
Improved decoding of Folded Reed-Solomon
and Multiplicity Codes

Swastik Kopparty∗, Noga Ron-Zewi†, Shubhangi Saraf∗ and Mary Wootters‡
∗Department of Mathematics and Department of Computer Science,

Rutgers University, Piscataway, NJ, USA, Email: swastik.kopparty@gmail.com, shubhangi.saraf@gmail.com,
†Department of Computer Science, University of Haifa, Haifa, Israel, Email: noga@cs.haifa.ac.il

‡Department of Computer Science and Department of Electrical Engineering,

Stanford University, Stanford, CA, USA, Email: marykw@stanford.edu

Abstract—In this work, we show new and improved error-
correcting properties of folded Reed-Solomon codes and
multiplicity codes. Both of these families of codes are
based on polynomials over finite fields, and both have been
the sources of recent advances in coding theory. Folded
Reed-Solomon codes were the first explicit constructions of
codes known to achieve list-decoding capacity; multivariate
multiplicity codes were the first constructions of high-rate
locally correctable codes; and univariate multiplicity codes
are also known to achieve list-decoding capacity.

However, previous analyses of the error-correction prop-
erties of these codes did not yield optimal results. In
particular, in the list-decoding setting, the guarantees on
the list-sizes were polynomial in the block length, rather
than constant; and for multivariate multiplicity codes, local
list-decoding algorithms could not go beyond the Johnson
bound.

In this paper, we show that Folded Reed-Solomon codes and
multiplicity codes are in fact better than previously known
in the context of list-decoding and local list-decoding. More
precisely, we first show that Folded RS codes achieve list-
decoding capacity with constant list sizes, independent of
the block length; and that high-rate univariate multiplicity
codes can also be list-recovered with constant list sizes.
Using our result on univariate multiplicity codes, we show
that multivariate multiplicity codes are high-rate, locally
list-recoverable codes. Finally, we show how to combine
the above results with standard tools to obtain capacity
achieving locally list decodable codes with query complexity
significantly lower than was known before.

Index Terms—list decodable codes; locally decodable codes;
folded Reed-Solomon codes; multiplicity code;

The research is supported in part by NSF grants CCF-1253886, CCF-
1540634, CCF-1350572, and CCF-1657049, and an NSF-BSF grant
CCF-1814629 and 2017732.

I. INTRODUCTION

An error correcting code C ⊂ Σn is a collection of

codewords c of length n over an alphabet Σ. The goal in

designing C is to enable the recovery of a codeword c ∈
C given a corrupted version c̃ of c, while at the same time

making C as large as possible. In the classical unique

decoding problem, the goal is to efficiently recover c
from any c̃ ∈ Σn so that c and c̃ differ in at most αn
places; this requires that the relative distance δ of the

code (that is, the fraction of places on which any two

codewords differ) to be at least 2α.

Modern applications of error correcting codes, both in

coding theory and theoretical computer science, have

highlighted the importance of variants of the unique

decoding problem, incuding list decoding, and local
decoding. In list-decoding, the amount of error α is

large enough that unique recovery of the codeword c
is impossible (that is, α > δ/2), and instead the goal

is to return a short list L ⊂ C with the guarantee that

c ∈ L. In local decoding, we still have α < δ/2, but the

goal is to recover a single symbol ci of a codeword c,
after querying not too many positions of the corrupted

codeword c̃. In a variant known as local list-decoding,
we seek local information about a symbol even when

α > δ/2. List-decoding, local decoding, and local list-

decoding are important primitives in error correcting

codes, with applications in coding theory, complexity

theory, pseudorandomness and cryptography.

Algebraic codes have been at the heart of the study

of list-decoding, local-decoding and local list-decoding.

One classical example of this is Reed-Solomon (RS)

codes, whose codewords are comprised of evaluations of

212

2018 IEEE 59th Annual Symposium on Foundations of Computer Science

2575-8454/18/$31.00 ©2018 IEEE
DOI 10.1109/FOCS.2018.00029

low-degree polynomials.1 In the late 1990’s, Guruswami

and Sudan [1], [2] gave an algorithm for efficiently

list-decoding Reed-Solomon codes well beyond half the

distance of the code, and this kicked off the field of

algorithmic list-decoding. A second example is Reed-

Muller (RM) codes, the multivariate analogue of Reed-

Solomon codes. The structure of Reed-Muller codes is

very amenable to local algorithms: a codeword of a

Reed-Muller code corresponds to a multivariate low-

degree polynomial, and considering the restriction of

that polynomial to a line yields a univariate low-degree

polynomial, a.k.a. a Reed-Solomon codeword. This local

structure is the basis for Reed-Muller codes being locally

testable [3] and locally decodable [4], [5]. Using this

locality in concert with the Guruswami-Sudan algorithm

leads to local list-decoding schemes [6], [7] for these

codes.

More recently, variants of Reed-Solomon and Reed-

Muller codes have emerged to obtain improved list-

decoding and local-decoding properties. Two notable

examples, which are the focus of this work, are Folded
Reed-Solomon (FRS) and multiplicity codes. Both of

these constructions have led to recent advances in coding

theory. We introduce these codes informally here, and

give formal definitions in Section II.

Folded Reed-Solomon codes, introduced by Guruswami

and Rudra in [8], are a simple variant of Reed-Solomon

codes. If the codeword of a Reed-Solomon code is

(c0, c2, . . . , cn−1) ∈ Σn, then the folded version (with

folding parameter s) is

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

c0
c1
...

cs−1

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

cs
cs+1

...

c2s−1

⎤
⎥⎥⎥⎦ , . . . ,

⎡
⎢⎢⎢⎣

cn−s

cn−s+1

...

cn−1

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠ ∈ (Σs)n/s.

The main property of these codes that makes them

interesting is that they admit much better list-decoding

algorithms [8] than the original Guruswami-Sudan algo-

rithm: more precisely, it allows for the error tolerance

α to be much larger for a code of the same rate,2

asymptotically obtaining the optimal trade-off.

1That is, a codeword of an RS code has the form
(f(x0), f(x1), . . . , f(xn−1)) ∈ F

n for some low-degree polynomial
f ∈ F[X].

2The rate of a code C ∈ Σn is defined as R = 1
n
log|Σ|(|C|)

and quantifies how much information can be sent using the code. We
always have R ∈ (0, 1), and we would like R to be as close to 1 as
possible.

Multiplicity codes, introduced in the univariate setting by

Rosenbloom and Tsfasman in [9] and in the multivariate

setting by Kopparty, Saraf and Yekhanin in [10], are

variants of polynomial codes that also include evalua-

tions of derivatives. That is, while a symbol of a RS

codeword is of the form f(x) ∈ F for some low-

degree polynomial f ∈ F[X] and some x ∈ F, a

symbol in a univariate multiplicity code codeword is of

the form (f(x), f (1)(x), f (2)(x), . . . , f (s−1)(x)) ∈ F
s,

where s is the multiplicity parameter. Similarly, while

a symbol of an RM codeword is of the form f(x) for

x ∈ F
m for some low-degree multivariate polynomial

f ∈ F[X1, . . . , Xm], a symbol in a multivariate multi-

plicty code includes all partial derivatives of order less

than s. Multivariate multiplicity codes were shown in

[10] to have strong locality properties, and were the

first constructions known of high-rate locally decodable

codes. Meanwhile, univariate multiplicity codes were

shown in [11], [12] to be list-decodable in the same

parameter regime as folded Reed-Solomon codes3, also

achieving asymptotically optimal trade-off between rate

and error-tolerance.

