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SUMMARY

Modelling the porous flow of melt through a viscously deforming solid rock matrix is a useful
tool for interpreting observations from the Earth’s surface, and advances our understanding
of the dynamics of the Earth’s interior. However, the system of equations describing this
process becomes mathematically degenerate in the limit of vanishing melt fraction. Numerical
methods that do not consider this degeneracy or avoid it solely by regularizing specific material
properties generally become computationally expensive as soon as the melt fraction approaches
zero in some part of the domain.

Here, we present a new formulation of the equations for coupled magma/mantle dynamics
that addresses this problem, and allows it to accurately compute large-scale 3-D magma/mantle
dynamics simulations with extensive regions of zero melt fraction. We achieve this by rescaling
one of the solution variables, the compaction pressure, which ensures that for vanishing melt
fraction, the equation causing the degeneracy becomes an identity and the other two equations
revert to the Stokes system. This allows us to split the domain into two parts: in mesh cells
where melt is present, we solve the coupled system of magma/mantle dynamics. In cells
without melt, we solve the Stokes system as it is done for mantle convection without melt
transport and constrain the remaining degrees of freedom.

We have implemented this formulation in the open source geodynamic modelling code
ASPECT and illustrate the improved performance compared to the previous three-field formu-
lation, showing numerically that the new formulation is robust in terms of problem size and
only slightly sensitive to model parameters. Beyond that, we demonstrate the applicability
to realistic problems by showing large-scale 2-D and 3-D models of mid-ocean ridges with
complex rheology. Hence, we believe that our new formulation and its implementation in
ASPECT will prove a valuable tool for studying the interaction of melt segregating through and
interacting with a solid host rock in the Earth and other planetary bodies using high-resolution,
3-D simulations.

Key words: Numerical solutions; Dynamics of lithosphere and mantle; Mechanics, theory,
and modelling; Mid-ocean ridge processes; Magma migration and fragmentation.

Stokes/Darcy flow break down in the limit of vanishing melt frac-

1 INTRODUCTION

Many Earth system processes are controlled by the porous flow of
melt through a viscously deforming solid rock matrix. The equa-
tions that describe this process have been derived a long time ago
(e.g. McKenzie 1984), and they consistently couple viscous mantle
deformation (Stokes flow) with Darcy’s law for the transport of the
fluid (melt; Spiegelman ef al. 2007). A large number of numerical
models have been formulated that use these equations for differ-
ent application cases (e.g. Katz 2006, 2008; Weatherley & Katz
2012; Keller et al. 2013; Butler 2017; Katz et al. 2017, Keller et al.
2017; Turner et al. 2017). However, many formulations of coupled

tion (or porosity) because for this case the system is mathematically
degenerate (Arbogast et al. 2017).

A common solution for this problem is introducing a cut-off or
regularization for certain material properties or solution variables
(Keller et al. 2013; Wilson et al. 2014; Rhebergen et al. 2015;
Dannberg & Heister 2016). Regularizing the equations in such a
way generally means that either the system does not exactly re-
duce to the Stokes problem in the case of zero porosity or that the
single-phase Stokes problem is solved in parts of the domain that
are partially molten. A major drawback of this approach is that
numerical methods that do not take into account the degeneracy
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of the porosity ¢, and instead regularize the equations, for exam-
ple, by imposing a small non-zero porosity everywhere, are sure to
have a condition number that grows as the porosity approaches zero
(Arbogast et al. 2017). This makes it computationally expensive to
compute numerical models with regions of vanishing porosity.

Arbogast et al. (2017) address this problem by developing a mixed
variational framework, carefully scaling the Darcy variables by pow-
ers of the porosity, and defining a mixed finite element method for
solving the Darcy—Stokes system. It requires a particular choice of
finite elements (of Raviart-Thomas type), and it is based on specific
assumptions on how material properties such as the permeability
and the bulk viscosity depend on the amount of melt present, as we
will discuss in Section 2.

Here, we present a different formulation of the equations
for coupled Stokes/Darcy flow that allows for large-scale 3-D
magma/mantle dynamics simulations with extensive regions of zero
porosity. We have implemented this formulation in the open source
geodynamic modelling code ASPECT (Dannberg & Heister 2016;
Heister et al. 2017; Bangerth et al. 2018a,b), which is based on the
deal Il finite element library (Bangerth et al. 2007; Alzetta et al.
2018). Using ASPECT, we have tested the new method on real-world
applications, in parallel, and with adaptive mesh refinement.

In the following, we will derive our new formulation and its
numerical implementation, and discuss the convergence behaviour
that is expected for this method (Section 2). We will demonstrate
the correctness of our implementation based on a benchmark case
that specifically addresses the boundary between regions with and
without melt, and illustrate the improved performance compared
to the three-field formulation used in Dannberg & Heister (2016;
Section 3.1). Finally, we will show 2-D and 3-D mid-ocean ridge
(MOR) models to demonstrate the applicability of our method to
earth-like settings (Sections 3.2 and 3.3). The code used to generate
these results can be found in the repository at https://github.com/g
eodynamics/aspect and all input files to reproduce the results are
available at https://github.com/tjhei/paper-aspect-melt-paper-2-dat
a.

2 FORMULATION OF THE PROBLEM

We consider the equations describing the behaviour of silicate melt
percolating through and interacting with a viscously deforming host
rock (e.g. McKenzie 1984):

o1+ - [orgul =T, (M
%wﬂ—@HW%ma—@M=—R &
¢ (s —u) = —Kp (Vpr — peg),  (3)

— V- [20¢ + &V - u)l] + Vpr = pg. )

Here, ¢ is the porosity, p is the density, u is the velocity, I is the
melting rate, Kp is the Darcy coefficient, p is the pressure, g is the
gravity vector, 7 is the shear viscosity, & is the bulk viscosity and
&= Vug + (Vuy)T — %(V -ug)1 is the deviatoric strain rate. The
index f indicates the melt (fluid), the index s indicates the solid and
quantities that are phase-weighted averages between the solid and
the fluid are denoted by a bar.
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Two important material properties in the context of the
transition between solid-state mantle convection and two-phase
magma/mantle dynamics are Kp and &. The Darcy coefficient is de-
fined as the ratio of permeability & and fluid viscosity n¢, and while
Ny is often, for simplicity, assumed to be constant, the permeability
depends on the porosity in form of a power-law £ ox ¢", where, gen-
erally, 2 < n < 3. For low melt fractions, melt forms interconnected
tubes along grain edges, leading to a power-law exponent of n ~
2, whereas for larger melt fractions, the power-law exponent shifts
to n &~ 3 as melt forms thin sheets along grain boundaries (Miller
et al. 2014; Rudge 2018a). This means that for vanishing porosity,
Kp — 0. The compaction viscosity & is often assumed to scale as
& o ¢~!, as suggested, for example, by a homogenization approach
(Simpson et al. 2010), so that the matrix cannot be compacted (¢
— o0) if no melt is present. More recent studies indicate that the
porosity dependence might be weaker, suggesting a relation of &
o« —log (¢) for Nabarro—Herring (volume diffusion) creep (Rudge
2018b), and & o 71 (except for when ¢ < 0.01) for Coble (grain
boundary diffusion) creep (Takei & Holtzman 2009; Rudge 2018b).

