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The discontinuous jump in the bulk modulus B at the jamming transition is a consequence of the
formation of a critical contact network of spheres that resists compression. We introduce lattice models with
underlying undercoordinated compression-resistant spring lattices to which next-nearest-neighbor springs
can be added. In these models, the jamming transition emerges as a kind of multicritical point terminating a
line of rigidity-percolation transitions. Replacing the undercoordinated lattices with the critical network at
jamming yields a faithful description of jamming and its relation to rigidity percolation.
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Jamming [1,2] is now well established as a phenomenon
with a zero-temperature mechanical critical point that
separates a state of free particles from one in which they
collectively resist elastic distortions. The jamming critical
point (J) is, however, unusual in that it exhibits properties
of both a first-order transition (with a discontinuous jump
in the bulk modulus, B) and a second-order one (with a
continuous growth of the shear moduli, G, from zero). This
is in stark contrast to its cousin, the rigidity-percolation
(RP) transition [3,4], in which both the bulk and shear
moduli grow linearly from zero above the RP critical point
(or line). The first-order jump in B is a consequence of the
formation of a critical network of contacts that resists
compression. This fact is the inspiration for our introduc-
tion of lattice models with sublattices that also resist
compression. In our analysis of these models using the
effective medium theory (EMT) [3,5] and numerical
simulations, the jamming transition corresponds to a kind
of multicritical point at which a line (or surface) of RP
transitions meets a line along which B is nonzero.

Our models begin with the undercoordinated honeycomb
lattice in two dimensions (2D) or the diamond lattice in 3D,
each consisting of sites connected by nearest-neighbor
(NN) springs, with a nonvanishing bulk modulus but with
vanishing shear moduli [6]. Next-nearest-neighbor (NNN)
springs are randomly added [as shown in Fig. 1(a)], leading
to the phase diagrams shown in Figs. 1(b)-1(e). At a critical
concentration of NNN springs, the Maxwell rigidity cri-
terion [7] is reached, the shear modulus begins to grow
continuously from zero, and the bulk modulus begins to
increase. This model mimics important aspects of jamming
and the jamming transition, which is reached by increasing
the volume fraction of spheres until they have a sufficient
number of contacts to first resist compression, indicating a
bulk modulus that is greater than zero. The marginally
jammed state that is formed is an analog of the honeycomb
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or diamond lattice in our model. Further compression of the
jammed lattice increases the number of contacts and
produces an increase in the shear moduli from zero.
This is the analog of adding NNN bonds in our models.
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FIG. 1. (a) Three-sublattice model showing NN (solid lines)
and NNN (dashed and dotted lines) bonds, the latter of which
connect sites in either of the triangular sublattices containing
the first (black) or second (open) sites of the honeycomb lattice.
(b) 3D phase diagram showing the surfaces Sppqp. (blue),
Srorabe (green), Sperape (khaki), Spg, (dark green), and Spg,
(dark khaki) and the jamming line L; (red); (c)—(e) 2D slices of
the 3D diagram at (c) constant 2/3 < p, < 1, (d) constant
0 < p, <2/3, and (e) both p. = 1/6 at p, = p,., showing the
F, Ry, R., and R, phases. UU’ is the jamming line when
P, = 1 and an RP line when p, < 1. XX’, XY, X'Y’, JX, and
JY are RP lines, and XZ marks the transition from the R, to the
R.pc phase. In (e), the region to the right of JX is the R,
phase when p, = p,, and the line JX is not a part of the figure
when p. = 1/6. CID is a jamming path with a discontinuous
jump in B.
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Our model differs from jamming in that sites in the former
are fixed on a periodic lattice whereas those in the latter are
off lattice and change positions with compression. In
addition, the bulk modulus in our models remains nonzero
below the jamming transition as long as the NN bonds are
occupied with unit probability. Our approach, however, can
be applied to any lattice that has an under- or critically
coordinated sublattice with nonzero B, such as that dis-
cussed at the end of this Letter and in Supplemental
Material [8].

Our model exploits the fact that both the honeycomb and
the diamond lattices with NNN bonds can be divided into
three independent bond lattices, each sharing the sites of the
original NN lattice: the original NN lattice (the a lattice)
and two independent NNN lattices (the b and c lattices)
with sites, respectively, on one or the other site sublattices
of the a lattice [see Fig. 1(a)]. Population of the bonds of
these lattices with springs of spring constant k with
probabilities p,, p,, and p. gives rise to EMT spring
constants k,, k;, and k., respectively. In what follows, we
will focus on the 2D case, though most of the results we
present apply to the diamond lattice as well.