In this work, we show that Folded Reed-Solomon codes,

univariate multiplicity codes, and multivariate multiplic-

ity codes are even more powerful than was previously

known in the context of list-decoding and local list-

decoding. Our motivations for this work are threefold:

1) First, FRS codes and multiplicity codes are basic

and natural algebraic codes, central to many recent

results in coding theory ([8], [10], [11], [12], [14],

[15], [16], to name a few) and understanding their

error-correcting properties is important in its own

right.

2) Second, by composing our new results with known

techniques, we obtain capacity-achieving locally

list-decodable codes with significantly improved

query complexity than previously known.

3) Third, while there have been improved construc-

tions of list-decodable and locally list-decodable

codes building on FRS and multiplicity codes

(discussed more below), those constructions in-

volve significant additional pseudorandom ingre-

dients. Our results give simpler constructions of

capacity achieving list-decodable and locally list-

decodable codes with the best known parameters.

In particular, we give the first constructions of

3They were previously shown to be list-decodable up to the Johnson
bound by Nielsen [13].

213

linear4 capacity-achieving list-decodable codes with

constant alphabet size and constant output list size.

We will state our results and contributions more precisely

in Section I-B after setting up a bit more notation and

surveying related work.

A. Related work

a) List-recoverable codes.: While the discussion above

focused on the more well-known problem of list-

decoding, in this work we actually focus on a gener-

alization of list-decoding known as list-recovery. Given

a code C ⊆ Σn, an (α, �, L)-list-recovery algorithm for

C takes as input a sequence of lists S1, . . . , Sn ⊆ Σ,

each of size at most �, and returns a list L of all of the

codewords c ∈ C so that ci ∈ Si for all but an α fraction

of the coordinates i; the combinatorial requirement is

that |L| ≤ L. List-decoding is the special case of list-

recovery when � = 1.

Both list-recovery and list-decoding have been impor-

tant in coding theory, especially in theoretical computer

science, for the past several decades (see [1], [17] for

overviews). Initially, the generalization to list recovery

was used as a building block towards constructions of

list decodable and uniquely decodable codes [18], [19],

[20], [21], [15], [16], [22], although it has since found

additional applications in algorithm design [23], [24],

[25].

The Guruswami-Sudan algorithm, mentioned above, is in

fact a list-recovery algorithm as well as a list-decoding

algorithm, and can efficiently list-recover Reed-Solomon

codes up to radius α = 1−√� ·R, with polynomial list

sizes L; this trade-off is known as the Johnson bound. It

is a classical result that there are codes that go beyond

the Johnson bound while keeping the output list size

polynomial in n, or even constant: for large alphabet

sizes, the “correct” limit (called the list-decoding or

list-recovering capacity), is α = 1 − R, provided q is

sufficiently larger than �, and this is achieved by uni-

formly random codes. There is a big difference between

1 − √� ·R and 1 − R, especially when � > 1. In par-

ticular, the Guruswami-Sudan algorithm requires Reed-

Solomon codes to have rate R < 1/� to be (α, �, L)-list-

recoverable for nontrivial α, while a completely random

code can achieve rates arbitrarily close to 1 (of course,

without efficient decoding algorithms). For a decade it

4Many codes in this paper have alphabet Σ = F
s
q , where Fq is a

finite field. For such “vector alphabet” codes, we use the term “linear”
to mean “Fq-linear”.

was open whether or not one could construct explicit

codes which efficiently achieve list-decoding capacity.

In a breakthrough result, Guruswami and Rudra [8]

(building on the work of Parvaresh and Vardy [26])

showed that the folding operation described above can

make RS codes approach capacity with polynomial list-

sizes. For some time, this was the only known route

to capacity-achieving codes, until it was shown in [12],

[11] that univariate multiplicity codes also do the job

(again, with polynomial list sizes). Since then there has

been a great deal of work aimed at reducing the list

size and alphabet size of these constructions, both of

which were polynomial in n (and both of which would

ideally be independent of n). To reduce the alphabet

size to constant, two high-level strategies are known to

work: (1) swapping out the standard polynomial codes

for Algebraic Geometry (AG) codes [27], [28], [29],

and (2) concatenation and distance amplification using

expander graphs [30], [20], [31], [16], [22]. To reduce

the list-size to constant, the known strategies involve

passing to carefully constructing subcodes of Folded

Reed-Solomon codes and univariate multiplicity codes,

via pseudorandom objects such as subspace evasive sets
or subspace designs [14], [12], [27], [28], [29].

In this work, we show that in fact both folded Reed-

Solomon codes and univariate multiplicity codes are

already list-recoverable with constant list-sizes, with no

additional modification needed! The resulting codes still

have large alphabet sizes, but this can be ameliorated

by using the same expander-based techniques described

above.

b) Locally list-recoverable codes.: As mentioned above,

local decoding has been an important theme in coding

theory for the past several decades. Locality makes sense

in the context of list-recovery as well. The definition of

local list-recovery is a bit involved, but intuitively the

idea is as follows. As with list-recovery, we have input

lists S = (S1, . . . , Sn), so that each Si is of size at

most �. The goal is to obtain information about a single

symbol ci of a codeword i, given query access to S.

More precisely, we will require that the decoder output

a short list of randomized algorithms A1, . . . , AL, each

of which corresponds to a codeword c with |{i : ci �∈
Si}| ≤ αn. The requirement is that if Ar corresponds

to a codeword c, then on input i, Ar(i) outputs ci with

high probability, and using no more than t queries to S. If

such a decoder exists, we say that the code is (t, α, �, L)-
locally-list-recoverable. Local list-decoding is the case

special case where � = 1.

214

This definition may seem a bit convoluted, but it turns

out to be the “right” definition for a number of set-

tings. For example, local list-decoding algorithms are at

the heart of algorithms in cryptography [32], learning

theory [33], and hardness amplification and derandom-

ization [7]. Locally list-recoverable codes have been

desirable as a step towards obtaining efficient capacity-

achieving local list-decoding algorithms. In particular,

high-rate locally list-recoverable codes, combined with

standard techniques, yield capacity-achieving locally

list-decodable and locally list-recoverable codes.

However, until recently, we did not know of any high-

rate locally list-recoverable codes. The first such con-

struction was given recently in [22]. The approach

of [22] is as follows: it takes a folded AG sub-

code from [28], [29] (which uses subspace designs

to find the subcode); applies tensor products many

times; and concatenates the result with a locally cor-

rectable code. Finally, to obtain capacity-achieving lo-

cally list-decodable/recoverable, codes, that work applies

an expander-based technique of [30] to pseudorandomly

scramble up the symbols of the codewords to amplify

the amount of error tolerated.

