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Abstract—In this work, we show new and improved error-
correcting properties of folded Reed-Solomon codes and
multiplicity codes. Both of these families of codes are
based on polynomials over finite fields, and both have been
the sources of recent advances in coding theory. Folded
Reed-Solomon codes were the first explicit constructions of
codes known to achieve list-decoding capacity; multivariate
multiplicity codes were the first constructions of high-rate
locally correctable codes; and univariate multiplicity codes
are also known to achieve list-decoding capacity.

However, previous analyses of the error-correction prop-
erties of these codes did not yield optimal results. In
particular, in the list-decoding setting, the guarantees on
the list-sizes were polynomial in the block length, rather
than constant; and for multivariate multiplicity codes, local
list-decoding algorithms could not go beyond the Johnson
bound.

In this paper, we show that Folded Reed-Solomon codes and
multiplicity codes are in fact better than previously known
in the context of list-decoding and local list-decoding. More
precisely, we first show that Folded RS codes achieve list-
decoding capacity with constant list sizes, independent of
the block length; and that high-rate univariate multiplicity
codes can also be list-recovered with constant list sizes.
Using our result on univariate multiplicity codes, we show
that multivariate multiplicity codes are high-rate, locally
list-recoverable codes. Finally, we show how to combine
the above results with standard tools to obtain capacity
achieving locally list decodable codes with query complexity
significantly lower than was known before.

Index Terms—list decodable codes; locally decodable codes;
folded Reed-Solomon codes; multiplicity code;

The research is supported in part by NSF grants CCF-1253886, CCF-
1540634, CCF-1350572, and CCF-1657049, and an NSF-BSF grant
CCF-1814629 and 2017732.

2575-8454/18/$31.00 ©2018 IEEE
DOI 10.1109/FOCS.2018.00029

212

I. INTRODUCTION

An error correcting code C' C X" is a collection of
codewords c of length n over an alphabet X.. The goal in
designing C' is to enable the recovery of a codeword ¢ €
C given a corrupted version ¢ of ¢, while at the same time
making C' as large as possible. In the classical unique
decoding problem, the goal is to efficiently recover c
from any ¢ € X" so that ¢ and ¢ differ in at most an
places; this requires that the relative distance § of the
code (that is, the fraction of places on which any two
codewords differ) to be at least 2a.

Modern applications of error correcting codes, both in
coding theory and theoretical computer science, have
highlighted the importance of variants of the unique
decoding problem, incuding list decoding, and local
decoding. In list-decoding, the amount of error « is
large enough that unique recovery of the codeword c
is impossible (that is, & > §/2), and instead the goal
is to return a short list £ C C' with the guarantee that
¢ € L. In local decoding, we still have o < /2, but the
goal is to recover a single symbol ¢; of a codeword c,
after querying not too many positions of the corrupted
codeword ¢. In a variant known as local list-decoding,
we seek local information about a symbol even when
a > §/2. List-decoding, local decoding, and local list-
decoding are important primitives in error correcting
codes, with applications in coding theory, complexity
theory, pseudorandomness and cryptography.

Algebraic codes have been at the heart of the study
of list-decoding, local-decoding and local list-decoding.
One classical example of this is Reed-Solomon (RS)
codes, whose codewords are comprised of evaluations of
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low-degree polynomials.! In the late 1990’s, Guruswami
and Sudan [1], [2] gave an algorithm for efficiently
list-decoding Reed-Solomon codes well beyond half the
distance of the code, and this kicked off the field of
algorithmic list-decoding. A second example is Reed-
Muller (RM) codes, the multivariate analogue of Reed-
Solomon codes. The structure of Reed-Muller codes is
very amenable to local algorithms: a codeword of a
Reed-Muller code corresponds to a multivariate low-
degree polynomial, and considering the restriction of
that polynomial to a line yields a univariate low-degree
polynomial, a.k.a. a Reed-Solomon codeword. This local
structure is the basis for Reed-Muller codes being locally
testable [3] and locally decodable [4], [5]. Using this
locality in concert with the Guruswami-Sudan algorithm
leads to local list-decoding schemes [6], [7] for these
codes.

More recently, variants of Reed-Solomon and Reed-
Muller codes have emerged to obtain improved list-
decoding and local-decoding properties. Two notable
examples, which are the focus of this work, are Folded
Reed-Solomon (FRS) and multiplicity codes. Both of
these constructions have led to recent advances in coding
theory. We introduce these codes informally here, and
give formal definitions in Section II.

Folded Reed-Solomon codes, introduced by Guruswami
and Rudra in [8], are a simple variant of Reed-Solomon
codes. If the codeword of a Reed-Solomon code is
(co,co,-..,cn—1) € X", then the folded version (with
folding parameter s) is

Co Cs Cn—s
C1 Cs+1 Cn—s+1
s\n/s
’ b b e (Z ) / .
Cs—1 Cos—1 Cn—1

The main property of these codes that makes them
interesting is that they admit much better list-decoding
algorithms [8] than the original Guruswami-Sudan algo-
rithm: more precisely, it allows for the error tolerance
a to be much larger for a code of the same rate,?
asymptotically obtaining the optimal trade-off.

codeword of an RS code has the form
, f(®n—1)) € F™ for some low-degree polynomial

I'That is, a
(f(zo), f(x1), ...
f € F[X].

2The rate of a code C € X" is defined as R = %logm (en
and quantifies how much information can be sent using the code. We
always have R € (0, 1), and we would like R to be as close to 1 as
possible.

