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The discontinuous jump in the bulk modulus B at the jamming transition is a consequence of the
formation of a critical contact network of spheres that resists compression. We introduce lattice models with
underlying undercoordinated compression-resistant spring lattices to which next-nearest-neighbor springs
can be added. In these models, the jamming transition emerges as a kind of multicritical point terminating a
line of rigidity-percolation transitions. Replacing the undercoordinated lattices with the critical network at
jamming yields a faithful description of jamming and its relation to rigidity percolation.
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Jamming [1,2] is now well established as a phenomenon
with a zero-temperature mechanical critical point that
separates a state of free particles from one in which they
collectively resist elastic distortions. The jamming critical
point (J) is, however, unusual in that it exhibits properties
of both a first-order transition (with a discontinuous jump
in the bulk modulus, B) and a second-order one (with a
continuous growth of the shear moduli, G, from zero). This
is in stark contrast to its cousin, the rigidity-percolation
(RP) transition [3,4], in which both the bulk and shear
moduli grow linearly from zero above the RP critical point
(or line). The first-order jump in B is a consequence of the
formation of a critical network of contacts that resists
compression. This fact is the inspiration for our introduc-
tion of lattice models with sublattices that also resist
compression. In our analysis of these models using the
effective medium theory (EMT) [3,5] and numerical
simulations, the jamming transition corresponds to a kind
of multicritical point at which a line (or surface) of RP
transitions meets a line along which B is nonzero.
Our models begin with the undercoordinated honeycomb

lattice in two dimensions (2D) or the diamond lattice in 3D,
each consisting of sites connected by nearest-neighbor
(NN) springs, with a nonvanishing bulk modulus but with
vanishing shear moduli [6]. Next-nearest-neighbor (NNN)
springs are randomly added [as shown in Fig. 1(a)], leading
to the phase diagrams shown in Figs. 1(b)–1(e). At a critical
concentration of NNN springs, the Maxwell rigidity cri-
terion [7] is reached, the shear modulus begins to grow
continuously from zero, and the bulk modulus begins to
increase. This model mimics important aspects of jamming
and the jamming transition, which is reached by increasing
the volume fraction of spheres until they have a sufficient
number of contacts to first resist compression, indicating a
bulk modulus that is greater than zero. The marginally
jammed state that is formed is an analog of the honeycomb

or diamond lattice in our model. Further compression of the
jammed lattice increases the number of contacts and
produces an increase in the shear moduli from zero.
This is the analog of adding NNN bonds in our models.
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FIG. 1. (a) Three-sublattice model showing NN (solid lines)
and NNN (dashed and dotted lines) bonds, the latter of which
connect sites in either of the triangular sublattices containing
the first (black) or second (open) sites of the honeycomb lattice.
(b) 3D phase diagram showing the surfaces SFRabc (blue),
SRbRabc (green), SRcRabc (khaki), SFRb (dark green), and SFRc
(dark khaki) and the jamming line LJ (red); (c)–(e) 2D slices of
the 3D diagram at (c) constant 2=3 < pa < 1, (d) constant
0 < pa < 2=3, and (e) both pc ¼ 1=6 at pb ¼ pc, showing the
F, Rb, Rc, and Rabc phases. UU0 is the jamming line when
pa ¼ 1 and an RP line when pa < 1. XX0, XY, X0Y 0, JX, and
JY are RP lines, and XZ marks the transition from the Rb to the
Rabc phase. In (e), the region to the right of JX is the Rabc
phase when pa ¼ pb, and the line JX is not a part of the figure
when pc ¼ 1=6. CJD is a jamming path with a discontinuous
jump in B.
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Our model differs from jamming in that sites in the former
are fixed on a periodic lattice whereas those in the latter are
off lattice and change positions with compression. In
addition, the bulk modulus in our models remains nonzero
below the jamming transition as long as the NN bonds are
occupied with unit probability. Our approach, however, can
be applied to any lattice that has an under- or critically
coordinated sublattice with nonzero B, such as that dis-
cussed at the end of this Letter and in Supplemental
Material [8].
Our model exploits the fact that both the honeycomb and