The reason that so much machinery was used in [22] is

that despite a great deal of effort, the “natural” algebraic

approaches did not seem to work. Perhaps the most

natural algebraic approach is via Reed-Muller codes,

which have a natural local structure. As discussed above,

a Reed-Muller codeword corresponds to a low-degree

multivariate polynomial, and restricting such a polyno-

mial to a line yields a low-degree univariate polynomial,

which corresponds to a Reed-Solomon codeword. Us-

ing this connection, along with the Guruswami-Sudan

algorithm for Reed-Solomon codes, Arora and Sudan [6]

and Sudan, Trevisan and Vadhan [7] gave algorithms

for locally list-decoding Reed-Muller codes up the the

Johnson bound5. This algorithm also extends naturally

to local list-recovery up to the Johnson bound [16], but

this means that for large values of � one cannot obtain

high-rate codes.

One might hope to use a similar approach for multivari-

ate multiplicity codes; after all, the univariate versions

are list-recoverable to capacity. However, the fact that

the list sizes were large was an obstacle to this approach,

and again previous work on the local list-decodability of

multivariate multiplicity codes also only worked up to

5Technically these algorithms only came within a factor
√
2 of the

Johnson bound. To go all the way to the Johnson bound, one needs
some additional ideas [34]; see [35], [11] for further variations on this.

the Johnson bound [11].

In this work, we return to this approach, and—using our

results on univariate multiplicity codes—show that in

fact high-rate multivariate multiplicity codes are locally

list-recoverable. Using our construction, combined with

some expander-based techniques, we obtain capacity-

achieving locally list-recoverable codes which improve

on the state-of-the-art.

B. Our contributions

The main contribution of this work improved results on

the (local)-list-recoverability of FRS codes and multi-

plicity codes. We discuss a few of the concrete outcomes

below.

• Constant list sizes for folded Reed-Solomon
codes. Theorem IV.1 says that a folded RS code of

rate R and alphabet size qO(�/ε2) is (1−R−ε, �, L)-
list-recoverable with L = (�/ε)

O(1
ε log(�/ε)). This

improves over the previous best-known list size

for this setting, which was (n/ε)
O(1

ε2
log(�)). In

particular, when ε, � are constant, the list size L
improves from polynomial in n to a constant.

• Constant list sizes for univariate multiplicity
codes. We recover the same quantitative results

as Theorem IV.1 for univariate multiplicity codes

with degree d smaller than the characteristic of the

underlying field.

When the degree d is larger than the characteristic,

which is what is relevant for the application to

multivariate multiplicity codes, we obtain a weaker

result. We no longer have capacity-achieving codes,

but we obtain high-rate list-recoverable codes with

constant list sizes. More precisely, we show that

rate R univariate multiplicity codes are efficiently

(α, �, L)-list-recoverable for L = �O(� log(�)) and

α = O((1 − R)2/�). In particular, this result

is nontrivial even for high-rate codes, while the

Johnson bound only gives results for R < 1/�.
• High-rate multivariate multiplicity codes are

locally list-recoverable. One reason to study the

list-recoverability of univariate multiplicity codes

is because list-recovery algorithms for univariate

multiplicity codes can be used in local list-recovery

algorithms for multivariate multiplicity codes. We

show that high-rate multivariate multiplicity codes

are locally list-recoverable. More precisely, we

show that for constant �, ε, a multivariate multi-

plicity code of length n with rate 1 − ε is effi-

215

ciently (t, α, �, L)-locally-list-recoverable for α =
1/polylog(n), with list size L and query complexity

t that are sub-polynomial in the block length n.

We also instantiate the same argument with slightly

different parameters to show a similar result where

α and L are constant, but the query complexity t is

of the form t = O(n0.01).
• Capacity-achieving locally list-recoverable codes

over constant-sized alphabets. The aforemen-

tioned results give high-rate locally-list-recoverable

codes; however, these codes do not achieve capac-

ity, and the alphabet sizes are quite large. Fortu-

nately, following previous work, we can apply a se-

ries of by-now-standard expander-based techniques

to obtain capacity-achieving locally list-recoverable

codes over constant-sized alphabets.

The only previous construction of capacity-

achieving locally list-recoverable codes (or even

high-rate locally list-recoverable codes) is due to

[22], which achieved arbitrary polynomially small

query complexity (and even subpolynomial query

complexity nO(1/ log logn)) with slightly supercon-

stant list size.

Our codes achieve subpolynomial query complexity

ẽxp(log3/4 n) and subpolynomial list size. This

brings the query complexity for capacity achieving

local list-decodability close to the best known query

complexity for locally decodable codes [15], which

is ẽxp(log1/2 n) (for the same codes). We can

also achieve arbitrary polynomially small query

complexity, and constant list-size. This improves

upon the codes of [22].

• Deterministic constructions of capacity-
achieving list-recoverable codes with constant
alphabet size and list size. Our result in

Theorem IV.1 for Folded Reed-Solomon codes

give capacity-achieving list-recoverable codes with

constant list size, but with polynomial alphabet

size. By running these through some standard

techniques, we obtain efficient deterministic

constructions of Fq-linear, capacity-achieving,

list-recoverable codes with constant alphabet size

and list size, with a decoding algorithm that runs

in time nO(1) · log(n)O�,ε(1).6

Codes with these properties do not seem to have

been written down anywhere in the literature. Prior

to our work, the same standard techniques could

6Unfortunately, the dependency of alphabet size, list size, and
running time on � that we obtain is far from optimal. It is an interesting
open problem to improve this dependency.

have also been applied to the codes of [14] (which

are nonlinear subcodes of Folded Reed-Solomon

codes) to construct nonlinear codes with the same

behavior.

C. Overview of techniques

In this subsection, we give an overview of the proofs of

our main results.

1) List recovery of folded Reed-Solomon and univari-
ate multiplicity codes with constant output list size:
Let C ⊆ Σn be either a folded Reed-Solomon code

or a univariate multiplicity code with constant relative

distance δ > 0. Suppose that s is the “folding parameter”

or “multiplicity parameter,” respectively, so that Σ = F
s
q .

We begin with a warm-up by describing an algorithm for

zero-error list-recovery; that is, when α = 0. Here we

are given “received lists” S ∈ (
Σ
�

)n
, and we want to find

the list L of all codewords c ∈ C such that ci ∈ Si for

each i. The groundbreaking work of [8] showed that for

constant � and large but constant s, L has size at most

qO�(1), and can be found in time qO�(1). We now show

that L is in fact of size at most L = O�,δ(1), and can

be found in time poly(q, L).

The starting point for our improved list-recovery algo-

rithms for folded Reed-Solomon and univariate multi-

plicity codes is the linear-algebraic approach to list-

recovering these codes that was taken in [12]. The main

punchline of this approach is that the list L is contained

in an Fq affine-subspace v0 + V of dimension at most

Oε(�), and further that this subspace can be found in time

poly(q) (this immediately leads to the previously known

bound on L). Armed with this insight, we now bring the

received lists S back into play. How many elements c
of the affine space v0 + V ⊆ C can have ci ∈ Si for all

i ∈ [n]? We show that there cannot be too many such c.