Multiplicity codes, introduced in the univariate setting by
Rosenbloom and Tsfasman in [9] and in the multivariate
setting by Kopparty, Saraf and Yekhanin in [10], are
variants of polynomial codes that also include evalua-
tions of derivatives. That is, while a symbol of a RS
codeword is of the form f(z) € F for some low-
degree polynomial f € F[X] and some z € F, a
symbol in a univariate multiplicity code codeword is of
the form (f(x), fV(x), fP(z),..., fED(x)) € F?,
where s is the multiplicity parameter. Similarly, while
a symbol of an RM codeword is of the form f(x) for
x € F™ for some low-degree multivariate polynomial
f e F[Xy,...,X,], a symbol in a multivariate multi-
plicty code includes all partial derivatives of order less
than s. Multivariate multiplicity codes were shown in
[10] to have strong locality properties, and were the
first constructions known of high-rate locally decodable
codes. Meanwhile, univariate multiplicity codes were
shown in [11], [12] to be list-decodable in the same
parameter regime as folded Reed-Solomon codes?, also
achieving asymptotically optimal trade-off between rate
and error-tolerance.

In this work, we show that Folded Reed-Solomon codes,
univariate multiplicity codes, and multivariate multiplic-
ity codes are even more powerful than was previously
known in the context of list-decoding and local list-
decoding. Our motivations for this work are threefold:

1) First, FRS codes and multiplicity codes are basic
and natural algebraic codes, central to many recent
results in coding theory ([8], [10], [11], [12], [14],
[15], [16], to name a few) and understanding their
error-correcting properties is important in its own
right.

2) Second, by composing our new results with known
techniques, we obtain capacity-achieving locally
list-decodable codes with significantly improved
query complexity than previously known.

3) Third, while there have been improved construc-
tions of list-decodable and locally list-decodable
codes building on FRS and multiplicity codes
(discussed more below), those constructions in-
volve significant additional pseudorandom ingre-
dients. Our results give simpler constructions of
capacity achieving list-decodable and locally list-
decodable codes with the best known parameters.
In particular, we give the first constructions of

3They were previously shown to be list-decodable up to the Johnson
bound by Nielsen [13].



linear* capacity-achieving list-decodable codes with
constant alphabet size and constant output list size.

We will state our results and contributions more precisely
in Section I-B after setting up a bit more notation and
surveying related work.

A. Related work

a) List-recoverable codes.: While the discussion above
focused on the more well-known problem of list-
decoding, in this work we actually focus on a gener-
alization of list-decoding known as list-recovery. Given
a code C' C X", an (a, ¢, L)-list-recovery algorithm for
C takes as input a sequence of lists Sp,...,S5, C X,
each of size at most ¢, and returns a list £ of all of the
codewords ¢ € C so that ¢; € S; for all but an « fraction
of the coordinates ¢; the combinatorial requirement is
that |£| < L. List-decoding is the special case of list-
recovery when ¢ = 1.

Both list-recovery and list-decoding have been impor-
tant in coding theory, especially in theoretical computer
science, for the past several decades (see [1], [17] for
overviews). Initially, the generalization to list recovery
was used as a building block towards constructions of
list decodable and uniquely decodable codes [18], [19],
[20], [21], [15], [16], [22], although it has since found
additional applications in algorithm design [23], [24],
[25].

The Guruswami-Sudan algorithm, mentioned above, is in
fact a list-recovery algorithm as well as a list-decoding
algorithm, and can efficiently list-recover Reed-Solomon
codes up to radius « = 1 — v// - R, with polynomial list
sizes L; this trade-off is known as the Johnson bound. 1t
is a classical result that there are codes that go beyond
the Johnson bound while keeping the output list size
polynomial in n, or even constant: for large alphabet
sizes, the “correct” limit (called the [list-decoding or
list-recovering capacity), is « = 1 — R, provided q is
sufficiently larger than /¢, and this is achieved by uni-
formly random codes. There is a big difference between
1—+¢-R and 1 — R, especially when ¢ > 1. In par-
ticular, the Guruswami-Sudan algorithm requires Reed-
Solomon codes to have rate R < 1// to be (a, ¢, L)-list-
recoverable for nontrivial ¢, while a completely random
code can achieve rates arbitrarily close to 1 (of course,
without efficient decoding algorithms). For a decade it

4Many codes in this paper have alphabet ¥ = Fg. where Fg is a
finite field. For such “vector alphabet” codes, we use the term “linear”
to mean “[Fg-linear”.
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was open whether or not one could construct explicit
codes which efficiently achieve list-decoding capacity.

In a breakthrough result, Guruswami and Rudra [§]
(building on the work of Parvaresh and Vardy [26])
showed that the folding operation described above can
make RS codes approach capacity with polynomial list-
sizes. For some time, this was the only known route
to capacity-achieving codes, until it was shown in [12],
[11] that univariate multiplicity codes also do the job
(again, with polynomial list sizes). Since then there has
been a great deal of work aimed at reducing the list
size and alphabet size of these constructions, both of
which were polynomial in n (and both of which would
ideally be independent of n). To reduce the alphabet
size to constant, two high-level strategies are known to
work: (1) swapping out the standard polynomial codes
for Algebraic Geometry (AG) codes [27], [28], [29],
and (2) concatenation and distance amplification using
expander graphs [30], [20], [31], [16], [22]. To reduce
the list-size to constant, the known strategies involve
passing to carefully constructing subcodes of Folded
Reed-Solomon codes and univariate multiplicity codes,
via pseudorandom objects such as subspace evasive sets
or subspace designs [14], [12], [27], [28], [29].

