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Abstract

This paper presents a 25mm? SoC in 16nm FinFET technology
targeting flexible acceleration of compute intensive kemels in
DNN, DSP and security algorithms. The SoC includes an always-
on sub-system, a dual-core Arm AS53 CPU cluster, an embedded
FPGA array, and a quad-core cache-coherent accelerator cluster.
Measurement results demonstrate the following observations: 1)
moving DSP/cryptography kernels from A53 to eFPGA increases
energy efficiency between 5.5x28.9x, 2) the use of cache
coherency for datapath accelerators increases throughput by 2.94x,
and 3) accelerator flexibility-efficiency (GOPS/W) range spans
from 3.1x (AS3+SIMD), to 16.5x (eFPGA), to 54.5x (CCA)
compared to the dual-core CPU baseline on comparable tasks. The
energy per inference on MobileNet-128 CNN shows a peak
improvement of 47.6x.

Introduction

Low-power hardware acceleration of deep neural network
(DNN) inference is a key enabling technology for a broad array of
applications and use-cases in embedded Intemnet-of-Things (IoT)
devices. Previous work on hardware for DNNs has focused on
maximizing raw throughput and energy efficiency by emphasizing
low-precision computation [1]. However, in a real SoC
programmability and flexibility is vital to avoid fragile over-
optimization as applications and algorithms (e.g. DNN
architectures [2]) change rapidly over product life cycles. In
addition to this, the programming model and memory system
design are also essential to achieving high energy efficiency under
a full software stack.

SoC Architecture

Fig. 1 shows the 16nm SoC with four main blocks that span the
flexibility-efficiency spectrum: 1) always-on sub-system (AON),
2) dual-core Arm Cortex-A53 CPUs, 3) 2x2 embedded FPGA
(eFPGA) array with hard-DSP 4) quad-core cache-coherent
datapath accelerators (CCA). The SoC memory system includes a
4MB 4-way software-managed SRAM, and a wide off-chip
interface to an FPGA board with DRAM and other peripherals.

The AON sub-system (Fig. 1) performs housekeeping and
autonomous continuous sensing tasks (e.g. small DNNs at
151nJ/inf, [3]), while the remainder of the SoC is powered down.
To perform more complex tasks, AON boots the A53 cluster. The
A53 CPUs implement a rich 64-bit ISA with a dual-issue pipeline
and wide 128-bit SIMD units, with a private 64KB L1 I/D-cache
and a large 2MB shared L2 cache. The AS3 cluster is connected
to the rest of the SoC via a 128-bit interconnect, with an
Accelerator Coherency Port (ACP) providing direct access into
the large L2 cache.

Fig. 2 shows the FlexLogix eFPGA which sits in the middle
ground between fully software programmable CPUs and
specialized hardware accelerators [4]. The Flex Logix eFPGA is
integrated as a first-class citizen on the SoC, which makes it
amenable to a huge range of potential roles within the system,
including data movement, compression, encryption/decryption,
and custom datapath accelerators. The 2x2 array includes two
logic tiles and two DSP tiles (Fig. 1). The logic tile (Fig. 2)
includes 2.5K 6-input LUTs composed into logic compute
elements (CE) and interconnected with a boundary-less radix
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interconnect [4]. The DSP tiles include 40x 22-bit DSP datapaths
with less programmable logic (1.88K 6-input LUTs).

Finally, the CCA cluster (Fig. 3) provides the highest
performance and energy efficiency, and consists of SRAM and
datapaths dedicated to 2D convolution, dot-product and reduction
operations common to DNNs and DSP algorithms. Datapath for
2D convolution is shown in Fig. 4. CCA is attached to the A53 L2
cache via the accelerator coherency port (ACP), which eradicates
cache flushes when sharing data and significantly improves the
software model [5]. With a low data migration cost, individual
kemels can be accelerated on the CCA, composed by software on
the CPU, while sharing data in the L2 cache.