Arbogast et al. (2017) based their work on the assumptions that &
= ko¢>* % with 6 a constant between 0 and 1/2, and & = n/¢,
which are common relations used in many geodynamic models. In
the following, we will discuss the equations above without making
specific assumptions about the material properties other than k —
Oand & — oo for¢p — 0.

2.1 Original formulation used in Dannberg & Heister
(2016)

In previous work (Dannberg & Heister 2016), we reformulated the
equations by building on the three-field formulation from Keller
etal. (2013), extending them to compressible solid and fluid phases:

—V-(2né)+ Vpr + Vp. = pg, (5)
Vpr
V-u—V .- KpVpe — KpVps - p— = —V - (Kpprg)
£
1 1
T
143 Ps

¢
_;us . fo - (us : g)(l - ¢)Ksps - KDg : Vpﬁ
f

Vou+ 2 =0, )
§

All terms that vanish in the limit of zero porosity and no melting are

highlighted. This instantaneous problem determining the pressures
and velocities of both phases is complemented by an advection
equation, covering the evolution of the porosity over time:

a¢p r

— tu Vo= —+ (1 =)V us+ k08 - uy). 3)
ot s

There are a number of strategies available for solving this advection

problem, and in the following, we will focus on the challenges asso-
ciated with numerically solving eqs (5)—(7). Note, however, that we
solve the advection problem (8) separately from the elliptic eqs (5)—
(7), and iterate over both systems to solve the nonlinear problem.
Consequently, we can assume that we know the distribution of the

porosity ¢ when solving eqs (5)—~7).
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These equations can be brought into the weak form (see Dannberg
& Heister 2016) and solved as outlined in Rhebergen et al. (2015).
This results in the linear system:

A BT BT\ (U, F
BN o |[p,]|=[G]. )
B0 K/\P, 0

A, B, N, K, F and G are defined as in Dannberg & Heister (2016).
‘We mention the original linear system at this point to highlight the
differences between this original and our new formulation, and we
will come back to it when discussing the linear system in the new
formulation (Section 2.2, eq. 16).

This particular three-field formulation of the equations has been
used for real-world applications (Keller et al. 2013), existing meth-
ods for solving it have been developed with large-scale simulations
in mind (Rhebergen et al. 2015), and it is already integrated and
tested with the other features of the convection code ASPECT we
use here, such as a deformable free surface, and the advection of
chemical species in the solid and melt using fields or particles. For
these reasons, we decided to build on this formulation.

But while it allows it to run large-scale, 3-D models of cou-
pled magma/mantle dynamics, the formulation has several short-
comings. The number of linear solver iterations increases with an
increasing ratio of compaction viscosity & and shear viscosity 7,
which corresponds to a decreasing porosity ¢. In addition, for the
limit of ¢ — 0 (which implies Kp — 0), the compaction pressure p,
is not defined because of the singularity of the compaction viscosity
& in this limit. As discussed in Section 2, it is generally assumed that
& — oo for ¢ — 0, at least for incompressible models, which make
the assumption that ks = 0, so that eq. (7) simplifiesto V - ug = 0 in
the limit of zero porosity. In this case, the last two equations of the
linear system (9) become linearly dependent (and the whole system
is ill-posed), which is also the reason for the increasing number
of linear solver iterations that are needed for decreasing porosity
values. Indeed, Arbogast et al. (2017) note that all numerical meth-
ods that do not specifically take into account the degeneracy of
the porosity are sure to have a condition number that grows as the
porosity approaches zero.

Consequently, in order to solve the system in spite of this problem,
some limit has to be imposed on the compaction viscosity, either
in the form of a maximum value, or in the form of a regularization
term that is added to the compaction pressure equation. If the cut-
off is carefully designed, the contribution it makes could be at or
just slightly larger than the solver tolerance, and would not change
the physical behaviour of the system in the zero porosity limit (see
also Section 2.3). If, on the other hand, the cut-off is the only
measure to prevent the increasing solver iteration counts caused by
the degeneracy of the system of equations, this implies that it is
chosen substantially larger than the solver tolerance. In that case,
the stabilization allows it to solve the equations, but the system will
not revert to the incompressible one-phase Stokes equations for
vanishing porosity, as there will always be a non-zero contribution
of the compaction term that is needed to stabilize the system.

2.2 New formulation

To address these problems, we have developed a new formulation
that is based on the idea of rescaling solution variables developed in
Arbogast et al. (2017), but flexible in the choice of parametrization
for Kp and &, and without requiring a specific discretization choice.
To address the degeneracy of the system (9), we scale the third equa-
tion with a function d(¢) that vanishes for Kp = 0. For simplicity,

we here chose d(¢) = [f—DD (for details, see Section 2.3), but we
0

assume that our method also works for other functions that go to
zero in the limit of ¢ — 0. To keep the matrix symmetric, we also
replace p. by p., using the relation p. = d(¢)p..

With this, we arrive at the following, new system of partial dif-
ferential equations:

— V- 2né) 4+ Vpe+V (d($)pe) = pg,

Vp
V.-u,—V-KpVpr — KpVps - p—‘ = —V - (Knprg)
'

¢
—;us - Vor — (us - g)(1 — d)isps — Kpg - Vor,
'

d(¢)’ pe

=0.
3

d(P)V - us +

Again, terms that vanish in the limit of zero porosity are marked
in the grey boxes. For this new formulation, it becomes apparent
that for the limit of ¢ — 0, the last equation vanishes completely
and we recover the Stokes system from the first two equations, as
V (d(¢)p) = 0 for d(¢) = 0:

= V- (2n&) + Vpe = pg,
V.u, = _(us N g)KSps-

‘We can now use the fact that we know the distribution of the poros-
ity when we solve these equations (see Section 2.1). While the
(rescaled) compaction pressure p. is still not defined in the limit of
¢ — 0, it is also not used anywhere in the system if ¢ = 0. Hence,
to make sure that the linear system can be solved, we can constrain
the p. degrees of freedom (DoFs) to p. = 0 in regions where the
porosity is below a given threshold. An example for this is given
in Fig. 1. Using the relation p. = d(¢)p. allows us to compute the
compaction pressure everywhere in the domain, where in the case of
zero porosity (which implies d(¢) = 0) the scaling always leads to
pe = 0. This formulation has the advantage that no additional com-
putational resources are used to solve the coupled Stokes/Darcy
system if no melt is present.