In this work, we show that in fact both folded Reed-
Solomon codes and univariate multiplicity codes are
already list-recoverable with constant list-sizes, with no
additional modification needed! The resulting codes still
have large alphabet sizes, but this can be ameliorated
by using the same expander-based techniques described
above.

b) Locally list-recoverable codes.: As mentioned above,
local decoding has been an important theme in coding
theory for the past several decades. Locality makes sense
in the context of list-recovery as well. The definition of
local list-recovery is a bit involved, but intuitively the
idea is as follows. As with list-recovery, we have input
lists S = (S1,...,5,), so that each S; is of size at
most £. The goal is to obtain information about a single
symbol ¢; of a codeword 4, given query access to S.
More precisely, we will require that the decoder output
a short list of randomized algorithms A;,..., Ay, each
of which corresponds to a codeword ¢ with |{i : ¢; &
Si}| < an. The requirement is that if A, corresponds
to a codeword ¢, then on input i, A, (i) outputs ¢; with
high probability, and using no more than ¢ queries to S. If
such a decoder exists, we say that the code is (¢, @, ¢, L)-
locally-list-recoverable. Local list-decoding is the case
special case where ¢ = 1.



This definition may seem a bit convoluted, but it turns
out to be the “right” definition for a number of set-
tings. For example, local list-decoding algorithms are at
the heart of algorithms in cryptography [32], learning
theory [33], and hardness amplification and derandom-
ization [7]. Locally list-recoverable codes have been
desirable as a step towards obtaining efficient capacity-
achieving local list-decoding algorithms. In particular,
high-rate locally list-recoverable codes, combined with
standard techniques, yield capacity-achieving locally
list-decodable and locally list-recoverable codes.

However, until recently, we did not know of any high-
rate locally list-recoverable codes. The first such con-
struction was given recently in [22]. The approach
of [22] is as follows: it takes a folded AG sub-
code from [28], [29] (which uses subspace designs
to find the subcode); applies tensor products many
times; and concatenates the result with a locally cor-
rectable code. Finally, to obtain capacity-achieving lo-
cally list-decodable/recoverable, codes, that work applies
an expander-based technique of [30] to pseudorandomly
scramble up the symbols of the codewords to amplify
the amount of error tolerated.

The reason that so much machinery was used in [22] is
that despite a great deal of effort, the “natural” algebraic
approaches did not seem to work. Perhaps the most
natural algebraic approach is via Reed-Muller codes,
which have a natural local structure. As discussed above,
a Reed-Muller codeword corresponds to a low-degree
multivariate polynomial, and restricting such a polyno-
mial to a line yields a low-degree univariate polynomial,
which corresponds to a Reed-Solomon codeword. Us-
ing this connection, along with the Guruswami-Sudan
algorithm for Reed-Solomon codes, Arora and Sudan [6]
and Sudan, Trevisan and Vadhan [7] gave algorithms
for locally list-decoding Reed-Muller codes up the the
Johnson bound®. This algorithm also extends naturally
to local list-recovery up to the Johnson bound [16], but
this means that for large values of ¢ one cannot obtain
high-rate codes.

One might hope to use a similar approach for multivari-
ate multiplicity codes; after all, the univariate versions
are list-recoverable to capacity. However, the fact that
the list sizes were large was an obstacle to this approach,
and again previous work on the local list-decodability of
multivariate multiplicity codes also only worked up to

STechnically these algorithms only came within a factor /2 of the
Johnson bound. To go all the way to the Johnson bound, one needs
some additional ideas [34]; see [35], [11] for further variations on this.
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the Johnson bound [11].

In this work, we return to this approach, and—using our
results on univariate multiplicity codes—show that in
fact high-rate multivariate multiplicity codes are locally
list-recoverable. Using our construction, combined with
some expander-based techniques, we obtain capacity-
achieving locally list-recoverable codes which improve
on the state-of-the-art.

B. Our contributions

The main contribution of this work improved results on
the (local)-list-recoverability of FRS codes and multi-
plicity codes. We discuss a few of the concrete outcomes
below.

o Constant list sizes for folded Reed-Solomon
codes. Theorem IV.1 says that a folded RS code of
rate R and alphabet size qusz) is(1—R—e¢, ¢, L)-
list-recoverable with L = (6/5)0(%1%“/ ). This
improves over the previous best-known list size
for this setting, which was (n/s)O(ﬁlog(é)). In
particular, when &,/ are constant, the list size L
improves from polynomial in n to a constant.
Constant list sizes for univariate multiplicity
codes. We recover the same quantitative results
as Theorem IV.1 for univariate multiplicity codes
with degree d smaller than the characteristic of the
underlying field.

When the degree d is larger than the characteristic,
which is what is relevant for the application to
multivariate multiplicity codes, we obtain a weaker
result. We no longer have capacity-achieving codes,
but we obtain high-rate list-recoverable codes with
constant list sizes. More precisely, we show that
rate R univariate multiplicity codes are efficiently
(v, £, L)-list-recoverable for L = ¢O(108(®) and
a = O((1 — R)?/¢). In particular, this result
is nontrivial even for high-rate codes, while the
Johnson bound only gives results for R < 1/¢.
High-rate multivariate multiplicity codes are
locally list-recoverable. One reason to study the
list-recoverability of univariate multiplicity codes
is because list-recovery algorithms for univariate
multiplicity codes can be used in local list-recovery
algorithms for multivariate multiplicity codes. We
show that high-rate multivariate multiplicity codes
are locally list-recoverable. More precisely, we
show that for constant ¢, s, a multivariate multi-
plicity code of length n with rate 1 — ¢ is effi-



ciently (¢, ¢, L)-locally-list-recoverable for o« =
1/polylog(n), with list size L and query complexity
t that are sub-polynomial in the block length n.
We also instantiate the same argument with slightly
different parameters to show a similar result where
« and L are constant, but the query complexity ¢ is
of the form ¢ = O(n%01).