the diamond lattices with NNN bonds can be divided into
three independent bond lattices, each sharing the sites of the
original NN lattice: the original NN lattice (the a lattice)
and two independent NNN lattices (the b and c lattices)
with sites, respectively, on one or the other site sublattices
of the a lattice [see Fig. 1(a)]. Population of the bonds of
these lattices with springs of spring constant k with
probabilities pa, pb, and pc gives rise to EMT spring
constants ka, kb, and kc, respectively. In what follows, we
will focus on the 2D case, though most of the results we
present apply to the diamond lattice as well.
The full 3D EMT phase diagram, depicted in Fig. 1(b), in

the space defined by ðpa; pb; pcÞ shows four distinct
phases: a floppy phase F, in which B and G are zero at
zero frequency, and three rigid phases with B > 0 and
G > 0: Rb, in which only kb > 0; Rc, in which only kc > 0;
and Rabc, in which ka, kb, and kc are all nonzero. In
addition, it shows boundary surfaces SAB where phases A
and Bmeet, lines LABC where phases A, B, and Cmeet, and
the jamming line LJ (in red) where SFRabc meets the plane
pa ¼ 1. Figures 1(c)–1(e) depict various 2D slices. In
Fig. 1(c), the line U0U is LJ when pa ¼ 1. In Fig. 1(e), J is
the point on LJ when pc ¼ 1=6. Surfaces SFR for R equal
to Rb, Rc, or Rabc and lines XY, XX0, Y 0X0, JX, and JY
correspond to RP transitions, and surfaces SRRabc, with
R ¼ Rb or Rc, and line XZ represent transitions in which ka
develops a nonzero value when kb or kc is already nonzero.
In Fig. 1(e), J, viewed from the F phase, is a critical end
point [9] where the second-order RP line JY meets the first-
order line at pa ¼ 1. In what follows, we will focus on the
vicinity of the points J and X in the 2D slices.
As shown in previous studies (see, e.g., [3,10,11]), the

EMT provides accurate but not exact estimates of elastic
moduli and phase boundaries. In particular, it does not
incorporate redundant bonds [11] that lead to over- and
underconstrained regions in randomly diluted samples. Our
results agree with this previous work (see Fig. 2):
Simulations and EMT track each other closely, but with
larger deviations near rigidity transitions and particularly
near point X where simulations do not show discontinuous
slope changes predicted by the EMT (see Supplemental
Material [8]).
In Fig. 1(e), ka, and thus B, is nonzero along the line

pa ¼ 1, but kb and kc are (for both pb ¼ pc and pc ¼ 1=6)

zero along this line for pb less than or equal to its value pJ
b

at J. Thus, G but not B approaches zero as J is approached
along not only the line pa ¼ 1, but along any line
approaching J from the rigid side. On the other hand, if
J is approached from the floppy side along any path [e.g.,
CJD in Fig. 1(e)] other than pa ¼ 1, B will undergo a
discontinuous change at LJ as in jamming. We argue that a
path with pa < 1 until J is reached followed by a path
along pa ¼ 1 for pb > pJ

b faithfully represents the jam-
ming transition. If springs are removed randomly from a
jammed lattice at J, it immediately loses its rigidity. This
also takes place in our model if we allow the removal of
springs from the a lattice as well as the b and c lattices, i.e.,
follow a path in F in which pa < 1 until LJ is reached. The
jamming line at pa ¼ 1 terminates an RP surface (SFRabc)
across which all effective spring constants, and thus both B
and G, grow linearly with distance from it.
EMTs also yield information about finite frequency

behavior [5,12–18] with the inclusion of inertia of mass
points and/or viscous friction with a background fluid [19].
In our case, the former yields densities of states that scale
like those near jamming, and the latter lead to renormalized
shear and bulk viscosities in the floppy regime, the former
of which diverge as jΔp̃j−1 at the SRP’s and along LJ, and
the latter of which also diverge as jΔp̃j−1 at the SRP’s but as
jΔp̃j−2 along paths terminating at LJ.
Our EMT replaces randomly placed springs with spring

