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ABSTRACT
We present the first release of the data and compact-source catalogue for the JCMT Large
Program SCUBA-2 Continuum Observations of Pre-protostellar Evolution (SCOPE). SCOPE
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consists of 850μm continuum observations of 1235 Planck Galactic Cold Clumps (PGCCs)
made with the Submillimetre Common-User Bolometer Array 2 on the James Clerk Maxwell
Telescope. These data are at an angular resolution of 14.4 arcsec, significantly improving upon
the 353 GHz resolution of Planck at 5 arcmin, and allowing for a catalogue of 3528 compact
sources in 558 PGCCs. We find that the detected PGCCs have significant sub-structure,
with 61 per cent of detected PGCCs having three or more compact sources, with filamentary
structure also prevalent within the sample. A detection rate of 45 per cent is found across the
survey, which is 95 per cent complete to Planck column densities of NH2 > 5 × 1021 cm−2.
By positionally associating the SCOPE compact sources with young stellar objects, the star
formation efficiency, as measured by the ratio of luminosity to mass, in nearby clouds is found
to be similar to that in the more distant Galactic Plane, with the column density distributions
also indistinguishable from each other.

Key words: surveys – stars: formation – ISM: clouds – submillimetre: ISM.

1 I N T RO D U C T I O N

The Planck survey, with its primary goal of mapping the cosmic
microwave background, covered the thermal emission from dust
of ∼14 K at wavelengths of 350, 550, and 850μm. In the process
of removing local, Galactic emission, a catalogue of 13 188 Planck
Galactic cold clumps (PGCCs) was compiled (Planck Collaboration
XXIII 2011a, Planck Collaboration XXVIII 2016). By comparing
the column densities and velocity widths of such clumps and those
containing active star formation, the PGCCs were found to be
significantly more quiescent and less evolved (Wu et al. 2012;
Liu, Wu & Zhang 2013). The apparent quiescent nature of PGCCs
makes them a valuable sample for studying the earliest stages of
star formation, especially since they appear to have conditions
suitable for star formation, with low dust temperatures of 6–
20 K (Planck Collaboration XXVIII 2016). CO clumps have been
detected towards PGCCs (e.g. Liu et al. 2013; Meng, Wu & Liu
2013; Parikka et al. 2015; Zhang et al. 2016; Fehér et al. 2017), as
well as detections of line emission from dense gas tracers (Yuan et al.
2016). There can be, however, low levels of active star formation
within PGCCs (Tóth et al. 2014; Liu et al. 2015; Tang et al. 2018;
Yi et al. 2018; Zhang et al. 2018).

A large sample of pre-stellar cores and clumps needs to be
studied to understand the evolution of cores and clumps after the
formation of a young stellar object (YSO). In support of the effort to
collect a large sample of pre- and protostellar cores and clumps, we
present the SCUBA-2 Continuum Observations of Pre-protostellar
Evolution Large Program (SCOPE). The project aims to test the
earliest stages of star formation by observing 1235 PGCCs with the
wide-field sub-mm bolometer camera, the Submillimetre Common-
User Bolometer Array 2 (SCUBA-2; Holland et al. 2013) at the
850μm wavelength beam size of 14.4 arcsec on the James Clerk
Maxwell Telescope (JCMT). By observing with SCUBA-2 in the
850 μm continuum, matching the frequency of the Planck 353 GHz
band, we can significantly improve over the 5 arcmin resolution
of the Planck observations of PGCCs. The 5 arcmin resolution of
Planck is prohibitive in that it hinders the positional cross-matching
of higher resolution catalogues of YSOs (e.g. Wright et al. 2010;
Gutermuth & Heyer 2015; Marton et al. 2016) and also does not
reveal the highly structured nature of the PGCCs (Juvela et al. 2012;
Liu, Wu & Zhang 2012).

The resolution of SCUBA-2 at 850μm resolves PGCCs at 1.5
and 0.5 kpc to scales of 0.1 and 0.03 pc, respectively, the typical size
of star-forming cores and clumps (e.g. Könyves et al. 2015), with
56 per cent and 43 per cent of sources falling within these distances,
respectively (Planck Collaboration XXVIII 2016). It is important

to resolve individual cores in the PGCCs, especially because of the
close connection between the core mass spectrum and the stellar
IMF (e.g. Simpson, Nutter & Ward-Thompson 2008; Könyves et al.
2015; Montillaud et al. 2015),

The SCOPE survey was awarded 300 h in the JCMT weather
bands 3 and 4, which correspond to sky opacity values of
τ225 = 0.08–0.2. Observations began with three periods of pilot
observations occurring in 2014 September, and continued from
2015 December until 2017 July. SCUBA-2 does observe the 450μm
band simultaneously with the 850μm band, but the weather bands
available to SCOPE do not allow for reliable photometric calibration
to be made on these shorter wavelength data.