By default, we choose this threshold for solving the two-phase
flow equations to be equal to the linear solver tolerance (see Sec-
tions 2.3 and 3.2.5), which (for default values) corresponds to a
porosity three orders of magnitude lower than the reference value.
This means that it is a threshold that is only relevant for the dis-
cretized equations and does not change the physical behaviour of
the model, and we will later show that our formulation allows it
to choose much lower values for this threshold (given the porosity
is known with sufficient accuracy). On the other hand, a physical
threshold for melt transport—the percolation threshold—has been
suggested in some studies (e.g. Zhu & Hirth 2003; Cheadle et al.
2004). According to these models, melt segregation and compaction
only start to occur once the porosity reaches a critical value and
pockets of melt become interconnected. Consequently, we allow
our threshold to be chosen as a model input parameter.

In the incompressible formulation, which is a good approxima-
tion for models that do not span a large depth range and is com-
monly used for these applications, all terms that contain the solid
compressibility or the fluid density gradient vanish:

— V- (2né) + Vpr + V(d(¢)pe) = pg. (10)
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Figure 1. Distribution of melt cells and cells that are not melt cells in a 3-D model of a transform fault. The coupled Stokes—Darcy equations are only solved

in cells where the porosity is above a given threshold.

V.-u,—V-KpVpr = =V - (Kpprg)
1 1

+I (— - —) , (11)
%3 Ps

d@yp. _
£

d@)V - u, + 0. (12)

The weak form of the full problem is given by finding us, ps, p.
with

@néun). £(vy)) (%W V- vs)

_(pf’ V. vs) - (d(‘f’)ﬁc, V. Vs) = (bgﬂ Vs) P (13)

—(V-u,, qr) — (KnVpr, Var)

v
+ (KDVPf - %, C]f) = — (Kpprg, Vgr)

+/ grKp(peg — £) - 1t ds
a0

1 1
- (* - *) (T, gr) (14)
Pt Ps

+ (fus - Vo, qf>
Pr

+ ((us - g)(1 — P ps, qf)
+(Kpg - Vpr, g1,

1
~ U@ w00~ (@) 70 ) =0 (15)
for all test functions vy, gy, g..

Note that we have made the assumption that at the interface 92,01
between regions where the compaction pressure is constrained to p.
= 0 and the regions where we solve for the full two-phase system,
V pr = prg. This follows from integration by parts of eq. (12), which

yields

1 1
—(V w5, qr) — (KpVpr, Vgr) = —(Kpprg, Vgr) — (; - ;) (T, gr)
f s

+/ qrKp(prg — Vpr) - i ds
Qe

for the interface 0 Q2yq. As Kp = 0 in the cells without melt, and K
> (0 in the cells where melt is present, fmmeh (prg — Vpg)-nds = 0.
Because of Darcy’s law (eq. 3), this condition is equivalent to the
assumption that the melt velocity equals the solid velocity at the
interface between the two regions.

This means in place of eq. (9), we have to solve the linear system:

A B D"\ (U, F
BN o0 ]|[P,]|=]|G]|. (16)
D 0 K/ \P. 0

where A is the discretization of (2né(uy), &(vy)) —
(31V - u, V- vy), Bis given by —(pr, V - v;), D is a rescaled ver-
sion of B and given by —(d(¢)ps, V - vs), F is given by (pg, v;), N is
given by —(KpV pr, Vgr) in the incompressible case, G is given by

— (Kopig, Va0 + [ arKn(prig =) -7 ds — (£ = L) (T.q0)

ot
in the incompressible case and K’ is given by — (d (¢)? % Pes qc) . For
compressible computations, N also contains the non-symmetric,
third term from eq. (14), and G contains the remaining terms on
the right-hand side of eq. (14), which contain « and V py.

As the block structure of the linear system remains the same
as in Dannberg & Heister (2016), the same solver strategy, based
on Rhebergen et al. (2015), can be employed to solve the block
system (eq. 16). Specifically, we use flexible GMRES with the block
preconditioner (preconditioned from the right):

A B’ D’
_ dig
P ! = 0 _%Mplﬁpf - KDLpf _T)Mllf-ﬁc . (17)
0 _((nﬁMpc-Pf _d(‘i’)z(Tl] + é)Mpc-pc

Here, [M; ,];; = (¢, ¢, ;) are mass matrices between the two fi-
nite element spaces (7 and J stand for p¢ or p.; ¢, is the correspond-
ing ith shape function of the space I) and [L,.]; ; = (Vi p;, V& ;)
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the stiffness matrix. To simplify the notation, we write the product
of the mass and stiffness matrices with a varying coefficent (such
as %) as above. In the implementation those coefficients are pulled
into the inner products and evaluated by quadrature point.

To solve the linear system, we group the second and third row
and column together to get

~ —1
o (ABT
P=(3%)

where the bottom right 2 x 2 block in (17) is the Schur complement
S. With this, P~! is an upper triangular operator requiring the ap-
proximation A~! of and S~'. We decided to approximate A~! using
an inner CG solver preconditioned by Trilinos ML applied to the
diagonal blocks of A. The inner solves with S are done using CG
preconditioned by Trilinos ML.

2.3 Constraining the compaction pressure DoFs

As outlined in Section 2.2, we constrain the compaction pressure
DoFs to p. = 0 in regions where the porosity is below a given
threshold. We have implemented our formulation using the finite
element method, which implies that to be able to find a solution for
the compaction pressure, we have to make the same choice for all
points in a given mesh cell: either solve the coupled Stokes/Darcy
system or constrain the compaction pressure DoFs. Because of that,
we base our discussion around mesh cells and use a scaling factor
d(¢) that is piece-wise constant in each cell. However, our method is
not only applicable to finite elements; in the more general case it is
important to make sure that in every point where material properties
that contribute to the solution of a given p. DoF are evaluated, the
same choice is made.

In practice, we choose this threshold Kiyeshold based on the Darcy
coefficient Kp relative to a reference value Kp,, as this ratio is
what we use to rescale the different matrix blocks in the linear
system (16). Kp, is defined as the ratio of permeability and fluid
viscosity at a porosity that is typical for the model (in the following
examples, we will use a value of 1 percent). But because it is part
of ASPECT’s ‘material model’ plugin structure (see Bangerth et al.
2018b), different values of Ky, can be chosen for different appli-
cation cases. This means that the last equation in (16) will not be
rescaled at all if the porosity equals this reference porosity.