The full 3D EMT phase diagram, depicted in Fig. 1(b), in
the space defined by (p,, py, p.) shows four distinct
phases: a floppy phase F, in which B and G are zero at
zero frequency, and three rigid phases with B > 0 and
G > 0: R, in which only k;, > 0; R, in which only k. > 0;
and R,,., in which k,, k,, and k. are all nonzero. In
addition, it shows boundary surfaces S,z where phases A
and B meet, lines L 43~ where phases A, B, and C meet, and
the jamming line L; (in red) where Syg,;. meets the plane
p. = 1. Figures 1(c)-1(e) depict various 2D slices. In
Fig. 1(c), the line U'U is L; when p, = 1. In Fig. 1(e), J is
the point on L; when p. = 1/6. Surfaces Sy for R equal
to R, R., or R, and lines XY, XX', Y'X’, JX, and JY
correspond to RP transitions, and surfaces Sppupe, With
R = Rj, or R, and line XZ represent transitions in which k,,
develops a nonzero value when k,, or k. is already nonzero.
In Fig. 1(e), J, viewed from the F phase, is a critical end
point [9] where the second-order RP line JY meets the first-
order line at p, = 1. In what follows, we will focus on the
vicinity of the points J and X in the 2D slices.

As shown in previous studies (see, e.g., [3,10,11]), the
EMT provides accurate but not exact estimates of elastic
moduli and phase boundaries. In particular, it does not
incorporate redundant bonds [11] that lead to over- and
underconstrained regions in randomly diluted samples. Our
results agree with this previous work (see Fig. 2):
Simulations and EMT track each other closely, but with
larger deviations near rigidity transitions and particularly
near point X where simulations do not show discontinuous
slope changes predicted by the EMT (see Supplemental
Material [8]).

In Fig. 1(e), k,, and thus B, is nonzero along the line
pa. = 1, but k;, and k.. are (for both p, = p. and p. = 1/6)
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FIG.2. Left: Simulations (points) and EMT solutions (surfaces)
for B (yellow) and G (blue) as a function of p, and p,, for p. = 0.
Red and green lines correspond to JX and XY in Fig. 1(e),
respectively. Right: B and G (inset) as a function of p,, from EMT
(lines) and simulations (circles) for p, =0 and p, = 1 (filled
circles) and p, = 0.7 (open circles).

zero along this line for p, less than or equal to its value pj
at J. Thus, G but not B approaches zero as J is approached
along not only the line p, =1, but along any line
approaching J from the rigid side. On the other hand, if
J is approached from the floppy side along any path [e.g.,
CJID in Fig. 1(e)] other than p, =1, B will undergo a
discontinuous change at L; as in jamming. We argue that a
path with p, < 1 until J is reached followed by a path
along p, =1 for p, > p{, faithfully represents the jam-
ming transition. If springs are removed randomly from a
jammed lattice at J, it immediately loses its rigidity. This
also takes place in our model if we allow the removal of
springs from the a lattice as well as the b and c lattices, i.e.,
follow a path in F in which p, < 1 until L; is reached. The
jamming line at p, = 1 terminates an RP surface (Srpupe)
across which all effective spring constants, and thus both B
and G, grow linearly with distance from it.

EMTs also yield information about finite frequency
behavior [5,12—-18] with the inclusion of inertia of mass
points and/or viscous friction with a background fluid [19].
In our case, the former yields densities of states that scale
like those near jamming, and the latter lead to renormalized
shear and bulk viscosities in the floppy regime, the former
of which diverge as |Ap|~! at the Sgp’s and along L, and
the latter of which also diverge as |Ap|~! at the Sgp’s but as
|Ap|~2 along paths terminating at L.

Our EMT replaces randomly placed springs with spring
constant k = 1 in the three lattices with homogeneously
placed ones with respective effective spring constants k,,
k;,, and k. such that the average scattering from any given
spring in the effective background medium is zero. The
EMT equations are then

ka(w) = [pa - ha(w)]/[l - ha(w)]’ a=a,b,c, (1)

P ACHACHICRD (2)

where G(q, ) = [3_sks(@)K4(q) — w(w)I]™" is the lattice
Green’s function, N, the number of unit cells, Z, (=3 for all
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a in the honeycomb lattice) the number of bonds per unit
cell in lattice @ (= a, b, ¢), K,(q) the a-lattice normalized
stiffness matrix, and w(w) = @* + iyw, where w is the
frequency, y is the drag coefficient, and the mass is set to
one. As discussed in Supplemental Material [8], the
evaluation of £, in the limit where k;, k., and w tend to
zero requires some care, because K, has a zero eigenvalue
at every q. The k,(w) are determined by the self-consistent
solution to Egs. (1) and (2). In the zero-frequency limit
[W(w) - 0], ka = ka(w:O) =0 when Pa= ha(w :0) = hw
k, =1when p,=1,and 0 <k, <1 for h, < p, < 1. As
we shall see, k, vanishes as w(w) — 0 when p, < h,.