1.1 SCOPE science goals

As previously mentioned, the Planck survey mapped the entire sky
therefore PGCCs cover all Galactic longitudes and latitudes, from
the Galactic Plane to high-latitude clouds. Previous works suggest
that the Galaxy’s spiral arms do not have much of an impact on star
formation, other than collecting the source material together (Eden
et al. 2012, 2013; Moore et al. 2012). Understanding star formation
out of the Galactic Plane, however, is restricted to nearby clouds
in the Gould’s Belt (e.g. Ward-Thompson et al. 2007; André et al.
2010). Some clouds at higher latitudes show signs of star formation
(e.g. McGehee 2008; Malinen et al. 2014; Kerp, Lenz & Röhser
2016). Hence, high-latitude clouds could be contributing to Galactic
star formation, both at present and in the future by providing source
material for fresh star formation. Indeed, gas at high latitudes could
be a part of a Galactic fountain, where gas and dust is expelled into
the Galactic halo by supernovae and stellar winds (Bregman 1980).
This material would then fall back to the Galactic Plane, cooling
and condensing into atomic clouds, with observations detecting H I

high-latitude clouds (Röhser et al. 2016b). These clouds then fall
back on to the Plane, replenishing the reservoir for star formation
(Putman, Peek & Joung 2012). In this regard, these clouds would
also contain some molecular material (Magnani & Smith 2010;
Röhser et al. 2016a) and dust (Planck Collaboration XXIV 2011b)
therefore SCOPE is important in quantifying the amount of dense
gas at high latitudes and to see if it has the same star formation
efficiency as in the Plane.

Images of the dust-continuum emission found that the ISM and
molecular clouds are highly filamentary with the vast majority
of clumps and cores lying on, or in, these structures (André
et al. 2010, 2014, Molinari et al. 2010). The formation mecha-
nism of filaments is disputed, with global gravitational collapse
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(Hartmann & Burkert 2007), large-scale colliding flows in the
cloud-formation process (Heitsch & Hartmann 2008), and decaying
supersonic turbulence (Padoan et al. 2007) being suggested as
possible formation mechanisms. Observational evidence, however,
has been unable to discriminate between these possibilities. The
fact that most cores, both pre- and protostellar, are found on these
filaments implies that the filamentary structures are crucial to their
formation, regardless of how the filaments form. Follow-up studies
have also found PGCCs to be filamentary (e.g. Rivera-Ingraham
et al. 2016; Kim et al. 2017), and the increased resolution of the
SCOPE survey allows the determination of the detection rate of
filaments and the fragmentation of filaments into clumps and cores.
Such detection of filaments, and the placement of clumps/cores
along them, will allow for a greater understanding of the role that
they play in star formation (Juvela et al. 2018b; Liu et al. 2018a,b).

Using the method of Sadavoy et al. (2013), we can combine
Herschel Space Observatory data and simultaneously derive the
dust temperature, column density, and dust emissivity spectral
index. By calculating these values, we can study how dust properties
vary between different Galactic environments and between sources
in different stages of the star formation process, with some of the
sources in this study already addressed by Juvela et al. (2018a,b).

Multiple papers have already been published using the SCOPE
data, namely the maps and images (Liu et al. 2016; Kim et al. 2017;
Tatematsu et al. 2017; Juvela et al. 2018a; Juvela et al. 2018b; Liu
et al. 2018a,b; Tang et al. 2018; Yi et al. 2018; Zhang et al. 2018).

The layout of this paper is as follows: Section 2 introduces the
observing strategy and complementary observations and surveys.
Section 3 describes the data and the data reduction, whilst Section 4
includes the compact source extraction. Sections 5 and 6 describe
data access and results, respectively. Finally, Section 7 provides
summary and final conclusions.

2 SCOP E OBSERVING STRATEGY

The SCOPE selection of PGCCs was chosen randomly from the
full PGCC sample to sample varying Galactic environments (Liu
et al. 2018a). Sources from the catalogue of PGCCs were excluded
if they had already been observed at the JCMT with SCUBA-2 at an
rms sensitivity of at least 6 mJy beam−1. These observations formed
part of the JCMT Legacy Surveys (Chrysostomou 2010), namely
the JCMT Plane Survey (JPS; Moore et al. 2015; Eden et al. 2017)
and the JCMT Gould Belt Survey (GBS; Ward-Thompson et al.
2007). The SCUBA-2 Ambitious Sky Survey (SASSy; MacKenzie
et al. 2011; Nettke et al. 2017; Thompson et al., in preparation),
covers half of the Galactic Plane but does not have the desired rms.