As mentioned above, the decision to constrain DoFs is made for
each cell, separating the model domain into ‘melt cells’, where the
full equations are solved, and cells that are not ‘melt cells’ with
the compaction pressure DoFs being constrained. An example for
this is shown in Fig. 1. A cell is determined to be a ‘melt cell’
if Kp/Kp, > Kiueshola anywhere in the cell. (In practice, for the
discretized equations, we make this decision by evaluating Kp/Kp,
on any point in the cell where we need the material properties to
compute the solution to the linear system). The default value is
given by Kireshola = 1077 (the default value of the linear solver tol-
erance), but it is an input parameter that can be chosen differently
in each model (for its influence on solver performance, see Sec-
tion 3.2.5). Based on this evaluation, a piece-wise constant scaling
factor d(¢) for the compaction pressure is computed for each cell.
In melt cells, d(¢) = /max (Kp,,,/Kpy: Kinreshola), Where Kp, ..
is the arithmetic mean of the Darcy coefficient for the respective
cell. Taking the maximum of the average scaling factor in the cell
and the chosen threshold value Kiyesnola provides a minimum value
for the scaling factor and guarantees that we avoid the mathemat-
ically degenerate region in all quadrature points where we solve

the two-phase flow equations. In cells that are not melt cells, we set
d(¢) = 0, and all compaction pressure DoFs are constrained to zero.
Effectively, this removes the equations for p. in the Stokes region
and for a computation without any melt cells, the linear system and
solver cost is effectively equivalent to a standard Stokes solver.

This algorithm is executed once in every time step, after solv-
ing the advection equation for the porosity, to make sure that
the constraints for system (16) are the same for every nonlin-
ear iteration and that the nonlinear solver converges. To compute
the Darcy coefficient in eq. (14), the same threshold is applied:
Kp = max (Kp,,.» Kinreshola Kp,) in melt cells, and zero otherwise.

Dannberg & Heister (2016) used a different threshold to dis-
criminate between model regions with and without melt migration,
directly based on the porosity. In their method, the full two-phase
flow equations are only solved for ¢ > @ueshold- Both methods
are compared for different threshold values in Section 3.2.5, and—
assuming a reference porosity of 0.01 and a permeability k& o< ¢>—
both thresholds are related as Guueshold = 0.01Kinreshotd >

2.4 Finite element formulation

While our formulation is generally applicable to models of cou-
pled Stokes/Darcy flow, we will discuss the discretization in the
context of the finite element method, which is employed by the geo-
dynamic modelling code ASPECT we used for our implementation.
Consequently, we still require a choice of finite element spaces
for the discrete solution (usj, prs, Pes) € Wi C W = HH(Q) x
H'(Q) x L*(R). This system is analysed in detail in Grove (2017).
We use quadrilateral cells and the following, typical polynomial
finite element spaces: let Oy be the continuous space with tensor-
product polynomials of degree £ on each cell and let DGP;, be the
discontinuous space with polynomials of degree £.

To be able to solve for a discrete p, ;, in eq. (15), the space needs
to be discontinuous to allow a jump from melt to a no-melt cell, so
we choose DGPy.

In the case Kp = 0 (no melt in the domain), we recover the
standard Stokes system and well-posedness requires a stable finite
element choice for uy;, and pg, to guarantee convergence. One
example is the usage of Taylor—Hood elements, where the velocity
is discretized with one polynomial degree higher than the pressure.
Consequently, we choose Oy, ; for each component of the velocity
u, ,, and use the finite element space W}

Wkl_ = Q;({Jrl X Qk X DGPk

This gives stable solutions and optimal convergence rates for Kp =
0.

On the other hand, if we consider a situation with melt everywhere
(Kp = Kpmin > 0), W} leads to suboptimal convergence rates, and
increasing the polynomial order of pg;, would be beneficial. We note
that the inverse of the minimum value of K, appears in the stability
estimate, confirming the issue of letting Kp go to zero.

Our simulations in this paper are done with . For the partic-
ular three-field form of the partial differential equations, we have
adopted here (eqs 5-7), and the choice of scaling we suggest, al-
ternatives would be to either always require a minimum Kp, add
stabilization terms to make the Stokes solution stable for Kp = 0,
or discretize with different finite element spaces in the regions with
and without melt.
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3 RESULTS

3.1 1-D analytical solution for the interface between
regions with and without melt

We use a 1-D benchmark from Arbogast ef al. (2017) to show that
our formulation is correct, and that the solver performs much better
than the previous one in Dannberg & Heister (2016). The benchmark
specifically addresses the transition between regions with both melt
and solid, where the coupled Stokes/Darcy system is solved, and
regions without melt, where the problem is reduced to the Stokes
problem. This is done by choosing the porosity as zero in the upper
half of the model domain, and as a quadratic function in the lower
half, in such a way that the transition between the two regions is
continuous and smooth (Fig. 2). Under the assumption that ¢ < 1,
Arbogastetal. (2017; eqs 6.21-6.23) derive an approximate solution
for this given porosity distribution, which we use to compute errors
and convergence rates of our method.

Our numerical results show similar convergence rates as Arbo-
gast et al. (2017): quadratic convergence for the solid velocity and
linear convergence for the fluid and compaction pressure (Fig. 3).
Beyond that, we find that the number of linear solver iterations is not
sensitive to problem size, and that the iteration count does not vary
substantially in dependence of the material properties, such as, for
example, the ratio between shear and compaction viscosity (Tables
1 and 2). This is a substantial improvement from the very strong
dependence on both problem size and material properties exhibited
by the method used in Dannberg & Heister (2016), which is what
motivated this study.

