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Abstract. We derive a residual-based a posteriori error estimator for the conforming
hp-Adaptive Finite Element Method (hp-AFEM) for the steady state Stokes problem
describing the slow motion of an incompressible fluid. This error estimator is obtained
by extending the idea of a posteriori error estimation for the classical h-version of AFEM.
We also establish the reliability and efficiency of the error estimator. The proofs are based
on the well-known Clément-type interpolation operator introduced in [28] in the context
of the hp-AFEM. Numerical experiments show the performance of an adaptive hp-FEM
algorithm using the proposed a posteriori error estimator.

1. Introduction. h-adaptive finite element methods – in which the
mesh size is adjusted to resolve features of the solution – have been known
to be efficient tools for solving partial differential equations since the late
1970s [5, 8]. The development of practical and efficient estimators of the
local error over the past 25 years [1,12,36] has made them a standard tool
in the finite element analysis of many equations and is now widely used in
applications.

On the other hand, the p or hp versions of adaptive finite element
methods – in which one adjusts either the polynomial degree of the ap-
proximation on every cell, or both the polynomial degree and the mesh size
– has seen much less practical attention. Originally introduced in [6, 9],
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it is known both theoretically and practically that the hp-adaptive FEM
can achieve exponential rates of convergence with respect to the number
of degrees of freedom [18, 27, 31, 32]. However, it is technically much more
complicated to derive reliable and efficient estimates of the error for hp ap-
proximations. Furthermore, even once estimates for the error on each cell
are available, one is faced with the decision whether increasing the polyno-
mial degree p of the approximation or reducing the mesh size h is more likely
to reduce the error, measured with regard to the computational cost of the
two possible resulting meshes (see, for example, [2,16,20,22,25,30,37]). Fi-
nally, the implementation of algorithms and data structures for conforming
hp finite element methods is complex in practice [11].

Furthermore, it has proven to be significantly more difficult to extend
many results that are well-established for h adaptivity to hp adaptivity for
equations that are not as simple as the Laplace equation. Consequently,
published theoretical considerations of error estimates and optimality of
refinement strategies are still largely confined to the Laplace equation. De-
spite the known superiority of hp adaptivity in terms of computational
efficiency, its practical impact has therefore not been as profound as h-
adaptive methods.

In this contribution, we address one of these difficulties by deriving
residual-based a posteriori error estimates for conforming hp discretizations
of the Stokes equation. This work is inspired by previous work for the
Laplace equation [16, 21, 29]. However, it has to address the key difficulty
of the Stokes equation that the solution is not the unconstrained minimizer
of an energy. Therefore, the Stokes operator is not positive definite, so
that working with it is not as straightforward as for example with elliptic
operators with their implied coercivity condition.

In particular, we present the following results:

• We derive estimates for the error between the finite-dimensional hp
approximation and the continuous solution of the Stokes equation.

• As in similar approaches for the Laplace equation, it is not easily
possible to show that these estimates are reliable and efficient, i.e.,
that the true error is bounded from above and below by our esti-
mator up to a constant that does not depend on h or p. This is so
because the inverse estimates that are used to derive reliability and
efficiency statements typically involve the polynomial degree p. To
overcome this deficiency, we instead introduce a whole family of
estimates ηα parameterized by an index α ∈ [0, 1]. For a fixed α,
we can not show that an estimator is both efficient and reliable; on
the other hand, we can show that for some members of this family,
either one or the other property hold. However, we demonstrate
through numerical experiments that our estimator for a given α is,
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in practice, indeed both reliable and efficient.
• We devise a strategy to mark cells for either h or p refinement

based on criteria for a systematic reduction of the error.
• Although we make no claims about the optimality of this strategy
– i.e., we can not prove that among all strategies it leads to the
greatest error reduction – we show numerical results that suggest
that the strategy can achieve the desired exponential convergence
rate for the hp-adaptive refinement.

To the best of our knowledge, none of these properties have previously
been derived or demonstrated for the Stokes equation using continuous hp-
adaptive finite element methods. (However, some related work for discontinuous
Galerkin discretizations of the Stokes equations is available in [26].)

The outline of the remainder of this paper is as follows: In Section 2,
we introduce the Stokes problem, its weak formulation and the conforming
discretization with which we intend to solve it computationally. In Section
3, we introduce necessary notation and state our assumptions as well as
some important theoretical results (such as the Clément interpolation op-
erator and polynomial inverse estimates) on which we rely throughout this
work. The main results are derived in Section 4, where we develop an hp

residual-based a posteriori error estimator for the Stokes problem, followed
by the analysis of the reliability and the efficiency of our error estimator. In
Section 5 we discuss the details of our hp algorithm, i.e., the criterion upon
which we choose either h or p refinement. Finally in Section 6 we present
numerical results and demonstrate the performance of the proposed error
estimators using practical examples.

2. The Stokes problem and basic assumptions. Let Ω ∈ R
2 be

an open and connected domain with smooth boundary Γ = ∂Ω such that it
satisfies a Lipschitz condition. u(x) is the velocity and ̺(x) be the pressure
of the fluid at some point x ∈ Ω, respectively.

Given body forces f ∈ L2(Ω)2 and the constant viscosity parameter
ν > 0, consider stationary incompressible fluid flow as our model problem:
For the Stokes equations, we are interested in finding u : Ω → R

2 and
̺ : Ω → R such that

−ν∆u+∇̺ = f in Ω,

−∇ · u = 0 in Ω,

u = 0 on Γ.