The PGCCs not previously observed at JCMT were placed into a
3D grid with each longitude bin 30◦ wide, latitude bins of ‖b‖ = 0◦,
4◦, 10◦, and 90◦, and distance bins of 0, 0.2, 0.5, 1, 2, and 8 kpc.
Sources with column densities NH2 < 2 ×1021 cm−2 were chosen
randomly within each bin, with all sources with column densities
N H2 > 2 ×1021 cm−2 observed. This column density criterium is
due to the pilot study of the initial 300 PGCCs, where the detection
rate of PGCCs with NH2 < 1021 cm−2 was dramatically lower. The
JCMT has through SCOPE, and other archival data, covered nearly
all PGCCs with column densities of NH2 > 2 ×1021 cm−2 within
the declination range of −30◦–+ 35◦, the most likely star-forming
PGCCs (Wang et al., in preparation).

The properties of the observed sources are displayed in Fig. 1.
The presented properties are Galactic longitude, Galactic latitude,
temperature, distance, column density, mass, luminosity, major axis,
and aspect ratio. The physical properties are not derived for all

sources, and are as calculated by Planck Collaboration XXVIII
(2016). These distributions are compared to the entire populations,
as derived by Planck Collaboration XXVIII (2016). The biggest
departure is with column density. We observed higher column
density PGCCs than the average, which in turn skewed the SCOPE
mass distribution to higher observed masses. Low column density
(NH2 < 1021 cm−2) PGCCs usually do not contain dense cores,
based on our pilot observations, and thus are not interesting for star
formation studies.

The average angular size of PGCCs is 8 arcmin (Planck Collab-
oration XXVIII 2016) therefore the CV Daisy mode of SCUBA-
2 was used for these observations (Bintley et al. 2014). The CV
Daisy mode is specifically designed for small, compact objects,
with the telescope keeping to a circular pattern at 155 arcsec s−1.
Each SCOPE map takes 16 min to perform, with the CV Daisy
mode producing 850μm rms noise values of 6 mJy beam−1 in the
central 3 arcmin, with 850μm rms noise out to radii of 6 arcmin of
10–30 mJy beam−1.

The SCOPE survey including pilot studies observed fields to-
wards 1235 PGCCs in 1062 fields, with compact source detections
towards ∼51 per cent of fields, 45 per cent of PGCCs. The observed
PGCCs in the SCOPE survey are displayed in their Galactic context
in Fig. 2, with the 174 and 321 PGCCs observed by the JPS and
GBS, respectively, overlaid. This paper will deal with only those
observed as part of the SCOPE project.

The goal of SCOPE was to observe PGCCs in all Galactic
environments. Comparison to the entire PGCC population and to
sources in the GBS fields (Fig. 3) shows that SCOPE observations
are representative of the high column density PGCC targets and
complement the sources observed in GBS.

2.1 Complementary observations

In addition to the SCOPE survey, there are ongoing surveys at other
facilities, giving complementary data to these PGCC detections (Liu
et al. 2015, 2018a). The Taeduk Radio Astronomy Observatory
(TRAO) Observations of Planck cold clumps (TOP) survey is
observing ∼2000 PGCCs in the rotational transition of J = 1 − 0
of CO istopologues 12CO and 13CO at resolutions of 45–47 arcsec.
A full description of this survey can be found in Liu et al.
(2018a). Further J = 1 − 0 observations have been made at the
Purple Mountain Observatory (PMO) at the same resolution. These
observations will allow PGCCs to be put in the greater context of
extended CO emission and structure.

The SMT (Submillimetre Telescope) ‘All-sky’ Mapping of
Planck Interstellar Nebulae in the Galaxy (SAMPLING; Wang et al.
2018) survey follows up PGCCs in the J = 2 − 1 transition of
12CO and 13CO. The detection of two transitions will allow more
accurate column densities to be calculated.

Further PI observations have occurred at the Nobeyama Radio
Observatory 45 m telescope, the 21 m telescopes in Korean VLBI
Network (KVN) and the Effelsberg 100 m telescope in the dense gas
tracers such as HCO+, N2H+, HC3N, CCS, DNC, HN13C, N2D+,
and NH3 towards samples of SCUBA-2 dense cores in PGCCs. By
observing these species, temperatures, depletion, and deuteration
fractions can be determined (Tatematsu et al. 2017).

3 DATA R E D U C T I O N A N D S C O P E DATA

Liu et al. (2018a) provides a full description of different data
reduction methods employed and tested within the SCOPE survey.
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Figure 1. Properties of the PGCCs observed in the SCOPE survey (the grey histogram), with the total PGCC population from Planck Collaboration XXVIII
(2016) overlaid in blue. The top row displays the Galactic longitude, Galactic latitude, and temperature, in the left-hand, central, and right-hand panels,
respectively. The middle row are the distance, column density, and mass, with the bottom row showing the luminosity, major axis, and aspect ratio.

The data reduction employed within the first SCOPE data release
uses the dynamic iterative map-maker (Chapin et al. 2013), part of
the Starlink SMURF package (Jenness et al. 2011). These data use a
200 arcsec spatial filter, with no use of external masking. This initial
data reduction is then filtered for regions with a signal-to-noise ratio
(SNR) less than 3, with these high-SNR regions used then as a mask
for a further reduction. A full description of the masking process
can be found in Mairs et al. (2015).