3.2 Numerical results: 2-D mid-ocean ridge model

In the previous section, we have shown that our formulation cor-
rectly reproduces analytical solutions and for simple, 1-D models
solver performance is independent of problem size and contrast
between shear and compaction viscosity. In the following, we will
demonstrate that our implementation also performs well for realis-
tic models of coupled magma/mantle dynamics that are relevant for
advancing our understanding of how magma rises from its source
region to the surface. For this purpose, we set up a MOR model
with a visco-plastic, temperature and porosity-dependent rheology.
Prescribed outflow at the side boundaries leads to upward flow
beneath the ridge axis, so that inflowing material rises and melts
adiabatically below the ridge. We use the melting parametrization
from Katz et al. (2003) as depicted in Fig. 4. To track the tem-
perature, the porosity and the degree of melting (depletion), we
use second-order finite elements and advect them as fields as de-
scribed in Dannberg & Heister (2016), Heister et al. (2017) and
Bangerth et al. (2018b). The model includes the effect of latent heat
of melting and freezing, but does not take into account shear heat-
ing or adiabatic heating (Boussinesq Approximation). To stabilize
the advection equations, we employ the entropy—viscosity method
(Guermond et al. 2011), which evaluates the residual associated
with the entropy of the temperature (composition, porosity) equa-
tion and adds artificial diffusion based on this residual, so that more
diffusion is added in areas where the numerical approximation is
poor, such as close to strong gradients (see also Kronbichler et al.
2012, Section 3.2.6).
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3.2.1 Boundary conditions

The temperature is fixed to 293 K at the top boundary and to 1570 K
at the bottom boundary, while the side boundaries are insulating.
Porosity and depletion fields are fixed to zero at the inflow (bot-
tom) boundary, and Neumann boundary conditions are applied at
the other boundaries. We prescribe the horizontal component of the
velocity to a constant value of 4 cmyr~! on the right model bound-
ary to generate passive upwelling of material below the ridge axis
and horizontal flow away from the MOR. In addition, the lithostatic
pressure is applied as a traction boundary condition for the ver-
tical stress component at the right boundary and the stress at the
bottom boundary, allowing free inflow and outflow. The top and
left boundaries are free-slip boundaries and are impermeable to the
flow of solid material, but melt can leave the domain through the
top boundary (see next). Fig. 5 illustrates the set-up.

To allow melt to escape at the ridge axis, we add a temperature
perturbation to the otherwise constant boundary temperature at the
top of the model in form of a hyperbolic tangent close to the ridge
axis. So, the total boundary temperature is defined as

T=To—|—AT(1—tanh(x;x0>), (18)

with Ty = 293K, AT = 600K, x, = 2000 m and w = 1000 m. This
leads to a non-zero melt fraction at the ridge axis, where melt can
flow out of the model domain. To avoid a suction effect at the ridge
axis, we prescribe the fluid pressure gradient at the upper model
boundary as

Vpe = (fpr + (1 =f)ps) g, (19)

similar to the pressure boundary condition applied in Katz (2010)
for the same reason. In this expression, f controls the resistance
to flow through the boundary: /= 0 would allow free outflow of
melt like at an open boundary, and f'= 1 corresponds to a closed
boundary. Here, we use f = 0.99, which is large enough to let melt
flow out of the domain and to limit the steady-state porosity beneath
the ridge axis to approximately 10 per cent, but not so large that the
outflow dominates the melt flow in the whole melting region.

3.2.2 Material properties

‘We combine a temperature and porosity-dependent diffusion creep
rheology with a stress limiter of the following form:
Hoe— =BT ~T0)/To

0. T) = {7

2&r7

ifo < Oyicld

otherwise ’ (20)

where £;; is the second invariant of the strain rate, and oyjqq =
Ccos (¢,) + pssin (¢,,) with the cohesion C and the friction angle ¢,,.
This way, the stress will not exceed the yield strength of the material,
and deformation is localized at the ridge axis. The compaction
viscosity is given as

£, T) = so% o PTT D, @1

with the reference porosity ¢, = 0.05.

Most other material properties are chosen as in the MOR model
in Katz (2010). The model is incompressible, so that the density is
given as

p= [(ps + ApCF)(l - ¢) + pf¢] (1 - athcrmal(T - I;"cf))’ (22)

where F is the degree of melting given by the melting parametriza-
tion (Katz et al. 2003) for the current temperature and pressure
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Figure 2. Set-up of the benchmark given in Arbogast et al. (2017). The solution derived in Arbogast et al. (2017) is given as a dashed black line, and the

solution computed numerically with ASPECT is marked by a red line.

Table 1. Iteration count in dependence of the problem size. While for the
method of Dannberg & Heister (2016) the number of iterations increases
with the number of degrees of freedom, our new method needs fewer itera-
tions and the iteration count is independent of the problem size.

Problem size: number of linear solver iterations

#eells Dannberg & Heister (2016) This study
20 107 5
40 303 7
80 820 10
160 No convergence 8

Table 2. Iteration count in dependence of the bulk-to-shear-viscosity ratio,
for n = 80 cells in vertical direction.

Parameters variations: number of linear solver iterations

Emax/N Dannberg & Heister (2016) This study
10! 24 11
102 63 12
10° 214 14
10 820 16
10° No convergence 16
100 No convergence 16
107 No convergence 11

(representing depletion of the material), A pc is the density change
due to depletion, and o permg is the thermal expansivity. A complete
list of input parameters is given in Table 3.

3.2.3 Initial conditions

We first run a time-dependent model to generate realistic temper-
ature, composition and porosity distributions for our scaling tests,
which are instantaneous.

To prescribe initial conditions for the temperature and composi-
tion in the time-dependent model, we use a temperature distribution

based on the half-space cooling model to compute the equilibrium
melt fraction everywhere in the domain. As we take into account
latent heat effects, this initial temperature is reduced in dependence
of the amount of melting, and we find the solution iteratively. The
resulting temperature is prescribed as initial temperature, and the re-
sulting melt fraction is prescribed as initial depletion. The porosity is
assumed to be zero everywhere in the domain at the model start. We
first let the model run in a low resolution of 1 km for 3 million years
to produce a more realistic temperature and compositional structure
that takes into account the dynamic effects of melt transport. Then,
we increase the resolution to 550 m throughout the model domain
and 270 m within a distance of 7 km around the ridge axis, where
melt is extracted from the domain. On this finer mesh, we compute
another 3 million years of model evolution, which is approximately
the time it takes for solid material to cross the distance from the ridge
axis to the far end of the model domain. Finally, we let the model
evolve for another 8000 yr (~370 time steps) with a uniform cell size
of 140 m. This allows us to export the final state of the model to data
files and use them to create high-resolution initial conditions for the
model runs presented in the following. The data files are freely avail-
able at https://github.com/tjhei/paper-aspect-melt-paper-2-data to-
gether with the input files and allow it to reproduce our results.

3.2.4 Influence of problem size

To show that iteration numbers of the linear solver do not vary
substantially with the size of the problem we are solving, we used
the data files created from the final state of the 2-D MOR model
described above to compute instantaneous flow models with dif-
ferent resolutions (Fig. 7). Our results (see Table 4) show that the
number of GMRES iterations is insensitive to the problem size,
and the number of Schur complement iterations that are done per
GMRES iteration only increases slightly with problem size. This
result highlights the usefulness of our new method for large-scale
magma/mantle dynamics models.