(2.1)

For ease of presentation, we here assume homogenous no slip boundary
condition on the velocity field. (However, similar results as the ones shown
herein are also valid for other type of boundary conditions.) To ensure
uniqueness of solution, we require vanishing mean for pressure field, i.e.,
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that
∫

Ω
̺ = 0. Here and below, we limit ourselves to the two-dimensional

case primarily because Lemmas 3.1 and 3.2 below are only available for this
case; however, we expect that with additional work, all main results herein
could also be shown to hold in three space dimensions.

We denote the standard Sobolev spaces by Hm(Ω) for m ∈ N0. In
particular, the norm and the scalar product of L2(Ω) = H0(Ω) are denoted
by ‖ · ‖Ω and (·, ·)Ω, respectively. To account for homogeneous Dirichlet
boundary conditions, we set

H1
0 (Ω) := {v ∈ H1(Ω) : ϕ = 0 on Γ}.

Further, we denote the space containing all functions in L2(Ω) with zero
mean value by

L2
0(Ω) := {v ∈ L2(Ω) : (ϕ, 1)Ω = 0}

and define

H(Ω) := H1
0 (Ω)

2 × L2
0(Ω).

Then, we introduce the bilinear form L : H(Ω)×H(Ω) → R by

L([u, ̺]; [v, q]) := (ν∇u,∇v)Ω − (̺,∇ · v)Ω − (∇ · u, q)Ω. (2.2)

The weak formulation of problem (2.1) then seeks [u, ̺] ∈ H so that

L([u, ̺]; [v, q]) = (f, v)Ω ∀[v, q] ∈ H(Ω). (2.3)

Due to the continuous inf-sup condition

inf
[u,̺]∈H

sup
[v,q]∈H

L([u, ̺]; [v, q])

(‖∇u‖Ω + ‖̺‖Ω) (‖∇v‖Ω + ‖q‖Ω)
≥ κ > 0,

where κ is the inf-sup constant depending only on Ω, the weak problem is
well-posed and has a unique solution, see [14] and [24].

Now, assume T = {K} is a triangulation of domain Ω. For each ele-
ment K, we associate an element map TK : K̂ → K where the reference
cell is K̂ = [0, 1]2. Further, we define the mesh size vector h := (hK)K∈T ,

where hK := diam(K). With each element K ∈ T , we associate a poly-
nomial degree pK ∈ N and collect them in a polynomial degree vector
p := (pK)K∈T . Throughout this work, we assume that the discretization
(T , p) of Ω is (γh, γp)-regular [32, 34].

Definition 1 ((γh, γp)-Regularity). A discretization (T , p) is called
(γh, γp)-regular if and only if there exist constants γh, γp > 0 such that for
all K,K ′ ∈ T with K ∩K ′ 6= ∅ there holds

γ−1
h hK ≤ hK′ ≤ γhhK , and γ−1

p pK ≤ p′K ≤ γppK . (2.4)
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In other words, the condition implies that the element sizes and also
the polynomial degrees of neighboring elements are comparable.

To define the discrete solution space, for an element K ∈ T denote
F(K) the set of all interior faces of cell K. Then, define by hf := diam(f)
the diameter of face f ∈ F(K) and by pf := max {pK , pK′} its polynomial
degree where forK,K ′ ∈ T are the cells adjacent to f . Further, the problem
is discretized by the standard (pk, pk−1) Taylor-Hood finite element. The
corresponding hp spaces for velocity and pressure are then

V p
u (T )2 :=

{

u ∈ H1
0 (Ω)

2 : u|K ◦ TK ∈ Q2
pK

(

K̂
)

for all K ∈ T
}

, (2.5)

V p
̺ (T ) :=

{

̺ ∈ L2
0(Ω) : ̺|K ◦ TK ∈ QpK−1

(

K̂
)

for all K ∈ T
}

(2.6)

Vp(T ) := V p
u (T )2 × V p

̺ (T ) ⊆ H(Ω). (2.7)

Here, Qr is the tensor-product polynomial space of complete degree at
most r ∈ N0. Then, the discrete approximation to (2.3) consists of seeking
[uFE, ̺FE] ∈ Vp(T ) such that

L ([uFE, ̺FE] ; [vFE, qFE]) = (f, vFE)Ω ∀ [vFE, qFE] ∈ Vp(T ). (2.8)

This choice of spaces satisfies the discrete Babuska-Brezzi condition [4]

inf
[uh,̺h]∈H

sup
[vh,qh]∈H

L([uh, ̺h]; [vh, qh])

(‖∇uh‖+ ‖̺h‖) (‖∇vh‖+ ‖qh‖)
≥ κd > 0,

where the constant κd is independent of cell size h and polynomial degree
p. Consequently, problem (2.8) is well posed.

Furthermore, Galerkin orthogonality holds: Let [u, ̺] ∈ H be the solu-
tion of (2.3) and [uFE, ̺FE] ∈ Vp(T ) be the solution of (2.8), then

L ([u− uFE, ̺− ̺FE] ; [vFE, qFE]) = 0 ∀ [vFE, qFE] ∈ Vp(T ). (2.9)

3. Auxiliary results. We provide some auxiliary results which we use
later in our work. This includes an H1-conforming interpolation operator
that preserves homogeneous Dirichlet boundary conditions, and some poly-
nomial smoothing estimates. The H1-conforming interpolation operator
is a Clément-type interpolation which replaces point evaluation by a local
average [17]. The procedure does not require the extra regularity of the
point evaluation, and is consequently well-defined for functions in H1(Ω).
In [33], this interpolation operator was modified in such a way that it also
preserves polynomial boundary conditions. Melenk in [28] extended the
aforementioned H1-conforming interpolation to the context of hp-adaptive
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finite element spaces.
In our definition of hp-Clément interpolation operators, consider T as a
(γh, γp)-regular triangulation of Rd. (For cases where we would want to
impose Dirichlet boundary conditions on only a subset ΓD ⊂ Γ, we can
require that ΓD can be exactly represented by a collection of faces, i.e.,
Γ̄D = ∪K∈T ∂K ∩ Γ̄D.) Then, for a cell K ∈ T and a face f ∈ F(K) we
define the patch sets