constant k ¼ 1 in the three lattices with homogeneously
placed ones with respective effective spring constants ka,
kb, and kc such that the average scattering from any given
spring in the effective background medium is zero. The
EMT equations are then

kαðωÞ ¼ ½pα − hαðωÞ�=½1 − hαðωÞ�; α ¼ a; b; c; ð1Þ

hαðωÞ ¼
1

z̃αNc

X
q

TrkαðωÞKαðqÞGðq;ωÞ; ð2Þ

where Gðq;ωÞ ¼ ½PβkβðωÞKβðqÞ − wðωÞI�−1 is the lattice
Green’s function, Nc the number of unit cells, z̃α (¼3 for all

B

b

b

bB, G

FIG. 2. Left: Simulations (points) and EMT solutions (surfaces)
for B (yellow) andG (blue) as a function of pa and pb for pc ¼ 0.
Red and green lines correspond to JX and XY in Fig. 1(e),
respectively. Right: B andG (inset) as a function of pb from EMT
(lines) and simulations (circles) for pc ¼ 0 and pa ¼ 1 (filled
circles) and pa ¼ 0.7 (open circles).
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α in the honeycomb lattice) the number of bonds per unit
cell in lattice α (¼ a, b, c), KαðqÞ the α-lattice normalized
stiffness matrix, and wðωÞ ¼ ω2 þ iγω, where ω is the
frequency, γ is the drag coefficient, and the mass is set to
one. As discussed in Supplemental Material [8], the
evaluation of hα in the limit where kb, kc, and w tend to
zero requires some care, because Ka has a zero eigenvalue
at every q. The kαðωÞ are determined by the self-consistent
solution to Eqs. (1) and (2). In the zero-frequency limit
[wðωÞ→0], kα≡kαðω¼0Þ¼0 when pα¼hαðω¼0Þ≡hα,
kα ¼ 1 when pα ¼ 1, and 0 ≤ kα ≤ 1 for hα ≤ pα ≤ 1. As
we shall see, kα vanishes as wðωÞ → 0 when pα < hα.
It follows from Eq. (2) that the hα’s satisfy the sum rule

X
α

z̃αhαðωÞ ¼ mDþ ½wðqÞ=Nc�
X

TrGðq;ωÞ; ð3Þ

where D is the spatial dimension and m ¼ 2 is the number
of sites per unit cell in the honeycomb and diamond lattices.
Equation (3) along with the results of Eq. (1) that hα ¼ pα

when kα ¼ 0 yield the Maxwell condition for marginal
stability on the SFRabc surface or on the jamming line at
ω ¼ 0:

z̃apa þ z̃bðpb þ pcÞ ¼ mD: ð4Þ

The surfaces SFRb and SFRc signal the onset of rigidity of
the b and c lattices individually, in which case ka and kb
(kc) adopt the vanishing solutions to Eq. (2). In this case,
the rigid b (c) lattice is triangular and has only one site per
unit cell, and hb ¼ D=z̃b ¼ 2=3 throughout the Rb phase,
and similarly for hc. At SRbRabc, ka and kc first adopt
nonzero solutions to Eqs. (2) and (1), and ha ¼ pa and
hc ¼ pc to yield z̃apa þ z̃bpc ¼ ðm − 1ÞD on SRbRabc.
We will now focus on critical points and lines in

Figs. 1(d) and 1(e). As noted above, J marks the jamming
point and X the critical point where F, Rabc, and Rb meet.
At fixed pc, J ¼ ð1; pJ

b; pcÞ, where pJ
b ¼ ð1=3Þ − pc, and

X ¼ ð2=3 − pc; 2=3; pcÞ (for 0 < pc < 2=3). At pb ¼ pc,
J ¼ ð1; 1=6; 1=6Þ and X ¼ ð1=2; 2=3; 1=6Þ. Figure 1(e)
shows phase-diagram slices for pc ¼ 1=6 and for
pb ¼ pc. The lines JX and JY satisfy the equation