Capacity-achieving locally list-recoverable codes
over constant-sized alphabets. The aforemen-
tioned results give high-rate locally-list-recoverable
codes; however, these codes do not achieve capac-
ity, and the alphabet sizes are quite large. Fortu-
nately, following previous work, we can apply a se-
ries of by-now-standard expander-based techniques
to obtain capacity-achieving locally list-recoverable
codes over constant-sized alphabets.

The only previous construction of capacity-
achieving locally list-recoverable codes (or even
high-rate locally list-recoverable codes) is due to
[22], which achieved arbitrary polynomially small
query complexity (and even subpolynomial query
complexity n©(1/10glogn)) with slightly supercon-
stant list size.

Our codes achieve subpolynomial query complexity
exp(log®*n) and subpolynomial list size. This
brings the query complexity for capacity achieving
local list-decodability close to the best known query
complexity for locally decodable codes [15], which
is exp(log'/?n) (for the same codes). We can
also achieve arbitrary polynomially small query
complexity, and constant list-size. This improves
upon the codes of [22].

Deterministic  constructions of capacity-
achieving list-recoverable codes with constant
alphabet size and list size. Our result in
Theorem IV.1 for Folded Reed-Solomon codes
give capacity-achieving list-recoverable codes with
constant list size, but with polynomial alphabet
size. By running these through some standard
techniques, we obtain efficient deterministic
constructions of [F,-linear, capacity-achieving,
list-recoverable codes with constant alphabet size
and list size, with a decoding algorithm that runs
in time n°M) . log(n)9<(1) 6

Codes with these properties do not seem to have
been written down anywhere in the literature. Prior
to our work, the same standard techniques could

SUnfortunately, the dependency of alphabet size, list size, and
running time on ¢ that we obtain is far from optimal. It is an interesting
open problem to improve this dependency.
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have also been applied to the codes of [14] (which
are nonlinear subcodes of Folded Reed-Solomon
codes) to construct nonlinear codes with the same
behavior.

C. Overview of techniques

In this subsection, we give an overview of the proofs of
our main results.

1) List recovery of folded Reed-Solomon and univari-
ate multiplicity codes with constant output list size:
Let C C X" be either a folded Reed-Solomon code
or a univariate multiplicity code with constant relative
distance § > 0. Suppose that s is the “folding parameter”
or “multiplicity parameter,” respectively, so that & = Fy.
We begin with a warm-up by describing an algorithm for
zero-error list-recovery; that is, when o = 0. Here we
are given “received lists” S € (%)n and we want to find
the list £ of all codewords ¢ € C' such that ¢; € .S; for
each 7. The groundbreaking work of [8] showed that for
constant ¢ and large but constant s, £ has size at most
¢?*M | and can be found in time ¢©‘("). We now show
that £ is in fact of size at most L = Oy (1), and can
be found in time poly(q, ).

The starting point for our improved list-recovery algo-
rithms for folded Reed-Solomon and univariate multi-
plicity codes is the linear-algebraic approach to list-
recovering these codes that was taken in [12]. The main
punchline of this approach is that the list £ is contained
in an [F, affine-subspace vy + V' of dimension at most
O¢(?), and further that this subspace can be found in time
poly(q) (this immediately leads to the previously known
bound on £). Armed with this insight, we now bring the
received lists S back into play. How many elements c
of the affine space vg +V C C can have ¢; € S; for all
i € [n]? We show that there cannot be too many such c.

The proof is algorithmic: we will give a randomized
algorithm PRUNE, which when given the low dimen-
sional affine space vy + V, outputs a list of K = O(1)
elements of C, such that for any ¢ € £, c is included in
the output of PRUNE with high probability. This implies
that |£] < O(K) = O(1).

The algorithm PRUNE works as follows. For some pa-
rameter 7 = O(1), we pick coordinates 71,42, ...,i; €
[n] uniformly at random. Then the algorithm iterates over
all the £7 choices of (y1....,y;) € [[;_, Si,. For each
such (y1,...,y-), PRUNE checks if there is a unique
element w of vo + V' such that w;; = y; for all j € [7].



If so, we output that unique element w; otherwise (i.e.,
either there are zero or greater than one such w’s) we
do nothing. Thus the algorithm PRUNE outputs at most
(™ = O(1) elements of C.

It remains to show that for any ¢ € L, the algorithm
outputs ¢ with high probability. Fix such a c. By as-
sumption, for every i € [n|, ¢; € S;. Thus there
will be an iteration where the algorithm PRUNE takes
(y1,---,yr) = (¢, ..., i, ). In this iteration, there will
be at least one w (namely c) which has the desired
property. Could there be more? If there was another
¢ € vg + V with this property, then the nonzero vector
c¢—c € V would have the property that c—c’ vanishes on
all coordinates i1, ...,%,. It turns out that this can only
happen with very low probability. Lemma 2 from [36]
shows that for any linear space V with dimension &
and relative distance at least J, for 7 a large enough
constant (7 = (k/J)), it is very unlikely that there
exists a nonzero element of V' that vanishes at 7 random
coordinates %1, ...,%,. Thus with high probability, c is
the unique w found in that iteration, and is thus included
in the output of PRUNE. This completes the description
and analysis of the algorithm PRUNE, and thus of our
zero-error list-recovery algorithm.