ωK := K ∪
⋃

{L ∈ T : L shares a common edge with K}, (3.1)

ωf :=
⋃

{L ∈ T : f is an edge of L}. (3.2)

The following result from [29] then provides an estimate for the inter-
polation error in terms of the gradient of the interpolated function:

Theorem 1 (H1-Conforming Interpolation). Let T be (γh, γp)-regular
and K ∈ T be arbitrary. Then, there exists a bounded linear operator
Πhp : H1

0 (Ω)
2 → Vp(T ) – namely, the Clément interpolation operator –,

and a constant C > 0 independent of mesh size h and polynomial degree p

such that for all u ∈ H1
0 (Ω) and all f ∈ F(K)

∥

∥u−Πhpu
∥

∥

L2(K)
≤ C

hK

pK
‖∇u‖L2(ωK), (3.3)

∥

∥u−Πhpu
∥

∥

L2(f)
≤ C

√

hf

pf
‖∇u‖L2(ωf ). (3.4)

Proof. Following the lines of [32], one can find proofs in [28, Theorem
3.3].

Next, let us present some polynomial smoothing estimates that are
widely used in the error analysis of many numerical methods for partial
differential equations and integral equations [13,29]. We will later use them
in proving upper and lower bounds of our error estimator. Specifically,
define the smoothing weight functions ΦK : K ⊂ R

2 → R
+ and Φωf

: ωf ⊂
R

2 → R
+ by

ΦK(x) :=
1

hK
dist (x, ∂K) , (3.5)

Φωf
(x) :=

1

diam(ωf )
dist(x, ∂ωf ). (3.6)

Then we have:
Lemma 3.1. Let δ ∈ [0, 1], a, b ∈ R such that −1 ≤ a ≤ b. Then, for

any πp ∈ Qp (K), there exists some constant C > 0 independent of h and
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p so that

‖πp (ΦK)
a ‖L2(K) ≤ C(a, b)p(b−a)‖πp (ΦK)

b ‖L2(K), (3.7)

‖∇πp (ΦK)
δ ‖L2(K) ≤

C(δ)p(2−δ)

hK
‖πp (ΦK)

δ
2 ‖L2(K). (3.8)

Proof. See [13, Lemmas 4, 5] and [29, Lemma 2.5].
The next lemma provides results for the extension of a polynomial from

an edge to a domain. These estimates are used in the efficiency analysis of
our error estimator.

Lemma 3.2. Let f̂ be the edge of unit square K̂, and 0 ≤ α ≤ 1. Φω
f̂

defined as in (3.6) the edge f̂ corresponding to the unit cell K̂. Then there
exists Cα > 0, such that for any polynomial πp ∈ Qp and every δ ∈ (0, 1],

there exists some extension vf̂ ∈ H1
0

(

K̂
)

so that:

vf̂ |f̂ = πpΦ
α
ω

f̂
, vf̂ |∂K̂\f̂ = 0,

‖vf̂‖
2
L2(K̂)

≤ Cαδ‖πpΦ
α
2
ω

f̂
‖2
L2(f̂)

,

‖∇vf̂‖
2
L2(K̂)

≤ Cα(δp
2(2−α) + δ−1)

∥

∥

∥
πpΦ

α
2
ω

f̂

∥

∥

∥

2

L2(f̂)
.

Proof. See [29, Lemma 2.6].

4. A posteriori error estimation. A posteriori error estimates as-
sess the error between the exact solution [u, ̺] ∈ H and its finite element ap-
proximation [uFE, ̺FE] ∈ Vp(T ) only in terms of known quantities [7,23,35]
– i.e., the problem data and the approximate solution. We call a functional
η (uFE, ̺FE, f) an a posteriori error estimator for the Stokes equation, if
and only if there exists a constant C > 0 such that

‖∇ (u− uFE)‖Ω + ‖̺− ̺FE‖Ω ≤ Cη (uFE, ̺FE, f) . (4.1)

Furthermore, if η (uFE, ̺FE, f) can be decomposed into localized quantities
ηK (uFE, ̺FE, f), K ∈ T , such that

η(uFE, ̺FE, f)
2 =

∑

K∈T

ηK (uFE, ̺FE, f)
2
, (4.2)

then ηK (uFE, ̺FE, f) is called a local error indicator.
Estimate (4.1) is usually called a “reliability estimate” since it guaran-

tees that the error is controlled by the error estimator η (uFE, ̺FE, f) up to
a constant independent of mesh size h and polynomial degree p. Further,
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the local error indicators ηK (uFE, ̺FE, f) provides the basis for adaptive
mesh refinement by identifying those cells K ∈ T where the error is large
and that, consequently, should be refined locally. This procedure is then
repeated until η (uFE, ̺FE, f) is smaller than a prescribed tolerance.