The proof is algorithmic: we will give a randomized

algorithm PRUNE, which when given the low dimen-

sional affine space v0 + V , outputs a list of K = O(1)
elements of C, such that for any c ∈ L, c is included in

the output of PRUNE with high probability. This implies

that |L| ≤ O(K) = O(1).

The algorithm PRUNE works as follows. For some pa-

rameter τ = O(1), we pick coordinates i1, i2, . . . , iτ ∈
[n] uniformly at random. Then the algorithm iterates over

all the �τ choices of (y1. . . . , yτ) ∈
∏τ

j=1 Sij . For each

such (y1, . . . , yτ), PRUNE checks if there is a unique

element w of v0 + V such that wij = yj for all j ∈ [τ].

216

If so, we output that unique element w; otherwise (i.e.,

either there are zero or greater than one such w’s) we

do nothing. Thus the algorithm PRUNE outputs at most

�τ = O(1) elements of C.

It remains to show that for any c ∈ L, the algorithm

outputs c with high probability. Fix such a c. By as-

sumption, for every i ∈ [n], ci ∈ Si. Thus there

will be an iteration where the algorithm PRUNE takes

(y1, . . . , yτ) = (ci1 , . . . , ciτ). In this iteration, there will

be at least one w (namely c) which has the desired

property. Could there be more? If there was another

c′ ∈ v0 + V with this property, then the nonzero vector

c−c′ ∈ V would have the property that c−c′ vanishes on

all coordinates i1, . . . , iτ . It turns out that this can only

happen with very low probability. Lemma 2 from [36]

shows that for any linear space V with dimension k
and relative distance at least δ, for τ a large enough

constant (τ = Ω(k/δ)), it is very unlikely that there

exists a nonzero element of V that vanishes at τ random

coordinates i1, . . . , iτ . Thus with high probability, c is

the unique w found in that iteration, and is thus included

in the output of PRUNE. This completes the description

and analysis of the algorithm PRUNE, and thus of our

zero-error list-recovery algorithm.

One way to prove (a version of) Lemma 2 from [36] is as

follows. First we note the following simple but important

lemma:

Lemma I.1. Let Σ = F
s
q . Let W ⊆ (Σ)n be an Fq-

subspace with dim(W) = t ≥ 1. Suppose W has
minimum relative distance at least δ. Then:

Ei∈[n][dim(W ∩Hi)] ≤ t− δ,

where Hi = {v ∈ Σn | vi = 0}.

Lemma I.1 says that for any subspace W ⊆ Σn of good

distance, fixing a coordinate to 0 reduces the dimension

a little in expectation. Iterating this, we see that fixing

many coordinates is very likely to reduce the dimension

down to zero, and this proves the result that we needed

above.

With our warm-up complete, we turn to our main theo-

rem on the list-recoverability of Folded Reed-Solomon

codes (Theorem IV.1), which shows that the output list

size is small even in the presence of an α = δ−ε fraction

of errors (for small ε > 0). Our approach generalizes

the α = 0 case described above. Let L be the list of

(δ− ε)-close codewords. Again, the linear-algebraic list

decoder of [12] can produce a low dimensional affine

subspace v0 + V such that L ⊆ v0 + V . Next, we show

that the very same algorithm PRUNE described above

(with a different setting of the parameter τ) does the

desired list-recovery with at least some small constant

probability p0. This will imply that |L| ≤ �τ

p0
.

To see why this works, fix a codeword c ∈ L. First

observe that if we pick i1, . . . , iτ uniformly at random,

the probability that cij ∈ Sij for all j = 1, . . . , τ is at

least p′ = (1− δ+ ε)τ . This is small, but not too small;

thus, there is some chance that at least one w (the correct

one) is found by PRUNE.

Following the previous analysis, we now have to bound

the probability that for random i1, . . . , iτ ∈ [n], the space

of codewords from V that vanish on all of i1, . . . , iτ
has dimension at least one. This is the probability that

strictly greater than one w is found by PRUNE. This time

we will need a stronger (and much more specialized)

version of Lemma I.1, which shows that for subspaces

W of the Folded Reed-Solomon code, fixing a random

coordinate to 0 reduces the dimension by a lot: much

more than the δ that we got from Lemma I.1. Such

a lemma was proved in [29], although in a different

language, and for a very different purpose. This lemma

roughly shows that the expected dimension of W ∩Hi,

for a random i ∈ [n], is at most (1−δ) dim(W). Setting

τ = O(log(dim(V))/δ), with τ applications of this

lemma, we get that the probability that the space of

codewords from V that vanish on all of i1, . . . , iτ has

dimension at least one is at most p′′ = (1−δ)τ dim(V).
Note that this probability is tiny compared to p′, and

thus the probability that the algorithm PRUNE succeeds

in finding c is at least p′ − p′′ ≈ p′, as desired.

The description above was for folded RS codes, but same

method works for univariate multiplicity codes whose

degree d is smaller than the characteristic of the field

Fq . The proof follows the same outline, using a different

but analogous lemma from [29].

For application to local list-recovery of multivariate mul-

tiplicity codes, however, we need to deal with univariate

multiplicity codes where the degree d is larger than q.

We show how to accomplish this when the fraction of

errors α is very small. The algorithm and the outline of

the analysis described above can again do the job for this

setting, although the analysis is much more involved. The

proof gives better quantitative bounds than the previous

approach, and requires us to open up the relevant lemma

from [29]. At the end of the day, we are able to prove

a reasonable version of this lemma for the case when

217

d > q, and this allows the analysis to go through.

2) Local list-recovery of multivariate multiplicity codes:
We now describe the high-level view of our local

list-recovery algorithms. Our algorithm for local list-

recovery of multivariate multiplicity codes follows the

general paradigm for local list-decoding of Reed-Muller

codes by Arora and Sudan [6] and Sudan, Trevisan and

Vadhan [7]. In addition to generalizing various aspects of

the paradigm, we need to introduce some further ideas to

account for the fact that we are in the high rate setting7.

Local list-decoding of Reed-Muller codes is the follow-

ing problem: we are given a function r : F
m
q → Fq

which is promised to be close to the evaluation table

of some low degree polynomial Q(X1, . . . , Xm). At the

high level, the local list-decoding algorithm of [7] for

Reed-Muller codes has two phases: generating advice,

and decoding with advice. To generate the advice, we

pick a uniformly random a ∈ F
m
q and “guess” a value

z ∈ Fq (this guessing can be done by going over all

z ∈ Fq). Our hope for this guess is that z equals Q(a).