6102 Jequialdag gz uo Jasn AusiaAilun uoswsal) Aq 6/Z161S/v6/1/61 Z10ensqe-ajonie/B/woo dno-oiwepese//:sdiy wo.ll papeojumod



A new formulation for magma/mantle dynamics 101
104 ‘ 10°
@@ Dannberg & Heister, 2016 | — — linear convergence |
<><> new formulation
0 O Arbogast et al., 2017
1034 — - quadratic convergence 5 10t E
-
5 g
:
.*? 106 % 102
133 E @ E E
= &
> =
~ =]
~ Gy
107} = 103k E
108 . 104 ‘
10* 10? 10* 10?

#eells

Figure 3. Error for solid velocity and fluid pressure. Results from Arbogast ez al. (2017). Tables 5 and 6 are plotted for comparison. For the method of Dannberg
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& Heister (2016), the linear solver does not converge for a resolution higher than n = 80, so the results shown are using a direct solver.
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Figure 4. Melting parametrization from Katz ef al. (2003). Shown is a
temperature range from 1300 to 2300K and a pressure range from 0 to
10 GPa. The kink signifies the exhaustion of clinopyroxene in the host rock.
Contours between solidus and liquidus in the temperature—pressure plane
are drawn at melt fractions of 0, 20, 40, 60, 80 and 100 per cent.

3.2.5 Influence of material properties

Rhebergen et al. (2014) and Rhebergen et al. (2015) have identified
the ratio of compaction to shear viscosity as a key control on the
rate of convergence of the iterative solver for the linear system we
solve. Because the compaction viscosity is inversely proportional
to the porosity, this ratio increases with decreasing porosity and
becomes infinity in the limit of ¢ — 0 (which is the mathematically
degenerate case) at the boundaries between regions with and without
melt.

As this boundary is present in most models of magma/mantle
dynamics, and has the potential to slow down convergence of the
linear solver substantially, we investigate the dependence of the
convergence rate on the compaction-to-shear-viscosity ratio. In our
new formulation, we address the part of the problem that relates to
the interface between the solid and the partially molten region by
rescaling the equation that contains the compaction viscosity, and
introducing a threshold for the onset of two-phase flow. Hence, in
the following we will test the sensitivity of the iteration count to
both the global compaction-to-shear-viscosity ratio and the choice
of the melt transport threshold.

T=293 K, free slip
|
T —————————————

insulating, free slip

insulating, prescribed horizontal velocity

T=1570 K, open boundary

Temperature (K)

293 500 750 1000 1250

Melt velocity (m/yr)
0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 5. Set-up of the mid-ocean ridge model. The top panel illustrates the
boundary conditions, temperature distribution and solid velocity (the white
streamlines), the bottom panel shows the melt velocity in melt cells (the
white streamlines) and in cells that are not melt cells (the black streamlines).
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Table 3. Parameters used for the mid-ocean ridge models.

Quantity Value Reference

Reference bulk viscosity &o 4 % 102 Pas Katz (2010), maximum value
Reference shear viscosity 79 10'8 Pas Katz (2010), preferred value
Melt viscosity ng 1Pas Katz (2010)

Solid density ps 3000 kgm™3 Katz (2010)

Fluid density p¢ 2500 kgm™> Katz (2010)

Compositional density contrast Apc 500 kgm™> a

Reference permeability & 10~ 7m? Katz (2010), preferred value
Reference porosity ¢o 0.05 Katz (2010)

Melt weakening parameter o 27 Katz (2010)

Temperature weakening parameter 24 Hirth & Kohlstedt (2004)°
Thermal expansivity ¢/ thermal 2 x 1079K! Dannberg & Heister (2016)
Specific heat C, 1250 Tkg~! K1 Dannberg & Heister (2016)
Reference temperature 7Trcf 1600 K Dannberg & Heister (2016)
Thermal conductivity Kthermal 47Wm~'K-! Dannberg & Heister (2016)
Cohesion C 2 x 107 Pa Glerum ef al. (2018), table B2
Friction angle ¢, 30° Glerum et al. (2018), table B2
X extent 105 km -

Z extent 70 km -

aApc = 500 kgm ™ leads to a chemical density contrast of approximately 2per cent for material in the
lithosphere, which has a depletion F of 10-15 per cent in our models.

b8 = 24 leads to the same magnitude of temperature dependence as using an Arrhenius model with the
activation energy of 3.75 x 10 Jmol~! given in Hirth & Kohlstedt (2004) for diffusion creep in olivine.

Table 4. Iteration counts for a linear solver tolerance of 1014,

Problem size: number of linear solver iterations

tceells GMRES iterations Average S block iterations
6144 213 157
24576 176 199
98304 118 229
393216 118 261
1572 864 116 308
6291456 119 343

Table 5. Tteration counts for a linear solver tolerance of 10~'4, and 887939
Stokes degrees of freedom (98 304 mesh cells).

Compaction-to-shear-viscosity ratio: number of linear solver iterations

£/ (b = 1.5%)

GMRES iterations Average S block iterations

2 x 10! 74 116
2 x 10% 124 147
2 x 103 124 248
2 x 10* 125 345
2 x 10° 175 403
2 x 100 182 434
2 x 107 183 435

For this purpose, we use the same set-up as described above
in Section 3.2.4 to compute instantaneous flow models. When the
compaction-to-shear-viscosity ratio &/ is varied globally (Table 5),
we see that there is a weak dependence of the GMRES iteration
count on the compaction-to-shear-viscosity ratio, similar to the re-
sults of Rhebergen et al. (2015). In addition, the S block iteration
count increases with &/7. This is expected, as our formulation only
addresses the increase of & as the porosity ¢ — 0. However, this
sensitivity to &/ might not be problematic for realistic applica-
tions, as this ratio is expected to be on the order of 1-100 (Hewitt &
Fowler 2008; Takei & Holtzman 2009; Katz 2010; Simpson ef al.
2010; Schmeling et al. 2012; Alisic et al. 2014).

Note that the values £/n given in Table 5 correspond to the ratio
of the shear and compaction viscosity for a porosity ¢ = 0.015.
The actual ratio in the model varies by two orders of magnitude
upwards from this reference value due to the different dependencies
on porosity, which means that the ratio increases both for very low
and very high porosities.

In addition, we also test the sensitivity of the solver convergence
rate to the increase in the compaction-to-shear-viscosity ratio as ¢
— 0 by varying the threshold for the onset of two-phase flow. The
results (Table 6) reveal no sensitivity of the GMRES iteration count
and only a very weak sensitivity of the S block iteration count to
this threshold.