Computational efficiency requires that the ηK also satisfy some effi-
ciency property guaranteeing that the upper bound (4.1) is sharp and does
not asymptotically overestimate the true error. To this end, we would like
to derive a local lower bound for the energy error for every cell K ∈ T :

ηK (uFE, ̺FE, f) ≤ C
(

‖∇ (u− uFE)‖
2
ωK

+ ‖̺− ̺FE‖
2
ωK

)1/2

. (4.3)

4.1. Residual-based a posteriori error analysis. Let us now de-
fine a residual-based a posteriori error estimator for problem (2.1), and
derive upper and lower bounds for it in terms of the energy error of the
approximated solution. In the spirit of [29], we define a family of error
estimators ηα, α ∈ [0, 1]. This estimator is local, i.e., η2α :=

∑

K∈T η2α;K
and can be decomposed into cell and interface contributions:

η2α;K := η2α;K;R + η2α;K;B , (4.4)

η2α;K;R :=
h2
K

p2K

∥

∥

∥

(

IKpK
f + ν∆uFE −∇̺FE

)

Φ
α
2

K

∥

∥

∥

2

K
+
∥

∥

∥
(∇ · uFE) Φ

α
2

K

∥

∥

∥

2

K
,

(4.5)

η2α;K;B :=
∑

f∈F(K)

hf

2pf

∥

∥

∥

∥

[

ν
∂uFE

∂nK

]

Φ
α
2
ωf

∥

∥

∥

∥

2

f

. (4.6)

Here, IKpK
f denotes the local L2-projection of f into the space of piece-

wise polynomials of degree pK . Furthermore, hf := diam(f) and pf :=
max(pK , pK′) for a face f that is shared by cells K and K ′. Finally, [·]
denotes the jump of a quantity across a face whose outward normal relative
to K is indicates by nK .

In the following, we will first derive an upper bound for the energy
error in terms of the estimator ηα, i.e., state a reliability estimate.

Theorem 2 (Reliability). Let [u, ̺] ∈ H and [uFE, ̺FE] ∈ Vp(T )
be the solutions of (2.3) and (2.8), respectively. Further, let α ∈ [0, 1]
and assume that triangulation T is (γh, γp)-regular. Then there exists a
constant Crel > 0 independent of mesh size vector h and polynomial degree
vector p such that

‖∇ (u− uFE)‖
2
Ω + ‖̺− ̺FE‖

2
Ω ≤ Crel

∑

K∈T

(

p2αK η2α;K +
h2
K

p2K

∥

∥IKpK
f − f

∥

∥

2

K

)

.
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In particular, the statement provides a p-independent reliability bound for
α = 0.

Proof. Set eFE := u− uFE and ǫFE := ̺− ̺FE. From (2.9), we have

L ([eFE, ǫFE] ; [v, q]) =
(

ν∇eFE,∇
(

v −Πhpv
))

Ω

−
(

ǫFE,∇ ·
(

v −Πhpv
))

Ω
− (∇ · eFE, q)Ω

=
∑

K∈T

(

(

ν∇eFE,∇
(

v −Πhpv
))

K

−
(

ǫFE,∇ ·
(

v −Πhpv
))

K
− (∇ · eFE, q)K

)

,

where Πhp : H1
0 (Ω)

2 → Vp(T ) is the H1-conforming interpolation opera-
tor from Theorem 1. Using integration by parts and the incompressibility
condition ∇ · u = 0 yields

L ([eFE, ǫFE] ; [v, q]) =
∑

K∈T

(

(

f + ν∆uFE −∇̺FE, v −Πhpv
)

K

− (∇ · uFE, q)K +
∑

f∈F(K)

([

ν
∂uFE

∂n

]

, v −Πhpv

)

f

)

.

The continuous Cauchy-Schwarz inequality then results in the estimate

L ([eFE, ǫFE] ; [v, q]) ≤
∑

K∈T

(

∥

∥IKpK
f + ν∆uFE −∇̺FE

∥

∥

K

∥

∥v −Πhpv
∥

∥

K

+ ‖∇ · uFE‖K ‖q‖K +
∥

∥f − IKpK
f
∥

∥

K

∥

∥v −Πhpv
∥

∥

K

+
∑

f∈F(K)

∥

∥

∥

∥

[

ν
∂uFE

∂nK

]
∥

∥

∥

∥

f

∥

∥v −Πhpv
∥

∥

f

)

.

Theorem 1 allows us to locally bound the differences v−Πhpv. This yields

L ([eFE, ǫFE] ; [v, q]) ≤ C
∑

K∈T

(

hK

pK

∥

∥IKpK
f + ν∆uFE −∇̺FE

∥

∥

K

+ ‖∇ · uFE‖K +
hK

pK

∥

∥f − IKpK
f
∥

∥

K

+
∑

f∈F(K)

√

hf

pf

∥

∥

∥

∥

[

ν
∂uFE

∂nK

]
∥

∥

∥

∥

f

)

(‖∇v‖ωK
+ ‖q‖K) ,
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which we can further estimate as follows:

L ([eFE, ǫFE] ; [v, q])

≤ C

(

∑

K∈T

(

η20;K +
h2
K

p2K

∥

∥f − IKpK
f
∥

∥

2

K

)

)
1
2
(

‖∇v‖2Ω + ‖q‖2Ω
)

1
2

for some constant C > 0 independent of mesh size vector h and polynomial
degree vector p. Moreover, for (eFE, εFE) ∈ H we have

(

‖∇eFE‖
2
Ω + ‖ǫFE‖

2
Ω

)
1
2

≤ C sup
[v,q]∈H

L ([eFE, ǫFE] ; [v, q])

(‖∇v‖2Ω + ‖q‖2Ω)
1
2

,

for some constant C > 0. This implies the claimed result for α = 0. Using
the inverse estimates given in Lemma 3.1, we can bound η0;K in terms of
ηα;K for α ∈ (0, 1] from above. Therefore, setting a := 0 and b := α in
Lemma 3.1 and we get

(

‖∇eFE‖
2
Ω + ‖ǫFE‖

2
Ω

)
1
2

≤ Crel

(

∑

K∈T

(

p2αK η2α;K +
h2
K

p2K

∥

∥f − IKpK
f
∥

∥

2

K

)

)
1
2

which concludes the proof.