Once we have this advice, we see how to decode. We

define an oracle machine Mr[a, z], which takes as advice

[a, z], has query access to r, and given an input x ∈ F
m
q ,

tries to compute Q(x). The algorithm first considers the

line λ passing through x and the advice point a, and

list-decode the restriction of r to this line to obtain

a list Lλ of univariate polynomials. These univariate

polynomials are candidates for Q|λ. Which of these

univariate polynomials is Q|λ? We use our guess z
(which is supposed to be Q(a)): if there is a unique

univariate polynomial in the list with value z at a, then

we deem that to be our candidate for Q|λ, and output

its value at the point x as our guess for Q(x). This

algorithm will be correct on the point x if (1) there

are not too many errors on the line through x and a,

and (2) no other polynomial in Lλ takes the same value

at a as Q|λ does. The first event is high probability

by standard sampling bounds, and the second is high

probability using the random choice of a and the fact

that Lλ is small. This algorithm does not succeed on all

x, but one can show that for random a and z = Q(a),
this algorithm does succeed on most x. Then we can run

a standard local correction algorithm for Reed-Muller

codes to then convert it to an algorithm that succeeds on

all x with high probability.

7These ideas can also be used to improve the analysis of the [6] and
[7] local list-decoders for Reed-Muller codes. In particular, they can
remove the restriction that the degree d needs to be at most 1/2 the
size of the field Fq for the local list-decoder to work.

We are trying to locally list-recover a multivariate

multiplicity code; the codewords are of the form

(Q(<s)(y))y∈Fm
q

, where Q(<s)(y) ∈ F
(m+s−1

m)
q =: Σm,s

is a tuple that consists of all partial derivatives of Q of

order less than s, evaluated at y. We are given query

access to a function S : Fm
q → (

Σm,s

�

)
, where S(y) ⊂

Σm,s is the received list for the coordinate indexed by

y. Suppose for the following discussion that Q(X) ∈
Fq[X1, . . . , Xm] is a low-degree multivariate polynomial

so that |{y : Q(<s)(y) �∈ S(y)}| ≤ αqm. We want to

describe an algorithm that, with high probability will

output a randomized algorithm Aj : Fm
q → Σm,s that

will approximate Q(<s).

There are two main components to the algorithm again:

generating the advice, and decoding with advice. The

advice is again a uniformly random point a ∈ F
m
q , and

a guess z which is supposed to equal Q(<s∗)(a), a very
high order evaluation of Q at a, for some s∗ � s. We

discuss how to generate z later, let us first see how to

use this advice to decode.

To decode using the advice [a, z], we give an oracle

machine MS [a, z] which takes advice [a, z] and has

query access to S. If z = Q(<s∗)(a), then MS [a, z](x)
will be equal to Q(<s)(x) with high probability over x
and a. Briefly, the idea is to consider the line λ through x
and a and again run the univariate list-recovery algorithm

on the restrictions of S to this line to obtain a list Lλ.

We hope that Q|λ is in this list, and that Q|λ does not

have the same order s∗ evaluation8 on a as any other

element of Lλ – this will allow us to identify it with

the help of the advice z = Q(<s∗)(a). Once we identify

Q|λ, we output its value at x as our guess for Q(<s)(x).

To generate the advice z, we give an algorithm

RecoverCandidates, which takes as input a point a ∈
F
m
q , has query access to S, and returns a short list Z ⊂

Σm,s∗ of guesses for Q(<s∗)(a). Recall that we have

s∗ quite a bit larger than s. Briefly, RecoverCandidates
works by choosing random lines through a and running

the (global) list-recovery algorithm for univariate mul-

tiplicity codes on the restriction of the lists S to these

lines. Then it aggregates the results to obtain Z. This

aggregation turns out to be a list-recovery problem for

Reed-Muller codes evaluated on product sets.

Summarizing, our local list-recovery algorithm works as

follows. First, we run RecoverCandidates on a random

8This is why we take s∗ large: it is much more unlikely that there
will be a collision of higher order evaluations at the random point a.

218

point a ∈ F
m
q to generate a short list Z ⊆ Σm,s∗ of

possibilities for Q(<s∗)(a). Then, for each z ∈ Z, we

will form the oracle machine MS [a, z]. We are not quite

done even if the advice z is good, since MS [a, z](x)
may not be equal to Q(<s)(x); we know this probably

happens for most x’s, but not necessarily for the one

that we care about. Fortunately, MS [a, z] will agree with

Q(<s) for many inputs x, and so we can use the fact that

multivariate multiplicity codes are locally correctable to

finish the job [10]. When we iterate over the advice

z ∈ Z, this will give the list of randomized algorithms

A1, . . . , AL that the local list-recovery algorithm returns.

3) Organization: Due to space limitation in the rest of

the paper we only present our results on list recovery of

Folded RS codes.

II. NOTATION AND PRELIMINARIES

We begin by formally defining the coding-theoretic no-

tions we will need, and by setting notation. We denote by

Fq the finite field of q elements. For any pair of strings

x, y ∈ Σn, the relative distance between x and y is the

fraction of coordinates on which x and y differ, and is

denoted by dist(x, y) := |{i ∈ [n] : xi �= yi}| /n. For a

positive integer � we denote by
(
Σ
�

)
the set containing

all subsets of Σ of size �, and for any pair of strings

x ∈ Σn and S ∈ (
Σ
�

)n
we denote by dist(x, S) the

fraction of coordinates i ∈ [n] for which xi /∈ Si, that is,

dist(x, S) := |{i ∈ [n] : xi /∈ Si}| /n. Throughout the

paper, we use exp(n) to denote 2Θ(n). Whenever we

use log, it is to the base 2. The notation Oa(n) and

polya(n) means that we treat a as a constant; that is,

polya(n) = nOa(1).

A. Error-correcting codes

Let Σ be an alphabet and let n be a positive integer (the

block length). A code is simply a subset C ⊆ Σn. The

elements of a code C are called codewords. If F is a

finite field and Σ is a vector space over F, we say that a

code C ⊆ Σn is F-linear if it is an F-linear subspace of

the F-vector space Σn. In this work most of our codes

will have alphabets Σ = F
s, and we will use linear to

mean F-linear. The rate of a code is the ratio
log |C|

log(|Σ|n) ,

which for F-linear codes equals
dimF(C)
n·dimF(Σ) . The relative

distance dist(C) of C is the minimum δ > 0 such that

for every pair of distinct codewords c1, c2 ∈ C it holds

that dist(c1, c2) ≥ δ.

Given a code C ⊆ Σn, we will occasionally abuse

notation and think of c ∈ C as a map c : D → Σ, where

D is some domain of size n. With this notation, the map

c : D → Σ corresponds to the vector (c(x))x∈D ∈ Σn.

For a code C ⊆ Σn of relative distance δ, a given

parameter α < δ/2, and a string w ∈ Σn, the problem of
decoding from α fraction of errors is the task of finding

the unique c ∈ C (if any) which satisfies dist(c, w) ≤ α.

B. List-decodable and list-recoverable codes

List decoding is a paradigm that allows one to correct

more than a δ/2 fraction of errors by returning a small

list of close-by codewords. More formally, for α ∈ [0, 1]
and an integer L we say that a code C ⊆ Σn is

(α,L)-list-decodable if for any w ∈ Σn there are at

most L different codewords c ∈ C which satisfy that

dist(c, w) ≤ α.

List recovery is a more general notion where one is

given as input a small list of candidate symbols for

each of the coordinates and is required to output a

list of codewords that are consistent with many of the

input lists. Formally we say that a code C ⊆ Σn is

(α, �, L)-list-recoverable if for any S ∈ (
Σ
�

)n
there are

at most L different codewords c ∈ C which satisfy that

dist(c, S) ≤ α. Note that list decoding corresponds to

the special case of � = 1.