One way to prove (a version of) Lemma 2 from [36] is as
follows. First we note the following simple but important
lemma:

Lemma L1. Let ¥ = F;. Let W C (X)" be an F,-
subspace with dim(W) t > 1. Suppose W has
minimum relative distance at least 0. Then:

Eie[n} [dlm(W N Hl)] <t-—4,

where H; = {v € ¥" | v; = 0}.

Lemma I.1 says that for any subspace W C X" of good
distance, fixing a coordinate to O reduces the dimension
a little in expectation. Iterating this, we see that fixing
many coordinates is very likely to reduce the dimension
down to zero, and this proves the result that we needed
above.

With our warm-up complete, we turn to our main theo-
rem on the list-recoverability of Folded Reed-Solomon
codes (Theorem IV.1), which shows that the output list
size is small even in the presence of an o« = §—¢ fraction
of errors (for small ¢ > 0). Our approach generalizes
the @ = 0 case described above. Let £ be the list of
(0 —€)-close codewords. Again, the linear-algebraic list
decoder of [12] can produce a low dimensional affine
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subspace vy + V such that £ C vg + V. Next, we show
that the very same algorithm PRUNE described above
(with a different setting of the parameter 7) does the
desired list-recovery with at least some small constant
probability po. This will imply that |£] < £-.

To see why this works, fix a codeword ¢ € L. First
observe that if we pick ¢1,...,7, uniformly at random,
the probability that ¢;; € S;, for all j = 1,...,7 is at
least p’ = (1 — § +&)". This is small, but not too small;
thus, there is some chance that at least one w (the correct
one) is found by PRUNE.

Following the previous analysis, we now have to bound
the probability that for random i1, . .., i, € [n], the space
of codewords from V' that vanish on all of 4y,... %,
has dimension at least one. This is the probability that
strictly greater than one w is found by PRUNE. This time
we will need a stronger (and much more specialized)
version of Lemma 1.1, which shows that for subspaces
W of the Folded Reed-Solomon code, fixing a random
coordinate to O reduces the dimension by a lot: much
more than the ¢ that we got from Lemma I.1. Such
a lemma was proved in [29], although in a different
language, and for a very different purpose. This lemma
roughly shows that the expected dimension of W N H;,
for a random ¢ € [n], is at most (1 —¢§) dim(TV). Setting
T O(log(dim(V))/d), with 7 applications of this
lemma, we get that the probability that the space of
codewords from V that vanish on all of ¢1,...,%, has
dimension at least one is at most p” = (1 —9)7 dim(V).
Note that this probability is tiny compared to p’, and
thus the probability that the algorithm PRUNE succeeds
in finding c is at least p’ — p”’ ~ p/, as desired.

The description above was for folded RS codes, but same
method works for univariate multiplicity codes whose
degree d is smaller than the characteristic of the field
F,. The proof follows the same outline, using a different
but analogous lemma from [29].

For application to local list-recovery of multivariate mul-
tiplicity codes, however, we need to deal with univariate
multiplicity codes where the degree d is larger than gq.
We show how to accomplish this when the fraction of
errors « is very small. The algorithm and the outline of
the analysis described above can again do the job for this
setting, although the analysis is much more involved. The
proof gives better quantitative bounds than the previous
approach, and requires us to open up the relevant lemma
from [29]. At the end of the day, we are able to prove
a reasonable version of this lemma for the case when



d > ¢, and this allows the analysis to go through.

2) Local list-recovery of multivariate multiplicity codes:
We now describe the high-level view of our local
list-recovery algorithms. Our algorithm for local list-
recovery of multivariate multiplicity codes follows the
general paradigm for local list-decoding of Reed-Muller
codes by Arora and Sudan [6] and Sudan, Trevisan and
Vadhan [7]. In addition to generalizing various aspects of
the paradigm, we need to introduce some further ideas to
account for the fact that we are in the high rate setting’.

Local list-decoding of Reed-Muller codes is the follow-
ing problem: we are given a function r : F* — F,
which is promised to be close to the evaluation table
of some low degree polynomial Q(X1,...,X,,). At the
high level, the local list-decoding algorithm of [7] for
Reed-Muller codes has two phases: generating advice,
and decoding with advice. To generate the advice, we
pick a uniformly random a € F;" and “guess” a value
z € F, (this guessing can be done by going over all
z € F,). Our hope for this guess is that z equals Q(a).

Once we have this advice, we see how to decode. We
define an oracle machine M7 [a, z], which takes as advice
[a, z], has query access to r, and given an input x € F*,
tries to compute ()(x). The algorithm first considers the
line A\ passing through x and the advice point a, and
list-decode the restriction of r to this line to obtain
a list £, of univariate polynomials. These univariate
polynomials are candidates for Q|x. Which of these
univariate polynomials is @Q[,? We use our guess z
(which is supposed to be Q(a)): if there is a unique
univariate polynomial in the list with value z at a, then
we deem that to be our candidate for @[, and output
its value at the point x as our guess for Q(x). This
algorithm will be correct on the point x if (1) there
are not too many errors on the line through x and a,
and (2) no other polynomial in £, takes the same value
at a as |, does. The first event is high probability
by standard sampling bounds, and the second is high
probability using the random choice of a and the fact
that £, is small. This algorithm does not succeed on all
x, but one can show that for random a and z = Q(a),
this algorithm does succeed on most x. Then we can run
a standard local correction algorithm for Reed-Muller
codes to then convert it to an algorithm that succeeds on
all x with high probability.