It follows from Eq. (2) that the &,’s satisfy the sum rule

S Z (@) = mD + [w(q)/N.) 3 TrG(g.0). (3)

where D is the spatial dimension and m = 2 is the number
of sites per unit cell in the honeycomb and diamond lattices.
Equation (3) along with the results of Eq. (1) that 4, = p,
when k, =0 yield the Maxwell condition for marginal
stability on the Spgr,,. surface or on the jamming line at
w=0:

ZaPa + Z(pp + p.) = mD. (4)

The surfaces Spgp, and Sgg. signal the onset of rigidity of
the b and c lattices individually, in which case k, and k,,
(k.) adopt the vanishing solutions to Eq. (2). In this case,
the rigid b (c) lattice is triangular and has only one site per
unit cell, and h, = D/Z, = 2/3 throughout the R, phase,
and similarly for h.. At Sgprapes k., and k. first adopt
nonzero solutions to Egs. (2) and (1), and h, = p, and
hc = Pec to y1€1d Zapa + prc = (m - I)D on SRlele'

We will now focus on critical points and lines in
Figs. 1(d) and 1(e). As noted above, J marks the jamming
point and X the critical point where F, R ., and R, meet.
At fixed p., J = (1, p], p.), where p; = (1/3) — p,, and
X =(2/3-p.2/3.p.) (for 0 < p. <2/3). At p, = p,.,
J=(1,1/6,1/6) and X = (1/2,2/3,1/6). Figure 1(e)
shows phase-diagram slices for p.=1/6 and for
py» = p.. The lines JX and JY satisfy the equation

Ap = Apl —vApl =0, (5)

where Ap] = p,—pi, Apl=(1-p,) >0, and the
inverse slope is v = vy = 1 for the line JX at fixed p,. =
1/6 and v = vy = 1/2 for the line JY and p. = p,.
Along the F —R,,. lines JX or JY, all effective
spring constants (on bonds with nonzero occupation
probability), and thus all elastic moduli, grow linearly with
Ap, and along the F — R, line, k; grows linearly with

Apy =py—2/3:

k" =clV[Apl. k" =T [Ap), (6)

where [¢] = (¢ + |¢])/2, r=a, b, V=X, Y, and ¢!V
varies with position along JV. Along the line p, = 1, k,, is
exactly equal to one. Near J, k, maintains its form of
Eq. (6), but k, has to vanish on JV and equal one at p, = 1.
This is accomplished within the EMT by
5 J
K- Ap] . chkB !
s+vey crky + Apy,

cjAp
cjAph + sApy’

(7)

where s =1— pj. When Ap] =0, kj =1 as required.
Also, k) clearly vanishes along JV where Ap = 0. The
elastic moduli of the honeycomb lattice in terms of the k’s
are G = ryk, + r k. and B = s, k, + s,k;, + s k., where
r,=r.=9/8, s, =3/4, s, =s.=9/4, and as adver-
tised, G vanishes linearly with A p. The value of k, and thus
of B depends on the path to the jamming point as can be
seen by putting Ap! =VAp) in Eq. (7) with v/ > v
k! = c;(/ —=v)/(c;/ +5). The ratio G/B approaches
zero, and the Poisson ratio ¢ approaches its limit value
of one along all paths to J. G/B reaches a value along the
RP line JY increasing from zero at J to a maximum of 1/2
at Y. These results are similar to those in Refs. [20,21].

We now turn to behavior in the vicinity of X. The EMT
solution at w = 0 is

ki =[ApY,)/sy and kY = ki[ApZ]/cx, (8)
where ApY, = Apf + vx[Ap)], Apy = py — i, Apd =
Pa— DX, cx~0.1 (evaluated numerically), and s, =
1- pl’f . These equations encode all of the phase boundaries
incident at X: ApY, is equal to Ap¥ when Ap¥ < 0 and to
ApY = Ap¥ + vxApX when Ap¥ > 0 so that k¥ = 0 for
Ap¥ <0 and Ap¥ <0 and for Ap¥ <0 and Ap¥ > 0.
The result is that k¥ > 0 in the R;, and R, phases in Fig. 1
and that kX is nonzero only in the R . phases of that figure.
We have calculated the bulk and shear moduli by numerical
solution of the EMT equations for the k,’s and by their
direct evaluation on our random lattices. The two solutions
are nearly identical over most of phase space as seen in
Fig. 2. The simulations, however, do not show the sharp
changes near X that the EMT does.