Next, we derive an upper bound for the a posteriori error estimator
ηα;K in terms of the energy error ‖∇ (u− uFE)‖

2
ωK

+ ‖̺− ̺FE‖
2
ωK

defined
on the patch ωK around cell K. Under mild assumptions on the mesh,
this then constitutes an efficiency estimate for the error estimator. We will
first consider the residual and jump terms ηα;K;R, ηα;K;B separately and
combine the derived efficiency estimates later to obtain an upper bound for
the residual-based a posteriori error estimator from definition (4.4).

Lemma 1. Let [u, ̺] ∈ H, [uFE, ̺FE] ∈ Vp(T ), and T as in Theorem 2,
and α ∈ [0, 1] be arbitrary. Then, there exists a constant C > 0 independent
of the mesh size vector h and polynomial degree vector p so that

η2α;K;R ≤ C

(

p
2(1−α)
K

(

ν2 ‖∇ (u− uFE)‖
2
K + ‖̺− ̺FE‖

2
K

)

+
h
2+α

2

K

p1+α
K

∥

∥f − IKpK
f
∥

∥

2

K

)

.

In particular, the statement provides a p-independent efficiency bound of
the cell-residual term for α = 1.
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Proof. Let us write the residual-based term as η2α;K;R = η2α;K;R1
+

η2α;K;R2
, with

η2α;K;R1
:=

h2
K

p2K

∥

∥

∥

(

IKpK
f + ν∆uFE −∇̺FE

)

Φ
α
2

K

∥

∥

∥

2

K
,

η2α;K;R2
:=
∥

∥

∥
∇ · uFEΦ

α
2

K

∥

∥

∥

2

K
.

(4.7)

Using the idea in [29] to build test functions, for 0 < α ≤ 1, we define the
cell residual term RK as, RK :=

(

IKpK
f + ν∆uFE −∇̺FE

)

Φα
K ∈ H1

0 (K)
and obtain

∥

∥

∥
RKΦ

−α
2

K

∥

∥

∥

2

K
= (f + ν∆uFE −∇̺FE, RK)K +

(

IKpK
f − f,RK

)

K
. (4.8)

With equation (2.3) and applying integration by parts, the first term reads

(f + ν∆uFE −∇̺FE, RK)K
= (ν∇ (u− uFE) ,∇RK)K − (̺− ̺FE,∇ ·RK)K − (∇ · u, q)K .

Inserting into (4.8) and using that ∇ · u = 0 implies

∥

∥

∥
RKΦ

−α
2

K

∥

∥

∥

2

K
= (ν∇ (u− uFE) ,∇RK)K − (̺− ̺FE,∇ ·RK)K

+
(

IKpK
f − f,RK

)

K

≤

(

ν ‖∇ (u− uFE)‖K + ‖̺− ̺FE‖K

)

‖∇RK‖K

+
∥

∥

∥

(

IKpK
f − f

)

Φ
α
2

K

∥

∥

∥

K

∥

∥

∥
RKΦ

−α
2

K

∥

∥

∥

K
. (4.9)

Using equations (3.7) and (3.8) in Lemma 3.1, we can estimate

‖∇RK‖2K =

∥

∥

∥

∥

∇

(

(

IKpK
f + ν∆uFE −∇̺FE

)

Φα
K

)
∥

∥

∥

∥

2

K

≤ 2
∥

∥∇
(

IKpK
f + ν∆uFE −∇̺FE

)

Φα
K

∥

∥

2

K

+ 2
∥

∥

(

IKpK
f + ν∆uFE −∇̺FE

)

Φα−1
K ∇ΦK

∥

∥

2

K

≤ C

(

p
2(2−α)
K

h2
K

∥

∥

∥
RKΦ

−α
2

K

∥

∥

∥

2

K

+
C

h2
K

∥

∥

∥

(

IKpK
f + ν∆uFE −∇̺FE

)2
Φ

2(α−1)
K

∥

∥

∥

K

)

,
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with some C > 0 independent of h and p. For the second of these two
terms, we have to distinguish between two cases. Assuming α > 1

2 , we set
a := 2(α− 1) and b := α in Lemma 3.1 to get

∥

∥

(

IKpK
f + ν∆uFE −∇̺FE

)

Φα−1
K

∥

∥

K
≤ Cp

1−α
2

K

∥

∥

∥
RKΦ

−α
2

K

∥

∥

∥

K

and inserting into the estimate above yields

‖∇RK‖K ≤ C
p2−α
K

hK

∥

∥

∥
RKΦ

−α
2

K

∥

∥

∥

K
. (4.10)

Inequality (4.9) then reads as

∥

∥

∥
RKΦ

−α
2

K

∥

∥

∥

K

≤ C
p2−α
K

hK

(

ν ‖∇ (u− uFE)‖K + ‖̺− ̺FE‖K

)

+ h
α
2

K

∥

∥IKpK
f − f

∥

∥

K
,

and, after multiplying both sides by hK

pK
and using definition (4.7), we have

ηα;K;R1
≤ Cp1−α

K

(

ν ‖∇ (u− uFE)‖K + ‖̺− ̺FE‖K

)

+
h
1+α

2

K

pK

∥

∥IKpK
f − f

∥

∥

K
. (4.11)

Now, let us consider the case 0 ≤ α ≤ 1
2 . Let β := 1+α

2 . Again, using
the smoothing estimates given in Lemma 3.1 and considering the fact that
β > α, we find

∥

∥

∥
RKΦ

−α
2

K

∥

∥

∥

K
≤ Cp

β−α
K

∥

∥

∥

∥

(

IKp f + ν∆uFE −∇̺FE
)

Φ
β
2

K

∥

∥

∥

∥

K

= C
p
1+β−α
K

hK
ηβ;K;R1

.