"These ideas can also be used to improve the analysis of the [6] and
[7] local list-decoders for Reed-Muller codes. In particular, they can
remove the restriction that the degree d needs to be at most 1/2 the
size of the field F, for the local list-decoder to work.
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We are trying to locally list-recover a multivariate
multiplicity code; the codewords are of the form

m+s—1
(Q(<S) (Y))yeJF’q", where Q(<S)(y) € Flg m ) =: Em,s
is a tuple that consists of all partial derivatives of @) of
order less than s, evaluated at y. We are given query
access to a function S : Fi* — (24) where S(y) C
Ym,s 1s the received list for the coordinate indexed by
y. Suppose for the following discussion that Q(X) €
F,[X1,...,X,] is a low-degree multivariate polynomial
so that |[{y : Q<) (y) € S(y)}| < ag™. We want to
describe an algorithm that, with high probability will
output a randomized algorithm A; : F* — X, ¢ that

will approximate Q(<*).

There are two main components to the algorithm again:
generating the advice, and decoding with advice. The
advice is again a uniformly random point a € Fi*, and
a guess z which is supposed to equal Q(<*")(a), a very
high order evaluation of @) at a, for some s* > s. We
discuss how to generate z later, let us first see how to
use this advice to decode.

To decode using the advice [a, z], we give an oracle
machine M?9[a, 2] which takes advice [a,z] and has
query access to S. If z = Q(<*")(a), then M9 |a, 2](x)
will be equal to Q(<*)(x) with high probability over x
and a. Briefly, the idea is to consider the line A through x
and a and again run the univariate list-recovery algorithm
on the restrictions of S to this line to obtain a list L.
We hope that @], is in this list, and that Q| does not
have the same order s* evaluation® on a as any other
element of £y — this will allow us to identify it with
the help of the advice z = Q(<*")(a). Once we identify
Q|x, we output its value at x as our guess for Q<) (x).

To generate the advice z, we give an algorithm
RecoverCandidates, which takes as input a point a €
7", has query access to .S, and returns a short list Z C
Ym,s+ of guesses for Q(<*")(a). Recall that we have
s* quite a bit larger than s. Briefly, RecoverCandidates
works by choosing random lines through a and running
the (global) list-recovery algorithm for univariate mul-
tiplicity codes on the restriction of the lists .S to these
lines. Then it aggregates the results to obtain Z. This
aggregation turns out to be a list-recovery problem for
Reed-Muller codes evaluated on product sets.

Summarizing, our local list-recovery algorithm works as
follows. First, we run RecoverCandidates on a random

8This is why we take s* large: it is much more unlikely that there
will be a collision of higher order evaluations at the random point a.



point a € FJ" to generate a short list Z C X, o« of
possibilities for Q(<*")(a). Then, for each z € Z, we
will form the oracle machine M °[a, z]. We are not quite
done even if the advice z is good, since M9[a, 2](x)
may not be equal to Q(<*)(x); we know this probably
happens for most x’s, but not necessarily for the one
that we care about. Fortunately, M ®[a, z] will agree with
Q(<*) for many inputs x, and so we can use the fact that
multivariate multiplicity codes are locally correctable to
finish the job [10]. When we iterate over the advice
z € Z, this will give the list of randomized algorithms
Ay, ..., A that the local list-recovery algorithm returns.

3) Organization: Due to space limitation in the rest of
the paper we only present our results on list recovery of
Folded RS codes.

II. NOTATION AND PRELIMINARIES

We begin by formally defining the coding-theoretic no-
tions we will need, and by setting notation. We denote by
F, the finite field of ¢ elements. For any pair of strings
x,y € X", the relative distance between x and y is the
fraction of coordinates on which x and y differ, and is
denoted by dist(z,y) := |{i € [n] : ; # y;}| /n. For a
positive integer ¢ we denote by (%) the set containing
all subsets of X of size ¢, and for any pair of strings
x € X" and S € (%)n we denote by dist(z,S) the
fraction of coordinates i € [n] for which x; ¢ S;, that is,
dist(z, S) = |{i € [n] : ; ¢ S;}| /n. Throughout the
paper, we use exp(n) to denote 2°("). Whenever we
use log, it is to the base 2. The notation O,(n) and
poly,(n) means that we treat a as a constant; that is,
poly, (n) = n=1).

A. Error-correcting codes

Let 3 be an alphabet and let n be a positive integer (the
block length). A code is simply a subset C C X", The
elements of a code C are called codewords. If F is a
finite field and X is a vector space over [, we say that a
code C' C X" is F-linear if it is an F-linear subspace of
the [F-vector space X". In this work most of our codes
will have alphabets ¥ = F*, and we will use linear to

mean [F-linear. The rate of a code is the ratio %,
which for F-linear codes equals %. The relative

distance dist(C') of C' is the minimum > 0 such that
for every pair of distinct codewords c1,co € C' it holds
that dist(cy,c2) > 0.
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Given a code C C X", we will occasionally abuse
notation and think of ¢ € C' as a map ¢ : D — %, where
D is some domain of size n. With this notation, the map
¢: D — X corresponds to the vector (¢(x))zep € ™.

For a code C C X" of relative distance 4, a given
parameter o < 0/2, and a string w € X", the problem of
decoding from « fraction of errors is the task of finding
the unique ¢ € C (if any) which satisfies dist(c, w) < o

B. List-decodable and list-recoverable codes

List decoding is a paradigm that allows one to correct
more than a §/2 fraction of errors by returning a small
list of close-by codewords. More formally, for « € [0, 1]
and an integer L we say that a code C C X" is
(a, L)-list-decodable if for any w € X" there are at
most L different codewords ¢ € C' which satisfy that
dist(c, w) < a.