Equation (2) provides dynamical as well as static
information, allowing us to calculate the frequency-
dependent effective spring constants in the floppy region.
Of particular interest is the approach to the jamming point.
In the case of p, = p,, the results (in agreement with
Ref. [19] for k;,) are

1 . -
b= [0+ 185~ e )] 9
A%
~ [ p] _ Uh‘j} . when 1};,—~Wz<< 1, (10)
s+uve; |Ap |AD
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and

ki,

b = T (Bplle) (1

Ap<0 VW L Cgupw
— AplIABI/C) - AplIAp|
”bw—i_( pa| p|/C) pa‘ P|

(12)

Thus, on paths approaching J in the low-frequency limit
when w = iyw, k, diverges as |iywAp|™', but k, diverges
as iyw|AplAp|~!, implying that the shear viscosity
diverges as |Ap|~!, but the bulk modulus viscosity diverges
as |Ap|~2. The scaling of k; [Fig. 3(a)] is consistent with
results for the shear modulus of soft sphere packings near
jamming [22]. When y = 0 and w = @?, our calculations
yield a density of states that is nearly constant at small @
[Fig. 3(b)], down to a crossover frequency w* that scales as
Ap (see the inset), as in jamming [23,24].

As noted earlier, in our model, k,, and thus B, is nonzero
in the floppy region when p, = 1. In the jamming protocol,
B is zero in the floppy phase and jumps discontinuously at
J with the formation of a random marginally stable lattice
with a single state of self-stress [25,26] that resists increase

1077 2 7
8 yw/(Ap, |Ap))
1073 102 107 yw /(Ap)?
(b)
100} ; ;-N'_--;’“N
! J
= w
3102
Q 107 e
st
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10-4} 1075Le" ,
107 103 Ap,
10°* 102 10° w

FIG. 3. (a) k,/|Ap| as a function of yw/|Ap|* in the low-
frequency limit w = iy®. Blue (red) circles: Numerical solutions
to full EMT equations for approach to jamming in the rigid
(floppy) phase; black dashed line: asymptotic solutions [Eq. (9)]
near jamming critical point; hollow circles: Rek,/|Ap|; filled
circles: —Imk,/|Ap|, which is independent of the sign of |Ap].
Inset: k, as a function of yw/(ApZ|Ap|). (b) Density of states
p(w) for p, =1 and Ap = Ap] =102 (solid lines), 107
(dashed line), 10~ (dot-dashed line), and 107> (dotted line).
Inset: Linear behavior of crossover frequency o*(Apy).

in pressure. As volume fraction is increased, more links
form, inviting us to model jamming starting with the lattice
at J, which is now critically rather than undercoordinated
with z, = D (%, is half the coordination number), as the
analog of the a lattice and identifying “unoccupied bonds”
between pairs of close but not touching spheres as the b
lattice. Ideally, this b lattice would contain a sufficient
number of bonds that it would by itself be mechanically
stable if all of these bonds were occupied with springs. We
can now use the random-lattice EMT of Refs. [12,13,18],
modified to treat lattices a and b separately. The result is a
phase diagram (see Supplemental Material [8]) in the
Pa — Pp space identical to that in Fig. 1(e) but with the
point J moved to the upper left-hand corner: J = (1, 0) and
the point ¥ moved to Y = (0, D/Z,). The path to jamming,
which involves first the creation of lattice a, is thus along
the line p, = 0 until J is reached. As more springs are
added, the path follows the line p, = 1. Of course, different
paths can be followed, most of which will intersect the RP
line J —Y [3,21]. For example, all paths starting from a
point in the jammed phase along p, = 1 in which springs
are randomly removed from both a and b sublattices cross
the RP line. The EMT equations are identical in form to
Egs. (2) and (1), but with only two sublattices and Eq. (4)
replaced by Z,p, + Z,p, = D, where 7, = D. Near J, k,
and k;, obey Egs. (6), (7), and (12) to (9) with p; = 0 and
s = 1. See Supplemental Material [8] for more detail.

Our model features a second-order RP line meeting a
first-order B > 0 line. Possible procedures for producing
similar features in jammed systems include targeted selec-
tive pruning [21,27] or dividing bonds into those present in
the marginal network at jamming and those added later
followed by removal of the former and latter with respec-
tive probabilities p, and p,.

In this Letter, we introduced and analyzed, using
effective medium theory and numerical simulations, a
lattice model for jamming that captures the essential
features of the jamming transition, which emerges as a
critical end point in which a second-order rigidity perco-
lation line meets a line in which there is a discontinuous
jump in the bulk modulus from a nonrigid phase.
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