A flux conversion factor of 554 Jy beam−1 pW−1 is used to
convert from the native units of pW to Jy beam−1. This value is
∼3 per cent higher than the 537 Jy beam−1 pW−1 flux conversion
factor recommended by Dempsey et al. (2013b), reflecting the pixel
size (4 arcsec) and data reduction method used by the SCOPE survey
as the pixel size is a factor in the flux conversion factor (FCF)
equation.

Examples of two of the observed PGCCs are shown in Fig. 4, a
complex, filamentary source, and a high-latitude cloud with simple
morphology.

The mean rms within the central 12 arcmin of the 1062
fields (this is the number of fields observed, containing the ob-

served 1235 PGCCs) is 0.185 Jy arcsec−2, which corresponds to
43.9 mJy beam−1. This sensitivity is a factor of ∼1.5 worse than the
25–31 mJy beam−1 rms of the JPS (Eden et al. 2017). Within the
central 3 arcmin, the rms is found to be 0.028 Jy arcsec−2, which
corresponds to 6.65 mJy beam−1.

4 C O M PAC T S O U R C E C ATA L O G U E

4.1 Compact source extraction

Compact sources were extracted from the images using the FELL-
WALKER algorithm (FW; Berry 2015).1 Justification for the choice
of source extraction algorithm and the parameters used is outlined
in Moore et al. (2015) and Eden et al. (2017). The parameter
FELLWALKER:MINPIX is adjusted to account for the larger pixel size
used in the SCOPE reduction.

1FW is part of the Starlink CUPID package outlined in Berry et al. (2007).
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SCOPE survey description 2899

Figure 2. The distribution of observed PGCCs by the JCMT. The black points represent SCOPE sources, whilst the white and gold points were observed as
part of the JPS and GBS, respectively. The underlying image is the Planck 353 GHz (850μm) intensity map.

Figure 3. Histograms of column density of PGCCs with the entire popula-
tion represented by the blue histogram, the grey histogram representing those
PGCCs observed by SCOPE, and the green hashed histogram covering those
PGCCs observed by the JCMT in the Gould’s Belt Survey (Ward-Thompson
et al. 2007).

The FW algorithm is run on the SNR maps, with the mask
produced by CUPID:FINDCLUMPS used to extract flux from the
emission maps.

Compact sources were initially identified in 821 of the 1062
observed fields. Sources that had a peak SNR < 5 were rejected, as
well as sources with an aspect ratio > 5. The sensitivity to extended,
filamentary objects in the SCOPE survey will be explored in a future
study (Fich et al., in preparation). These quality control cuts resulted
in 3528 sources, with examples of the source extraction results for
two fields shown in Fig. 4.

Table 1 contains a portion of the full SCOPE compact source
catalogue. The columns are as follows: (1) SCOPE catalogue
source name; (2) SCOPE Region; (3) and (4) Right Ascension and

Declination (J2000) of the peak flux position within the SCOPE
source; (5) and (6) Right Ascension and Declination (J2000) of the
central point; (7–9) semimajor axis, semiminor axis, and position
angle, measured anticlockwise from equatorial north, of the ellipse
fit to the shape of the SCOPE source that are not deconvolved sizes;
(10) effective radius of source, calculated by

√
(A/π ), where A

is the area of the source above the detection threshold of 3σrms;
(11–12) peak flux density, in units of Jy arcsec−2, and associated
uncertainty; (13–14) integrated 850μm flux, in units of Jy, and
associated uncertainty and (15) SNR of the source, calculated from
the peak flux density and the σrms from the observed field. The
uncertainties take account for errors in calibration, taken to be
5 per cent (Dempsey et al. 2013b), and uncertainties in the FCF
value used, also taken to be 5 per cent. A full version is included
in the supporting information. The 3528 sources were distributed
across 558 PGCCs.

The FW routine was tested extensively within the JPS survey, with
a 95 per cent recovery fraction of artificial sources found to be at
approximately 5σ . A full explanation can be found in Eden et al.
(2017). Therefore, we are assuming that this completeness limit is
valid for the observed SCOPE sources within the Galactic Plane. An
improved recovery fraction of 99 per cent was found in two SCOPE
fields at ‖b‖ > 30◦.

4.2 Recovered flux densities

The FW algorithm is well understood (Eden et al. 2017). Therefore,
any differences in the recovered flux densities compared to other
surveys are likely due to calibration issues. To test the recovered
fluxes, the SCOPE fluxes were compared to those of the JPS survey
(Eden et al. 2017), both positionally matched and the survey as a
whole.