List recovery is a more general notion where one is
given as input a small list of candidate symbols for
each of the coordinates and is required to output a
list of codewords that are consistent with many of the
input lists. Formally we say that a code C' C X" is
(o, ¢, L)-list-recoverable if for any S € (%)n there are
at most L different codewords ¢ € C which satisfy that
dist(c, S) < a. Note that list decoding corresponds to
the special case of £ = 1.

ITI. FOLDED REED-SOLOMON CODES.

Let ¢ be a prime power, and let s,d,n be nonnegative
integers such that n < (¢ — 1)/s. Let v € F, be a
primitive element of I, and let a1, as, . . ., a,, be distinct
elements in {y*' | 0 <i < (¢—1)/s—1}. Let D =
{al, e ,an}.

For a polynomial P(X) € F,[X] and a € Fy, let
Pl (a) € F$ denote the vector:

The folded Reed-Solomon code FRS, (n,d) is a
code over alphabet IF;. To every polynomial P(X) €
F,[X] of degree at most d, there corresponds a codeword
c

c:D—TFy,



where for each a € D:

c¢(a) = PF(a).
Explicitly,
P(z) = (P(ar), P(a2), ..., P (an))
P(ay) P(az) P(an)
B P(yay) P(vaz) P(vay)
Py lan)]| [P ay) P(y*~1a,)

We denote the codeword of FRS, s(n, d) corresponding
to the polynomial P(X) by FRSEncs(P) (when the
parameters g, n are clear from the context).

Note that Reed-Solomon codes correspond to the
special case of s = 1. The following claim summarizes
the basic properties of folded Reed-Solomon codes.

Claim IIL1 ([8]). The folded Reed-Solomon code
FRS,,s(n,d) is an F-linear code over alphabet F; of
block length n, rate (d+ 1)/(sn), and relative distance
at least 1 — d/(sn).

IV. LIST RECOVERING FOLDED REED-SOLOMON
CODES WITH CONSTANT OUTPUT LIST SIZE

Our first main result shows that folded Reed-Solomon
codes are list-recoverable (and in particular, list-
decodable) up to capacity with constant output list size,
independent of n.

Theorem IV.1 (List recovering FRS with constant output
list size). Let q be a prime power, and let s,d,n be non-
negative integers such that n < (¢—1)/s. Let € > 0 and
{ € N be such that 166/52 < s. Then the folded Reed-
Solomon code FRS, 5(n,d) is (o, ¢, L)-list-recoverable

fora=1—d/(sn) —ec and L = (f)o(%logf)'

Moreover, there is a randomized algorithm that list
recovers FRS, s(n, d) with the above parameters in time
poly(log g, s, d, n, (¢/)'8(/)/).

In particular, the ¢ 1 case yields the following
statement about list-decoding.

Corollary IV.2 (List decoding FRS with constant output
list size). Let q be a prime power, and let s,d,n be
nonnegative integers such that n < (q—1)/s. Let € > 0
be such that 16/e* < s. Then the folded Reed-Solomon
code FRSy s(n,d) is (o, L)-list decodable for a =1 —

d/(sn) —e and L = (%)O(élog%).
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Moreover, there is a randomized algorithm that list
decodes FRS, s(n, d) with the above parameters in time
poly(log g, s,d, n, (1/e)'s(1/)/),

The proof of Theorem IV.1 consists of two main steps.
The first step, from [12], shows that the output list is
contained in a low dimensional subspace. The second
step, which relies on results from [29], shows that the
output list cannot contain too many codewords from a
low dimensional subspace, and therefore is small. The
two steps are presented in Sections IV-A and IV-B,
respectively, followed by the proof of Theorem IV.1 in
Section IV-C.

A. Output list is contained in a low dimensional sub-
space

The following theorem from [12] shows that the output
list is contained in a low dimensional subspace, which
can also be found efficiently.

Theorem IV.3 ([12], Theorem 7). Let q be a prime
power, and let s,d,n,t,r be nonnegative integers such
that n < (q¢—1)/sand r < s. Let S: D — (F;) be an
instance of the list-recovery problem for FRS, s(n,d).
Suppose the decoding radius o satisfies:

l r S d

a<l-— — . . .
r+1 r+1 s—r+1 sn

(D
Let

£ = {P(X)EF,[X]|deg(P) <

d
and dist(FRSEncs(P),S) < a}.

There is a (deterministic) algorithm that given S, runs
in time poly(logq,s,d,n,t), and computes an affine
subspace vy +V C Fy[X] such that:

1) LCV,
2) dim(V) <r— 1.

Remark IV.4. Theorem 7 of [12] only deals with the
case where a; = v*(~1 forall i =1,...,n, and £ = 1.
However, it can be verified that the proof goes through
for any choice of distinct a1, asz,...,a, in {y¥ | 0 <
i < (q—1)/s—1}, and ¢ € N (for the latter see discussion
at end of Section 2.4 of [12]).

B. Output list cannot contain many codewords from a
low dimensional subspace

To show that the output list £ cannot contain too many
elements from a low dimensional subspace (and to find



L in the process), we first give a preliminary randomized
algorithm PruneListFRS that outputs a constant size list
L' such that any codeword of £ appears in £ with a
constant probability po. This implies that |£| < |£'|/po,
proving the first part of Theorem IV.1. Now that we
know that |£]| is small, our final algorithm simply runs
PruneListFRS O(pi0 log |£|) times and returns the union
of the output lists. By a union bound, all elements of
L will appear in the union of the output lists with high
probability. This will complete the proof of the second
part of Theorem IV.1.