Estimate (4.11) then implies

∥

∥

∥
RKΦ

−α
2

K

∥

∥

∥

K
≤ C

(

p2−α
K

hK
(ν ‖∇ (u− uFE)‖K + ‖̺− ̺FE‖K)

+
h

β
2

K

p
α−β
K

∥

∥IKpK
f − f

∥

∥

K

)

.
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Then, the definition of β yields

ηα;K;R1
≤ C

(

p1−α
K (ν ‖∇ (u− uFE)‖K + ‖̺− ̺FE‖K)

+
h

5+α
4

K

p
1+α
2

K

∥

∥IKpK
f − f

∥

∥

K

)

.

(4.12)

To obtain the upper bound for η2α;K;R2
, we observe

ηα;K;R2
=
∥

∥

∥
(∇ · uFE)Φ

α
2

K

∥

∥

∥

K
≤ h

α
2

K ‖∇ · uFE‖K .

Since ∇ · u = 0, we have ∇ · uFE = ∇ · (u− uFE) and, hence,

ηα;K;R2
≤ h

α
2

K ‖∇ (u− uFE)‖K . (4.13)

Finally, combining estimates (4.11) and (4.13) gives the desired result.

Similarly, we can derive matching estimates for the jump-based term
ηα;K;B in equation (4.6):

Lemma 2. Let [u, ̺] ∈ H, [uFE, ̺FE] ∈ Vp(T ), and T as in Theorem 2.
Let α ∈ [0, 1]. Then, there exists some constant C > 0 independent of mesh
size vector h and polynomial degree vector p such that

η2α;K;B ≤ C

(

p
3−α
2

K

(

ν2 ‖∇ (u− uFE)‖
2
ωK

+ ‖̺− ̺FE‖
2
ωK

)

+
h2
K

p
3+α
2

K

∥

∥IKpK
f − f

∥

∥

2

ωK

)

.

Proof. For a given element K ∈ T and an interior face f ∈ F(K),
there exists some K1 ∈ T such that f = ∂K ∩ ∂K1 and a face patch ωf as
given in (3.2). Moreover, by Lemma 3.1 there exists an extension function
Rf ∈ H1

0 (ωf ) such that Rf |f =
[

ν ∂uFE

∂n

]

Φα
ωf

that is continuous on K,
vanishes on ∂ωf , and can be extended by zero to all of Ω. Thus, we can
consider Rf ∈ H1

0 (Ω). Now, to derive an upper bound for the jump-based
term η2α;K;B , we use integration by parts to get

∥

∥

∥
RfΦ

−α
2

ωf

∥

∥

∥

2

f
= (ν∆uFE, Rf )ωf

+ (ν∇uFE,∇Rf )ωf
.
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From the weak formulation (2.3) we have

∥

∥

∥
RfΦ

−α
2

ωf

∥

∥

∥

2

f
= (ν∆uFE, Rf )ωf

− (ν∇ (u− uFE) ,∇Rf )ωf
+ (f,Rf )ωf

+ (̺,∇ ·Rf )ωf
+ (∇ · u,Rf )ωf

= (ν∆uFE, Rf )ωf
− (ν∇ (u− uFE) ,∇Rf )ωf

+ (f,Rf )ωf

+ (̺FE,∇ ·Rf )ωf
+ (̺− ̺FE,∇ ·Rf )ωf

,

using again ∇ · u = 0. Then, performing integration by parts gives

∥

∥

∥
RfΦ

−α
2

ωf

∥

∥

∥

2

f
=
(

IKpK
f + ν∆uFE −∇̺FE, Rf

)

ωf
− (ν∇(u− uFE),∇Re)Ke

+ (̺− ̺FE,∇ ·Rf )ωf
+
(

f − IKpK
f,Rf

)

ωf

≤
(

∥

∥IKpK
f + ν∆uFE −∇̺FE

∥

∥

ωf
+
∥

∥f − IKpK
f
∥

∥

ωf

)

‖Re‖ωf

+ ν ‖∇(u− uFE)‖ωf
‖∇Rf‖ωf

+ ‖̺− ̺FE‖ωf
‖∇ ·Re‖ωf

.

(4.14)

We again distinguish two cases. First, if α > 1
2 , we use Lemma 3.2 and

obtain the following upper bounds for ‖Rf‖ωf
and ‖∇Rf‖ωf

on face f :

‖∇Rf‖
2
ωf

≤ C
δp

(2(2−α))
K + δ−1

hK

∥

∥

∥

∥

[

ν
∂uFE

∂n

]

Φ
α
2
ωf

∥

∥

∥

∥

2

f

,

‖Rf‖
2
ωf

≤ CδhK

∥

∥

∥

∥

[

ν
∂uFE

∂n

]

Φ
α
2
ωf

∥

∥

∥

∥

2

f

.

