≤ v1

is the same scenario as illustrated in Fig. 11a. In this case,
we have v � x1, and since v ∈ T obviously, the proof is
complete with y = v. The second case v1 ≤ w1 ≤ x01 is
illustrated in Fig. 11b. We let x2 = [w1

0 ], and x3 to be the
projection of x2 on the edge vw.

The relation x2 � x1 obviously holds. The relation x3 �
x2 follows from the same arguments that we have used to
prove x1 � x0 in Fig. 11a. Since x3 ∈ T , the lemma follows
with y = x3. Finally, for the third case w1 ≥ x01, let x4 to be
the projection of x1 on the edge vw. The proof of the relation
x4 � x1 similarly follows the proof of x1 � x0 in Fig. 11a.
The lemma then holds for y = x4. This concludes the proof.

APPENDIX C: PROOF OF PROPOSITION 5
Let φ1(x) = |x − u| + |x − v| and φ2(x) = c|x − w|2.

Without loss of generality, let u ≤ v. We have φ1(x) ≥ v− u
with equality if and only if x ∈ [u, v], and φ2(x) ≥ 0 with
equality if and only if x = w. Therefore, φ(x) ≥ v − u with
equality if and only if x = w and x ∈ [u, v], or equivalently,
if x = w and w ∈ [u, v]. This proves the first case in (35).

Suppose w > v. We first show that x? ∈ [v, w]. We have
x? ∈ [u,w] by Lemma 1. Moreover, for any x ∈ [u, v], we
have φ(x) = v − u + c|x − w|2 ≥ v − u + c|v − w|2 with
equality if and only if x = v. Hence, x? ∈ [u, v] implies
x? = v. Combining with x? ∈ [u,w] yields x? ∈ [v, w].

Now, let ξ(x) = |2x− u− v|+ c|x−w|2. We have ξ(x) ≤
φ(x) for all x ∈ R. Equality holds if and only if x ≤ u or
x ≥ v. Let y? = arg minx∈R ξ(x) denote the global minimizer
of ξ. According to [46], we have y? = (w − α) ∈ [u,w]. If
further y? ∈ [v, w], we have y? = arg minx∈[v,w] ξ(x) =
arg minx∈[v,w] φ(x) = arg minx∈R φ(x) = x?. Otherwise, if
y? ≤ v, first note that ξ is increasing on [v,∞) as ξ is convex.
It follows that φ is increasing on [v,∞). Since x? ∈ [v, w] as
already shown, φ attains its minimum at x? = v. Hence, we
have x? = max{v, y?} = max {v′, w − α} in general, and
this proves the second case in (35). The final case in (35)
follows from the same arguments.
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