We start by describing the algorithm PruneListFRS and
analyzing it. The algorithm is given as input S : D —
(FZZ), an Fg-affine subspace vy + V' C IF,[X] consisting
of polynomials of degree at most d and of dimension at
most 7, and a parameter 7 € N.

Algorithm PruneListFRS(S, vy + V, 7)

1) Initialize £’ = 0.
2) Pick by,bs,...,b; € D independently and
uniformly at random.
3) For each choice of y;
S(bg), oL Yr € S(bT)
o If there is exactly one codeword P(X) €
vo + V such that Pll(b;) = y; for all
Jj € [7], then:

L £ U{P(X)).

€ S(bl)ayQ S

4) Output L'

Lemma IV.5. The algorithm PruneListFRS runs in time
poly(log q, s,n,£™), and outputs a list L' containing at
most {7 polynomials, such that any polynomial P(X) €
vo + V with dist(FRSEncs(P),S) < « appears in L’
with probability at least

tmar o

Proof. We clearly have that [£| < ¢7, and that the al-
gorithm has the claimed running time. Fix a polynomial
P € vy + V such that dist(FRSEnc,(P),S) < a, we
shall show below that P belongs to £’ with probability

at least -
4
(s — r)n) |

Let F; denote the event that Pll(b;) € S(b;) for
all j € [r]. Let Ey denote the event that for all

(1—04)7'—1"(
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nonzero polynomials ¢ € V there exists some j €
[7] such that Q[S](bj) # 0. By the assumption that
dist(FRSEnc,(P), S) < a, we readily have that

Pr[Ey] > (1 — ).

Claim IV.6 below also shows that
d

So both F; and E5 occur with probability at least

If F5 occurs, then for every choice of y; € S(b1),y2 €
S(b2),...,yr € S(b2), there can be at most one poly-
nomial P(X) € vg + V such that P¥l(b;) = y; for all
j € [7] (otherwise, the difference @ = P, — P, € V of
two such distinct polynomials would have Q[*)(b;) = 0
for all j € [7], contradicting E»). If E; also occurs, then
in the iteration of Step 3 where y; = PI*l(b;) for each
j € [r], the algorithm will take P = P, and thus P
will be included in £'. This completes the proof of the
lemma. O

Pr[Ey] > 1 —7~<

It remains to prove the following claim.

Claim IV.6.
d

The proof of the claim relies on the following theorem
from [29].

Theorem IV.7 ([29], Theorem 14). Let W C F,[X] be
a linear subspace of polynomials of degree at most d.
Suppose dim(W) =t < s. Let a1, as, . . ., a, be distinct
elements in {v*" | 0 <i < (q—1)/s—1}, and for i € [n]
let

Pr[Ey] > 1 —r(

Hi = (P(X)€F,[X]|
P(y’a;) =0 Vj €{0,1,...,s —1}}.
Then
> dim(W N H;) < _
s—1t+1

=1
Proof of Claim IV.6. For 0 < j <7, let
V} I:VQHil ﬁHizﬂ...ﬂHi].,

and t; := dim(V}). Observe that r = to > t; > ...

> >
t., and that event E5 holds if and only if £, = 0.



By Theorem IV.7,

Eltj11 [t =1]
= Eigfy [dim(V; N H;) | dim(V;) =]
t d
“s—t+1 n
<t d
— (s—=71)n
Thus
Eltj] < Elt;) ——,
(s—r)n
and

) = (o

EMJSEML(@_T

Finally, by Markov’s inequality this implies in turn that

Pr[Es] = Pr[t; = 0] 1—Prft; > 1]

)

>

C. Proof of Theorem 1V.1

We now prove Theorem IV.1 based on Theorem IV.3 and
Lemma IV.5.

Proof of Theorem IV.1. Let S : D — (]FZZ) be the re-
ceived sequence of input lists. We would like to find a list
L of size (f)o(E log(¢/2)) that contains all polynomials
P(X) of degree at most d with dist(FRSEncs(P), S) <
o.

Let vg + V be the subspace found by the algorithm
of Theorem IV.3 for S and r = 4;[ (sor < ias by
assumption that s > 16¢/c?). Note that for this choice
of r the RHS of (1) is at least

€

et 4
4 1—¢/4 sn

d
>1- — —e=a,
SN

1—

and so all polynomial P(X) of degree at most d with
dist(FRSEncs(P), S) < « are included in V.

Next we invoke Lemma IV.5 with S, vg + V and
7 = O(Llog(¢/e)). Then the algorithm PruneListFRS
returns a list £ of size at most ¢7 such that
each polynomial P(X) of degree at most d with
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dist(FRSEncs(P), S) < « is included in £’ with prob-
ability po, which is at least

(1_a>7_r<(sdr)n>7
2(1_“y_r<1—2M'5)T
003 (a0’
z%ﬂ—@i

where the first inequality follows since r < ies, and the
second inequality holds since r = % <1-(14+%)7 and
a=1-4

%—5.

The above implies in turn that

(a) =
Moreover, by running the algorithm PruneListFRS
O(pi0 log |£|) times and returning the union of all output
lists, by a union bound, all elements of £ will appear in

the union of the output lists with high probability (say, at

least 0.99). This gives a randomized list recovery algo-
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rithm with output list size (f)o(f log(£/2))

time poly(log g, s, d,n, (¢/e)"s(/<)/%),

li
1ot
Po

—

l

3

<

L] <

> O(é log(@/s))

and running

O
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