Δp̃≡ ΔpJ
b − νΔpJ

a ¼ 0; ð5Þ

where ΔpJ
b ¼ pb − pJ

b, ΔpJ
a ¼ ð1 − paÞ > 0, and the

inverse slope is ν ¼ νX ¼ 1 for the line JX at fixed pc ¼
1=6 and ν ¼ νY ¼ 1=2 for the line JY and pc ¼ pb.
Along the F − Rabc lines JX or JY, all effective

spring constants (on bonds with nonzero occupation
probability), and thus all elastic moduli, grow linearly with
Δp̃, and along the F − Rb line, kb grows linearly with
Δpb ¼ pb − 2=3:

kJVr ¼ cJVr ½Δp̃�; kXYb ¼ cXYb ½Δpb�; ð6Þ

where ½ϕ� ¼ ðϕþ jϕjÞ=2, r ¼ a, b, V ¼ X, Y, and cJVr
varies with position along JV. Along the line pa ¼ 1, ka is
exactly equal to one. Near J, kb maintains its form of
Eq. (6), but ka has to vanish on JV and equal one at pa ¼ 1.
This is accomplished within the EMT by

kJb ¼
½Δp̃�

sþ νcJ
; kJa ¼

cJkJB
cJkJB þ ΔpJ

a
→

cJΔp̃
cJΔpJ

b þ sΔpJ
a
;

ð7Þ

where s ¼ 1 − pJ
b. When ΔpJ

a ¼ 0, kJa ¼ 1 as required.
Also, kJa clearly vanishes along JV where Δp̃ ¼ 0. The
elastic moduli of the honeycomb lattice in terms of the k’s
are G ¼ rbkb þ rckc and B ¼ saka þ sbkb þ sckc, where
rb ¼ rc ¼ 9=8, sa ¼ 3=4, sb ¼ sc ¼ 9=4, and as adver-
tised,G vanishes linearly withΔp̃. The value of ka and thus
of B depends on the path to the jamming point as can be
seen by putting ΔpJ

b ¼ ν0ΔpJ
a in Eq. (7) with ν0 > ν:

kJa ¼ cJðν0 − νÞ=ðcJν0 þ sÞ. The ratio G=B approaches
zero, and the Poisson ratio σ approaches its limit value
of one along all paths to J. G=B reaches a value along the
RP line JY increasing from zero at J to a maximum of 1=2
at Y. These results are similar to those in Refs. [20,21].
We now turn to behavior in the vicinity of X. The EMT

solution at w ¼ 0 is

kXb ¼ ½Δp̃X
ab�=sb and kXa ¼ kXb ½ΔpX

a �=cX; ð8Þ

where Δp̃X
ab ¼ ΔpX

b þ νX½ΔpX
a �, ΔpX

b ¼ pb − pX
b , ΔpX

a ¼
pa − pX

a , cX ≈ 0.1 (evaluated numerically), and sb ¼
1 − pX

b . These equations encode all of the phase boundaries
incident at X: Δp̃X

ab is equal to ΔpX
b when ΔpX

a < 0 and to
Δp̃X ¼ ΔpX

b þ νXΔpX
a when ΔpX

a > 0 so that kXb ¼ 0 for
ΔpX

a < 0 and ΔpX
b < 0 and for Δp̃X < 0 and ΔpX

a > 0.
The result is that kXb > 0 in the Rb and Rabc phases in Fig. 1
and that kXa is nonzero only in the Rabc phases of that figure.
We have calculated the bulk and shear moduli by numerical
solution of the EMT equations for the kα’s and by their
direct evaluation on our random lattices. The two solutions
are nearly identical over most of phase space as seen in
Fig. 2. The simulations, however, do not show the sharp
changes near X that the EMT does.
Equation (2) provides dynamical as well as static