The distributions of peak intensities and integrated fluxes for both
surveys are displayed in Fig. 5. The JPS survey source intensities
have been converted into mJy arcsec−2 and mJy in the peak intensity
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Figure 4. Examples of observed PGCCs in the SCOPE survey. Left-hand panel: A complicated, filamentary source at Galactic coordinates � = 36.◦62,
b= −0.◦11, PGCC G36.62–0.11. Right-hand panel: A high-latitude PGCC, positioned at � = 6.◦04, b= 36.◦77, PGCC G6.04+36.77 (Liu et al., in preparation).
The intensity scale in each image is mJy arcsec−2, and the white ellipses represent the elliptical fits to the FW extractions within the observed field.

and integrated flux distributions, respectively. The peak intensity
distribution of the JPS goes ∼ 2 × deeper than SCOPE, which
corresponds to the rms values of the respective surveys. The CV
Daisy mode actually produces deeper observations in the central
regions, with SCOPE having greater sensitivity in those regions. The
peaks of the integrated flux distributions, however, are consistent
with each other. By assuming single power-law laws for the tails of
the distributions of the form �N/�Sν ∝ S−α , values of α for the two
distributions were found to be α = 2.10 ± 0.13 and α = 1.97 ± 0.10
for the peak intensity and integrated flux distributions, respectively,
above limits of 0.5 mJy arcsec2 and 2 mJy for the peak intensity
and integrated flux distributions, respectively. The SCOPE peak
intensity distribution is consistent with that of the JPS (α =
2.24 ± 0.12), but the SCOPE integrated flux distribution is flatter
than that of the JPS survey (α = 2.56 ± 0.18).

There is actually a slight overlap between the SCOPE and the JPS
surveys. By positionally matching the two surveys within a JCMT
beam of 14.4 arcsec, we find 83 matches. A comparison of peak
intensities and integrated fluxes for sources in common is shown
in Fig. 6. The two distributions show a slight discrepancy, with
the integrated fluxes departing by a greater amount. The difference
between the peak fluxes can be accounted for by the difference in
pixel sizes (3 arcsec in the JPS, 4 arcsec in SCOPE). As reported
in Mairs et al. (2015) and Rumble et al. (2015), changing the pixel
size, especially to smaller sizes, can change the peak value, with
3 arcsec pixels giving the most accurate peak fluxes. The difference
in integrated fluxes is accounted for by larger sources in the SCOPE
survey, with sources in the SCOPE survey found to have a mean
size 1.32 times that of the reported JPS source size. A linear best
fit to the relationship gives a gradient of 1.06 ± 0.05. The different
FCFs will also account for some of the difference. However, the
major difference comes from the sensitivity in the outer edges of the
SCOPE maps, where these 83 sources are found. In these regions,
the JPS is ∼ 2 × more sensitive, thus causing the sources to be
broken up in the JPS. A full explanation of this effect is contained
in Eden et al. (2017) in the context of JPS and ATLASGAL (Schuller
et al. 2009) comparisons.

4.3 Angular size distribution

The angular size distribution of the SCOPE sources is shown in
Fig. 7. The plotted quantity is the major axis of the elliptical
fit to the source, provided by FW. The reported sizes are not
deconvolved sizes. The peak of the distribution, found at 35 arcsec,
is in marked contrast to the peak at 8 arcmin found in the Planck
catalogue (Planck Collaboration XXVIII 2016). This difference
further exemplifies the inner sub-structure identified by the higher
resolution SCOPE survey and the presence of multiple SCUBA-2
sources inside a single PGCC, which is highlighted in Fig. 8, where
61 per cent of detected PGCCs have three or more SCOPE sources.

We present the aspect ratios of the SCOPE sources in Fig. 9. We
have overlaid the aspect ratios of the observedPlanck PGCCs in this
survey. Planck Collaboration XXVIII (2016) found that 40 per cent
of sources had an aspect ratio of between 2 and 3, with a shoulder at
those values not present in the SCOPE compact source catalogue.
This shoulder in the PGCC catalogue aspect ratios is a hint at
the sub-structure observed by SCOPE, with a higher aspect ratio
pointing towards more filamentary structures. It is also a reflection
of the nature of the sources extracted by the FW algorithm, which is
attuned more towards extracting compact objects.

5 SCOPE SURVEY AND DATA ACCESS

The SCOPE data products can be downloaded from the Cana-
dian Astronomy Data Centre’s JCMT Science Archive,2 with the
proposal IDs MJLSY14B, M15AI05, M15BI06, and M16AL003.
These IDs correspond to observations taken in the SASSy survey,
two PI proposals, all of which formed the pilot observations, and
the SCOPE survey, respectively. As well as these data, the raw
observation data can also be downloaded from the same location.

The full source compact source catalogue is available as support-
ing information.

2http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/jcmt/
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2902 D. J. Eden et al.

Figure 5. Peak and integrated flux distributions for the SCOPE survey (the grey, filled histogram) compared to the JPS (the blue histogram) in the left-hand
and right-hand panels, respectively. The least-squares fit to the SCOPE distributions are indicated by the red, dashed line.