Finally, we also want to provide a direct comparison to the method
of Dannberg & Heister (2016). Due to the strong dependence on
problem size, we had to reduce the resolution, increase the threshold
for the onset of two-phase flow and increase the solver tolerance of
the model for this comparison, and we also removed the temperature
dependence of viscosity. The results in Table 7 show both overall
lower iteration counts and lower sensitivity to model parameters for
the formulation developed in this study. They highlight that also for
realistic application cases such as melt migration below MORs; our
new method performs substantially better than the one developed in
Dannberg & Heister (2016), and is feasible for accurately modelling
the interface between regions with and without melt.

3.2.6 Scaling behaviour of the implemented solver

In practice, not only the number of iterations, but also the wall
clock time per iteration controls the computational cost of a model
time step. Therefore, we present scaling tests for the models of this
section and Section 3.3 in Fig. 6. All scaling tests were done on Intel
Xeon (Skylake) cores connected by an Intel Omnipath network at
the Stampede 2 system of the Texas Advanced Computing Center
(TACCQ).
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Table 6. Iteration counts for a linear solver tolerance of 10~ (left-hand columns), and 10~ 4 (right-hand columns),
using 887 939 Stokes degrees of freedom (98 304 mesh cells) and a varying Kihreshold- Note how Kipreshold can be
chosen arbitrarily small as it is just a semantic interpretation (where is melt) instead of a numerical necessity to
ensure solver convergence.

Threshold for melt transport: number of linear solver iterations

GMRES solver tolerance 107

GMRES solver tolerance 10~

Kihreshold GMRES iterations  Avg. S block iterations GMRES iterations  Avg. S block iterations
10~ 37 230 114 252
1078 37 230 114 253
1010 37 239 113 261
10~12 37 242 113 269
10-14 37 275 115 361

Table 7. Iteration counts for a linear solver tolerance of 108, and 62404 Stokes degrees of freedom (6144 mesh cells). Entries
marked with ‘—’ indicate that there was no convergence reached after 100 000 GMRES iterations.

Threshold for melt transport: number of linear solver iterations

Dannberg & Heister (2016)

This study

Kihreshold Pthreshold GMRES iterations  Avg. S block iterations =~ GMRES iterations  Avg. S block iterations
10° 102 1496 10 69 27
1072 2.15 x 1073 3471 10 69 156
1074 464 x 1074 12 600 10 69 181
10-° 104 42272 10 69 184
10-8 2.15 x 1073 95869 10 69 190
1010 4.64 x 1076 - - 70 192
Strong scaling Weak scaling
9 10000 ¢

10000

MOR, 2D, 20M Dofs —@—
TF, 3D, 6.3M Dofs ]
Optimal scaling

1000 ¢

100 ¢

Wallclock time [s] / Execution

10
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#Cores

1000

Wallclock time [s] / Execution
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1000

10 el el
10 100 1000

#Cores

10000

Figure 6. Strong and weak scaling results for the 2-D mid-ocean ridge (MOR) model described in Section 3.2 and the 3-D transform fault (TF) model described
in Section 3.3. The presented values represent the time required for solving the combined Stokes/Darcy equations once (i.e. without time spent for assembly,
and equations for temperature, composition and porosity). Note that the two model series use different iterative solver tolerances and values for Kinresholds SO
that absolute wall clock times cannot be compared between 2-D and 3-D. The scaling behaviour is not affected by these choices.

Both models show a linear strong scaling to about 50 000 DoFs
per core (considering only solid velocity, fluid pressure and com-
paction pressure DoFs); beyond that the efficiency drops signifi-
cantly. The weak scaling results suggest a slightly less than optimal,
but still acceptable scaling with model size, which leads to an in-
crease of Stokes solver time by about a factor of 2.7 when increasing
the model size by a factor of 64 (from 5 million DoFs to 327 mil-
lion DoFs in 2-D, and from 6 million DoFs to 396 million DoFs in
3-D). These results are consistent with the slight increase in Schur
complement iterations with model size discussed in Section 3.2.4
and show that our solver scales reasonably well to problem sizes of
several hundred million and potentially a few billion DoFs, although
there is still room for optimization.

3.2.7 A note on mesh refinement

In Dannberg & Heister (2016), we discussed some strategies for
adaptively refining the mesh in models with coupled magma/mantle
dynamics. They mainly focused on refining the mesh based on so-
lution variables or material properties. However, one can think of
other useful mesh refinement strategies: one alternative is to just
refine all cells where melt is present. Another natural criterion
that comes to mind is the intrinsic length scale of melt migra-
tion: the compaction length. The compaction length is defined as
8. = /(& +4n/3)Kp and is the length scale over which the com-
paction pressure responds to variations in fluid flux (Spiegelman
et al. 2007; McKenzie 1984; Spiegelman 1993). Hence, this length
scale should be well resolved in numerical models that consider
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the compaction of partially molten rock. As the compaction length
varies spatially and temporally, depending on the porosity of the
rock and the material properties, adaptive mesh refinement can be
a useful tool to make sure that the compaction length is resolved in
an evolving model, while simultaneously saving computational re-
sources by coarsening the mesh in regions with a larger compaction
length.

We implemented both mesh refinement strategies: one that re-
fines all ‘melt cells’, and one that adapts the size of the grid cells
depending on the local compaction length, allowing it to define
the minimum number of cells per compaction length that should
be present in the model. However, it becomes apparent that both of
these strategies are inferior to refining based on solution variables, at
least if the model output of interest is directly related to the solution
variables (Fig. 8). Refining in ‘melt cells’ performs slightly better
than global refinement, but not nearly as well as refining based on
the porosity or the melt velocity, and using the compaction length
as a refinement criterion is inferior even to refining globally. The
reason for that is that the compaction length decreases with de-
creasing melt fraction, due to the strong porosity dependence of the
permeability (k o ¢", where, generally, 2 < n < 3) and hence Kp.
Accordingly, the highest level of mesh refinement is applied at the
boundaries of the melting region where porosities are low and the
melt velocity is almost identical to the solid velocity. This increases
the number of DoFs, but does not accurately resolve the melt flux
in regions where the porosity is large.