Knowing that ‖∇ ·Rf‖ωf
≤ ‖∇Rf‖ωf

, estimate (4.14) yields

∥

∥

∥

∥

[

ν
∂uFE

∂n

]

Φ
α
2
ωf

∥

∥

∥

∥

f

≤ C

(

(δhK)
1
2

(

∥

∥IKpK
f + ν∆uFE −∇̺FE

∥

∥

ωf

+
∥

∥f − IKpK
f
∥

∥

ωf

)

+

√

δp
2(2−α)
K + δ−1

hK

(

ν ‖∇ (u− uFE)‖ωf

+ ‖̺− ̺FE‖ωf

))

,
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and it follows with Lemma 1 that

∥

∥

∥

∥

[

ν
∂uFE

∂n

]

Φ
α
2
ωf

∥

∥

∥

∥

f

≤ C

{

(δhK)
1
2

[

p2K
hK

(

ν ‖∇ (u− uFE)‖ωf

+ ‖̺− ̺FE‖ωf

)

+ p
1
2

K

∥

∥f − IKpK
f
∥

∥

ωf

]

+

√

δp
2(2−α)
K + δ−1

hK

(

ν ‖∇ (u− uFE)‖ωf

+ ‖̺− ̺FE‖ωf

)}

.

By squaring both sides and summing over all edges f ∈ F(K), we get

η2α;K;B ≤ Cδ

[

p3K

(

ν2 ‖∇ (u− uFE)‖
2
ωK

+ ‖̺− ̺FE‖
2
ωK

)

+ h2
K

∥

∥f − IKpK
f
∥

∥

2

ωK

+
p
2(2−α)
K + δ−2

pK

(

ν2 ‖∇ (u− uFE)‖
2
ωK

+ ‖̺− ̺FE‖
2
ωK

)

]

.

(4.15)

Setting δ := p−2
K gives the desired result.

For 0 ≤ α ≤ 1
2 , similar to the proof of Lemma 1, we set β := 1+α

2 and

apply Lemma 3.1 to get ηα;K;B ≤ p
β−α
K ηβ;K;B . Then, using (4.15) gives

η2α;K;B ≤ Cδ

[

p
7−α
2

K

(

ν2 ‖∇ (u− uFE)‖
2
ωK

+ ‖̺− ̺FE‖
2
ωK

)

+
h2
K

p
α−1

2

K

∥

∥f − IKpK
f
∥

∥

2

ωK

+
p
2(2−α)
K + δ−2

p
1+α
2

K

(

ν2 ‖∇ (u− uFE)‖
2
ωK

+ ‖̺− ̺FE‖
2
ωK

)

]

.

Again setting δ := p−2
K concludes the proof.

Lemmas 1 and 2 combine to yield the desired “efficiency” upper bound for
the error estimator η in terms of the quasi-local energy error.

Theorem 3 (Efficiency). Let [u, ̺] ∈ H, [uFE, ̺FE] ∈ Vp(T ), and T as
in Theorem 2, and α ∈ [0, 1] be arbitrary. Then, there exists some constant
Ceff > 0 independent of mesh size vector h and polynomial degree vector p
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such that

η2α;K ≤ Ceff

(

pkK

(

ν2 ‖∇ (u− uFE)‖
2
ωK

+ ‖̺− ̺FE‖
2
ωK

)

+
h2
K

p1+α
K

∥

∥IKpK
f − f

∥

∥

2

ωK

)

for all K ∈ T , where k := max
{

2(1− α), 3−α
2

}

. By assuming that each
cell is only part of a bounded number of cell patches, the efficiency upper
bound also holds for the entire estimator ηα.

5. hp-adaptive refinement. To define a fully automatic hp-adaptive
finite element algorithm, we base our approach on the error estimator in-
troduced in Section 4.1. It consists of the standard adaptive loop

SOLVE −→ ESTIMATE −→ MARK −→ REFINE. (5.1)

Of concern in this section is only the marking strategy for the third step
(given an estimate of the error as derived previously), for which we follow
the ideas of [15, 16]. We then apply either the usual bisection strategy of
marked cells for mesh refinement followed by ensuring that there is only one
hanging node per edge (h refinement), or increase the polynomial degree
(if p refinement is favored).

The question in marking is whether to perform h- or p-refinement. In
both cases, one can also ask how exactly a cell is to be subdivided, or by
how much the polynomial degree should be increased. Unfortunately, the
size of the estimated error ηK by itself is not enough to tell us which option
is to be preferred. Rather, we should estimate the error one would “expect”
after each of these choices, and balance this information against the cost of
each choice.

5.1. Convergence indicators. Let j ∈ {1, 2, · · · , n}, where n indi-
cates the number of different h and p refinement patterns, and let K ∈ TN
be a cell during the N -th cycle of refinement. Following [21], we define a
“convergence indicator” kK,j ≥ 0 that estimates the error reduction on cell
K (relative to the current estimated error ηK) if K were refined by refine-
ment pattern j. For the Stokes problem, similar to [1], we generate this
estimate by measuring the residual in a norm equivalent to the norm on the
dual of H(ωK). Let e := u − uFE and E := ̺ − ̺FE such that (e, E) ∈ H.
Considering the residual of the Stokes problem on the local patch domain
ωK , and notation from (2.2), then we have for all (v, q) ∈ H:

∫

ωK

vf−

∫

ωK

∇v ·∇uFE+

∫

ωK

(∇·v)̺FE+

∫

ωK

q∇·uFE = L([v, q]; [e, E])ωK
.
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Integration by parts gives
∫

ωK

v (f + ν∆uFE −∇̺FE)−

∫

ωK

q (∇ · uFE) = L([v, q]; [e, E])ωK
.