Figure 6. Comparison of the recovered peak and total fluxes for positionally matched SCOPE and JPS sources, in the left-hand and right-hand panels,
respectively. The red dashed line represents the 1:1 line.

6 RESULTS

6.1 Detection statistics

The PGCCs observed in the SCOPE survey were chosen to sample
across the spectrum of a host of statistics, as displayed in Fig. 1,
with a bias towards the highest column density sources, as described
earlier. The detection rate of each statistic is shown in Fig. 10. Six
high-latitude PGCCs with detections (‖b‖ > 30◦) were excluded
from the statistics as they were found to be associated with lensed
galaxies (Liu et al., in preparation).

The longitude detection rates are approximately equal to the
overall detection rate (0.46), with lower rates found in the central
20◦. In these longitudes, higher latitude sources are observed, with
lower detection rates found outside the central 4◦ (‖b‖ > 2◦) of the
Galactic Plane. In the latitude range of ‖b‖ < 2◦, the detection rate
is slightly higher than the overall rate, approximately 0.50. This
is also reflected in the detection rate as a function of distance. The

detection rate at higher distances, those classically taken to be in the
Galactic Plane, is well detected. However, the local, higher latitude
sources are not detected at a higher rate.

The column densities are 95 per cent complete above densities
of NH2 > 5 × 1021 cm−2. This detection rate corresponds to
the threshold for star formation found in studies of nearby star-
forming clouds (André et al. 2010; Heiderman et al. 2010; Lada,
Lombardi & Alves 2010; André et al. 2014) Some bins are subject
to low detection rates due to low number statistics. The mass and
luminosities are complete to a 95 per cent rate above 5 × 103 M�
and 1 × 103 L�, respectively.

The column density detection rate does not account for the
selection bias imposed on the initial sample. When comparing the
entire PGCC population, the observed SCOPE sample, and the
detected PGCCs in SCOPE, we can see that the highest column
density sources are confined to the lower latitudes, which are the
PGCCs with the largest distances, as seen in Fig. 11. Deeper

MNRAS 485, 2895–2908 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/485/2/2895/5365442 by N
ASA Am

es R
esearch C

enter user on 27 Septem
ber 2019



SCOPE survey description 2903

Figure 7. Histogram of the major axes identified by FW of the extracted
SCOPE compact sources. The red dashed line indicates the beam size of the
JCMT at 850μm.

Figure 8. Histogram of the number of compact sources extracted per PGCC
with a detection in the SCOPE survey.

Figure 9. Histogram of the aspect ratios of all SCOPE sources (the grey
histogram) with the aspect ratios of the SCOPE-observed PGCCs overlaid
in the blue histogram.

observations will be required to trace the lowest column density
objects.

The major axes and aspect ratios fluctuate around the actual
detection rate of the SCOPE survey.

The detection rate of the temperatures is skewed by the lack of
derived temperatures by Planck Collaboration XXVIII (2016). 619
of the 1235 observed PGCCs do not have derived temperatures,
with 360 of those 619 detected in SCOPE. The detection rate at the
lower temperatures of less than 15 K is 0.15.

6.2 Star formation out of the Galactic plane

The SCOPE survey gives a sample of potentially star-forming cores
and clumps in different Galactic environments. The YSO catalogue
of Marton et al. (2016) provides an all-sky catalogue derived from
the AllWISE catalogue (Cutri et al. 2013). By positionally matching
these two catalogues, we find 865 YSOs located within the map
extents of 201 observed PGCCs that have detected compact sources.

The YSO catalogue of Marton et al. (2016) contains the mag-
nitudes of the four WISE bands (3.4, 4.6, 12, and 22μm) as well
as the J, H, and K bands from the positional matching of 2MASS
Point Sources (Cutri et al. 2003). These seven bands can be used
to calculate the luminosities of each YSO, and therefore the total
YSO luminosity associated with a PGCC. The luminosities are
calculated, once the magnitudes are converted into fluxes, using a
trapezium rule estimation in log–log space, which was shown to
provide a good approximation of the luminosity (Eden et al. 2015),
with other studies using this method (e.g. Veneziani et al. 2013).

These luminosities, L, can be compared to the masses, M, of the
SCOPE-detected YSOs to determine the ratio of L/M, a measure of
the current star formation and an indicator of the evolutionary state
of that star formation (e.g. Elia et al. 2017; Urquhart et al. 2018).
Comparing this ratio between the nearby sources, complementary to
the Gould’s Belt, and the more distant Galactic Plane can determine
whether the star formation in either environment is at a different
evolutionary stage (on average).