III. FOLDED REED-SOLOMON CODES.

Let q be a prime power, and let s, d, n be nonnegative

integers such that n ≤ (q − 1)/s. Let γ ∈ Fq be a

primitive element of Fq , and let a1, a2, . . . , an be distinct

elements in {γsi | 0 ≤ i ≤ (q − 1)/s − 1}. Let D =
{a1, . . . , an}.
For a polynomial P (X) ∈ Fq[X] and a ∈ Fq , let

P [s](a) ∈ F
s
q denote the vector:

P [s](a) =

⎡
⎢⎢⎢⎣

P (a)
P (γa)

...

P (γs−1a)

⎤
⎥⎥⎥⎦ .

The folded Reed-Solomon code FRSq,s(n, d) is a

code over alphabet F
s
q . To every polynomial P (X) ∈

Fq[X] of degree at most d, there corresponds a codeword

c:

c : D → F
s
q,

219

where for each a ∈ D:

c(a) = P [s](a).

Explicitly,

P (x)
→
(
P [s](a1), P

[s](a2), . . . , P
[s](an)

)

=

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

P (a1)
P (γa1)

...

P (γs−1a1)

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

P (a2)
P (γa2)

...

P (γs−1a2)

⎤
⎥⎥⎥⎦ , . . . ,

⎡
⎢⎢⎢⎣

P (an)
P (γan)

...

P (γs−1an)

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠ .

We denote the codeword of FRSq,s(n, d) corresponding

to the polynomial P (X) by FRSEncs(P) (when the

parameters q, n are clear from the context).

Note that Reed-Solomon codes correspond to the

special case of s = 1. The following claim summarizes

the basic properties of folded Reed-Solomon codes.

Claim III.1 ([8]). The folded Reed-Solomon code
FRSq,s(n, d) is an Fq-linear code over alphabet Fs

q of
block length n, rate (d+ 1)/(sn), and relative distance
at least 1− d/(sn).

IV. LIST RECOVERING FOLDED REED-SOLOMON

CODES WITH CONSTANT OUTPUT LIST SIZE

Our first main result shows that folded Reed-Solomon

codes are list-recoverable (and in particular, list-

decodable) up to capacity with constant output list size,

independent of n.

Theorem IV.1 (List recovering FRS with constant output

list size). Let q be a prime power, and let s, d, n be non-
negative integers such that n ≤ (q−1)/s. Let ε > 0 and
� ∈ N be such that 16�/ε2 ≤ s. Then the folded Reed-
Solomon code FRSq,s(n, d) is (α, �, L)-list-recoverable

for α = 1− d/(sn)− ε and L =
(
�
ε

)O(1
ε log �

ε).

Moreover, there is a randomized algorithm that list
recovers FRSq,s(n, d) with the above parameters in time
poly(log q, s, d, n, (�/ε)log(�/ε)/ε).

In particular, the � = 1 case yields the following

statement about list-decoding.

Corollary IV.2 (List decoding FRS with constant output

list size). Let q be a prime power, and let s, d, n be
nonnegative integers such that n ≤ (q− 1)/s. Let ε > 0
be such that 16/ε2 ≤ s. Then the folded Reed-Solomon
code FRSq,s(n, d) is (α,L)-list decodable for α = 1−
d/(sn)− ε and L =

(
1
ε

)O(1
ε log 1

ε).

Moreover, there is a randomized algorithm that list
decodes FRSq,s(n, d) with the above parameters in time
poly(log q, s, d, n, (1/ε)log(1/ε)/ε).

The proof of Theorem IV.1 consists of two main steps.

The first step, from [12], shows that the output list is

contained in a low dimensional subspace. The second

step, which relies on results from [29], shows that the

output list cannot contain too many codewords from a

low dimensional subspace, and therefore is small. The

two steps are presented in Sections IV-A and IV-B,

respectively, followed by the proof of Theorem IV.1 in

Section IV-C.

A. Output list is contained in a low dimensional sub-
space

The following theorem from [12] shows that the output

list is contained in a low dimensional subspace, which

can also be found efficiently.

Theorem IV.3 ([12], Theorem 7). Let q be a prime
power, and let s, d, n, �, r be nonnegative integers such
that n ≤ (q − 1)/s and r ≤ s. Let S : D → (

F
s
q

�

)
be an

instance of the list-recovery problem for FRSq,s(n, d).
Suppose the decoding radius α satisfies:

α ≤ 1− �

r + 1
− r

r + 1
· s

s− r + 1
· d

sn
. (1)

Let

L = {P (X) ∈ Fq[X] | deg(P) ≤ d

and dist(FRSEncs(P), S) ≤ α}.

There is a (deterministic) algorithm that given S, runs
in time poly(log q, s, d, n, �), and computes an affine
subspace v0 + V ⊆ Fq[X] such that:

1) L ⊆ V ,

2) dim(V) ≤ r − 1.

Remark IV.4. Theorem 7 of [12] only deals with the

case where ai = γs(i−1) for all i = 1, . . . , n, and � = 1.

However, it can be verified that the proof goes through

for any choice of distinct a1, a2, . . . , an in {γsi | 0 ≤
i ≤ (q−1)/s−1}, and � ∈ N (for the latter see discussion

at end of Section 2.4 of [12]).

B. Output list cannot contain many codewords from a
low dimensional subspace

To show that the output list L cannot contain too many

elements from a low dimensional subspace (and to find

220

L in the process), we first give a preliminary randomized

algorithm PruneListFRS that outputs a constant size list

L′ such that any codeword of L appears in L′ with a

constant probability p0. This implies that |L| ≤ |L′|/p0,

proving the first part of Theorem IV.1. Now that we

know that |L| is small, our final algorithm simply runs

PruneListFRS O(1
p0

log |L|) times and returns the union

of the output lists. By a union bound, all elements of

L will appear in the union of the output lists with high

probability. This will complete the proof of the second

part of Theorem IV.1.

We start by describing the algorithm PruneListFRS and

analyzing it. The algorithm is given as input S : D →(
F
s
q

�

)
, an Fq-affine subspace v0 + V ⊆ Fq[X] consisting

of polynomials of degree at most d and of dimension at

most r, and a parameter τ ∈ N.

Algorithm PruneListFRS(S, v0 + V, τ)

1) Initialize L′ = ∅.
2) Pick b1, b2, . . . , bτ ∈ D independently and

uniformly at random.

3) For each choice of y1 ∈ S(b1), y2 ∈
S(b2), . . . , yτ ∈ S(bτ):

• If there is exactly one codeword P (X) ∈
v0 + V such that P [s](bj) = yj for all

j ∈ [τ], then:

L′ ← L′ ∪ {P (X)}.
4) Output L′.

Lemma IV.5. The algorithm PruneListFRS runs in time
poly(log q, s, n, �τ), and outputs a list L′ containing at
most �τ polynomials, such that any polynomial P (X) ∈
v0 + V with dist(FRSEncs(P), S) ≤ α appears in L′
with probability at least

(1− α)τ − r

(
d

(s− r)n

)τ

.