The pair (wu, w̺) ∈ H is defined to be the Ritz projection of the residual,
as follows:

(∇v,∇(wu))ωK
+ (q, w̺)ωK

= L([v, q]; [e, E])ωK
, ∀(v, q) ∈ H. (5.2)

Existence and uniqueness of (wu, w̺) follows from the continuity of the
operators in the definition of the bilinear form in (2.2). The energy norm
of the error can then be defined as

|||(e, E)|||2ωK
= ‖∇(wu)‖

2
ωK

+ ‖w̺‖
2
ωK

. (5.3)

Of course, this pair of functions can not be found analytically – we need
to approximate it by solving a discrete problem for (wj

u, w
j
ρ) using either

a finer mesh, or a finite element space with a higher polynomial degree –
i.e., one of the choices j for refinement. For cell K refined by pattern j,
we combine the idea of the convergence estimator in [21] and the above
discussion on the Ritz representation of the residual (5.2) and define

kK,j =
1

ηK(uFE, ̺FE)

(

∥

∥∇wj
u

∥

∥

2

ωK
+
∥

∥wj
̺

∥

∥

2

ωK

)
1
2

. (5.4)

The convergence estimator kK,j as defined in (5.4) indicates which refine-
ment pattern j provides the biggest error reduction on every cell. In order
to choose the most efficient refinement pattern, we need to balance this
reduction against a workload number ̟K,j > 0 that indicates the work re-
quired to achieve the error reduction kK,j on cell K. This workload number
can be defined in a variety of ways; here, we take it as the number of degrees
of freedom in the local finite element space, i.e., ̟K,j = dim Vp

K,j(TN |ωK
).

For each cell K, we then define jK to be that refinement strategy that
maximizes the expected (normalized) relative error reduction, i.e., jK =

argmaxj∈{1,2,··· ,n}
kK,j

̟K,j
.

For the purpose of this work, we only consider two refinement patterns,
j ∈ {1, 2}, namely isotropic h-refinement, and p-refinement by increasing
the polynomial degree by one, but the strategy above is clearly applicable
also to more general choices.

5.2. Marking. We still have to decide which cells should be refined
using the strategies jK defined above. To this end, we seek that set M ⊆ T
of minimal cardinality so that

∑

K∈M

k2K,jKη2K ≥ θ2η2. (5.5)
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We solve this problem approximately using a greedy strategy, i.e., using
Dörfler marking. It is known, see [21], that such an M exists if θ is chosen
small enough.

6. Numerical results. Our numerical verification of the algorithms
proposed above are implemented using the software library deal.II [3, 10].
In particular, we will keep track of the estimated error and demonstrate
that it decreases with the same asymptotic rate as the actual error in the
energy norm on a sequence of non-uniform, hp-adaptively refined meshes.
The effectivity index Ieff then measures the quality of the estimator η:

Ieff :=
error estimator

energy error
=

η (uFE, ̺FE, f)
(

‖∇ (u− uFE)‖
2
Ω + ‖̺− ̺FE‖

2
Ω

)1/2
. (6.1)

Ideally, one would want to have Ieff = 1 as h → 0; however, the equivalence
of η and the error in Section 4 has only been shown up to unknown con-
stants, and consequently in practice we will be content if C1 6 Ieff 6 C2

for some C1, C2 > 0.

6.1. Example 1. Let us consider a domain Ω = (−1, 1)2 \ ([0, 1] ×
[−1, 0]) ⊂ R

2 shaped like an “L”, and choose the right hand side f as well
as inhomogeneous Dirichlet boundary conditions for u so that the solution
of the Stokes equations equals the smooth functions

u =

[

−ex(y cos(y) + sin(y))
exy sin(y)

]

, ̺ = 2ex sin(y)−
2

3
(1− e)(cos(1)− 1)).

In the following experiment, we start with a triangulation T0 consisting
of 12 uniform cells, and initially choose Q2

3 ×Q2 elements on all cells. We
then start the adaptive mesh iteration as discussed previously with θ = 0.75.

Fig. 6.1 shows meshes after a number of cycles if hp-refinement is al-
lowed, or if we only do h-refinement. Unsurprisingly, and confirming ex-
pectations, given the smooth nature of the exact solution, the hp-adaptive
strategy consistently chooses p-refinement. Fig. 6.2 presents the decay of
the energy error and the a posteriori error estimator as a function of num-
ber of degrees of freedom. The graph both demonstrates the exponential
convergence rate, and also that the hp-error estimator is a sharp upper
bound for the energy error – validating this as an efficient and reliable a
posteriori error estimator. We observe from the effectivity index graph in
Fig. 6.2 that the Ieff remains bounded in the range 5.4 6 Ieff 6 8.1.

The figure’s right panel also shows a comparison of errors for h- and
hp-adaptive refinement strategies. This plot clearly shows the superiority
of hp-AFEM over the h-AFEM.
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Figure 6.5. Example 3. Left: Pressure field and velocity vectors on a fine mesh.

Right: The mesh after 12 h-adaptive refinement steps.

Figure 6.6. Example 3. Mesh generated after 16 hp-adaptive steps, where the color

bar indicates the polynomial degrees

solution is not smooth, and p refinement (if allowed) where the solution is
smooth. Because the exact solution is not known, it is not possible to com-
pare the exact errors for these two strategies; however, having established
the quality of our error estimator in the previous example, we can compare
how quickly the error estimates are reduced for both strategies, with results
shown in Fig. 6.7 – clearly showing the superiority of hp refinement.

7. Conclusion. In the spirit of previous work by Melenk on other
equations (see [28, 29]), we have here introduced a residual-based a pos-
teriori error estimator for the Stokes problem for continuous, hp-adaptive
finite element methods (AFEM). In particular, we have introduced a family
ηα, α ∈ [0, 1] of residual based error estimators. We then proved upper and
lower bounds for the estimators applied to the Stokes problems. We were
inspired by Dörfler and Heuveline’s work [21] for one-dimensional problems
and later work on higher space dimensions by Bürg [16], and introduced
an hp-adaptive refinement algorithm for our application. In order to de-
cide which refinement gives the best possible hp-refinement, in terms of the
largest error reduction, we solve local patch problems in parallel for each
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