The masses were derived from the total emission within the
SCOPE maps. The masses in the SCOPE maps are estimated using
the optically thin approximation:

M = SνD2

κνBν(Td)
, (1)

where Sν is the integrated flux of the emission, D is the distance
(omitted in the calculation for the ratio of L/M), κν is the mass
absorption coefficient taken to be 0.01 cm2 g−1 (Mitchell et al.
2001), which accounts for a gas-to-dust ratio of 100, and Bν(Td) is
the Planck function evaluated at temperature, Td, taken to be 13 K,
the peak of the SCOPE-observed PGCC-temperature distribution.

The sample of 201 PGCCs with a YSO was split into two
populations, a Gould’s Belt-like population and the distant Galactic
Plane. This was done using a distance cut of 0.5 kpc, as this is
taken to be the furthest Gould’s Belt sources (Ward-Thompson et al.
2007), with distances below this in the Gould’s Belt, and greater
distances in the Galactic Plane. From hereafter, these populations
will be referred to as the nearby and distant samples, respectively.
The distances were estimated in three ways. The first was to take
the distances as derived by Planck Collaboration XXVIII (2016).
This accounted for 91 PGCCs. The second was to extract spectra
from spectral line data from existing surveys (Dame, Hartmann &
Thaddeus 2001; Jackson et al. 2006; Dempsey, Thomas & Currie
2013a; Rigby et al. 2016), with sources in the Plane compared to
the Galactic rotation curve of Brand & Blitz (1993). This accounted
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Figure 10. Distributions of the observed, Planck-derived statistics of SCOPE sources (the grey histograms) overlaid with the detected PGCCs (the yellow
hashed histogram). The ratio of the two histograms is overlaid by the blue dotted line. The black dashed line represents the overall detection rate. As in Fig. 1,
the top row displays the Galactic longitude, Galactic latitude, and temperature, in the left, central, and right-hand panels, respectively. The middle row are the
distance, column density, and mass, with the bottom row showing the luminosity, major axis, and aspect ratio.

for a further 108 PGCCs. The final two were well out of the Plane
at high latitudes, and were assumed to be local.

We found 114 and 87 PGCCs in the distant and nearby samples,
respectively. The distribution of the L/M ratios for each of these
populations is shown in Fig. 12. The mean values of the two
populations are 0.78 ± 0.16 L�/M� and 1.14 ± 0.30 L�/M� for
the distant and nearby samples, respectively, with median values
of 0.21 ± 0.16 L�/M� and 0.32 ± 0.28 L�/M�, respectively. The
populations are consistent with each other, within the errors,
indicating that the star formation in the distant Galactic Plane is
at roughly the same evolutionary stage as that within the nearby
Gould’s Belt-like sample. A Kolomogorov–Smirnov (K–S) test of
the two sub-samples finds a 25 per cent chance they are not drawn
from the same distribution. We therefore cannot strongly reject the
null hypothesis that they are not drawn from the same sample and
that the distributions at different distances are different. The sample
of the Galactic Plane PGCCs will be extended when JPS sources
are also included, and this analysis will be the subject of a further
study (Eden et al., in preparation).

6.3 Column densities of SCOPE sources

The column densities of the SCOPE sources in the nearby envi-
ronments and the distant Galactic Plane are compared. The column
densities were calculated using the following:

NH2 = Sν,peak

Bν(Td)�bκνmHμ
, (2)

where Sν,peak is the peak intensity, Bν(Td) and κν are as defined
above, �b is the solid angle of the beam, mnH is the mass of a
hydrogen atom, and μ is the mean mass per hydrogen molecule,
taken to be 2.8 (Kauffmann et al. 2008).

The distribution of column densities for the entire SCOPE
sample, as well as the two sub-samples is displayed in Fig. 13 (top,
middle), with the cumulative distribution also included. A K–S test
of the two sub-samples gives a ∼2.5 σ , or a 2.5 per cent chance that
they are not drawn from the same population. We therefore cannot
strongly reject the null hypothesis that they are not drawn from the
same sample.
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Figure 11. Latitude of PGCCs against column density (left-hand panel) and distance (right-hand panel). The blue circles are the entire PGCC sample from
Planck Collaboration XXVIII (2016), the black plus symbols are the observed SCOPE PGCCs, with the yellow squares representing the detected SCOPE
PGCCs.

Figure 12. Histogram of the L/M ratios in SCOPE-detected PGCCs in the
further (grey) and in the nearby (green) Galactic Plane.

When comparing only the star-forming samples, as shown in
Fig. 13 (bottom), the K–S test gives a 94 per cent result that the
nearby and distant Galactic Plane SCOPE sources are drawn from
the same population. We can assume, however, that the total star-
forming sample is considerably different from the entire SCOPE
sample due to a K-S test giving a probability of their being the same
of 0.001. This result is consistent with that of Urquhart et al. (2014),
who found that the star-forming clumps in the ATLASGAL survey
had a considerably different column density distribution than that
of the entire population.