Proof. We clearly have that |L′| ≤ �τ , and that the al-

gorithm has the claimed running time. Fix a polynomial

P̂ ∈ v0 + V such that dist(FRSEncs(P̂), S) ≤ α, we

shall show below that P̂ belongs to L′ with probability

at least

(1− α)τ − r

(
d

(s− r)n

)τ

.

Let E1 denote the event that P̂ [s](bj) ∈ S(bj) for

all j ∈ [τ]. Let E2 denote the event that for all

nonzero polynomials Q ∈ V there exists some j ∈
[τ] such that Q[s](bj) �= 0. By the assumption that

dist(FRSEncs(P̂), S) ≤ α, we readily have that

Pr[E1] ≥ (1− α)τ .

Claim IV.6 below also shows that

Pr[E2] ≥ 1− r

(
d

(s− r)n

)τ

.

So both E1 and E2 occur with probability at least

(1− α)τ − r

(
d

(s− r)n

)τ

.

If E2 occurs, then for every choice of y1 ∈ S(b1), y2 ∈
S(b2), . . . , yτ ∈ S(b2), there can be at most one poly-

nomial P (X) ∈ v0 + V such that P [s](bj) = yj for all

j ∈ [τ] (otherwise, the difference Q = P1 − P2 ∈ V of

two such distinct polynomials would have Q[s](bj) = 0
for all j ∈ [τ], contradicting E2). If E1 also occurs, then

in the iteration of Step 3 where yj = P̂ [s](bj) for each

j ∈ [τ], the algorithm will take P = P̂ , and thus P̂
will be included in L′. This completes the proof of the

lemma.

It remains to prove the following claim.

Claim IV.6.

Pr[E2] ≥ 1− r

(
d

(s− r)n

)τ

.

The proof of the claim relies on the following theorem

from [29].

Theorem IV.7 ([29], Theorem 14). Let W ⊆ Fq[X] be
a linear subspace of polynomials of degree at most d.
Suppose dim(W) = t ≤ s. Let a1, a2, . . . , an be distinct
elements in {γsi | 0 ≤ i ≤ (q−1)/s−1}, and for i ∈ [n]
let

Hi = {P (X) ∈ Fq[X] |
P (γjai) = 0 ∀j ∈ {0, 1, . . . , s− 1}}.

Then
n∑

i=1

dim(W ∩Hi) ≤ d

s− t+ 1
· t.

Proof of Claim IV.6. For 0 ≤ j ≤ τ , let

Vj := V ∩Hi1 ∩Hi2 ∩ . . . ∩Hij ,

and tj := dim(Vj). Observe that r = t0 ≥ t1 ≥ . . . ≥
tτ , and that event E2 holds if and only if tτ = 0.

221

By Theorem IV.7,

E[tj+1 | tj = t]

= Ei∈[n][dim(Vj ∩Hi) | dim(Vj) = t]

≤ t

s− t+ 1
· d
n

≤ t · d

(s− r)n
.

Thus

E[tj+1] ≤ E[tj] · d

(s− r)n
,

and

E[tτ] ≤ E[t0] ·
(

d

(s− r)n

)τ

= r

(
d

(s− r)n

)τ

.

Finally, by Markov’s inequality this implies in turn that

Pr[E2] = Pr[tτ = 0] = 1− Pr[tτ ≥ 1]

≥ 1− r

(
d

(s− r)n

)τ

.

C. Proof of Theorem IV.1

We now prove Theorem IV.1 based on Theorem IV.3 and

Lemma IV.5.

Proof of Theorem IV.1. Let S : D → (
F
s
q

�

)
be the re-

ceived sequence of input lists. We would like to find a list

L of size
(
�
ε

)O(1
ε log(�/ε))

that contains all polynomials

P (X) of degree at most d with dist(FRSEncs(P), S) ≤
α.

Let v0 + V be the subspace found by the algorithm

of Theorem IV.3 for S and r = 4�
ε (so r ≤ 1

4εs by

assumption that s ≥ 16�/ε2). Note that for this choice

of r the RHS of (1) is at least

1− ε

4
− 1

1− ε/4
· d

sn
≥ 1− d

sn
− ε = α,

and so all polynomial P (X) of degree at most d with

dist(FRSEncs(P), S) ≤ α are included in V .

Next we invoke Lemma IV.5 with S, v0 + V and

τ = O(1ε log(�/ε)). Then the algorithm PruneListFRS
returns a list L′ of size at most �τ such that

each polynomial P (X) of degree at most d with

dist(FRSEncs(P), S) ≤ α is included in L′ with prob-

ability p0, which is at least

(1− α)τ − r

(
d

(s− r)n

)τ

≥ (1− α)τ − r

(
1

1− ε/4
· d

sn

)τ

≥ (1− α)
τ − 1

2

(
1 + ε/4

1− ε/4
· (1− α− ε)

)τ

≥ 1

2
(1− α)τ ,

where the first inequality follows since r ≤ 1
4εs, and the

second inequality holds since r = 4�
ε ≤ 1

2 · (1+ ε
4)

τ and

α = 1− d
sn − ε.

The above implies in turn that

|L| ≤ |L′|
p0

≤ 2

(
�

1− α

)τ

≤
(
�

ε

)O(1
ε log(�/ε))

.

Moreover, by running the algorithm PruneListFRS
O(1

p0
log |L|) times and returning the union of all output

lists, by a union bound, all elements of L will appear in

the union of the output lists with high probability (say, at

least 0.99). This gives a randomized list recovery algo-

rithm with output list size
(
�
ε

)O(1
ε log(�/ε))

and running

time poly(log q, s, d, n, (�/ε)log(�/ε)/ε).

ACKNOWLEDGEMENTS

We would like to thank Atri Rudra and Venkatesan

Guruswami for helpful discussions.

REFERENCES

[1] M. Sudan, “Decoding of reed solomon codes beyond the error-
correction bound,” Journal of Complexity, vol. 13, no. 1, pp.
180–193, 1997.

[2] V. Guruswami and M. Sudan, “Improved decoding of
reed-solomon and algebraic-geometry codes,” IEEE Trans.
Information Theory, vol. 45, no. 6, pp. 1757–1767, 1999.
[Online]. Available: http://dx.doi.org/10.1109/18.782097

[3] R. Rubinfeld and M. Sudan, “Robust characterizations of
polynomials with applications to program testing,” SIAM J.
Comput., vol. 25, no. 2, pp. 252–271, 1996. [Online]. Available:
http://dx.doi.org/10.1137/S0097539793255151

[4] R. J. Lipton, “Efficient checking of computations,” in Proceed-
ings of the 7th Annual ACM Symposium on Theoretical Aspects
of Computer Science (STACS). Springer, 1990, pp. 207–215.

[5] L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy, “Checking
computations in polylogarithmic time,” in Proceedings of
the 23rd Annual ACM Symposium on Theory of Computing
(STOC). ACM Press, 1991, pp. 21–31. [Online]. Available:
http://doi.acm.org/10.1145/103418.103428

222

[6] S. Arora and M. Sudan, “Improved low-degree testing and its
applications,” Combinatorica, vol. 23, no. 3, pp. 365–426, 2003.