Measurement Results

The 25mm? test chip was fabricated in a 16nm FinFET process
(Fig. 8), and packaged in a 671-pin custom flip-chip substrate.
Fig.5 shows a comparison between software (Dual-A53) and
Verilog (eFPGA) implementation of different kemels. For the 2D
convolution kernel we compare a systolic array implementation
on eFPGA with an optimized (SIMD) GEMM implementation
running on the A53 cores. Despite the highly optimized software
implementation, energy efficiency and throughput increase by
5.5x and 27x respectively when implemented on eFPGA. The two
FIR implementations (40-tap and 80-tap) show how the eFPGA
utilization is critical to optimize the energy efficiency. For an 80-
tap design, which maximizes DSP utilization (100%), the energy
efficiency increases by 17.36x compared to software. For the 40-
tap design, which use half the number of DSPs the energy
efficiency improvement drops to 13.4x. The cryptography kernel
is an AES128 ECB encryption/decryption block, which does not
require DSPs and can be efficiently implemented in LUTs. The
eFPGA implementation provides up to 28.9x and 120x
improvement for energy efficiency and throughput.

The benefits of the ACP interface was described on FPGA in
[5]. Results for ASIC are given in Fig. 6, which shows speedup of
2.7—3.1x arising from avoiding costly off-chip access and
flushing to DRAM. The fastest results are achieved using
software-managed on-chip SRAM, but this is a very expensive
software model.

Fig. 7 shows a comparison of raw throughput and energy
efficiency for the four different compute clusters. CCA achieves
the highest energy efficiency at 1.04 TOPS/W. Better efficiency
can be traded off with flexibility, as shown by the AON FC-only
accelerator which peaks at 2.44 TOPS/W [3]. The energy per
inference for MobileNet-128 is compared for three operating
points, namely minimum energy (MEP), nominal (NOM) and max
frequency (Fumax). The energy/inf. on the entire model relative to
the CPU baseline shows an improvement of 3.1x (SIMD), 22.7x
(eFPGA), and 47.6x (CCA).
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Fig. 1: Simplified block diagram of 16nm heterogeneous
embedded DNN inference SoC.
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Fig. 2: Embedded FPGA (eFPGA) circuit architecture.
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Fig. 3: Cache-coherent datapath accelerator (CCA)
architecture and SoC integration with CPU cluster and memory
system.
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Fig. 4: Block diagram of 2D convolution datapath within the
cache-coherent accelerator (CCA).
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Kemel eFPGA Fmax Improvement
Utilization [MHz] [Dual-A53/eFPGA]
2D Conv 99.6% LUTs 153.8 5.5x Energy
100% DSPs 27x Throughput
13.4% LUTs 13.4x Energy
FIR 40-tap 50% DSPs 598 41.9x Throughput
27.4% LUTs 17.36x Energy
FIR 80-tap 100% Dsps | 32'® 79.9x Throughput
AES128 ECB 19.23x Energy
Enc. 37.2% LUTs 734 64x Throughput
AES128 ECB 28.9x Energy
Dec. 37.2% LUTs | 732.48 120 Throughput
Fig. 5: Software (Dual-A53) and Verilog (eFPGA)

implementation of DSP and cryptography kernels.
Improvements in terms of energy efficiency and throughput are
shown at nominal operating voltage (0.8V).
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Fig. 6: Runtime benefits for ACP interface for individual
MobileNet layers (left), and cumulative benefit for entire
MobileNet inference (right).
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Fig. 7: Energy vs throughput (left) and energy/inference for
three operating points (right) across the different compute
clusters (Dual-A53, Dual-A53 SIMD, eFPGA, and Quad-
CCA).

Technology TSMC 16nm FFC

Size 25mm?

Xtor Count > 0.5 Billion

Total SRAM 72.2 Mbits
E Packaging Flip-chip BGA-672
wn Clock Domains | 7

Power Domains | 5

Supply Voltage (0.5-10V

Fmax >1GHz

Fig. 8: Die photo of the fabricated 25 mm? test chip in 16nm
FinFET.
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