7 SU M M A RY

We present the first data release of the SCOPE survey, presenting
the data images and a compact source catalogue. The data consist of
observations of 1235 PGCCs at angular resolutions of 14.4 arcsec,
significantly improving upon the 5 arcmin resolution of Planck.
The improved resolution reveals significant sub-structure within
these sources, reflected by a compact source catalogue consisting
of 3528 sources. The data are downloadable from the CADC, with

the compact source catalogue included as supporting information
in this article.

The compact source catalogue was produced using the FW

algorithm, reflecting the same method used within the JPS (Eden
et al. 2017). A comparison of peak intensities and integrated fluxes
in overlapping sources between the JPS and SCOPE surveys shows
slight discrepancies, but otherwise good agreement. The SCOPE
sources are significantly smaller than those within the Planck
catalogue, with peaks of the angular-size distribution found at
35 arcsec compared to 8 arcmin.

The detection rate of PGCCs within the SCOPE survey is
45 per cent, with 558 PGCCs detected of the 1235 observed. The
survey is 95 complete in PGCCs with column densities NH2 >

5 × 1021 cm−2, and to masses and luminosities of 5 × 103 M� and
1 × 103 L�, respectively.

By positionally matching the SCOPE compact sources with
YSOs from the WISE catalogue, and splitting the sample into
sources that are within 0.5 kpc and those at greater distances, we
found that the ratio of L/M is consistent between these samples.
The column densities of these two samples of SCOPE sources are
also consistent. The distribution of column densities of star-forming
sources, however, was found to be significantly different from those
of the whole SCOPE compact source catalogue.
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Figure 13. Top panel: column density distribution of all SCOPE compact
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(d > 500 pc; the red histogram) and nearby sample (d < 500 pc; the
green histogram). Middle panel: the cumulative distributions of the same
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solid line representing, the whole sample, in the distant Galactic Plane and
nearby Plane, respectively. Bottom panel: the cumulative distributions of
the star-forming samples, with the dashed black line representing the total
sample (as in the middle panel, includes non-star-forming sources), and the
dotted red lines and the green solid lines represent the star-forming sources
in distant and nearby environments, respectively.
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Tóth L. V. et al., 2014, PASJ, 66, 17
Urquhart J. S. et al., 2014, MNRAS, 443, 1555
Urquhart J. S. et al., 2018, MNRAS, 473, 1059
Veneziani M. et al., 2013, A&A, 549, A130
Wang K. et al., 2018, Res. Notes Am. Astron. Soc., 2, 2
Ward-Thompson D. et al., 2007, PASP, 119, 855
Wright E. L. et al., 2010, AJ, 140, 1868
Wu Y., Liu T., Meng F., Li D., Qin S.-L., Ju B.-G., 2012, ApJ, 756, 76
Yi H.-W. et al., 2018, ApJS, 236, 51
Yuan J. et al., 2016, ApJ, 820, 37
Zhang T., Wu Y., Liu T., Meng F., 2016, ApJS, 224, 43
Zhang C.-P. et al., 2018, ApJS, 236, 49

SUPPORTI NG I NFORMATI ON

Supplementary data are available at MNRASJ online.

Table1.txt

Please note: Oxford University Press is not responsible for the
content or functionality of any supporting materials supplied by
the authors. Any queries (other than missing material) should be
directed to the corresponding author for the article.

1Astrophysics Research Institute, Liverpool John Moores University, IC2,
Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF, UK
2Centre for Astrophysics Research, Science & Technology Research Insti-
tute, University of Hertfordshire, College Lane, Hatfield, Herts AL10 9AB,
UK
3Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro,
Yuseong-gu, Daejon 34055, Republic of Korea
4East Asian Observatory, 660 N. Aohoku Place, University Park, Hilo, HI
96720, USA
5Department of Physics, University of Helsinki, P.O.Box 64, FI-00014,
Helsinki, Finland
6Institute of Astronomy and Astrophysics, Academia Sinica. 11F of
Astronomy-Mathematics Building, AS/NTU No.1, Section 4, Roosevelt Rd,
Taipei 10617, Taiwan
7Nobeyama Radio Observatory, National Astronomical Observatory of
Japan, National Institutes of Natural Sciences, Nobeyama, Minamimaki,
Minamisaku, Nagano 384-1305, Japan
8NRC Herzberg Astronomy and Astrophysics, 5071 West Saanich Rd,
Victoria, BC V9E 2E7, Canada
9Department of Physics and Astronomy, University of Victoria, Victoria, BC
V8W 2Y2, Canada
10Kavli Institute for Astronomy and Astrophysics, Peking University, 5
Yiheyuan Road, Haidan District, Beijin 100871, China
11Department of Astronomy, Peking University, 100871 Beijing, China
12Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy,
University of Manchester, Oxford Road, Manchester M13 9PL, UK
13National Astronomical Observatories, Chinese Academy of Sciences,
Beijing 100012, China
14Key Laboratory of Radio Astronomy, Chinese Academy of Science,
Nanjing 210008, China
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