[7] M. Sudan, L. Trevisan, and S. P. Vadhan, “Pseudorandom gener-
ators without the xor lemma,” Journal of Computer and System
Sciences, vol. 62, no. 2, pp. 236–266, 2001.

[8] V. Guruswami and A. Rudra, “Explicit codes achieving list
decoding capacity: Error-correction with optimal redundancy,”
IEEE Transactions on Information Theory, vol. 54, no. 1, pp.
135–150, 2008.

[9] M. Y. Rosenbloom and M. A. Tsfasman, “Codes for the m-
metric,” Problemy Peredachi Informatsii, vol. 33, no. 1, pp. 55–
63, 1997.

[10] S. Kopparty, S. Saraf, and S. Yekhanin, “High-rate codes with
sublinear-time decoding,” Journal of ACM, vol. 61, no. 5, p. 28,
2014.

[11] S. Kopparty, “List-decoding multiplicity codes,” Theory of Com-
puting, vol. 11, no. 5, pp. 149–182, 2015.

[12] V. Guruswami and C. Wang, “Linear-algebraic list decoding for
variants of reed-solomon codes,” IEEE Transactions on Informa-
tion Theory, vol. 59, no. 6, pp. 3257–3268, 2013.

[13] R. R. Nielsen, “List decoding of linear block codes,” Ph.D.
dissertation, Technical University of Denmark, 2001.

[14] Z. Dvir and S. Lovett, “Subspace evasive sets,” in Proceedings
of the 44th Symposium on Theory of Computing Conference
(STOC). ACM Press, 2012, pp. 351–358.

[15] S. Kopparty, O. Meir, N. Ron-Zewi, and S. Saraf, “High-rate
locally correctable and locally testable codes with sub-
polynomial query complexity,” Journal of ACM, vol. 64,
no. 2, pp. 11:1–11:42, 2017. [Online]. Available: http:
//doi.acm.org/10.1145/3051093

[16] S. Gopi, S. Kopparty, R. Oliveira, N. Ron-Zewi, and S. Saraf,
“Locally testable and locally correctable codes approaching the
gilbert-varshamov bound,” in Proceedings of the 28th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM,
2017, pp. 2073–2091.

[17] S. P. Vadhan, “Pseudorandomness,” Foundations and Trends in
Theoretical Computer Science, vol. 7, no. 1–3, pp. 1–336, 2012.

[18] V. Guruswami and P. Indyk, “Near-optimal linear-time codes
for unique decoding and new list-decodable codes over smaller
alphabets,” in Proceedings of the 34th Annual ACM Symposium
on Theory of Computing (STOC). ACM Press, 2002, pp. 812–
821.

[19] ——, “Linear time encodable and list decodable codes,” in STOC,
2003, pp. 126–135.

[20] ——, “Linear-time list decoding in error-free settings,” in ICALP,
vol. 3142. Springer, 2004, pp. 695–707.

[21] ——, “Linear-time encodable/decodable codes with near-optimal
rate,” IEEE Transactions on Information Theory, vol. 51, no. 10,
pp. 3393–3400, 2005.

[22] B. Hemenway, N. Ron-Zewi, and M. Wootters, “Local list recov-
ery of high-rate tensor codes and applications,” in Proceedings of
the 58th Annual IEEE Symposium on Foundations of Computer
Science (FOCS). IEEE Computer Society, 2017.

[23] P. Indyk, H. Q. Ngo, and A. Rudra, “Efficiently decodable
non-adaptive group testing,” in Proceedings of the Twenty-First
Annual ACM-SIAM Symposium on Discrete Algorithms, ser.
SODA ’10. Philadelphia, PA, USA: Society for Industrial and
Applied Mathematics, 2010, pp. 1126–1142. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1873692

[24] H. Q. Ngo, E. Porat, and A. Rudra, “Efficiently Decodable
Compressed Sensing by List-Recoverable Codes and Recursion,”
in 29th International Symposium on Theoretical Aspects of
Computer Science (STACS 2012), ser. Leibniz International
Proceedings in Informatics (LIPIcs), C. Dürr and T. Wilke,
Eds., vol. 14. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2012, pp. 230–241. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2012/3401

[25] A. C. Gilbert, H. Q. Ngo, E. Porat, A. Rudra, and
M. J. Strauss, “�2/�2-foreach sparse recovery with low risk,”
in Automata, Languages, and Programming, ser. Lecture
Notes in Computer Science. Springer Berlin Heidelberg,
2013, vol. 7965, pp. 461–472. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-39206-1 39

[26] F. Parvaresh and A. Vardy, “Correcting errors beyond the
guruswami-sudan radius in polynomial time,” in Foundations
of Computer Science, 2005. FOCS 2005. 46th Annual IEEE
Symposium on. IEEE, 2005, pp. 285–294.

[27] V. Guruswami and C. Xing, “Folded codes from function field
towers and improved optimal rate list decoding,” in Proceedings
of the forty-fourth annual ACM symposium on Theory of com-
puting. ACM, 2012, pp. 339–350.

[28] ——, “List decoding reed-solomon, algebraic-geometric, and
gabidulin subcodes up to the singleton bound,” in Proceedings
of the 45th annual ACM symposium on Theory of Computing
(STOC). ACM Press, 2013, pp. 843–852.

[29] V. Guruswami and S. Kopparty, “Explicit subspace designs,”
Combinatorica, vol. 36, no. 2, pp. 161–185, 2016.

[30] N. Alon, J. Edmonds, and M. Luby, “Linear time erasure codes
with nearly optimal recovery,” in proceedings of the 36th Annual
IEEE Symposium on Foundations of Computer Science (FOCS).
IEEE Computer Society, 1995, pp. 512–519.

[31] B. Hemenway and M. Wootters, “Linear-time list recovery of
high-rate expander codes,” in proceedings of the 42nd Interna-
tional Colloquium on Automata, Languages, and Programming
(ICALP), ser. LNCS, vol. 9134. Springer, 2015, pp. 701–712.

[32] O. Goldreich and L. A. Levin, “A hard-core predicate for all one-
way functions,” in Proceedings of the twenty-first annual ACM
symposium on Theory of computing. ACM, 1989, pp. 25–32.

[33] E. Kushilevitz and Y. Mansour, “Learning decision trees using the
fourier spectrum,” SIAM Journal on Computing, vol. 22, no. 6,
pp. 1331–1348, 1993.

[34] K. Brander and S. Kopparty, “List-decoding Reed-Muller over
large fields upto the Johnson radius,” Manuscript, 2009.

[35] A. Guo and S. Kopparty, “List-decoding algorithms for lifted
codes,” IEEE Transactions on Information Theory, vol. 62, no. 5,
pp. 2719–2725, 2016.

[36] S. Saraf and S. Yekhanin, “Noisy interpolation of sparse poly-
nomials, and applications,” in Computational Complexity (CCC),
2011 IEEE 26th Annual Conference on. IEEE, 2011, pp. 86–92.

223