information, allowing us to calculate the frequency-
dependent effective spring constants in the floppy region.
Of particular interest is the approach to the jamming point.
In the case of pb ¼ pc, the results (in agreement with
Ref. [19] for kb) are

kb ¼
1

2ðsþ νcÞ
h
Δp̃þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔp̃j2 − 4ðsþ νcJÞvbwðωÞ

q i
ð9Þ

≈
½Δp̃�

sþ νcJ
−

vbw
jΔp̃j ; when

vbw
jΔp̃j2 ≪ 1; ð10Þ
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and

ka ¼
kb

kb þ ðΔpJ
a=cJÞ

ð11Þ

⟶
Δp̃<0 vbw

vbwþ ðΔpJ
ajΔp̃j=cÞ

≈
cJvbw

ΔpJ
ajΔp̃j

: ð12Þ

Thus, on paths approaching J in the low-frequency limit
when w ¼ iγω, kb diverges as jiγωΔp̃j−1, but ka diverges
as iγωjΔpJ

aΔp̃j−1, implying that the shear viscosity
diverges as jΔp̃j−1, but the bulk modulus viscosity diverges
as jΔp̃j−2. The scaling of kb [Fig. 3(a)] is consistent with
results for the shear modulus of soft sphere packings near
jamming [22]. When γ ¼ 0 and w ¼ ω2, our calculations
yield a density of states that is nearly constant at small ω
[Fig. 3(b)], down to a crossover frequency ω� that scales as
Δp̃ (see the inset), as in jamming [23,24].
As noted earlier, in our model, ka, and thus B, is nonzero

in the floppy region when pa ¼ 1. In the jamming protocol,
B is zero in the floppy phase and jumps discontinuously at
J with the formation of a random marginally stable lattice
with a single state of self-stress [25,26] that resists increase

in pressure. As volume fraction is increased, more links
form, inviting us to model jamming starting with the lattice
at J, which is now critically rather than undercoordinated
with z̃a ¼ D (z̃a is half the coordination number), as the
analog of the a lattice and identifying “unoccupied bonds”
between pairs of close but not touching spheres as the b
lattice. Ideally, this b lattice would contain a sufficient
number of bonds that it would by itself be mechanically
stable if all of these bonds were occupied with springs. We
can now use the random-lattice EMT of Refs. [12,13,18],
modified to treat lattices a and b separately. The result is a
phase diagram (see Supplemental Material [8]) in the
pa − pb space identical to that in Fig. 1(e) but with the
point J moved to the upper left-hand corner: J ¼ ð1; 0Þ and
the point Y moved to Y ¼ ð0; D=z̃bÞ. The path to jamming,
which involves first the creation of lattice a, is thus along
the line pb ¼ 0 until J is reached. As more springs are
added, the path follows the line pa ¼ 1. Of course, different
paths can be followed, most of which will intersect the RP
line J − Y [3,21]. For example, all paths starting from a
point in the jammed phase along pa ¼ 1 in which springs
are randomly removed from both a and b sublattices cross
the RP line. The EMT equations are identical in form to
Eqs. (2) and (1), but with only two sublattices and Eq. (4)
replaced by z̃apa þ z̃bpb ¼ D, where z̃a ¼ D. Near J, ka
and kb obey Eqs. (6), (7), and (12) to (9) with pJ

b ¼ 0 and
s ¼ 1. See Supplemental Material [8] for more detail.

Our model features a second-order RP line meeting a
first-order B > 0 line. Possible procedures for producing
similar features in jammed systems include targeted selec-
tive pruning [21,27] or dividing bonds into those present in
the marginal network at jamming and those added later
followed by removal of the former and latter with respec-
tive probabilities pa and pb.
In this Letter, we introduced and analyzed, using

effective medium theory and numerical simulations, a
lattice model for jamming that captures the essential
features of the jamming transition, which emerges as a
critical end point in which a second-order rigidity perco-
lation line meets a line in which there is a discontinuous
jump in the bulk modulus from a nonrigid phase.
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