The compaction length can be a useful criterion to estimate an
upper limit for the length scales of features emerging in a two-phase
flow model, and can be used to set a minimum resolution in the
partially molten regions. But just resolving the compaction length is
generally not sufficient for accurately modelling of two-phase flow.
Other physical processes (e.g. related to energy transport or the
melting process) may also control the emerging length scales, and
previous resolution tests have suggested that accurately modelling
processes such as the formation of melt bands requires on the order
of 15 grid cells per wavelength of the feature (Katz & Takei 2013).
This agrees with our results, where the compaction length (assuming
a reference porosity of 0.5 per cent) is on the order of 10 km, which
is well resolved in all models in Fig. 8, as the coarsest resolution is
2 km. But because of features on substantially smaller scales than
the compaction length our models require a global resolution of
140 m to reach an error of 1 per cent for the global melt flux, which
corresponds to ~70 mesh cells per compaction length, or ~15 mesh
cells across the sublithospheric decompaction channel.

3.3 3-D Application: oceanic transform fault

To show the capability of our method to solve large-scale 3-D
problems of coupled magma/mantle dynamics, we present an in-
stantaneous MOR model that includes two ridge segments offset
by a transform fault. We generated the initial conditions for this
set-up from the end state of the 2-D MOR model by mirroring the
distribution of temperature, depletion and porosity with respect to
the ridge axis and extending it uniformly in the third dimension,
except for an offset of the ridge axis of 40 km in the centre of the
model. The material properties and boundary conditions are iden-
tical to the 2-D model described in Section 3.2, and the new model
boundaries at the front and back are free slip boundaries. The model
extents are 170 x 170 x 70 km, and we solve the (time-independent)
coupled Stokes/Darcy equations on approximately 8.9 million cells
(262 million DoFs combined for solid velocity, fluid pressure and

k-
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Figure 7. Porosity (top row) and melt velocity (all rows below) in a 2-D
mid-ocean ridge model for different resolutions as given in Table 4. The
panels with a black frame show the whole model, all other panels show the
part of the model closest to the ridge axis. Resolution increases as specified
by the white labels indicating the cell size in each model.

compaction pressure), as visualized in Fig. 1. We use adaptive mesh
refinement to increase the resolution in areas where melt is present,
resulting in a cell size of approximately 550 m.

Modelling the flow of melt beneath transform faults has been
used as a tool to explain observed changes in crustal thickness
where MOR segments are offset by transform faults. Due to the
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Figure 8. Melt flux in a 2-D mid-ocean ridge model for different resolutions. The top row shows the vertical melt flux integrated over a horizontal line in 3 km
depth (left) and the vertical melt flux integrated over the whole model domain (right) for models with uniform refinement of the mesh. The bottom row panels
feature the same quantities as the corresponding panels above, only that they show the error from the Richardson extrapolation of the data in the top row in
logarithmic scale. The different data series represent uniform mesh refinement (the red diamonds), and adaptive mesh refinement based on the porosity (the
blue squares) and the melt velocity (the yellow triangles), both using the Kelly error estimator, the presence of melt (the light red diamonds) and the compaction
length (the light green squares). The results show that using adaptive mesh refinement can yield the same accuracy while using 1 to 2 orders of magnitude
fewer degrees of freedom, and that for globally integrated quantities, such as the integrated melt flux, it can also yield a higher order of convergence.

high computational costs of 3-D simulations of coupled Stokes—
Darcy flow, these models have often used a simplified model of
melt transport as suggested by Sparks & Parmentier (1991): melt
segregates upwards vertically until it reaches the base of the litho-
sphere, which acts as in an impermeable boundary. It then migrates
along the steepest slope of this boundary until it approaches the
ridge axis, where it is extracted to the surface (e.g. Gregg et al.
2009; Weatherley & Katz 2010; Hebert & Montési 2011; Bai &
Montési 2015).

These models have been used to explain a range of observations,
such as differences in axial depth and crustal thickness of ridge
segments separated by transform faults (Weatherley & Katz 2010),
or crustal thickness variations within intratransform spreading cen-
tres (Gregg et al. 2009; Hebert & Montési 2011), and the focusing
trajectories predicted by these studies (using Sparks & Parmentier
1991°s approach) seem to provide a reasonable approximation to
the melt flow predicted by a model of coupled Stokes—Darcy flow
(Fig. 9, top right). On the other hand, our model results (Fig. 9, left)
show that melt migration may not always follow the slope of the
base of the lithosphere. Even though the temperature and porosity
fields are symmetric with respect to the respective ridge axis of
the individual ridge segments, the flow field evinces 3-D structures.
Melt may be focused towards the ridge axis of the opposite ridge

segment over distances of tens of kilometres if that one is closer
than the axis of the ridge segment the melt was generated at. Hence,
melt crosses the transform fault, and the melt flux along the ridge
axis decreases with increasing distance from the fault. In addition,
deformation is not only localized at the two ridge segments, but the
employed stress-limiter rheology also leads to localization at the
transform fault, where no melt is reaching the surface. It is clear
that individual features of the flow field are likely to be different
in a model with time evolution, where melt pathways are influ-
enced by the acting stresses. However, our results highlight that
high-resolution time-dependent 3-D models have a large potential
to advance our understanding of the influence of transform faults
and oblique spreading directions on the focusing of melt towards
the ridge axis, and it is feasible to compute such models with the
formulation we developed here.

4 CONCLUSIONS

We have developed a new formulation of the governing equations
of magma/mantle dynamics that allows it to efficiently model the
problem, even in the case of vanishing porosity and large ratios of
compaction and shear viscosity. We achieve this by rescaling one of
the solution variables, the compaction pressure, with the square root
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Figure 9. Visualization of a 3-D model of two mid-ocean ridge segments separated by a transform fault. The red-to-yellow streamlines show the melt velocity,
highlighting the 3-D structure of the flow field (the curved yellow white streamlines cross the transform fault). The black-to-white background colours indicate
temperature and the grey arrows illustrate the prescribed spreading direction. The two insets show the pathways of melt, with the blue lines indicating the
regions melt would be focused from to the ridge segments (top), and the deformation at the surface of the model (bottom).

of the Darcy coefficient, and constraining the compaction pressure
DoFs to zero for very small porosities. This makes the linear system
well posed, even for small or vanishing porosities.

Our numerical results show that the number of linear solver it-
erations is independent of the problem size, and that there is only
a mild sensitivity to the model parameters. Hence, the method can
be applied throughout a wide parameter range. Scaling tests reveal
that our solver scales reasonably well to problem sizes of several
hundred million, and potentially up to a few billion DoFs. Most
importantly, the solver convergence does not change with decreas-
ing porosity, when the interface between solid and partially molten
regions is approached.

Finally, we demonstrated that our new formulation is suitable for
modelling large-scale realistic problems of magma/mantle dynam-
ics, such as melt generation and transport beneath MORs. Hence,
we are confident that our new formulation and its implementation
in the open source geodynamic modelling software ASPECT will
prove most valuable for exploring the interactions of solid rock
deformation and melt generation and transport in three dimensions.
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